
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence 

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

Garrett Ed, Fujiwara Osamu, Garrett Philip, Heyvaert Vanessa, Shishikura 

Masanobu, Yokoyama Yusuke, Hubert-Ferrari Aurélia, Brückner Helmut, 

Nakamura Atsunori, De-Batist Marc.  

A systematic review of geological evidence for Holocene earthquakes and 

tsunamis along the Nankai-Suruga Trough, Japan.  

Earth Science Reviews 2016, 159, 337-357. 

 

Copyright: 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

DOI link to article: 

http://dx.doi.org/10.1016/j.earscirev.2016.06.011  

Date deposited:   

30/06/2016 

Embargo release date: 

18 June 2017  

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://eprint.ncl.ac.uk/
javascript:ViewPublication(226187);
javascript:ViewPublication(226187);
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.earscirev.2016.06.011


 

 

A systematic review of geological evidence for Holocene earthquakes and 

tsunamis along the Nankai-Suruga Trough, Japan 

 

Ed Garrett1,2*, Osamu Fujiwara3, Philip Garrett4, Vanessa M.A. Heyvaert1,5, Masanobu 

Shishikura3, Yusuke Yokoyama6, Aurelia Hubert-Ferrari7, Helmut Brückner8, Atsunori 

Nakamura3, Marc De Batist9 and the QuakeRecNankai team† 

  

Affiliations 
1 Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences, Brussels, 

Belgium 
2 Department of Geography, Durham University, United Kingdom 
3 Geological Survey of Japan, National Institute of Advanced Industrial Science and 

Technology, Japan 
4 School of History, Classics and Archaeology, Newcastle University, United Kingdom  
5 Department of Geology and Soil Science, Ghent University, Belgium 
6 Atmosphere and Ocean Research Institute, University of Tokyo, Japan 
7 Department of Geography, University of Liège, Belgium 

8 Institute of Geography, University of Cologne, Germany  

9 Renard Centre of Marine Geology, Department of Geology and Soil Science, Ghent 

University, Belgium  

*Corresponding author; egarrett@naturalsciences.be 

 † Members of the QuakeRecNankai team: Evelien Boes, Laura Lamair, Yosuke Miyairi, 

Stephen Obrochta, Eisuke Ono, Svenja Riedesel, Koen De Rycker, Yoshiki Sato, Jan 

Walstra, Shinya Yamamoto 

 

 

ABSTRACT 

The Nankai-Suruga Trough, the subduction zone that lies immediately south of Japan’s 
densely populated southern coastline, generates devastating great earthquakes 

(magnitude > 8) characterised by intense shaking, crustal deformation and tsunami 

generation. Forecasting the hazards associated with future earthquakes along this 

>700 km long fault requires a comprehensive understanding of past fault behaviour. 

While the region benefits from a long and detailed historical record, palaeoseismology 

has the potential to provide a longer-term perspective and additional crucial insights. In 

this paper, we summarise the current state of knowledge regarding geological evidence 

for past earthquakes and tsunamis along the Nankai-Suruga Trough. Incorporating 

literature originally published in both Japanese and English and enhancing available 

results with new age modelling approaches, we summarise and critically evaluate 

evidence from a wide variety of sources. Palaeoseismic evidence includes uplifted 

marine terraces and biota, marine and lacustrine turbidites, liquefaction features, 

subsided marshes and tsunami deposits in coastal lakes and lowlands. While 75 

publications describe proposed evidence from more than 70 sites, only a limited 

number provide compelling, well-dated evidence. The best available records enable us 

to map the most likely rupture zones of twelve earthquakes that occurred during the 

historical period. This spatiotemporal compilation suggests that the AD 1707 

earthquake ruptured almost the full length of the subduction zone and that earthquakes 

in AD 1361 and 684 may have been predecessors of similar magnitude. Intervening 

earthquakes were of lesser magnitude, highlighting the variability in rupture mode that 

characterises the Nankai-Suruga Trough. Intervals between ruptures of the same 

seismic segment range from less than 100 to more than 450 years during the historical 

period. Over longer timescales, palaeoseismic evidence suggests intervals between 

earthquakes ranging from 100 to 700 years, however these figures reflect a range of 



 

 

thresholds controlling the creation and preservation of evidence at any given site as well 

as the genuine intervals between earthquakes. At present, there is no geological data 

that suggest the occurrence of a larger magnitude earthquake than that experienced in 

AD 1707, however few studies have sought to establish the relative magnitudes of 

different earthquake and tsunami events along the Nankai-Suruga Trough. Alongside the 

lack of research designed to quantify the maximum magnitude of past earthquakes, we 

emphasise issues over alternative hypotheses for proposed palaeoseismic evidence, the 

paucity of robust chronological frameworks and insufficient appreciation of changing 

thresholds of evidence creation and preservation over time as key issues that must be 

addressed by future research.  

 

Key words: Palaeoseismology; palaeoearthquake; palaeotsunami; Nankai Trough; 

seismic hazard; rupture zone; occurrence interval; supercycle 

 

 

 

1. Introduction 

 

The unexpected magnitude of the 2011 Tōhoku, Japan, earthquake and ensuing tsunami 

triggered a rapid reassessment of approaches to seismic hazard assessment in Japan 

(Goto et al., 2014). Responding to the failure of hazard assessments to adequately 

evaluate the potential for earthquakes and tsunamis exceeding the magnitude of those 

experienced in the region over the last 400 years, the Central Disaster Management 

Council (CDMC) of the Japanese Cabinet Office issued revised hazard assessment 

guidelines. These call for all available evidence to be used to define the maximum 

possible magnitude of earthquake and the largest potential tsunami for any given 

coastline (CDMC, 2011, 2012). The new guidelines pay close attention to the Nankai-

Suruga Trough, where the Philippine Sea Plate descends beneath the Eurasian Plate (Fig. 

1a). This subduction zone lies adjacent to the densely populated and highly 

industrialised coastline of south central Japan. Earthquakes and tsunamis along the 

Nankai-Suruga Trough have been historically documented from as early as the 7th 

century AD (Ando, 1975b; Ishibashi, 1999, 2004), with the most recent great 

earthquakes occurring in AD 1944 and 1946.  

 

Geological records of past earthquakes and tsunamis provide alternative lines of 

evidence, complementing historical approaches (e.g. Atwater et al., 2005; Cisternas et 

al., 2005; Jankaew et al., 2008; Sawai et al., 2012; Shennan et al., 2014a). Previous 

reviews by Komatsubara et al. (2006a) and Komatsubara and Fujiwara (2007) 

summarise the spatial and temporal distribution of proposed palaeoseismic evidence 

along the Nankai-Suruga Trough. While these studies conclude that geological evidence 

is generally consistent with historical data, they note the difficulties in accurately dating 

evidence and in reconstructing past earthquake or tsunami characteristics from 

individual sites. Further field studies undertaken after the publication of these reviews, 

and particularly since the 2011 Tōhoku earthquake, has fuelled continued discussion of 

rupture modes and intervals between earthquakes (e.g. Satake, 2015; Seno, 2012).  

