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Abstract: Artificial intelligence (AI) and machine learning (ML) have recently been radically im-
proved and are now being employed in almost every application domain to develop automated
or semi-automated systems. To facilitate greater human acceptability of these systems, explainable
artificial intelligence (XAI) has experienced significant growth over the last couple of years with
the development of highly accurate models but with a paucity of explainability and interpretability.
The literature shows evidence from numerous studies on the philosophy and methodologies of XAI.
Nonetheless, there is an evident scarcity of secondary studies in connection with the application do-
mains and tasks, let alone review studies following prescribed guidelines, that can enable researchers’
understanding of the current trends in XAI, which could lead to future research for domain- and
application-specific method development. Therefore, this paper presents a systematic literature
review (SLR) on the recent developments of XAI methods and evaluation metrics concerning different
application domains and tasks. This study considers 137 articles published in recent years and
identified through the prominent bibliographic databases. This systematic synthesis of research
articles resulted in several analytical findings: XAI methods are mostly developed for safety-critical
domains worldwide, deep learning and ensemble models are being exploited more than other types
of AI/ML models, visual explanations are more acceptable to end-users and robust evaluation metrics
are being developed to assess the quality of explanations. Research studies have been performed on
the addition of explanations to widely used AI/ML models for expert users. However, more attention
is required to generate explanations for general users from sensitive domains such as finance and the
judicial system.

Keywords: explainable artificial intelligence; explainability; evaluation metrics; systematic litera-
ture review

1. Introduction

With the recent developments of artificial intelligence (AI) and machine learning (ML)
algorithms, people from various application domains have shown increasing interest in
taking advantage of these algorithms. As a result, AI and ML are being used today in many
application domains. Different AI/ML algorithms are being employed to complement
humans’ decisions in various tasks from diverse domains, such as education, construction,
health care, news and entertainment, travel and hospitality, logistics, manufacturing, law
enforcement, and finance [1]. While these algorithms are meant to help users in their
daily tasks, they still face acceptability issues. Users often remain doubtful about the
proposed decisions. In worse cases, users oppose the AI/ML model’s decision since
their inference mechanisms are mostly opaque, unintuitive, and incomprehensible to
humans. For example, today, deep learning (DL) models demonstrate convincing results
with improved accuracy compared to established algorithms. DL models’ outstanding
performances hide one major drawback, i.e., the underlying inference mechanism remains
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unknown to a user. In other words, the DL models function as a black-box [2]. In general,
almost all the prevailing expert systems built with AI/ML models do not provide additional
information to support the inference mechanism, which makes systems nontransparent.
Thus, it has become a sine qua non to investigate how the inference mechanism or the
decisions of AI/ML models can be made transparent to humans so that these intelligent
systems can become more acceptable to users from different application domains [3].

Upon realising the need to explain AI/ML model-based intelligent systems, a few
researchers started exploring and proposing methods long ago. The bibliographic databases
contain the earliest published evidence on the association between expert systems and
the term explanation from the mid-eighties [4]. Over time, the concept evolved to be an
immense growing research domain of explainable artificial intelligence (XAI). However,
researchers did not pay much attention to XAI until 2017/2018 which can be justified
by the trend of publications per year with the keyword explainable artificial intelligence
in titles or abstracts from different bibliographic databases illustrated in Figure 1a. The
increased attention paid by researchers towards XAI from all the domains utilising systems
developed with AI/ML models was caused by three major incidents. First of all, the funding
of the “Explainable AI (XAI) Program” was funded in early 2017 by the Defense Advanced
Research Projects Agency (DARPA) [5]. After a couple of months in mid-2017, the Chinese
government released “The Development Plan for New Generation of Artificial Intelligence”
to encourage the high and strong extensibility of AI [6]. Last but not least, in mid-2018,
the European Union granted their citizens a “Right to Explanation” if they were affected
by algorithmic decision making by publishing the “General Data Protection Regulation”
(GDPR) [7]. The impact of these events is prominent among the researchers since the search
results from the significant bibliographic databases depict a rapidly increasing number of
publications related to XAI during recent years (Figure 1b). The bibliographic databases
that were considered to assess the number of publications per year on XAI were found to
be the main sources of the research articles from the AI domain.

(a) (b)

Figure 1. Number of published articles (y axis) on XAI made available through four bibliographic
databases in recent decades (x axis): (a) Trend of the number of publications from 1984 to 2020.
(b) Specific number of publications from 2018 to June 2021. The illustrated data were extracted on 1
July 2021 from four renowned bibliographic databases. The asterisk (*) with 2021 refers to the partial
data on the number of publications on XAI until June.

The continuously increasing momentum of publications in the domain of XAI is pro-
ducing an abundance of knowledge from various perspectives, e.g., philosophy, taxonomy,
and development. Unfortunately, this scattered plentiful knowledge and the use of differ-
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ent closely related taxonomies interchangeably demand the organisation and definition
of boundaries through a systematic literature review (SLR), as it contains a structured
procedure for conducting the review with provisions for assessing the outcome in terms of
a predefined goal. Figure 2 presents the distribution of articles on XAI methods for various
application domains and tasks. From Figure 2a, it is realisable that today, most of XAI
methods are developed as domain agnostic. However, the most influential use of XAI is
in the healthcare domain; this may be because of the demand for explanations from the
end-user perspective. Obviously, in many application domains, AI and ML methods are
used for decision support systems, and the need for XAI is high for decision support tasks,
as can be seen in Figure 2b. Although there is an increasing number of publications, some
challenges have not been considered, for example, user-centric and domain knowledge
incorporating explanation. This article aimed to present the outcome of an SLR on the
current developments and trends in XAI for different application domains by summarising
the methods and evaluation metrics for explainable AI/ML models. Moreover, the aim of
this SLR includes identifying the specific domains and applications in which XAI methods
are exploited and that are to be further investigated. To achieve the aim of this study, three
major objectives are highlighted:

• To investigate and present the application domains and tasks for which various XAI
methods have been explored and exploited;

• To investigate and present the XAI methods, validation metrics and the type of ex-
planations that can be generated to increase the acceptability of the expert systems to
general users;

• To sort out the open issues and future research directions in terms of various domains
and application tasks from the methodological perspective of XAI.

Domain Agnostic (48%)

Healthcare (22%)

Industry (7%)

Miscellaneous (7%)

Transportation (5%)

Academia (3%)

Entertainment (2%)

Finance (2%)

Judicial (2%)

Genetics (2%)

Application Domains Application Tasks

(b)(a)

Decision Support (27%)

Any Supervised Task (23%)

Image Processing (21%)

Recommender Systems (10%)

Predictive Maintenance (8%)

Miscellaneous Tasks (5%)

Anomaly Detection (3%)

Business Management (3%)

Figure 2. Percentage of the selected articles on different XAI methods for different application
(a) domains and (b) tasks.

The remainder of this article is arranged as follows: relevant concepts of XAI from a
technical point of view are presented in Section 2, followed by a discussion on prominent
review studies previously conducted on XAI in Section 3. Section 4 contains the detailed
workflow of this SLR, followed by the outcome of the performed analyses in Section 5.
Finally, a discussion on the findings of this study and its limitations and conclusions are
presented in Sections 6 and 7, respectively.

2. Theoretical Background

This section concisely presents the theoretical aspects of XAI from a technical point of
view for a better understanding of the contents of this study. Emphatically, the philosophy
and taxonomy of XAI have been excluded from this manuscript because they are out of
the scope of this study. However, the term explainability is associated with the interface
between decision makers and humans. This interface is synchronously comprehensible to
humans and accurately represents the decision maker [2]. Specifically, in XAI, the interface
between the models and the end-users is called explainability, through which an end-user
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obtains clarification on the decisions that the AI/ML model provides them with. Based
on the literature, the concepts of XAI within different application domains are categorised
as stage, scope, input and output formats. This section includes a discussion on the most
relevant aspects that seem necessary to make XAI efficiently and credibly work on different
applications. Figure 3 summarises the prime concepts behind developing XAI applications
which were adopted from the recent review studies by Vilone and Longo [8,9].

Figure 3. Overview of the different concepts on developing methodologies for XAI, adapted from the
review studies by Vilone and Longo [8,9].

2.1. Stage of Explainability

The AI/ML models learn the fundamental characteristics of the supplied data and
subsequently try to cluster, predict or classify unseen data. The stage of explainability refers
to the period in the process mentioned above when a model generates the explanation for
the decision it provides. According to Vilone and Longo, the stages are ante hoc and post
hoc [8,9]. Brief descriptions of the stages are as follows:

• Ante hoc methods generally consider generating the explanation for the decision
from the very beginning of the training on the data while aiming to achieve optimal
performance. Mostly, explanations are generated using these methods for transparent
models, such as fuzzy models and tree-based models;

• Post hoc methods comprise an external or surrogate model and the base model. The
base model remains unchanged, and the external model mimics the base model’s
behaviour to generate an explanation for the users. Generally, these methods are
associated with the models in which the inference mechanism remains unknown to
users, e.g., support vector machines and neural networks. Moreover, the post hoc
methods are again divided into two categories: model-agnostic and model-specific.
The model-agnostic methods apply to any AI/ML model, whereas the model-specific
methods are confined to particular models.

2.2. Scope of Explainability

The scope of explainability defines the extent of an explanation produced by some
explainable methods. Two recent literature studies on more than 200 scientific articles
published on XAI deduced that the scope of explainability can be either global or local [8,9].
With a global scope, the whole inferential technique of a model is made transparent or
comprehensible to the user, for example, a decision tree. On the other hand, explanation
with a local scope refers to explicitly explaining a single instance of inference to the user,
e.g., for decision trees, a single branch can be termed as a local explanation.

2.3. Input and Output

Along with the core concepts, stages and scopes of explainability, input and output for-
mats were also found to be significant in developing XAI methods [2,8,9]. The explainable
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models’ mechanisms unquestionably differ when learning different input data types, such
as images, numbers, texts, etc. Including these basic forms of input, several others are found
to be utilised in different studies, which are elaborately discussed in Section 5.3.1. Finally,
the prime concern of XAI, the output format or the form of explanation varies following
the solution to the prior problems. The different forms of explanation simultaneously vary
concerning the circumstances and expertise of the end-users. The most common forms of
explanations are numeric, rules, textual, visual and mixed. These forms of explanation are
illustrated and briefly discussed in Section 5.3.4.

3. Related Studies

During the past couple of years, research on the developing theories, methodologies
and tools of XAI has been very active, and over time, the popularity of XAI as a research
domain has continued to increase. Before the massive attention of researchers towards XAI,
the earliest review that could be found in the literature was that by Lacave and Diéz [10].
They reviewed the then prevailing explanation methods precisely for Bayesian networks.
In the article, the authors referred to the level and methods of explanations followed
by several techniques that were mostly probabilistic. Later, Ribeiro et al. reviewed the
suggested interpretable models as a solution to the problem of adding explainability to
AI/ML models, such as additive models, decision trees, attention-based networks, and
sparse linear models [11]. Subsequently, they proposed a model-agnostic technique that
involves the combined development of an interpretable model from the predictions of
black-box and perturbing inputs to observe the reaction of black-box models [12].

With the remarkable implications of GDPR, an enormous number of works have been
published in recent years. The initial works included the notion of explainability and its use
from different points of view. Alonso et al. accumulated the bibliometric information on
the XAI domain to understand the research trends, identify the potential research groups
and locations, and discover possible research directions [13]. Gobel et al. discussed older
concepts and linked them to newer concepts such as deep learning [14]. Black-box models
were compared with the white-box models based on their advantages and disadvantages
from a practical point of view [3]. Additionally, survey articles were published that advo-
cated that explainable models replace black-box models for high-stakes decision-making
tasks [1,15]. Surveys were also conducted on the methods of explainability and addressed
the philosophy behind the usage from the perspective of different domains [16–18] and
stakeholders [19]. Some works included the specific definitions of technical terms, possible
applications, and challenges towards attaining responsible AI [6,20,21]. Adadi and Berrada
and Guidotti et al. separately studied the available methods of explainability and clustered
them in the form of explanations, e.g., textual, visual, and numeric [22,23]. However, the
literature contains a good number of review studies on specific forms or methods of ex-
plaining AI/ML models. For example, Robnik-Sikonja and Bohanec conducted a literature
review on the perturbation-based explanations for prediction models [24], Zhang et al.
surveyed the techniques of providing visual explanations for deep learning models [25],
and Daglarli reviewed the XAI approaches for deep meta-learning models [26].

Above all, several review studies were conducted by Vilone and Longo to gather and
present the recent developments in XAI [8,9,27]. These studies presented extensive clustering
of the XAI methods and evaluation metrics, which makes the studies more robust than the
other review studies from the literature. However, none of these studies presented insights
on the application domains and tasks that are facilitated with the developments of XAI.
However, researchers from specific domains also surveyed the possibilities and challenges
from their perspectives. The literature contains most of the works from the medical and health
care domains [28–34]. However, there are review articles available in the literature from the
domains of industry [35], software engineering [36], automotive [37], etc.

In the studies mentioned above, the authors reviewed and analysed the concepts
and methodologies of XAI, challenges and possible actions to the solutions from the
perspective of individual domains or without concerning the application domains and
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tasks. However, to our knowledge, none of the studies exploited XAI methods considering
different application domains and tasks as a whole. Moreover, a survey following an SLR
guideline to review the methods and evaluation metrics for XAI to maintain a rigid objective
throughout the study is still not present. Hence, in this article, an established guideline for
SLR [38] was followed to gather and analyse the available methods of adding explainability
to AI/ML models and the metrics of assessing the performance of the methods as well as
the quality of the generated explanations. In addition, this survey study produced a general
notion on the utilisation of XAI in different application domains based on the selected
articles.

4. SLR Methodology

The methodology was designed according to the guidelines provided by Kitchenham
and Charters for conducting an SLR [38]. The guidelines contain clear and robust steps for
identifying and analysing potential research works intending to consider future research
possibilities followed by the proper reporting of the SLR. The SLR methodology includes
three stages: (i) planning the review; (ii) conducting the review; and (iii) reporting the review.
The SLR methodology stages are briefly illustrated in Figure 4. The first two stages are
broken down into major aspects and described in the following subsections, while the third
stage, reporting the SLR, is self-explanatory.

# Identifying potential 

   research articles.

# Data extraction.

# Questionnaire survey.

# Data analysis.

# Identifying the need for 

   the SLR.

# Specifying the research 

   questions.

# Developing the review 

   protocol.

Stage I: Planning Stage II: Conducting

# Preparing the SLR 

   report.

# Evaluating the report.

Stage III: Reporting

Figure 4. SLR methodology stages following the guidelines from Kitchenham and Charters [38].

4.1. Planning the SLR

The first stage involves creating a comprehensive research plan for the SLR. This stage
includes identifying the need for conducting the SLR, outlining the research questions
(RQs) and determining a detailed protocol for the research works to be accomplished.

4.1.1. Identifying the Need for Conducting the SLR

In a continuation of the discussion in Sections 1 and 3, with the increasing number of
research works on XAI methodologies, the underlying knowledge becomes increasingly
disorganised. However, very few secondary studies have been conducted solely to organise
the profuse knowledge on the methodologies of XAI. In addition, no evidence of an SLR
was found in the investigated bibliographic databases. Therefore, the need to conduct an
SLR is stipulated to compile and analyse the primary publications on the methods and
metrics of XAI and purposefully present an extensive and unbiased review.

4.1.2. Research Questions

Considering the urge to conduct an SLR of the exploited methods of providing ex-
plainability for AI/ML systems and their evaluations in different application domains and
tasks, several RQs were formulated. Primarily, the questions were defined to investigate
the prevailing approaches towards making AI/ML models explainable. This included the
probe of explainable models by design, different structures of the generated explanation,
and the significant application domains and tasks utilising the XAI methods. Furthermore,
the means of validating the explainable models were also considered, followed by the open
issues and future research directions. For convenience, the RQs for conducting this SLR are
outlined as follows:



Appl. Sci. 2022, 12, 1353 7 of 38

• RQ1: What are the application domains and tasks in which XAI is being explored
and exploited?

– RQ1.1: What are the XAI methods that have been used in the identified applica-
tion domains and tasks?

– RQ1.2: What are the different forms of providing explanations?
– RQ1.3: What are the evaluation metrics for XAI methods used in different appli-

cation domains and tasks?

4.1.3. SLR Protocol

The SLR protocol was designed to achieve the objective of this review by address-
ing the RQs outlined in Section 4.1.2. The protocol mainly contained the specification of
each aspect of conducting the SLR. First, the identification of the potential bibliographic
databases, the definition of the inclusion/exclusion criteria and quality assessment ques-
tions, and the selection of research articles are discussed elaborately in Section 4.2.1. In
the second step, thorough scanning of each of the articles was performed, and relevant
data were extracted and tabulated in a feature matrix. The feature set was defined from
the knowledge of previous review studies mentioned in Section 3, motivated by the RQs
outlined in Section 4.1.2. To support the feature extraction process, a survey was conducted
in parallel which involved the corresponding/first authors of the selected articles. The
survey responses were further used to obtain missing data, clarify any unclear data, and
assess the extracted data quality. Upon completing feature extraction and the survey, an
extensive analysis was performed to complement the defined RQs. Finally, to portray this
SLR outcome, all the authors were involved in analysing the extracted features, and a
detailed report was generated.

4.2. Conducting the SLR

This is the prime stage of an SLR. In this stage, most of the significant activities defined
in the protocol were performed (Section 4.1.3), i.e., identifying potential research articles,
conducting the author survey, extracting data and performing an extensive analysis.

4.2.1. Identifying Potential Research Articles

Inclusion and exclusion criteria were determined to identify potential research articles
and are presented in Table 1. The criteria for inclusion in the SLR were peer-reviewed arti-
cles on XAI written in the English language and published in peer-reviewed international
conference proceedings and journals. The criteria for exclusion from the SLR were articles
that were related to the philosophy of XAI and articles that were not published in any
peer-reviewed conference proceedings or journals. Throughout the article selection process,
these inclusion and exclusion criteria were considered.

Table 1. Inclusion and exclusion criteria for the selection of research articles.

Inclusion Criteria Exclusion Criteria

Describing the methods of XAI Describing the methods in different contexts than AI
Peer reviewed Describing the concept/philosophy of XAI
Published in conferences/journals Preprints and duplicates
Published from 2018 to June 2021 Published in workshops
Written in English Technical reports

To ensure the credibility of the selected articles, a checklist was designed. The list
contained 10 questions that were adapted from the guidelines for conducting an SLR by
Kitchenham and Charters and García-Holgado et al. [38,39]. Moreover, to facilitate the
validation, the questions were categorised on the basis of design, conduct, analysis, and
conclusion. The questions are outlined in Table 2.
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Table 2. Questions for checking the validity of the selected articles.