 

In this paper, we substantially expand on previous reviews, providing a critical 

examination of all available geological evidence for past earthquakes and tsunamis 

along the Nankai-Suruga Trough. This evidence comes from uplifted intertidal biotic 

communities, liquefaction features, tsunami deposits and turbidites in marine and 

lacustrine settings. We seek to 1) summarise the current state of knowledge concerning 

geological evidence for Holocene great earthquakes and tsunamis along the Nankai-

Suruga Trough; 2) constrain the rupture zones of earthquakes occurring during the 

historical period; 3) assess the contribution of palaeoseismic records to defining 



 

 

earthquake occurrence intervals over longer intervals; and 4) discuss maximum 

magnitude and variability in rupture modes. Additionally, we outline the major issues 

involved with the interpretation of palaeoseismic records from the Nankai-Suruga 

Trough and make recommendations on how further geological studies may better 

contribute to understanding future seismic hazards.  

 

2. Tectonic setting  

 

The Nankai-Suruga Trough, lying to the south of Kyushu, Shikoku and western Honshu, 

marks the subduction of the north-westward moving Philippine Sea Plate beneath the 

Eurasian Plate. In the centre of the subduction zone, in the vicinity of the Kii Peninsula, 

the plates converge at a rate averaging 40 – 55 mm yr-1 along an azimuth of ~305° (Fig. 

1) (DeMets et al., 2010; Loveless and Meade, 2010; Mazzotti et al., 2000; Seno et al., 

1993, 1996). At its eastern end, the Fujikawa-Kako Fault Zone constitutes an on-land 

extension of the interface between the Philippine Sea and Eurasian Plates (Fig. 1). This 2 – 5 km wide fault zone, consisting of a number of parallel to sub-parallel active faults, 

extends for ~ 40 km and meets the Itoigawa-Shizuoka Tectonic Line at a triple junction 

between the Philippine Sea, Eurasian and Okhotsk Plates (Lin et al., 2013; Maruyama 

and Saito, 2007). South of Kyushu, the western extremity of the Nankai-Suruga Trough 

meets the Ryukyu Trench, where the Philippine Sea Plate subducts beneath the Ryukyu 

Arc.  

 

The geometry and structure of the Nankai subduction is well constrained by seismic 

reflection surveys (e.g. Bangs et al., 2004; Park et al., 2010], hypocenter location studies 

(e.g. Hashimoto et al., 2004), seismic tomography studies (e.g., Nakajima and Hasegawa, 

2007b; Hirose et al., 2008; Liu et al., 2014), receiver function analysis (e.g., Shiomi et al., 

2008) and wide-angle seismic surveys (e.g. Kodaira et al., 2000, 2002; Nakanishi et al., 

2002; Takahashi et al., 2002). The depth of the slab varies and its geometry is 

complicated (Fig. 1b). The slab displays marked along-strike variability, with regions of 

steeper dip beneath Kyushu, the Kii Peninsula and Suruga Bay separating shallow 

dipping regions beneath Shikoku and the Enshu-nada coastline (Baba et al., 2002; 

Hirose et al., 2008; Nakajima and Hasegawa, 2007a). This difference leads to a regional 

variation in volcanism (Nakajima and Hasegawa, 2007a). Thermal modelling along 

profiles off the Kii Peninsula and Shikoku is consistent with a seismogenic zone 

extending from 8 km to 25 km depth, with transitional zones down to 33 km and up to 

the trench (Hyndman et al., 1995; Mazzotti et al., 2000). At the deep transition zone, 

low-frequency earthquakes located on the plate boundary occur (e.g. Ohta and Ide, 

2011). The subduction process is also influenced by anomalously thickened oceanic 

crust interpreted as a subducted seamount (Kodaira_et_al., 2002) and by the extent of 

contact between the Neogene Quaternary accretionary prism and the oceanic crust 

(Nakanishi et al., 2002; Takahashi et al., 2002). 

 

Geodetic data suggests the plate interface is highly coupled, with accumulated strain 

episodically released through major and great earthquakes with magnitudes exceeding 

7 and 8 respectively (Aoki and Scholz, 2003; Mazzotti et al., 2000; Ozawa et al., 1999; 

Sagiya, 1999). Splay faults, subsidiary faults within the overriding plate that branch off 

the main interface, may slip concurrently with rupture of the plate boundary (Cummins 

et al., 2001; Moore et al., 2007; Park et al., 2002), contributing to tsunami genesis. The 

earliest historical records of seismic activity along the Nankai-Suruga Trough describe 

the occurrence of an earthquake in AD 684 which caused widespread damage and was 

accompanied by landslides, vertical land-level changes and tsunami inundation, 

particularly along coastlines of the western region of the subduction zone (Ando, 1975b; 

Ishibashi, 2004; Sangawa, 2009; Usami, 1996). This, and eleven subsequent 

earthquakes, are generally accepted as magnitude 8-class megathrust earthquakes, with 



 

 

part or all of the plate boundary rupturing in AD 684, 887, 1096, 1099, 1361, 1498, 

1605, 1707, 1854 (twice), 1944 and 1946 (Fig. 1c). Additional undocumented great 

earthquakes may have occurred during the historical period; this is less likely from the 

17th century onwards due to good documentary preservation and the detailed records 

produced at the domain and village level in Tokugawa society. Japan’s classical and 
medieval periods (AD c.700 – 1185 and 1185 – 1600) are relatively well represented 

documentarily, though periods of civil war such as the late fourteenth and sixteenth 

centuries are more sparsely represented. 

 

Instrumental records and the long historical catalogue suggest the subduction zone is 

characterised by along-strike segmentation, with a series of persistent seismic segments 

that may rupture individually or in a range of multi-segment combinations (Imamura, 

1928; Ando, 1975b; Ishibashi, 2004). Hyodo and Hori (2013) suggest that, in addition to 

along-strike segmentation, the subduction zone is characterised by variability in slip 

depth, with larger megathrust earthquakes featuring slip up-dip of the main 

seismogenic zone.  

 

The most recent pair of great Nankai-Suruga Trough earthquakes occurred on adjacent 

but not overlapping rupture zones possibly separated by a change in dip or a tear in the 

downgoing Philippine Sea Plate in the vicinity of the Kii Peninsula (Baba et al., 2002; 

Baba and Cummins, 2005; Cummins et al., 2002; Tanioka and Satake, 2001a, b). While 

the AD 1946 rupture was confined to segments A and B (the Nankai region), the AD 

1944 earthquake ruptured segments C and D (the Tōnankai region; Fig. 1). Unlike the 

preceding AD 1854 earthquake, the 1944 rupture did not extend east into segment E, 

the Tōkai region (Ando, 1975a, Baba and Cummins, 2005). The complex ruptures of the 

AD 1944 and 1946 earthquakes may have been related to the occurrence of a subducted 

seamount and of locally trapped water between the plates; both factors would change 

the coupling between the plates (e.g. Kodaira et al., 2002). 

 

3. Source of information and data analysis approach 

 

Our compilation incorporates 75 papers, doctoral theses and professional reports, 

including 52 Japanese language and 23 English language publications. We do not include 

conference abstracts, but note that these suggest ongoing development of further 

chronologies of Nankai earthquake and tsunami occurrence from additional sites (e.g. 