Perspective Quality Questions

Design

Are the aims clearly stated?
If the study involves assessing a methodology, is the methodology clearly
defined?
Are the measures used in the study fully defined?

Conduct
Was outcome assessment blind to treatment group?
If two methodologies are being compared, were they treated similarly
within the study?

Analysis Do the researchers explain the form of data (numbers, images, etc.)?
Do the numbers add up across different tables and methodologies?

Conclusion

Are all study questions answered?
How do results compare with previous reports?
Do the researchers explain the consequences of any problems with the
validity of their measures?

The process for identifying potential research articles included the identification,
screening, eligibility, and sorting of the selected articles. A step-by-step flow diagram of
this identification process is illustrated using the “Preferred Reporting Items for Systematic
Reviews and Meta-Analyses” (PRISMA) diagram by Moher et al. [40] in Figure 5. The
process started in June 2021. An initial search was conducted using Google Scholar (https:
//scholar.google.com/ accessed on 30 June 2021) with the keyword explainable artificial
intelligence to assess the available sources of the research articles. The search results showed
that most of the articles were extracted from SpringerLink (https://link.springer.com/
accessed on 30 June 2021), Scopus (https://www.scopus.com/ accessed on 30 June 2021),
IEEE Xplore (https://ieeexplore.ieee.org/ accessed on 30 June 2021) and the ACM Digital
Library (https://dl.acm.org/ accessed on 30 June 2021). Other similar sources were
also present, but those were not considered since they primarily indexed data from the
mentioned sources. Moreover, Google Scholar was not used for further article searches
since it was observed that the results contained articles from diverse domains. In short, to
narrow the search specifically to the AI domain, the mentioned databases were set to be the
main sources of research articles for this review. Initially, 1709 articles were extracted from
the bibliographic databases after searching with the keyword explainable artificial intelligence,
as before. To focus this review on the recent research works, 113 articles were excluded
because they were published before 2018. A total of 1596 articles were selected for screening,
and after reviewing the titles or abstracts, more than half of the articles were excluded as
they were not related to AI and XAI. From the 647 articles screened from the AI domain,
376 articles were excluded as they were duplicates or preprint versions of the articles. After
evaluating the eligibility of the published articles, 277 articles were further considered, and
159 articles were excluded because they were notions or review articles. Specifically, a “yes”
was provided for the selected articles for at least 7 out of the 10 quality questions mentioned
in Table 2 following Dáu and Salim [41] and Genc-Nayebi and Abran [42]. Therefore,
118 articles were selected for a thorough review. During the process, 19 additional related
articles were found from a complementary snowballing search [43], in simpler terms, a
recursive reference search. Among the newly included articles, some were published
prior to 2018 but were included in this study due to substantial contribution to the XAI
domain. Finally, 137 articles were selected for the authors’ survey, data/metrics extraction
and analysis, among which 128 articles described different methodologies of XAI and 9
articles were solely related to the evaluation of the explanations or the methods to provide
explanations.

https://scholar.google.com/
https://scholar.google.com/
https://link.springer.com/
https://www.scopus.com/
https://ieeexplore.ieee.org/
https://dl.acm.org/
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Figure 5. Flow diagram of the research article selection process adapted from the PRISMA flow
chart by Moher et al. [40]. The number of articles obtained/included/excluded at different stages is
presented in parentheses.

4.2.2. Data Collection

In this review study, the data collection was conducted in two parallel scenarios.
Several features were extracted by reading the published article. Simultaneously, a ques-
tionnaire survey was distributed among the corresponding or first authors of the selected
articles to gather their subjective remarks on the article and some features that were not
clear from reading the articles. Each of the phases is elaborately described in the follow-
ing paragraphs.

Feature Extraction

All the selected articles on the methodologies and evaluation of explainability were
divided among the authors for thorough scanning to extract several features. The features
were extracted from several viewpoints, namely metadata, primary task, explainability, expla-
nation, and evaluation. The features extracted as metadata contained information regarding
the dissemination of the selected study. Features from the viewpoint of the primary task
were extracted to assess a general idea of the variety of AI/ML models that were deliber-
ately used to perform classification or regression tasks prior to adding explanations to the
models. The last three sets of features were extracted related to the concept of explainability,
the explored or proposed method of making AI/ML models explainable and the evaluation
of the methods and generated explanations, respectively. After extracting the features,
a feature matrix was built to concentrate all the information for further analysis. The
principal features from the feature matrix are concisely presented in Table 3.
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Table 3. List of prominent features extracted from the selected articles.

Viewpoint Feature Description

Metadata

Source Name of the conference/journal where the article
was published.

Keywords Prominent words from the abstract and keywords
sections that represents the concept of the article.

Domain The targeted domain for which the study
was performed.

Application Specific application that was developed or enhanced.

Primary task

Data The form of data that was used to develop a model,
e.g., images, texts.

Model AI/ML model that was used for performing the
primary task of classification/regression.

Performance The performance of the models for the defined tasks.

Explainability

Stage
The stage of generating explanation—during the
training of a model (ante hoc) or after the training
ends (post hoc).

Scope Whether the explanation is on the whole model, on a
specific inference instance, i.e., global, local or both.

Level The level for which explanation is generated, i.e.,
feature, decision or both.

Explanation
Method The procedure of generating explanations.

Type The form of explanations generated for the models
or the outcomes.

Evaluation
Approach The technique of evaluating the explanation and the

method of generating explanation.

Metrics The criteria of measuring the quality of
the explanations.

Questionnaire Survey

In parallel to the process of feature extraction through reading the articles, a ques-
tionnaire survey was conducted among the corresponding or first authors of the selected
articles. The questionnaire was developed using Google Forms and distributed through
separate emails to authors. The prime motivation behind the survey was to complement
the feature extraction process by collecting authors’ subjective remarks on their studies,
curating the extracted features, and gathering specific information that was not present or
unclear in the articles. The survey questionnaire contained queries on some of the features
described in the previous section. In addition to that, queries on the experts’ involvement,
the use of third-party tools, potential stakeholders of this study etc., were also present in
the questionnaire. In response to the invitation to the survey, approximately half of the
invited authors submitted their remarks voluntarily, and these responses add value to the
findings of this review.

4.2.3. Data Analysis

Following the completion of feature extraction from the selected articles and the
questionnaire survey by the authors of the articles, the available data were analysed from
multiple viewpoints, as presented in Table 3. From the metadata, sources were assessed to
obtain an idea of the venues in which the works on XAI are published. Furthermore, the
author-defined keywords and the abstracts were analysed by utilising natural language
processing (NLP) techniques to assess the relevance of the articles to the XAI domain.
Afterwards, the selected articles were clustered based on application domains and tasks to
determine future research possibilities.

Before analysing the selected articles, clustering was performed in accordance with the
primary tasks and input data mentioned in Section 2 and the method deployed to perform
the primary task. Additionally, the proposed methods of explainability were clustered
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based on scopes and stages. Finally, the evaluation methods were investigated. All the
clustering and investigations performed in this review work were intended to summarise
the methods of generating explanations along with the evaluation metrics and to present
guidelines for the researchers devoted to exploiting the domain of XAI.

5. Results

The findings from the performed analysis of the selected articles and the questionnaire
survey are presented concerning the viewpoints defined in Table 3. To facilitate a clear
understanding, the subsections are titled with specific features, e.g., the results from
the analysis on primary tasks are presented in separate sections. Again, the concepts
of explainability are illustrated along with the methods to provide explanations in the
corresponding sections.

5.1. Metadata

This section presents the results obtained from analysing the metadata extracted from
the selected articles—primarily bibliometric data. Among the 137 selected articles, 83 were
published in journals, and the rest were presented in conference proceedings. As per the
inclusion criteria of this SLR, all the articles were peer reviewed prior to publication. In
most of the articles, relevant keywords were the author-defined keywords, which facilitates
the indexing of the article in bibliographic databases. The author-defined keywords were
compared with the keywords extracted from the abstracts of the articles through a word
cloud approach. Figure 6 illustrates the word cloud of the author-defined keywords and the
prominent words extracted from the abstracts. The illustrated word clouds are expressed
with varying font sizes. More often occurring words are presented in larger fonts [44] and
different colours are used to differentiate words with the same frequencies.

Figure 7 presents the number of publications related to XAI from different countries of
the world. Here, the countries were determined based on the affiliations of the first authors
of the articles. The USA is the pioneer in the development of XAI topics and is still in the
leading position. Similarly, several countries in Europe are following and have developed
an increasing number of systems considering XAI. Based on the number of publications,
Asian countries are apparently still quiescent in research and development on XAI.

Figure 6. Word cloud of the (a) author-defined keywords and (b) keywords extracted from the
abstracts through natural language processing. The font size is proportional to the number of
occurrences of the terms and different colours are used to discriminate terms with equal font size.
Both figures illustrate remarkable terms of XAI. However, the terms from keywords are more
conceptual whereas the abstracts contained specific terms on the methods and tasks.
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Number of Publications from Different Countries

Publication Count

1 30

Top 10 Countries and 

the Number of Publications 

United States of America (30)

United Kingdom (11)

Spain (11)

Germany (10)

Italy (10)

France (9)

South Korea (6)

China (5)

Netherlands (4)

Singapore (3)

Figure 7. Number of publications proposing new methods of XAI from different countries of the
world and the top 10 countries based on the publication count shown in parentheses, which is
approximately 72% of the 137 articles selected for this SLR. The countries were determined from the
affiliations of the first authors of the articles.

5.2. Application Domains and Tasks

To gain an idea of the research areas that have been enhanced with XAI, the application
domains and tasks were scrutinised. The number of articles on different domains and
tasks are illustrated in Figure 2. Among the selected articles, approximately 50% of the
publications were domain-agnostic. Half of the remaining articles were published in the
domain of healthcare. Other domains of interest among XAI researchers were found
to be industry, transportation, the judicial system, entertainment, academia, etc. Table 4
presents the application domains and corresponding tasks on which the selected articles
substantially contributed. It is evident from the content of the table that most of the
published articles were not specific to one domain, and safety-critical domains, such as
healthcare, industry, and transportation, received more attention from XAI researchers
than domains, such as telecommunication and security. Some domains can be clustered
together in a miscellaneous domain because of the small number of articles (as can be seen
in Figure 2a). In the case of application tasks, most of the selected articles were published
on supervised and decision-support tasks. A good number of works have been published
on recommendation systems and systems developed on image processing tasks, e.g., object
detection and facial recognition. Other noteworthy applications in the selected articles were
predictive maintenance and anomaly detection. It was also observed that several articles
presented works on supervised tasks, i.e., classification or prediction without specifying
the application. Moreover, very few articles have been published on modelling gene
relationships, business prediction, natural language processing, etc. Figure 8 presents a
chord diagram [45] illustrating the distribution of the articles published from different
application domains for various tasks. Most of the studies not specific to one domain were
for decision support and image processing tasks.
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Table 4. List of references to selected articles published on the methods of XAI from different
application domains for the corresponding tasks.

Domain Application/Task Study Count References

Domain agnostic Supervised tasks 23 [46–68]
Image processing 20 [25,69–87]
Decision support 13 [7,12,23,88–97]
Recommender system 4 [98–101]
Anomaly detection 1 [102]
Evaluation process 1 [103]
Natural language pro-
cessing

1 [104]

Predictive maintenance 1 [105]
Time series tweaking 1 [106]

Healthcare Decision support 20 [107–126]
Risk prediction 4 [127–130]
Image processing 3 [131–133]
Recommender system 2 [134,135]
Anomaly detection 1 [136]

Industry Predictive maintenance 5 [137–141]
Business management 3 [142–144]
Anomaly detection 1 [145]
Modelling 1 [146]

Transportation Image processing 4 [147–150]
Assistance system 2 [151,152]

Academia Evaluation 3 [153–155]
Recommender system 1 [156]

Entertainment Recommender system 3 [157–159]

Finance Anomaly detection 1 [160]
Business management 1 [161]
Recommender system 1 [162]

Judicial system Decision support 3 [163–165]

Genetics Prediction 2 [166,167]
Modelling gene rela-
tionship

1 [168]

Aviation Automated manoeu-
vring

1 [169]

Predictive maintenance 1 [170]

Architecture Recommender system 1 [171]

Construction Recommender system 1 [172]

Culture Recommender system 1 [173]

Defence Simulation 1 [174]

Geology Recommender system 1 [175]

Network Supervised tasks 1 [176]

Security Facial recognition 1 [177]

Telecommunication Goal-driven simulation 1 [178]
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Application

Domains

Application

Tasks

Figure 8. Chord diagram [45] presenting the number of selected articles published on the XAI
methods and evaluation metrics from different application domains for the corresponding tasks.

5.3. Development of XAI in Different Application Domains

This section briefly describes the concepts of XAI stated in Section 2 from the perspec-
tive of different application domains. Figure 9 illustrates the number of articles selected
from different application domains and further clustered the number of articles in terms
of AI/ML model types, stage, scope, and form of explanations. In the following subsec-
tions, shreds of evidence of linkage between the application domains and concepts of XAI
are presented.
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Application Domain Model Type Stage Scope Form

Figure 9. Number of the selected articles published from different application domains and clustered
on the basis of AI/ML model type, stage, scope, and form of explanations. The number of articles
with each of the properties is given in parentheses.

5.3.1. Input Data

The selected articles presented diverse XAI models that can train on different forms
of input data corresponding to the primary tasks and application domain. Figure 10
illustrates the use of different input data types with a Venn diagram depicting the number
of articles for each type. The basic types of input data used in the proposed methods were
vectors containing numbers, images, and texts. However, the use of sensor signals and
graphs were also observed but in low numbers. Some of the works considered diverse
forms of data altogether, such as the works of Ribeiro et al. [96], Alonso et al. [52] and
Lundberg et al. [59], who proposed methods that can deal with the input types, images,
texts, and vectors. Another proposed method was developed to learn on graphs and vectors
containing numbers [175]. In addition to the mentioned forms of input data, a specialised
form of input data was observed, namely the logic scoring preference (LSP) criteria [103],
which was later counted as numbers due to apparent similarity.

Graphs and Vectors (1) 

Graphs (2) 

Images and Vectors (3) 

Vectors (61) 

Images, Texts and Vectors (3) (10) Sensor Signals

(5) Texts

(1) LSP Criteria

(6) Images and Texts

(42) Images

Figure 10. Venn diagram with the number of articles using different forms of data to assess the
functional validity of the proposed XAI methodologies. The sizes of the circles are approximately
proportional to the number of articles (shown within parentheses) that were observed in this re-
view study.
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5.3.2. Models for Primary Tasks

The majority of the applications built on the concepts of AI perform two basic types of
tasks, i.e., supervised (classification and regression) and unsupervised (clustering) tasks
which have undoubtedly remained unchanged in the XAI domain. The authors of the
selected articles used different established AI/ML models depending on the tasks. The
methods were clustered based on the basic type of the models, specifically, neural network
(NN), ensemble model (EM), Bayesian model (BM), fuzzy model (FM), tree-based model
(TM), linear model (LM), nearest neighbour model (NNM), support vector machine (SVM),
neuro-fuzzy model (NFM), and case-based reasoning (CBR). Works related to these models
were clustered on the basis of their types and are presented in Table 5. Moreover, the table
contains the names of different variants of the AI/ML models references to the articles
featuring the models, and the number of studies performed. It was observed that neural
network-based models were exploited in most of the studies (63) from the selected articles.
The second-highest number of studies (21) utilised the ensemble techniques for performing
the primary supervised or unsupervised tasks. Based on the increased interest of researchers
in neural networks and ensemble techniques, it can be inevitably assumed that these models
were chosen to incorporate explainability because of their wide acceptability over various
domains in terms of their performances. In addition to the renowned algorithms, there are
some other algorithms, such as probabilistic soft logic (PSL) [100], LSP [103], sequential rule
mining (SRM) [168], preference learning [113], Cartesian genetic programming (CGP) [122],
Predomics [129], and TriRank [162]. The acronyms of the model types are further referenced
in Table 6 to indicate their relation to the core AI/ML models.

Throughout this study, it was evident that most of the research works were domain-
agnostic. For specific domains, healthcare, industry, and transportation were revealed to be
more exploited than other domains. In these domains, as stated above, diverse forms of
neural networks had been invoked to perform different tasks (see Figure 9) followed by
other types of models, as listed in Table 5. The numbers associated with different model
types stated in Figure 9 and Table 5 varied because the illustration presents the number of
articles and the table lists the number of variations of the models. It was observed that in
some articles, the authors presented theirs using different models of similar types.

Table 5. Different models used to solve the primary task of classification or regression and their
study count.

Model Types Models Count References

Neural Net-
works (NNs)

ApparentFlow-net; Convolutional Neural Network
(CNN); Deep Neural Network (DNN); Deep Rein-
forcement Learning (DRL); Explainable Deep Neu-
ral Network (xDNN); Explainable Neural Network
(ExNN); Global–Local Capsule Networks (GLCap-
sNet); GoogleLeNet; Gramian Angular Summa-
tion Field CNN (GASF-CNN); Hopfield Neural
Networks (HNN); Knowledge-Aware Path Recur-
rent Network; Knowledge-Shot Learning (KSL);
LeNet-5; Locally Guided Neural Networks (LGNN);
Long/Short-Term Memory (LSTM); LVRV-net; Mat-
ConvNet; Multilayer Perceptrons (MLP); Nilpotent
Neural Network (NNN); Recurrent Neural Network
(RNN); Region-Based CNN (RCNN); RestNet; ROI-
Net; Temporal Convolutional Netwrok (TCN); VGG-
19; YOLO

63

[7,23,25,49,51,58,60,66,68–
71,73,74,76,78–81,83–
87,89,93,98,101,108–111,115,
117,119,120,124,128,132,133,135,
137,140,141,143,144,147,149–
152,156,158–161,170,172,177]
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Table 5. Cont.