Chiba et al., 2015; Matsuoka and Okamura, 2009; Namegaya et al., 2011; Okamura et al., 

2003; Shishikura et al., 2011, 2013; Tanigawa et al., 2015). Publications derive evidence 

for the occurrence of past earthquakes from a range of different types of site; these fall 

into three categories, focussing on evidence for intense shaking (through liquefaction or 

turbidite deposits), deformation (through identifying biotic, facies or geomorphic 

changes in coastal locations or rupture of onshore faults) or tsunami occurrence 

(through evidence for erosion and/or deposition at coastal sites). Figure 2 provides 

representative photographs of some of these palaeoseismic approaches. A 

comprehensive overview of the utility, applicability and limitations of many of these 

lines of evidence is provided by McCalpin (2009) and chapters therein. Starting at the 

western end of the subduction zone, we critically review evidence from each seismic 

segment, noting where alternative non-seismic hypotheses should be considered for the 

origin of the evidence presented.  

 

Where publications use radiocarbon dating to provide a chronology for past 

earthquakes and tsunamis, we recalibrate available data to take advantage of the latest 

radiocarbon calibration curves, IntCal13 and Marine13 (Reimer et al., 2013). Dates from 

marine samples must be corrected for the marine radiocarbon reservoir effect; 

however, appropriate corrections for locations along the southern coast of Japan remain 



 

 

uncertain at present. The Kuroshio Current provides water that is well-mixed with the 

atmosphere, resulting in low ΔR values (Nakamura et al., 2015). Hideshima et al. (2001) 

and Yoneda et al. (2007) report values ranging between 135 ± 48 and -15 ± 64 years for 

the Ryukyu Islands, southwest of Kyushu. On coastlines facing the Nankai Trough, 

Nakamura et al. (2007) report ΔR values of -11 ± 103 years from Yoshigo and -201 ± 77 

years from Kuzubasama, while Yoneda et al. (2000) report a ΔR value of -7 ± 0 years for 

the Kii Peninsula. Shishikura et al. (2008) note that this estimate represents a single 

measurement on a museum sample and that it cannot be confirmed that the sample was 

collected alive. Nevertheless, as the ΔR values derived by Nakamura et al. (2007) are 

from older (mid-Holocene) terrestrial and marine samples with the potential for an unknown offset in absolute ages, we prefer Yoneda et al.’s (2000) value. Shishikura et al. 

(2007) propose a ΔR value of 82 ± 33 years for the Miura Peninsula, east of the Nankai 

Trough. As it remains the best estimate from the Nankai-Suruga Trough region and is 

consistent with a well-mixed Kuroshio Current, we follow Yoneda et al. (2000) and use a ΔR value of -7 ± 0 years to correct all marine samples. We report calibrated dates as 2 σ 
age ranges in years before present (cal. yr BP), rounded to the nearest 10 years, and 

additionally in years AD where beneficial for comparison with historical dates. Where 

appropriate, Bayesian age modelling approaches further constrain the timing of past 

earthquakes and tsunamis. We develop P_sequence (Bronk Ramsey, 2008, 2009) and 

Sequence (Bronk Ramsey, 1995; Lienkaemper and Bronk Ramsey, 2009) models using 

the OxCal program v.4.2 (Bronk Ramsey, 2009).  

 

4. Palaeoseismic records from the Nankai-Suruga Trough 

 

Published literature describes geological records of coseismic displacement, intense 

shaking and tsunami inundation from 72 sites along the Nankai-Suruga Trough (Fig. 3). 

We divide this section into the proposed seismic segments: the Hyūga-nada (Z), western 

(A) and eastern (B) Nankai segments, western (C) and eastern (D) Tōnankai segments 

and the Tōkai (E) segment.  

 

4.1 The Hyūga-nada (Z) segment  

 

Potential palaeoseismic evidence from the westernmost segment of the subduction zone 

comes from a single coastal lake, Ryūjin Pond, located on the southern edge of the 

Tsurumi Peninsula, eastern Kyushu (Fig. 3, site 1). This brackish water body, fronted by 

a beach ridge of approximately 10 m in height, exchanges water with the sea through a 

narrow channel at its eastern end (Furumura et al., 2011). The lake contains a 

continuous sedimentary record spanning the last 3500 years, with organic-rich muds 

intercalated with approximately 40 sand sheets (Okamura and Matsuoka, 2012). Citing a 

decline in deposit thickness from the seaward to the landward side of the lake and the 

presence of marine shells, Okamura and Matsuoka (2012) interpret eight of these sand 

layers as evidence for tsunami inundation. The authors link the uppermost three layers 

with historically recorded tsunamis in AD 1707 (Hōei), 1361 (Shōhei) and 684 (Tenmu), 

with the older coarse-grained deposits dating to approximately 1600, 1900, 2600, 3000 

and 3300 cal. yr BP. The authors discuss the possibility that erosion by later tsunamis 

may remove evidence for earlier inundations. A lack of published radiocarbon results 

precludes recalibration with current calibration curves or further assessment of the age 

of potential tsunami evidence at Ryūjin Pond. Furthermore, currently published 

evidence cannot unequivocally link the sand sheets at the site with tsunamis. Typhoon-

driven storm surges are also known to produce analogous coarse-grained deposits in 

coastal lakes in southwest Japan (e.g. Woodruff et al., 2009, 2014). The sedimentary 

signatures of tsunamis and storm surges may be difficult to distinguish (Engel and 

Brückner, 2011; Kortekaas and Dawson, 2007; Morton et al., 2007; Shanmugam, 2011) 



 

 

and insufficient evidence has been published to ascertain the causal mechanism for the 

sand sheets in Ryūjin Pond.. 
 

4.2 The Western Nankai (A) segment 

 

Two low lying coastal lakes on the southern coast of Shikoku may provide palaeoseismic 

evidence for the segment bounded by Cape Ashizuri to the west and Cape Muroto to the 

east. Tadasu Pond (Fig. 3, site 4), set back approximately 800 m from the current 

coastline and lying behind a 5 m high beach ridge, holds a sedimentary record covering 

the period from 4800 to 1300 cal. yr BP (Okamura and Matsuoka, 2012; Okamura et al., 

1997, 2000, 2003; Tsukuda et al., 1999). Okamura and Matsuoka (2012) recognise 14 

coarse-grained washover deposits which may relate to breaching of the beach ridge by 

tsunamis. Plant fragments, wood or shells from within the uppermost seven of these 

sand layers provide limiting oldest dates for each layer. Calibration of dates from 

Okamura et al. (2000) using the IntCal13 calibration curve for terrestrial samples and 

the Marine13 curve and a ΔR value of -7 ± 0 years for shells (Yoneda et al., 2000) 

provides limiting oldest dates for sand deposition of 1070 – 1290, 1290 – 1520, 1400 – 

1690, 1710 – 1950, 1830 – 2110 and 2010 – 2310 cal. yr BP. The most recent of these 

layers, deposited after AD 660 – 880, may correlate with the tsunami associated with the 

AD 684 Tenmu earthquake. Anthropogenic disturbance may have removed more recent 

tsunami evidence, including deposits relating to the 1707 Hōei earthquake, which 

historical records suggest also inundated the lake (Okamura and Matsuoka, 2012).  