Model Types Models Count References

Ensemble
Models (EMs)

Adaptive Boosting (AdaBoost); Explainable Unsu-
pervised Decision Trees (eUD3.5); eXtreme Gradient
Boosting (XGBoost); Gradient Boosting Machines
(GBM); Isolation Forest (IF); Random Forest (RF);
Random Shapelet Forest (RSF)

21
[23,47–50,55,63,65,102,106,111,112,
114,123,130,139,142,145,163,170,
172]

Tree-Based
Models (TB)

Classification and Regression Tree (CART); Condi-
tional Inference Tree (CTree); Decision Tree (DT); Fast
and Frugal Trees (FFTs); Fuzzy Hoeffding Decision
Tree (FHDT); J48; One-Class Tree (OCTree); Multi-
Operator Temporal Decision Tree (MTDT); Recursive
Partitioning and Regression Trees (RPART)

10 [12,52,54,88,105,108,127,128,136,
172]

Fuzzy Models
(FMs)

Big Bang–Big Crunch Interval Type-2 Fuzzy Logic
System (BB-BC IT2FLS); Constrained Interval Type-
2 Fuzzy System (CIT2FS); Cumulative Fuzzy Class
Membership Criterion (CFCMC); Fuzzy Unordered
Rule Induction Algorithm (FURIA); Hierarchical
Fuzzy Systems (HFS); Multi-Objective Evolution-
ary Fuzzy Classifiers (MOEFC); Wang–Mendal Algo-
rithm of Fuzzy Rule Generation (WM Algorithm)

09 [52,61,64,95,104,134,157,178]

Support Vec-
tor Machines
(SVMs)

SVM with Linear and Radial Basis Function (RBF)
Kernels 08 [12,23,47–49,63,87,128,139,170,

176]

Unsorted
Models (UMs)

Cartesian Genetic Programming (CGP); Computa-
tional Argumentation (CA); Logic Scoring of Prefer-
ences (LSP); Preference Learning (PL); Probabilistic
Soft Logic (PSL); Sequential Rule Mining (SRM); Tri-
Rank

07 [100,103,113,122,162,164,168]

Linear Models
(LMs)

Linear Discriminant Analysis (LDA); Logistic Regres-
sion (LgR); Linear Regression (LnR) 06 [12,99,124,128,172]

Nearest Neigh-
bours Models
(NNMs)

k-Nearest Neighbours (kNN); Distance-Weighted
kNN (WkNN) 06 [12,106,128,139,156,170]

Neuro-Fuzzy
Models
(NFMs)

Adaptive Network-Based Fuzzy Inference System
(ANFIS); Improved Choquet Integral Multilayer
Perceptron (iChIMP); LeNet with Fuzzy Classifier;
Mamdani Fuzzy Model; Sugeno-Type Fuzzy Infer-
ence System; Zero-Order Autonomous Learning
Multiple-Model (ALMMo-0*)

05 [82,90,116,118,169]

Case-Based
Reasoning
(CBR)

CBR-kNN; CBR-WkNN; CBR-PRVC (Pattern Recog-
nition, Validation and Contextualisation) Methodol-
ogy

04 [92,97,121,171]

Bayesian Mod-
els (BM)

Bayesian Network (BN); Bayesian Rule List
(BRL); Gaussian Naive Bayes Classifier/Regressor
(GNBC/GNBR)

03 [126,139,165]

5.3.3. Methods for Explainability

The available methods for adding explainability to the existing and proposed AI/ML
models were initially clustered on the basis of three properties: (i) the stage of generating an
explanation; (ii) the scope of the explanation; and (iii) the form of the explanation. Figure 11
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illustrates the number of articles presenting research works concerning each of the proper-
ties. The summary of the clustering is represented in Table 6 where model-specific methods
are cross-referenced to the model types described in Section 5.3.2. A good number of
model-agnostic (MA) methods were also deployed to provide explainability in the selected
articles of this review, such as Anchors [96], Explain Like I’m Five (ELI5) [139], Local
Interpretable Model-Agnostic Explanations (LIME) [12], and Model Agnostic Supervised
Local Explanations (MAPLE) [65]. LIME was modified and proposed as SurvLIME by Ko-
valev et al. [179]. Afterwards, the authors incorporated well-known Kolmogorov–Smirnov
bounds to SurvLIME and proposed SurvLIME-KS [57]. The authors also utilised feature
importance to generate numeric explanations in several research works [67,128,144,172].
The Shapley Additive Explanations (SHAP) was proposed by Lundberg and Lee [84], and
it was later used by several authors to generate mixed explanations containing numbers,
texts, and visualisations [123,150]. However, another variant of SHAP, Deep-SHAP, was
proposed to explicitly explain deep learning models. Two very recent studies proposed
Cluster-Aided Space Transformation for Local Explanation (CASTLE) [47] and Pivot-Aided
Space Transformation for Local Explanation (PASTLE) [48]. The authors claimed that a
higher quality of local explanations can be generated with these methods than with the
prevailing methods for unsupervised and supervised tasks, respectively.

Stage Scope Explanation

Properties of Explainable Models

Numeric (10)

Rule-based (17)

Visualization (52)

Textual (14)

Mixed (35)

Ante-hoc (40)

Post-hoc (88)

Figure 11. Distribution of the selected articles based on the stage, scope, and form of explanations.
The number of articles with each of the properties is given in parentheses.

In terms of application domains, post hoc techniques are more developed for pro-
ducing explanations at the local scope. One can see in the illustration of Figure 9 that the
majority of the post hoc techniques were developed for complex models such as neural
networks and ensemble models. On the other hand, most of the ante hoc techniques are
associated with fuzzy and tree-based models across all the application domains.

5.3.4. Forms of Explanation

This section presents the different forms of explanations that have been added to
different AI/ML models. From the selected articles, it was observed that mostly four
different forms of explanations were generated to explain the decisions of the models
as well as the process of deducing a decision. The forms of explanations are numeric,
rules, textual, and visualisation. Figure 12 illustrates the basic forms of explanations.
In some of the works, the authors used these forms in a combined fashion to make the
explanation more understandable and user friendly. All the forms of explanation are
discussed along with the references to key works with the corresponding forms in the
subsequent paragraphs.
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"The message is classified as spam 
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as that of ham message" 

Long Term

yes

yes

yesno

no

no

Health Issues

No Falls
(0.62, 0.38)

Afraid of
Falling

Blackout or
Fainted

No Falls
(0.33, 0.67)

Fall
(0.89, 0.11)

Fall
(0.73, 0.27)

most vibrating region

of a water pump

Text record: “Where is Mile High Stadium?”

Prediction: LOC:other

Explanation:

Class: LOC:other

Score: 2.555

Class: NUM:count

Score: 0.666

Itemset Confidence Itemset Confidence

<where> 0.888 <mile> 0.666

<stadium> 0.666

<where>,
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1.0

Figure 12. Different forms of explanations: (a) numeric explanation of remaining life estimation
in industry appliances [49]; (b) visual explanation for fault diagnosis of industrial equipment by
Sun et al. [140]; (c) example of rule-based explanation in the form of a tree [127]; and (d) explanation
text generated with GRACE, proposed by Le et al. [58].

Numeric Explanations

Numeric explanations are mostly generated by the models by measuring the contri-
bution of the input variables for the model’s outcome. The contribution is represented by
various measures, such as the confidence measures of features [49] illustrated in Figure 12a,
saliency, causal importance [68], feature importance [144,172], and mutual importance [99].
Islam et al. improvised the MLP with the Choquet integral to add numeric explanations
within both the local and global scope [90]. Sarathy et al. computed and compared the
quadratic mean among the instances to generate the decision with explanations [177].
Carletti et al. used depth-based isolation forest feature importance (DIFFI) to support
the decisions from depth-based isolation forests (IFs) in anomaly detection for industrial
applications [145], and the FDE measure was developed to add precise explainability for
failure diagnosis in automated industries [170]. Moreover, several model-agnostic tools
generate numeric explanations, e.g., Anchors [96], ELI5, LIME [139], SHAP [150], and
LORE [123]. Moreover, Table 6 contains additional examples of numeric explanations, and
the methods are clustered on the basis of stage and the scope of explanations. However,
the numeric explanations demand high expertise in the corresponding domains as they
are associated with the features. This assumption supports the low number of studies on
numeric explanations, as shown in Figure 9.

Rule-Based Explanations

Rule-based explanations illustrate a model’s decision-making process in the form of a
tree or list. Figure 12c demonstrates an example of a rule-based explanation. Largely, the
models producing rule-based explanations generate explanations with a global scope, i.e.,
of the whole model. De et al. proposed the existing TREPAN decision tree as a surrogate
model with an FFNN to generate rules depicting the flow of information within the neural
network [89]. Rutkowski et al. used the Wang–Mendal (WM) algorithm to generate fuzzy
rules to support recommendations with explanations [157]. A novel neuro-fuzzy system,
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ALMMo-0*, was proposed by Soares et al. [116]. In addition, model-specific methods
have been proposed to generate rule-based explanations such as eUD3.5, an explainable
version of UD3.5 [102] and Ada-WHIPS to support the AdaBoost ensemble method [112].
More methods generating rule-based explanations are listed in Table 6. The rule-based
explanations are much simpler in nature than the numeric explanations that facilitate this
type of explanation in supporting recommendation systems developed for general users
from domains such as entertainment and finance.

Textual Explanations

The use of textual explanations is found to be least common among all forms of ex-
planations due to their higher computational complexity which requires natural language
processing. The textual explanations are mostly generated at the local scope, i.e., for an
individual decision. In notable works, textual explanations were generated using coun-
terfactual sets [7,55], template-based natural language generation [164], etc. Weber et al.
proposed textual CBR (TCBR) utilising patterns of input-to-output relations in order to
recommend citations for academic researchers through textual explanations [156]. Unlike
TCBR, interpretable confidence measures were used by Waa et al. with CBR to generate
textual explanations [92]. Le et al. proposed GRACE which can generate intuitive textual
explanations along with the decision [58]. The textual explanations generated with GRACE
were revealed to be more understandable by humans in synthetic and real experiments.
Moreover, textual explanations are found to be generated at the local scope (see Figure 9)
and these explanations are associated with academic research, judicial systems, etc. Table 6
lists several other proposed methods to generate textual explanations.

Visual Explanations

The most common form of explanation was found to be visualisations, as shown
in Table 6. With respect to the stage of adding explanations, in the majority of the cases,
visual explanations in both the local and global scopes were generated using post hoc
techniques and the research studies were carried out as domain-agnostic and from the
healthcare domain (see Figure 9). Common visualisation techniques are class activation
maps (CAM) [140,141] and attention maps [79,152]. CAM was further extended with gra-
dient weights, and Grad-CAM was proposed by Selvaraju et al. [80]. Brunese et al. used
Grad-CAM to detect COVID-19 infection based on X-rays [109]. Han and Kim adopted
another form pGrad-CAM to provide an explanation for banknote fraud detection [160].
Heatmaps of salient pixels were used by Graziani et al. as a complement to the concept-
based explanation. They proposed a framework of concept attribution for deep learning to
quantify the contribution of features of interest to the deep network’s decision making [132].
In addition, several explanation techniques were proposed with attribution-based visualisa-
tions, such as Multi-Operator Temporal Decision Trees (MTDTs) [105], Layerwise Relevance
Propagation (LRP) [87], Selective LRP (SLRP) [70], etc. The Rainbow Boxes-Inspired Algo-
rithm (RBIA) was extensively used by Lamy et al. in different decision support tasks within
the healthcare domain [113,121]. Specialised methodologies have also been developed by
researchers from diverse domains to add visual explanations to the outcomes of different
AI/ML models such as iNNvestigate [135], non-negative matrix factorisation (NMF) [83],
candlestick plots [161], and sequential rule mining (SRM) [168]. In addition to the method-
ologies mentioned above, Table 6 contains additional methods to add visual explanations
to different types of AI/ML models.
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Table 6. Methods for explainability, stage (Ah: ante hoc; Ph: post hoc) and scope (L: local; G: global) of
explainability, forms of explanations (N: numeric; R: rules; T: textual; V: visual) and the type of models
used for performing the primary tasks (refer to Table 5 for the elaborations of the model types).

Methods for
Explainability References Stage Scope Form Models for Primary

TaskAh Ph L G N R T V

Ada-WHIPS [112] X X X EM
ALMMo-0* [116] X X X X NFM
Anchors [96] X X X X X X X MA
ANFIS [66,118,137,169] X X X X X X X FM; GA; NN;
ApparentFlow-net [124] X X X NN
Attention Maps [79,149,151,152] X X X NN
BB-BC IT2FLS [178] X X X X X FM
BEN [69] X X X NN
BN [71,165] X X X X BM
BRL [126] X X X BM
CAM [140,141] X X X NN
Candlestick Plots [161] X X X NN
CART [127] X X X TM
CASTLE [47] X X X X X MA
Causal Importance [68] X X X NN
CFCMC [61] X X X FM
CGP [122] X X X UM
CIE [49] X X X X X EM; NN; SVM
CIT2FS [134] X X X X FM
Concept Attribution [132] X X X X NN
Counterfactual Sets [7,55] X X X EM; NN
CTree [108,127] X X X TM
DeconvNet [83] X X X X NN
Decision Tree [54,75] X X X X NN; TM
Deep-SHAP [143] X X X X X MA
DTD [85] X X X NN
DIFFI [145] X X X EM
ELI5 [139,142] X X X X X MA
Encoder–Decoder [133] X X X NN
eUD3.5 [102] X X X X EM
ExNN [60] X X X X NN
FACE [78] X X X NN

FDE [170] X X X X
EM; NN; NNM;
SVM

Feature Importance [67,128,144,172] X X X X X X MA
Feature Pattern [163] X X X EM
FFT [127] X X X TM
FINGRAM [88] X X X TM
FormuCaseViz [97] X X X CBR
FURIA [52] X X X FM
Fuzzy LeNet [82] X X X FM
Fuzzy Relations [64,104] X X X FM
gbt-HIPS [50] X X X X EM
Generation [159] X X X NN
GLAS [77] X X X MA
GRACE [58] X X X NN
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Table 6. Cont.

Methods for
Explainability References Stage Scope Form Models for Primary

TaskAh Ph L G N R T V

Grad-CAM [53,72,80,109,117,137,
146] X X X NN

Growing Spheres [63] X X X X EM; SVM
HFS [95] X X X X FM
iChIMP [90] X X X X NFM
ICM [92] X X X CBR
iNNvestigate [135] X X X X NN
Interpretable Filters [25] X X X NN
J48 [52,127,166] X X X X TM
Knowledge Graph [158] X X X X NN
KSL [110] X X X X NN
LEWIS [46] X X X X X MA
LGNN [81] X X X NN
LIME [12,111,119,139,146] X X X X X MA
LORE [23,123] X X X EM; NN; SVM
LPS [76] X X X NN
LRP [87] X X X NN; SVM
LRCN [86] X X X NN;
LSP [103] X X X X UM
MAPLE [65] X X X X X MA
MTDT [105] X X X TM
Mutual Importance [99] X X X LM
MWC, MWP [93] X X X X NN
Nilpotent Logic Operators [98] X X X X X NN
NLG [51] X X X X X NN
NMF [25] X X X NN
OC-Tree [136] X X X TM
Ontological Perturbation [115] X X X NN
PAES-RCS [176] X X X FM
PASTLE [48] X X X X X MA
pGrad-CAM [160] X X X NN
Prescience [130] X X X EM
PRVC [171] X X X X X X CBR
PSL [100] X X X X UM
QMC [177] X X X NN
QSAR [167] X X X NN
RAVA [175] X X X MA
RBIA [113,121] X X X X CBR
RetainVis [120] X X X X X X NN
RISE [148] X X X NN
RPART [108] X X X TM
RuleMatrix [94] X X X MA
Saliency [68] X X X NN

SHAP [84,107,114,123,138,
139,150] X X X X X MA

Shapelet Tweaking [106] X X X EM
SLRP [70] X X X NN
SRM [168] X X X X UM
SurvLIME-KS [57] X X X X X MA
TCBR [156] X X X CBR
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Table 6. Cont.

Methods for
Explainability References Stage Scope Form Models for Primary

TaskAh Ph L G N R T V

Template-Based Natural
Language Generation [164] X X X UM

Time-Varying Neighbour-
hood [101] X X X X NN

TreeExplainer [84] X X X X X MA
TREPAN [89] X X X NN
Tripartite Graph [162] X X X X UM
WM Algorithm [157] X X X FM
xDNN [116] X X X NN
XRAI [147] X X X NN

5.3.5. Evaluation of Explainability

The development of methodologies or definitions of metrics to evaluate the explana-
tion generation techniques as well as to assess the quality of the generated explanations
is comparatively lower than the extreme increase in research works devoted to exploring
new methodologies of XAI. In this study, only nine articles among the selected articles
were found to be fully intended for the evaluation OF and metrics for XAI. However,
all the articles proposing new methods to add explainability considered one of the three
techniques to assess their explainable model or the explanations generated by the models.
These techniques were (i) user studies; (ii) synthetic experiments; and (iii) real experiments.
The number of studies adopting each of the techniques Are illustrated in Figure 13. It was
observed that most of the studies invoked user studies and synthetic experiments as stan-
dalone methods for evaluating the proposed explainable systems. Very few studies only
used real experiments to evaluate their proposed systems. However, several studies con-
ducted a combination of the user studies, real and synthetic experiments in the evaluation
process as illustrated in the UpSet plot in Figure 13. User studies were mostly performed
to evaluate the quality of the generated explanation in the form of case studies and ques-
tionnaire surveys. Generally, these cases are formulated by the researchers combining a
real or synthetic scenario that is associated with some prediction/classification output and
its explanation in any of the forms presented in Section 5.3.4. The surveys were observed
to be conducted among the respective domain experts. They had to answer questions on
the understandability and quality of the explanations from the presented case studies. To
facilitate the user studies, Holzinger et al. proposed the System Causability Scale (SCS) to
measure the quality of explanations [56]. In simpler terms, the SCS resembles the widely
known Likert scale [180]. In earlier work, Chander and Srinivasan introduced the notion
of the cognitive value of an explanation and related its function in generating significant
explanations within a given setting [62]. Lage et al. proposed the methodology of a user
study to measure the human-interpretability of logic-based explanations [125]. The prime
metrics were the response time for understanding, the accuracy of understanding, and
the subjective satisfaction of the users. Ribeiro et al. explicitly conducted a simulated
user experiment to address the following questions [12]: (1) Aare the explanations faithful
to the model? (2) Can the explanations aid users to ascertain trust in predictions? and
(3) Are the explanations useful for evaluating the model as a whole? They also involved
human subjects in evaluating the explanations generated by LIME and SP-LIME within
the following situations [12]: (1) whether users can choose a better classifier in terms of
generalisation; (2) whether the users can perform feature engineering to improve the model;
and (3) whether the users are capable of pointing out the irregularities of a classifier by
observing the explanations.
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Figure 13. UpSet plot presenting the distribution of different methods of evaluating the explainable
systems. The vertical bars in the bottom-left represents the number of studies conducting each of
the methods. The single and connected black circles represents the combination of the evaluation
methods and the horizontal bars illustrate their number of studies.