 

Approximately 16 km east of Tadasu Pond, Kani Pond (Fig. 3, site 5) holds a 2000-year 

sedimentary record (Okamura and Matsuoka, 2012). The pond, which lies 400 m inland 

from the current coastline and behind a 5 m high beach ridge, contains six coarse-

grained washover deposits. Okamura and Matsuoka (2012) interpret these layers as 

evidence for tsunamis associated with the AD 1854 Ansei-Nankai, AD 1707 Hōei, AD 

1361 Shōhei and AD 684 Tenmu earthquakes, in addition to two prehistoric tsunamis 

1350 – 1650 cal. yr BP and ~1950 cal. yr BP. A lack of published radiocarbon data 

impedes recalibration of these dates and detailed comparison of the timing of sand layer 

deposition at Kani Pond with other sites. As at Tadasu Pond, the alternative hypothesis 

of inundation during storm surges cannot yet be discounted.  

 

Sangawa (2001, 2009, 2013) suggests that archaeological sites in southwestern Shikoku 

may preserve evidence for shaking during megathrust earthquakes. At Azono and 

Funato approximately 30 km north of Cape Ashizuri (Fig. 3, sites 2 and 3), cultural 

horizons constrain the timing of liquefaction features to the 15th century AD. Such features may have resulted from intense shaking during the AD 1498 Meiō earthquake 

(Sangawa, 2009). Without more precise dating, it is difficult to unequivocally attribute 

liquefaction evidence to a specific historical rupture of the subduction interface, rather 

than activity on an upper plate fault.  

 

Encrusting masses of sessile organisms, including annelid worms, corals, bryozoans, 

foraminifera, barnacles and coralline algae, occur at the southern tip of Cape Muroto 

(Fig. 3, site 6), the proposed boundary between segments A and B (Iryu et al., 2009; 

Maemoku, 1988, 2001). While Iryu et al. (2009) identify emerged encrustations up to 

9.18 m above present sea level, the relation between their elevation and the timing and 

frequency of past episodes of coseismic uplift is uncertain.  

 

4.3 The Eastern Nankai (B) segment 

 

As in segments Z and A, low-lying coastal lakes may provide evidence for past tsunamis 

from segment B. Lying at Shikoku’s eastern tip, Kamoda Lake is separated from the sea 



 

 

by a beach ridge of less than 100 m width and 5 m height (Fig. 3, site 8). Despite the 

short distance to the sea, there are no historical accounts of inundation during the 

historically documented tsunamis associated with the AD 1707 Hōei, 1854 Ansei-Nankai 

and 1946 Showa-Nankai earthquakes (Okamura and Matsuoka, 2012). A 3500-year 

record of sediment accumulation recovered from the lake does, however, include a 

single coarse-grained washover deposit, for which Okamura and Matsuoka (2012) 

provide a calibrated age range of 2000 – 2300 cal. yr BP. Tsunami inundation provides 

one hypothesis for the deposition of this sand layer.  

 

Komatsubara et al. (2007a) report preliminary investigations at Hidaka Marsh, a largely 

infilled coastal pond at the western extremity of the Kii Peninsula (Fig. 3, site 20). While 

the seaward of two cores (measuring 2.2 m in length) contains two sand layers, the 

absence of evidence for lateral continuity or a marine origin precludes linking these to 

tsunami inundation at present.  

 

Archaeological sites in Itano-chō, Awaiji Island (Shimonaizen) and on the western side 

of the Kii Peninsula (Kosaka-tei-ato, Ikeshima Fukumanji, Iwatsuta Shrine, Sakai-shi 

Shimoda, Tainaka, Hashio, Sakafuneishi, Kawanabe and Fujinami) feature traces of 

liquefaction that are dated by their stratigraphic relationships with archaeological 

remains (Fig. 3, sites 9 – 19). Sangawa (2001) summarises evidence from these sites, 

plotting occurrences of liquefaction broadly coincident with the AD 1946 Showa-Nankai, 

AD 1854 Ansei-Nankai, AD 1707 Hōei, AD 1605 Keichō, AD 1498 Meiō, AD 1361 Shōhei 
and AD 684 Tenmu earthquakes (see Fig. 1 in Sangawa, 2001). As liquefaction results 

from intense and long duration shaking (Obermeier, 2009), the existence of historical 

records suggesting no discernable shaking occurred in the nearby city of Kyoto in AD 

1605 (Ishibashi, 2004) may, however, preclude the occurrence of liquefaction features 

associated with this earthquake. Further liquefaction features dated to the 14th, 3rd and 

2nd centuries AD and the 1st and 3rd centuries BC precede or do not coincide with 

historically documented megathrust earthquakes.  

 

Iwai et al. (2004) report a sequence of 31 turbidites in a 4.2 m long core from the 

Tosabae Trough, southeast of Cape Muroto (Fig. 3, site 7). The turbidites, which display 

erosional bases and fining upward sequences, are interpreted by the authors as 

evidence for intense shaking during megathrust earthquakes along the Nankai Trough. 

Recalibrated radiocarbon dates from mixed assemblages of planktonic foraminifera 

provide a chronology, with the youngest three turbidites postdating 690 – 900 cal. yr BP 

(AD 1050 – 1260). Iwai et al. (2004) suggest that the sequence records evidence for the AD 1498 Meiō, 1361 Shōhei and 1099 Kowa earthquakes, along with the AD 1233 

Tenpuku earthquake, the occurrence of which is disputed (Ishibashi, 1998). The paucity 

of chronological information for the section of core that relates to the last ~700 – 900 

years suggests that such precise correlation between the three most recent turbidites 

and known earthquakes cannot be made. We employ a P_sequence model to constrain 

the age of 23 turbidites, which lie between 750 – 940 cal. yr BP and 5450 – 5780 cal. yr 

BP (Supp. Info. S1.1). Five further turbidites are older than the latter age range. The lack 

of a detailed chronology for the historical period makes it difficult to assess the intensity 

of shaking required to generate turbidites at the site and the potential for the sequence 

to also record turbiditic flow generated by non-seismic processes. As with all turbidite 

records in marine and lacustrine settings, the potential for equifinality must be assessed, 

with storms, hyperpycnal river discharge and shaking during smaller crustal 

earthquakes also potential triggers for turbidite generation (Talling, 2014; Shirai et al., 

2010).  

 

Sites at the southern tip of the Kii Peninsula, the proposed boundary between the 

Nankai (segments A and B) and Tōnankai (segments C and D) earthquake rupture zones, 



 

 

provide evidence for repeated abrupt occurrences of uplift. At Kuchiwabuka, Ameshima, 

Shionomisaki, Izumozaki, Arafunezaki, Ikeshima, Yamamibana, Taiji and Suzushima (Fig. 

3, sites 21 – 29) the age, elevation and structure of colonies of emerged sessile 

organisms point towards the occurrence of repeated episodes of abrupt coastal uplift 

(Shishikura et al., 2008; Shishikura, 2013). The rocky shorelines of the peninsula 

support encrusting masses of the intertidal annelid worm Pomatoleios kraussii 

(synonymous with Spirobranchus kraussii). The duration of tidal inundation controls the 

upper growth limit of this species; consequently, when abruptly uplifted, the cessation 

of tidal inundation results in mass colony mortality. Radiocarbon ages from the 

outermost layer of each encrustation therefore provide limiting oldest ages for uplift. 