Different types of experiments with real and synthetic data were performed to quantify
various metrics for the generated explanations to evaluate the quality of the explanations.
Vilone and Longo proposed two types of evaluation methods for assessing the quality of
the explanations; objective and human-centred [27]. Human-centred methods are mostly
performed through user studies as discussed earlier. The prominent objective measures are
briefly stated here. Guidotti et al. used fidelity, l-fidelity, and hit scores and proposed the
use of the Jaccard measure of stability, the number of falsified conditions in counterfactual
rules, the rate of the agreement of black-box and counterfactual decisions for counterfactual
instances, F1-score of agreement of black box and counterfactual decisions, etc. [23]. In
another work, stability was proposed as an objective function that acts as an inhibitor to in-
clude too many terms in the textual explanations [112]. To evaluate the visual explanations,
Bach et al. proposed a pixel-flipping method that enables users to discriminate between
two heatmaps [87]. Moreover, sentence evaluation metrics, such as METEOR and CIDEr
were used to evaluate textual explanations associated with visualisations [86]. Samek et al.
proposed the Area over the MoRF (Most Relevant First) Curve (AOPC)) to measure the
impact on classification performance when generating a visual explanation [181]. In the
proposition, the authors illustrated that a large AOPC value provides a good measure for a
very informative heatmap. AOPC can assess the amount of information present in a visual
explanation but it lacks in terms of being able to assess the quality of the understandability
of the users. In another study, Rio-Torto et al. proposed Percentage of Meaningful Pixels
Outside the Mask (POMPOM) as another measurable criterion of explanation quality [133].
POMPOM is defined as the ratio between the number of meaningful pixels outside the
region of interest and the total number of pixels in the image. The authors have also con-
ducted a comparative study with AOPC and POMPOM. They concluded that POMPOM
generates superior results for the supervised approach whereas AOPC has the upper hand
for the unsupervised approach. Significantly, Sokol and Flanch provided a comprehen-
sive and representative taxonomy and associated descriptors in the form of a fact sheet
with five dimensions that can help researchers develop and evaluate new explainability
approaches [155].

The associations among the evaluation methods and different application domains
and applications are illustrated in Figure 14. It can be easily observed that synthetic
experiments and user studies were mostly used to evaluate proposed explainable systems
from the domains of healthcare and industry. Moreover, a good number of domain-specific
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studies also utilised the aforementioned evaluation methods. In terms of specific tasks, user
studies were mostly conducted for evaluating recommender systems. Very few studies
have conducted real experiments, which were found to be from healthcare and industry
domains for decision support, image processing, and predictive maintenance.

Application Domain Evaluation Method Application Task

Figure 14. Different methods of evaluating explanations which were presented in the selected articles
with the number of studies given in parentheses. Corresponding application domains and tasks of
the performed evaluation methods are illustrated with links. The widths of the links are proportional
to the number of studies. Some of the studies invoked a combination of different evaluation methods.

6. Discussion

The continuously growing interest in the research domain of XAI worldwide resulted
in the publication of a large number of research articles containing diverse knowledge
of explainability from different perspectives. In the published articles, it is often noticed
that similar terms are used interchangeably [20], which is one of the major hurdles for a
new researcher to initiate work on developing a new methodology of XAI. In addition, an
“Explainable AI (XAI) Program” by DARPA [5], the Chinese Government’s “The Develop-
ment Plan for New Generation of Artificial Intelligence” [6] and the GDPR by the EU [7]
escalated the number of research studies during the past couple of years, as demonstrated
in Figure 1. The literature shows several review and survey studies on XAI philosophy,
taxonomy, methodology, evaluation, etc. Nevertheless, to our knowledge, no study has
been performed that has wholly focused on the XAI methodologies from the perspective of
different application domains and tasks, let alone following some prescribed technique of
conducting literature reviews. In contrast, this SLR followed a proper guideline [38] that
precisely defines the methodology of surveying the recent developments in XAI techniques
and evaluation criteria. One of the major advantages of an SLR is that the methodology
contains a workflow for reviewing literature by defining and addressing specific RQs to
restrict the subject matter of a study to the scope of the designated topic. Here, the RQs
presented in Section 4.1.2 were purposefully designed to review the development and
evaluation of XAI methodologies and were addressed with the presented outcomes of the
study listed in Section 5.
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This study started with the task of scanning more than a thousand peer-reviewed arti-
cles from different bibliographic databases. Following the process described in Section 4.2.1,
137 articles were thoroughly analysed to summarise the recent developments. Among the
selected articles, 19 were added through the snowballing search, prescribed by Wohlin [43].
Here, the cited articles in the pre-selected articles were checked to identify more articles
that met this study’s inclusion criteria. While conducting the snowballing search, some of
the articles meeting the inclusion criteria were found to be published prior to the defined
period of 2018–2020 in the inclusion criteria (Table 1) but were apparently very significant
in terms of content as they were cited in many of the pre-selected articles. Considering
the impact of those articles in developing XAI methodologies, they were included in the
study despite not completely meeting the inclusion criteria. Moreover, during the screening
of articles, some of the articles were unintentionally overlooked due to the use of the
specific keyword searched (explainable artificial intelligence) in the bibliographic databases.
For example, this could be the article in which Spinner et al. presented a visual analytics
framework for interactive and explainable machine learning [182]. For some unforeseen
reason, the index terms of the article did not contain the aforementioned search keyword,
but the abstract and keywords of the articles contained the term “Explainable AI”. The
interchangeable use of several closely related terms (e.g., interpretability, transparency, and
explainability) in metadata impedes the proper acquisition of knowledge on XAI. As a
result, a few potentially significant articles were overlooked during this review study. The
absence of acquired knowledge from the neglected articles can be considered a limitation
of this SLR.

The selected articles were analysed from five different viewpoints, i.e., metadata,
primary task, explainability, the form of explanation, and the evaluation of methods and
explanations. The prominent features from the respective viewpoints are summarised in
Table 3. The features and possible alternatives were set in such a way that the result of the
analysis can substantially address the RQs. Section 5 presents the outcomes of the analysis
by identifying insights into the domains and applications in which XAI is developing, the
prevailing methods of generating and evaluating explanations, etc. This information is
thus readily available for prospective researchers from miscellaneous domains to instigate
research projects on the methodological development of XAI. In addition, a questionnaire
survey was designed and administered to the authors of the selected articles with several
aims: to cure the extracted feature values from the articles, to assess the credibility of the
definition of the features, etc. The questionnaire was distributed to the authors through
email, and the response rate was approximately 50%. The responses were apparently
similar to the information extracted from the articles, except in a few cases. For example,
from the article, it was found that the input data for the method developed by Dujmovic
were numeric [103]. In contrast, from the author’s response, the input data were mentioned
as LSP, and this information was incorporated in the analysis. This instance of curating,
clarifying, and cross-checking the information extracted from the articles advocates the
need for a questionnaire survey. This review study took advantage of the questionnaire
survey to assess the credibility of the literature reviewer as well as clarify the information.

During the exploration of the contents of the sorted-out articles, the first step was to
analyse the metadata. To determine the relevancy of the articles, keywords that were explic-
itly defined by the authors and keywords extracted from the abstracts were investigated
in the form of word clouds following the methodology developed by Helbich et al. [44]. It
was observed that the significant terms were explainable artificial intelligence, deep learning,
machine learning, explainability, visualisation etc. These terms were considered significant
due to their larger appearance in the word cloud, which resulted from repeated occur-
rences of the terms in the supplied texts. In addition, a higher number of occurrences of
terms, such as deep learning or visualisation, aligns with the higher number of studies with
concepts presented in Tables 5 and 6, indicating tunnel vision in XAI development. More
attention towards less investigated models, such as SVM and neuro-fuzzy models and
visualisation techniques would add more value and novelty towards XAI. Moreover, the
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prominent terms are strongly related to the primary concept of this study, which increases
the confidence in the selected articles that they are related. In addition, the terms from
the author-defined keywords were more conceptual than the terms from the abstracts of
the articles. On the other hand, the abstracts contained more specific terms based on the
application tasks and AI/ML models. From the metadata, the countries of the authors’
affiliations were evaluated, and it was found that the USA leads by a significant margin
in terms of the number of publications. However, the collective publications from the
countries belonging to the EU exceed the number of publications from the USA. This high
number of publications indicated the immense impact of imposing various regulations and
expressing interest through different programs from different governments. Although there
was a development plan on XAI from the Government of China, the number of screened
articles was lower, and they were published by the authors affiliated with the institutions
in China. Overall, it can be stated that the number of research studies on XAI escalated in
the regions where the government authorities put forward some programs or regulations.
Concerning the recent regulatory developments, it is safe to assume that the government
funding agencies have increased patronising this specific field which has resulted in a
higher number of research publications, as shown in Figure 7.

In the subsequent sections, significant aspects of developing XAI methods are dis-
cussed, including addressing the RQs (defined in Section 4.1.2) with respect to the defined
features and outcomes of the performed analyses.

6.1. Input Data and Models for Primary Task

Input data were stated to be an essential aspect to be considered for developing
explainable systems by Vilone and Longo [8]. Therefore, the different forms of input data
which were deliberately used in the studies of the selected articles were investigated in
this review. It was observed that the vectors containing numeric values were used in most
of the articles, followed by the use of images as input. With the growing variety of data
forms, more concentration is required to explain models and decisions that can be derived
from other forms of data, such as graphs and texts. However, from the findings of this
study, it is apparent that some specific forms of data are already being exploited by the
researchers of respective subjects in a limited margin; for example, graph structures are
considered as input to XAI methodologies developed with fuzzy and neuro-fuzzy models.
The uses of different input data types are illustrated in Figure 10 within the structure of a
Venn diagram as many of the articles used multiple types of input data for their proposed
models, and the Venn diagram has the capability of presenting combined relations in terms
of frequencies.