Furthermore, each encrusting mass may consist of several discrete layers, with each 

outer edge potentially reflecting additional episodes of uplift. While rapid postseismic 

uplift has previously been documented in other regions, including the Kuril subduction 

zone (Sawai et al., 2004), Shishikura et al. (2008) interpret the uplift of the Kii Peninsula 

as coseismic due to the location of the sites with respect to the trench and the 

occurrence of historically recorded episodes of coseismic uplift. Radiocarbon ages 

derived from the outer layers of the youngest encrustations at Izumozaki, Ikeshima and 

Yamamibana are consistent with historically recorded uplift during the AD 1707 Hōei 
earthquake (Shishikura et al., 2008). The Yamamibana encrustation displays two older 

mortality layers, with recalibrated radiocarbon age ranges overlapping with the AD 

1605 and 1498 earthquakes. An uplifted colony at Shionomisaki provides a calibrated 

age consistent with the AD 1361 earthquake, while the age of the youngest encrustation 

at Kuchiwabuka may indicate uplift during the AD 887 Ninna earthquake. Dates from 

Ameshima and Suzushima could reflect uplift during the AD 684 Tenmu earthquake. 

Shishikura et al. (2008) propose further episodes of uplift around 1700, 2200, 3000, 

4500 and 5200 cal. yr BP.  

 

4.4 The western Tōnankai (C) segment 

 

Palaeoseismic records from segment C come from lakes on the eastern coastline of the 

Kii Peninsula and from offshore and lacustrine turbidite records. Ōike Pond (Fig. 3, site 

33), separated from the sea by a 4 – 5 m high beach ridge, contains nine coarse-grained 

layers within a 2500 year long sedimentary sequence (Tsuji et al., 2002). The lateral 

continuity and origin of these layers remains equivocal as only two piston cores of 

between 2 and 3.5 m are currently reported. Tsunami inundation remains only one of 

the potential causal mechanisms, with inundation during storm surges yet to be 

discounted. Radiocarbon dates from within eight of the sand layers constrain the oldest 

possible timing of each deposit, providing calibrated age ranges of 550 – 690, 790 – 980, 

1080 – 1290, 1420 – 1700, 1820 – 1990, 1890 – 2150, 2340 – 2700 and 2360 – 2720 cal. 

yr BP (Tsuji et al., 2002). The fourth most recent sand layer remains undated, but a 

sequence model (Supp. Info. S1.2) constrains the timing of deposition to 1260 – 1520 cal 

yr BP. Age ranges for the three youngest sand layers (AD 660 – 870, AD 970 – 1160 and 

AD 1260 – 1400) overlap with historically documented tsunamis in AD 684, 1096 and 

1361. 

 

Tsuji et al. (2002) also report seven coarse-grained deposits in piston cores from Suwa 

Pond (Fig. 3, site 35), a 200 m wide water body separated from the sea by sand dunes 

with a minimum height of 5 m. Correlation of the layers between the four obtained 

piston cores is not straightforward, however in the core closest to the sea, three sand 

layers are located above organic material dated to AD 1410 – 1470 (no uncalibrated 

data provided). Tsuji et al. (2002) link the layers with the AD 1498 Meiō, AD 1707 Hōei 
and AD 1854 Ansei-Tōkai tsunamis; however, as at Ōike Pond, their origin remains 
uncertain. Further information is required to establish that these layers reflect tsunami 

inundation rather than other processes, such as storm surges. Four further sand layers 



 

 

lie below the 15th century date, with the oldest two layers containing material with 

calibrated age ranges of 2310 – 2680 and 2350 – 2700 cal. yr BP.  

 

Reconnaissance studies reported by Komatsubara et al. (2007a) did not reveal 

conclusive evidence for tsunami inundation at lakes and coastal lowlands at Kii-Sano, Atawa, Shihara, Umino Pond, Katagami Pond, Kogare Pond, Funakoshi Pond or Kō, all 
located on the eastern coast of the Kii Peninsula (Fig. 3, sites 30, 31, 32, 34, 36, 40, 41 

and 43 respectively). The limited number of cores (three or fewer per site) and shallow 

coring depth (less than 1.5 m at three of the sites) suggests that the potential of these 

sites may not have been exhausted by this single preliminary study.  

 

Sequences of turbidites characterise the stratigraphy of the northern basin of Lake Biwa, 

the largest lake in Japan (Fig. 3, site 45) (Inouchi et al., 1996; Shiki et al., 2000). Ranging 

from a few millimetres to several centimetres in thickness, the turbidites feature erosive 

bases, lateral thinning and fining and two distinct subunits: a thin sand or sandy silt 

overlain by a thicker silt layer (Shiki et al., 2000). Inouchi et al. (1996) identify 20 

turbidite layers within the uppermost 3 m and develop an age model based on average 

sedimentation rates since the deposition of the Kikai-Akahoya tephra, dated to 7165 – 

7303 cal. yr BP by Smith et al. (2013), which occurs in all cores at a depth of 10 – 15 m. 

Inouchi et al. (1996) use this chronology to link turbidites with historically documented 

earthquakes, highlighting turbidite age ranges overlapping with the AD 1944 Showa-Tōnankai, AD 1854 Ansei-Tōkai, AD 1707 Hōei, AD 1498 Meiō, AD 1361 Shōhei and AD 
887 Ninna megathrust earthquakes. The occurrence of many active faults close to Lake 

Biwa and the substantial chronological uncertainties resulting from a lack of 

radiometric dating make the correlations between turbidites and megathrust 

earthquakes highly questionable. Furthermore, the possibility of non-seismic triggers 

for turbidite generation must also be considered.  

 

Ikehara (1999) reports the occurrence of 22 turbidites within background hemipelagic 

muds in a single 4.8 m long core from the Kumano Trough, southeast of the Kii 

Peninsula (Fig. 3, site 37). Recalibration of radiocarbon dates from planktonic 

foraminifera indicates the uppermost five turbidites postdate 2460 – 2790 cal. yr BP. 

Further dates that could link the deposits to intense shaking during historical 

earthquakes are lacking. A sequence model (Supp. Info. S1.4) constrains the timing of 

five turbidites to between 2400 – 2670 and 4050 – 4460 cal. yr BP. The oldest 12 

turbidites predate 4230 – 4530 cal. yr BP (Ikehara, 1999). With reference to the 

Kumano Trough, Omura and Ikehara (2006, 2010) and Omura et al. (2012) highlight the 

importance of understanding submarine morphology, sediment provenance and 

changing sea level. They suggest that turbidites may also reflect storms, tidal currents 

and coastal changes linked to sea-level rise. Investigating the last century of sediment 

accumulation at Kumano Trough sites approximately 30 km southeast of Ikehara’s 
(1999) core (Fig. 3, site 38), Shirai et al. (2010) further support the hypothesis of both 

seismic and non-seismic turbidite triggers. The authors identify a well-sorted fine sand 

layer with an inferred depositional age of AD 1940 – 1945 and link this layer with 

turbiditic flow resulting from the AD 1944 Showa-Tōnankai earthquake. The chronology 

suggests other turbidites within the uppermost 30 cm relate to known historical floods 

and typhoons, confirming that shaking during earthquakes is not the sole process 

responsible for triggering turbidite deposition in the Kumano Trough.  

 

Sakaguchi et al. (2011) hypothesise that intense shaking was responsible for the 

formation of mud-breccia units found at the Integrated Ocean Drilling Program (IODP) 

site C0004, located on the accretionary complex downslope of the Kumano Trough (Fig. 

3, site 39). The five mud-breccia units occur within the uppermost 0.8 m, reach up to 

17 cm in thickness and are intercalated with laminated muds. A 210Pb decay curve 



 

 

suggests the uppermost breccia unit formed very recently, perhaps during the AD 1944 

Showa-Tōnankai earthquake. Radiocarbon dating of planktonic foraminifera from 

immediately above the second breccia unit provides a limiting youngest date of 3480 – 

3550 cal. yr BP, while the fourth and fifth units predate 10580 – 10670 cal. yr BP 

(Sakaguchi et al., 2011). The presence of brecciated units on the hanging-wall slope of a 

megasplay fault but absence on the footwall slope suggests slip on the megasplay and 

stronger ground motion above the hanging wall (resulting from the significant upward 

motion) are required to generate mud-breccia units at ODP site C0004.  

 

4.5 The eastern Tōnankai (D) segment 

 

Coastal marsh deposits on the Shijima Lowlands (Fig. 3, site 42) contain thin, 

discontinuous sand layers which are found up to several hundred metres inland from 

the modern coastline (Komatsubara and Okamura, 2007; Fujino et al., 2008). The height 

of the beach ridge is unknown, however an artificial coastal dike built on this ridge 

reaches ~ 6 m, suggesting the natural ridge was probably not higher than this elevation 

(Fujino et al., 2008). The sand layers are each typically several millimetres to several 

centimetres thick and contain marine and brackish organisms including gastropods and 

foraminifera. In most of the drilled and hand-driven cores, the sand layers have sharp 

basal contacts, while some also display rip-up clasts and stratification (Komatsubara 

and Okamura, 2007; Fujino et al., 2008). These features are consistent with, though not 

exclusively characteristic of tsunami deposition. Radiocarbon dating of seeds, leaves and 

charcoal indicates that the sand layers have been deposited over the last 4500 years 

(Fujino et al., 2008). The thin and fragmentary nature of the sand layers makes 

correlation between cores and determination of the number and timing of potential 

tsunamis problematic at present.  

 

The coastal lowlands at Ōsatsu (Fig. 3, site 44) lie at an elevation of less than 1 m and 

preserve a sedimentary record spanning the last 7000 years (Hirose et al., 2002; 

Okahashi et al., 2001, 2002, 2005a, 2005b; Yasuhara et al., 2002). A sequence of up to 

twelve marine overwash events have overtopped a barrier beach – currently 2.5 m high – and deposited laterally continuous sand or sandy gravel layers of up to 22 cm 

thickness. The identification of landward thinning, fining upward sequences, marine 

macro- and microfossils, erosional lower contacts and rip-up clasts in geoslicer samples 

of up to 6 m in length supports the hypothesis that Ōsatsu records a sequence of 
tsunamis (Okahashi et al., 2005b). The presence of the sublittoral zone foraminifera 

species Heterolepa haidingeri and Rectobolivina raphana in the sand layers suggests 

reworking of sediments from water depths deeper than would be expected during 

typhoons (Okahashi et al., 2002; Uchida et al. 2010). The corresponding transport 

distance, derived from the offshore bathymetry, is 8 – 14 km and transport from such a 

depth and distance would require a tsunami with an amplitude of 6 m and a period of 

60 minutes (Uchida et al., 2010). Radiocarbon dates obtained from plants and wood 

fragments indicate that the youngest tsunami deposit predates 1550 cal. yr BP 

(Okahashi et al., 2005b). The lack of evidence for tsunamis during the historical period at Ōsatsu may reflect anthropogenic drainage and cultivation of the site. A sequence 

model (Supp. Info. S1.3) constrains the timing of the deposition of the five youngest sand 

sheets to 1540 – 1620, 1560 – 1680, 1590 – 2870, 1990 – 3230 and 3180 – 3990 cal. yr 

BP (Fig. 3).  

 

The archaeological site of Nagaya Moto-Yashiki (Fig. 3, site 47) contains centimetre to 

decimetre-thick coarse-grained layers that may attest to the occurrence of repeated 

tsunamis along the Enshu-nada coastline (Kumagai, 1999; Nishinaka et al., 1996; Takada 

et al., 2002). The uppermost three of eight sand layers are laterally continuous over tens 

of metres, with five older sand layers identified from a single 6.5 m long core. The two 



 

 

most recent sand sheets overlie strata dated to the 16th and 17th centuries AD, with 

Takada et al. (2002) linking these deposits with the AD 1707 Hōei and AD 1605 Keichō 
tsunamis. Recalibration and sequence modelling of the radiocarbon dates (Supp. Info. 

S1.5) suggests the oldest sand layer was deposited between 800 and 900 cal. yr BP (AD 

1050 – 1150), with five sand layers in the range 540 – 840 cal. yr BP (AD 1110 – 1410). 

Tsunamis, storm surges and terrestrial mass movements remain plausible sources of 

sand deposition at this site.  

 

Fujiwara et al. (2006b) and Komatsubara et al. (2006b; 2008) describe seven coarse-

grained sand sheets in a marshy lowland behind a beach ridge – currently 5 – 10 m high – close to Shirasuka, approximately 500 m east of Nagaya Moto-Yashiki (Fig. 3, 48). The 

mineralogy and grain size distribution of the lowermost and uppermost sand units 

suggests a terrestrial origin, while a marine origin is inferred for the remaining five 

units. These sand sheets are 5 – 50 cm in thickness, laterally continuous over tens of 

metres and display sedimentary features associated with abrupt marine inundations, 

including fining upward sequences, current ripples, intraclasts and draping mud caps 

(Komatsubara et al., 2006b; 2008). On the basis of sedimentary structures within the 

deposits, Komatsubara et al. (2008) argue that four of the sand sheets reflect tsunami 

inundation, while one layer results from a storm surge. Recalibration and sequence 

modelling of radiocarbon dates (Supp. Info. S1.6) constrains the timing of the inferred 

tsunami deposits to 40 – 280, 150 – 360, 290 – 480 and 490 – 560 cal. yr B.P. (AD 1670 – 

1910, 1590 – 1800, 1470 – 1660 and 1390 – 1460), with Komatsubara et al. (2008) 

correlating them with the AD 1854 Ansei-Tōkai, AD 1707 Hōei, AD 1605 Keichō and AD 1498 Meiō tsunamis. The presence of sand layers at Shirasuka attributed to mechanisms 

other than tsunami inundation suggests that the nearby site of Nagaya Moto-Yashiki, 

discussed above, may also record storm or terrestrially-derived deposits.  

 

Geological and geomorphological data support historical records in describing the effects of the AD 1498 Meiō tsunami on the floodplain of the former Hamana River in the 

vicinity of Arai (Fig. 3, site 49) (Fujiwara et al., 2010b, 2013a). An abrupt change from an 

estuarine to a backmarsh environment, coincident with the deposition of a ~90 cm thick 

sand layer, reflects the closure of the river mouth. The sand layer, found only in one 

7.5 m long drilled core, contains a mixed assemblage of marine, brackish and freshwater 

diatoms. A sequence model (Supp. Info. S1.7) suggests the abrupt facies change occurred 

around 430 – 650 cal. yr BP (AD 1300 – 1520). The age range is consistent with the 

interpretation of the closure of the river mouth and abandonment of the channel 

following the AD 1498 Meiō tsunami and/or subsequent storm surges in AD 1498 and 
1499 (Fuijwara et al., 2013a). A further sand bed contains marine and brackish diatoms 

and displays multiple layers of sand alternating with silt drapes: a feature consistent 

successive tsunami waves separated by periods long enough to allow silt to fall out of 

suspension. The sand layer, dated to after 10 – 270 cal. yr BP (AD 1680 – 1940), may reflect deposition during the AD 1707 Hōei or AD 1854 Ansei-Tōkai tsunamis (Fujiwara 

et al., 2010b, 2013a).  