While investigating the models that were designed or applied to solve primary tasks,
it was observed that most of the studies were performed concerning neural networks.
Specifically, out of 122 articles on XAI methods, 60 articles presented work with various
neural networks. The reason behind this overwhelming interest of researchers towards
making neural networks explainable is undoubtedly the performance of these types of
models in various tasks from diverse domains. A good number of studies utilised ensemble
methods, fuzzy models and tree-based models. Other significant types of models were
found to be SVM, CBR and Bayesian models (Table 5).

6.2. Development of Explainable Models in Different Application Domains

This section addresses this review study’s outcome within the scope of RQ1: What are
the application domains and tasks in which XAI is being explored and exploited? The question
was further split into three research sub-questions to more precisely analyse the subject.

6.2.1. Application Domains and Tasks

To generate insight into the possible fields of application of XAI methods, RQ1.1 was
raised. A broader idea of the concerned application domains and tasks was developed
from the metadata analysis. As illustrated in Figure 2a, most of the articles were published
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without targeting any specific domain, which extends the horizon for XAI researchers to
utilise the concepts from the studies and further enhance them in a domain-specific or
domain-agnostic way. In the case of the domain-specific publications on XAI, the healthcare
domain has been being developed much more than the other domains. The reason behind
this massive interest in XAI from the healthcare domain is unquestionably the involvement
of machines in matters that deal with human lives. Simultaneously, it was observed from
Figure 2b that most of the research studies were carried out to make decision support
systems more explainable to users. Additionally, a good number of studies have been
performed on image processing and recommender systems. All these application tasks
can also be employed in the healthcare domain. From the distribution of the articles based
on the application domain and tasks, it could be concluded that XAI has been profoundly
exploited where humans are directly involved.

6.2.2. Explainable Models

RQ1.1 was proposed to investigate the models that are explainable by design. From
the theoretical point of view, as discussed in Section 2, the inference mechanism of some
models can be understood by humans provided they have a certain level of expertise. In
reality, these models are often termed transparent models. Barredo Arrieta et al. categorised
linear/logistic regression, decision trees, k-nearest neighbours, rule-based learners, general
additive models and Bayesian models as transparent AI/ML models [20]. Concerning
the stages of generating explanations, ante hoc methods are invoked for the transparent
models where the explanations are generated based on their transparency by design.
Table 6 presents the methods available for generating explanations. Similar shreds of
evidence found that ante hoc methods were used for generating explanations from most
of the transparent models used for solving the primary task of classification/regression
or clustering. On the other hand, post hoc methods were observed in action for the
simplification of ensemble models, neural networks, SVMs, etc. (Table 6). Generally, in the
post hoc method, a surrogate model is developed to mimic the inference mechanism of the
black-box models, which is comparatively simpler and less complex than ante hoc methods,
where the explanation is generated during the inference process. It can be deduced from
the thematic synthesis of the selected articles that post hoc methods are suitable for the
established and running systems without manipulating the prevailing mechanism and
performance of the systems. However, for new systems with the requirement of explaining
model decisions, ante hoc methods are more appropriate. In addition, visualisation and
feature relevance techniques were induced to generate explanations for users of different
levels of expertise. As a result, several tools for post hoc methods, such as LIME, SHAP,
Anchors, and ELI5 and their variations have evolved for advanced users. Researchers
from different domains have utilised these tools and added explainability to the black-box
AI/ML models.

6.2.3. Forms of Explanation

The outcome of an explainable model, i.e., the form of an explanation, was the prime
concern of RQ1.2. Four basic types of explanations were observed, i.e., numeric, rule-
based, visual and textual (Figure 12). In addition to that, some of the articles presented
mixed explanations, which combined the four types. Generally, visualisations are mostly
used, which humans can more easily interpret than other types of explanations. This type
of explanation contains charts, trend-lines etc., and conventionally visual explanation is
preferable for image processing tasks. Numeric explanations were deliberately adopted in
the developed systems targeted by the experts to show the clarification of the decision of a
model with respect to different attributes in terms of feature importance. Understanding the
numbers associated with different attributes seems slightly more difficult than the visual or
textual representation for a general end-user. For providing numeric explanations, ante hoc
methods are very few compared to post hoc methods. Rule-based methods are generally
produced from the tree-based or ensemble methods, and most of them are ante hoc methods.
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In this type of explanation, the inference mechanisms of the models were presented in the
form of a table containing all the rules and tree-like graphs depicting the decision process
in short. Finally, the textual explanations are some statements presented in a human-
understandable format, which are less common than the other forms of explanations. This
type of explanation can be adopted for the interactive systems where general users are
involved but it demands higher computational complexity due to NLP tasks. In summary,
textual explanations in the form of natural language should be presented for the general
users, rule-based explanations and visualisations are found to be appropriate for advanced
users, and numeric explanations are mostly appropriate for experts.

6.3. Evaluation Metrics for Explainable Models

This section addresses RQ1.3, which was proposed to investigate the development
of evaluation methods for the explainability of a model and the metrics for validating the
generated explanations. Currently available methods of evaluating explainable AI/ML
models are apparently not as substantial as those for state-of-the-art black-box models,
let alone the evaluation metrics of the explanations. From the studied articles, it was
observed that most of the articles adopted state-of-the-art performance metrics to validate
the developed explainable models, such as accuracy, precision, and recall. In addition to
these established metrics, several works have proposed and utilised novel metrics which
are discussed in Section 5.3.5. On the other hand, it was found that researchers conducted
user studies to validate the quality of the explanations. In most cases, user studies included
a meagre number of participants. However, several researchers proposed effective means
of measuring the quality of an explanation and developing proper explainable models. For
example, Holzinger et al. proposed SCS to measure the causability of the explanations
generated from a model [56]. In another article, Sokol and Flach developed an explainability
fact sheet to be followed while developing XAI methodologies, which is a major takeaway
of this review study [155]. However, further investigation is required to establish domain-,
application-, and method-specific methodologies that keep humans in the loop, as users’
level of expertise largely contributes to their understanding of the explanations.

6.4. Open Issues and Future Research Direction

One of the objectives of this study was to sort out the open issues on developing
explainable models and propose future research directions for different application domains
and tasks. On the basis of the studies presented in the selected articles for this SLR, it was
observed that the proposed methodologies’ major limitation lies with the evaluation of the
explanations. The studies addressed this issue with different techniques of user studies and
experiments. However, there is still an urgent need for a generic method for evaluating
the explanations. Another observed issue was algorithm-specific approaches of adding
explainability. It is an obstacle to making the established systems in action explainable.
Additionally, there remain other open issues to be addressed. Based on the observed
shortcomings of prevailing explainable models, several possible research directions are
outlined below:

• It is evident in the findings of the study that safety-critical domains and associated
tasks are most facilitated with the development of XAI. However, less investigation
was performed for other sensitive domains, such as the judicial system, finance
and academia, in contrast with the domains of healthcare and industry. Further
exploitation of the methods can be performed for the less developed domains in terms
of XAI;

• One of the promising research areas in the domain of networking is the Internet of
Things (IoT). The literature indicates that several applications such as anomaly de-
tection [183] and building information systems [184,185] for IoT have been facilitated
by agent-based algorithms. These applications can be further associated with XAI
methods to make them more acceptable to end-users;
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• The impact of the dataset (particularly the effect of dataset imbalance, feature dimen-
sionality, different types of bias problems in data acquisition and dataset, etc.) on
developing an explainable model can be assessed through studies;

• It was observed that most of the works were performed done for neural networks and
through post hoc methods, explanations were generated at the local scope. Similar
cases were also observed for other models, such as SVM and ensemble models, since
their inference mechanism remains unclear to users. Although several studies have
shown approaches to produce explanations at a global scope by mimicking the mod-
els’ behaviour, they lack performance accuracy. More investigations can be carried
out to produce an explanation in a global scope without compromising the models’
performance for the base task;

• The major challenge of evaluating an explanation is to develop a method that can deal
with the different levels of expertise and understanding of users. Generally, these two
characteristics of users vary from person to person. Substantial research is needed to
establish a proper methodology for evaluating the explanations based on the intended
users’ expertise and capacity;

• User studies were invoked to validate explanations based on natural language, in
short, textual explanations. Automated evaluation metrics for textual explanations are
not yet prominent in the research works;

• Evaluating the quality of heatmaps as a form of visualisation is still undiscovered
beyond the visual assessment technique. In addition to heatmaps, evaluation metrics
for other visualisation techniques, e.g., saliency maps, are yet to be defined.

7. Conclusions

This paper presented a thematic synthesis of articles on the application domains of XAI
methodologies and their evaluation metrics through an SLR. The significant contributions
of this study are (1) lists of application domains and tasks that have been facilitated with the
XAI methods; (2) currently available approaches for adding explanations to AI/ML models
and their evaluation metrics; and (3) exploited mediums of explanations, such as numeric
and rule-based explanations. References to the preliminary research studies could provide
an example to assist prospective researchers from diverse domains to initiate research on
developing new XAI methodologies. However, articles published after the mentioned
period were not analysed during this study due to time constraints. Several articles were
also excluded because of the specific search keywords used in the bibliographic databases.
More comprehensive primary and secondary analyses on the methodological development
of XAI are required across different application domains. We believe such studies could
expedite the human acceptability of intelligent systems. Accommodating the varying
levels of expertise will also help understand different user groups’ needs. These studies
would explicitly explore underlying characteristics of transparent models (fuzzy, CBR,
etc.) deployed for respective tasks, carefully analyse the dataset’s impact, and consider
well-established metrics for evaluating all forms of explanations.
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