 

Nishinaka et al. (1996) and Kumagai (1999) report a well-sorted blue-grey sand layer 

overlying the ruins of a 17th century AD palace at Goten-ato, approximately 1.5 km east 

of the Arai coring sites described above (Fig. 3, site 50). The site lies 750 m from the 

contemporary coastline, close to the present day mouth of Lake Hamana. The laterally 

extensive sand layer reaches a thickness of 20 – 30 cm. While historical records indicate 

the palace was destroyed by a storm in AD 1699, Nishinaka et al. (1996) suggest the 

sand layer reflects deposition by the tsunami that followed the AD 1707 Hōei 
earthquake. A storm surge in AD 1699 provides an alternative explanation for the 

deposit, however Kumagai (1999) suggests the extensiveness of the deposit and the 



 

 

historically documented heights of the two marine inundations favours the tsunami 

hypothesis.  

 

Lake Hamana, a large brackish lagoon on the Enshu-nada coastline (Fig. 3, site 51), 

contains a sedimentary record extending back over the last 10,000 years (Ikeya et al., 

1990; Morita et al., 1998; Okamura et al., 2000). Investigating cores from the flood-tide 

delta of up to 2 m in length, Tsuji et al. (1998) interpret gravel and marine shell layers as 

evidence for up to eight tsunamis, with radiocarbon dates providing limiting oldest age 

ranges for the 2nd, 3rd and 4th most recent deposits. Our recalibration provides age 

ranges of 50 – 400, 290 – 490 and 470 – 640 cal. yr BP (AD 1550 – 1900, 1460 – 1660 

and 1310 – 1480). While typhoons and channel migration remain plausible explanations 

for the deposits, Tsuji et al. (1998) link the four youngest deposits with tsunami 

inundation in AD 1854 or 1707, 1498, the 13th century and 1096. Two older deposits are 

younger than 3050 – 3530 and 3600 – 4060 cal. yr BP respectively. Examining a 3.5 m 

long core from the main basin of Lake Hamana, Sato et al. (2016) identify an older 

potential marine inundation, interpreting a spike in the abundance of a diatom species 

indicative of sand-rich tidal flats as evidence for a tsunami or storm surge redistributing 

sediment within the lake. Radiocarbon dating of bulk sediment suggests this occurred 

after 4790 – 4420 cal. yr BP. Sato et al. (2016) additionally infer an increase in lake 

salinity coincident with the AD 1498 earthquake, a trend also noted in previous 

investigations (Honda and Kashima, 1997; Kashima et al., 1997; Morita et al., 1998), 

though yet to be precisely dated. Nishinaka et al. (1996) identify two organic layers, 

each overlain by sand, in the channel that presently links the lake to the sea. A 

radiocarbon date from the upper organic layer provides an age range of 280 – 0 cal. yr 

BP (AD 1670 – 1950), suggesting the overlying sand layer may relate to a recent 

historical tsunami or storm. Without further sedimentological and chronological 

information, other causal mechanisms including channel migration cannot be 

discounted. The palaeotsunami record contained within Lake Hamana remains an 

ongoing focus for the QuakeRecNankai project (De Batist et al., 2015).   

 

An extensive survey of the Rokken-gawa Lowlands to the east of Lake Hamana (Fig. 3, 

site 52), undertaken using hand-driven coring and a handy geoslicer, mapped a fine 

sand sheet that reaches 25 cm in thickness and extends for over 600 m (Fujiwara et al., 

2013b; Sato et al., 2011; Sato, 2013). The deposit, the sole coarse-grained unit found in 

cores in excess of 3 m long, displays cross-stratification, landward thinning and fining, 

internal mud drapes and marine diatom assemblages, strongly suggesting a 

tsunamigenic origin. Deposition of the sand layer coincides with an abrupt 

environmental change from a brackish to a freshwater marsh environment, suggesting 

the closure of a tidal inlet. A sequence model (Supp. Info. S1.8), incorporating 

radiocarbon dates from Sato et al. (2011), suggests the sand layer was deposited around 

3410 – 3790 cal. yr BP.  

 

A series of beach ridges of approximately 3 m height that formed after the mid-Holocene 

sea-level highstand occupies the broad coastal lowlands south and west of the city of 

Hamamatsu (Fig. 3, site 53) (Ishibashi et al., 2009; Matsubara, 2000; Sato, 2013). Swales 

between the beach ridges preserve sand sheets which Fujiwara (2013) interprets as 

evidence for tsunamis that inundated the Hamamatsu Lowlands. The oldest of these 

tsunami deposits is found in the swale furthest from the modern shoreline, more than 

3 km inland. As at the Rokken-gawa Lowlands, which are located at a similar distance 

from the contemporary coastline, this swale does not preserve any potential tsunami 

deposits younger than the ~3150 cal. yr BP Kawagodaira pumice horizon (Fujiwara, 

2013). Swales closer to the contemporary shoreline contain sand sheets interpreted as 

evidence of more recent tsunamis.  

 



 

 

Sites in the vicinity of Tadokoro (Fig. 3, site 46) contain evidence for liquefaction, dated 

by stratigraphic relationships with archaeological remains (Sangawa, 2001, 2009, 

2013). The derived ages overlap with historically documented earthquakes in AD 1944 

(Showa-Tōnankai), AD 1498 (Meiō), AD 1361 (Shōhei), AD 887 (Ninna) and AD 684 
(Tenmu). Due to uncertainties regarding the precision of the dating approach, rupturing 

of upper plate faults rather than the megathrust cannot be discounted as the source of 

liquefaction-inducing intense shaking.  

 

4.6 The Tōkai (E) segment  
 

Construction trenches exceeding several hundred metres in width and percussion cores 

of 2 – 4.5 m in length reveal the stratigraphy of the Ōtagawa Lowlands, the floodplain of the Ōta River (Fig. 3, site 54). A facies succession consisting of deltaic sands, intertidal 

muds, peat and flood plain silt is interrupted by extensive and laterally continuous sand 

sheets containing brackish microfossils (Fujiwara et al., 2008; Fujiwara, 2013, 2015). 

The sand sheets display thinning and fining in both the landward direction and away 

from the river, suggesting this channel is the primary route of sediment transport 

during extreme marine inundations (Fujiwara, 2013). Sedimentary evidence, which also 

includes multiple fining upward beds, landward-oriented current ripples and internal 

mud drapes suggests a tsunami origin. The youngest radiocarbon sample underlying the 

second youngest sand sheet yielded a calibrated range of 760 – 920 cal. yr BP (AD 1030 – 1190) and, while radiocarbon ages constraining the timing of the other sand sheets 

have yet to be published, Fujiwara (2013, 2015) suggests that the site records evidence 

of the AD 684 Tenmu, AD 887 Ninna, AD 1096 Eichō and AD 1498 Meiō tsunamis.  
 

Fujiwara et al. (2007a) report an abrupt change in depositional environment in a former 

lagoon on the Yokosuka Lowlands, approximately 7 km west of the Ōtagawa Lowlands 

(Fig. 3, site 59). Thirty-five geoslicer samples of up to 3 m in length map the sedimentary 

infill. The sudden transition from estuarine muds to organic marsh deposits suggests 

abrupt coseismic uplift of the site, with a laterally extensive sand and gravel layer with 

an erosional base potentially suggestive of tsunami deposition coincident with uplift. A 

sequence model incorporating five radiocarbon dates (Supp. Info. S1.9) yields an age 

range for the facies change of 170 – 410 cal. yr BP (AD 1540 – 1780). While coseismic 

uplift is historically documented in this area in AD 1707, there is no record of tsunami 

inundation and a storm surge in AD 1680 provides an alternative candidate for the sand 

layer (Fujiwara et al., 2007a).  

 

Sand boils disrupt the remains of residential buildings from the mid 7th century at the 

archaeological site of Sakajiri (Fig. 3, site 56) (Sangawa, 2001, 2009, 2013). The 

emplacement of buildings of the early 8th century on top of these features suggests 

intense shaking affected the site before this time. As at Tadokoro in the Western Tōnankai segment, the AD 684 Tenmu earthquake is a plausible source of this shaking. 

Additional liquefaction features at Sakajiri and the nearby sites of Tsurumatsu and 

Harakawa (Fig. 3, sites 57 and 58) imply shaking also occurred in the 2nd and 4th 

centuries AD and the 2nd century BC (Sangawa, 2001, 2013). 

 

Azuma et al. (2005) and Fujiwara et al. (2010a) describe a series of four uplifted marine 

terraces, each mantled by intertidal and aeolian sands, on the southwestern coast of 

Cape Omaezaki (Fig. 3, site 60). Radiocarbon data suggest the lower three terraces 

emerged above marine influence before 540 – 650, 2140 – 2310 and 4830 – 4960 cal. yr 

BP respectively; Fujiwara et al. (2010a) consequently infer an uplift rate averaging 1.1 –
 1.5 m kyr-1. The disparity between rapid emergence at the tip of Cape Omaezaki and 

much lower rates a few kilometres to the northwest leads Fujiwara et al. (2010a) to 

propose the activation of a high-angle splay fault, rupturing concurrently with slip on 



 

 

the megathrust. Chronological constraints are insufficient to link the youngest emerged 

terrace to a historically documented earthquake.  

 

Initial reconnaissance studies of the stratigraphy of the Yaizu Plain (Fig. 3, 61) have not 

revealed evidence for tsunami inundation or coseismic deformation (Kitamura et al., 

2015), despite historical records suggesting the plain was inundated by both the AD 1498 Meiō and AD 1854 Ansei-Tōkai tsunamis (Tsuji et al., 2013). Cores of up to 9 m in 

length taken between 1 and 2 km inland of the contemporary coastline do contain gravel 

layers within otherwise fine-grained deposits, however these are likely to reflect the 

lateral migration of river channels rather than abrupt marine incursions (Kitamura et 

al., 2015). The absence of recent historical tsunami deposits suggests a lack of 

preservation, perhaps due to anthropogenic reworking, or may reflect the small number 

of cores and the fragmentary nature of tsunami deposits in coastal lowland 

environments (cf. Brill et al., 2012; Garrett et al., 2013; Szczuciński, 2012).  

 

Sangawa (2001, 2009, 2013) describes liquefaction features uncovered at the 

archaeological sites of Agetsuchi and Kawai on the western coast of Suruga Bay (Fig. 3, 

sites 62 and 63). Dated by their stratigraphic relationships with the remains of buildings 

of known periods, the features suggest intense shaking occurred in the late 7th century 

and the 13th century AD. The earlier of these two periods includes the AD 684 Tenmu 

earthquake, while the later period does not overlap with the timing of any major known 

megathrust earthquake.  

 

The Ōya Lowlands (Fig. 3, site 64) preserve a sedimentary record exceeding 7300 years 

(Kitamura and Kobayashi, 2014b; Kitamura et al., 2011, 2013a). Seven cores of up to 

9 m in length map the stratigraphy at the site. Three layers of well-sorted, well-rounded 

beach sand interrupt the otherwise fine-grained sediment accumulation at the site. 

Erosional basal contacts, rip-up clasts, internal mud drapes and multiple graded 

structures –features consistent with a tsunami origin – characterise the sand layers. The 

lateral extent of the coarse-grained deposits remains uncertain, in particular for the 

youngest and oldest layers which are each found in only one core. An increase in 

freshwater diatom species across the middle sand layer is suggestive of coseismic uplift, 

however the magnitude of this change is not quantified and Kitamura et al. (2013a) base 

their interpretations on a limited number of widely spaced samples with low total 

diatom count numbers. The youngest sand layer contains a peach seed radiocarbon 

dated to 790 – 930 cal. yr BP (AD 1020 – 1160), as well as a 6th century AD pottery 

fragment. Kitamura et al. (2013a) correlate this deposit with the AD 1096 Eichō 
tsunami. The two older sand layers are bracketed by radiocarbon dates, allowing the 

development of a sequence model (Supp. Info. S1.10), which provides depositional age 

ranges of 3580 – 3950 cal. yr BP and 3920 – 4070 cal. yr BP. 

 

Kitamura and Kobayashi (2014a) report sedimentological and biostratigraphic evidence 

from the Shimizu Plain (Fig. 3, site 65). At one of their 12 coring locations, a transition 

from sand containing marine diatoms to clay containing brackish and freshwater 

diatoms may reflect a decline in marine influence due to historically documented uplift 

during the AD 1854 Ansei-Tōkai earthquake. While the radiocarbon-dated maximum 

age for the transition, 20 – 260 cal. yr BP (AD 1690 – 1930), does not preclude this 

possibility, the lateral extent and continuity of the transition are yet to be established. 

Kitamura and Kobayashi (2014a) hypothesise that sand layers found in selected cores 

from the Shimizu Plain may be evidence for earlier tsunamis. The four sand layers reach 

a maximum thickness of 70 cm and are characterised by erosional bases, normal grading 

and rip-up clasts. Sequence modelling of radiocarbon dates, primarily from marine 

bivalves and gastropods, indicates that the four potential tsunami deposits were 



 

 

deposited at 3260 – 3580, 4010 – 4370, 5560 – 5720 and 5630 – 6070 cal. yr BP (Supp. 

Info. S1.11).  

 

At the head of Suruga Bay, the Fujikawa-Kako Fault Zone constitutes the on-land 

extension of the Nankai-Suruga subduction zone (Fig. 3, site 66). Lin et al. (2013) review 

slip rates from trench and outcrop data and present evidence for repeated fault rupture 

during the Holocene. In the central section of the fault zone, trenches across the 

Shibakawa, Kubo and Kamiide Faults suggest a rupture within the last 1300 years. To 

the north, offset of the AD 864 – 865 Aokigahara lava also suggests fault activity within 

the last ~1150 years. Citing historically recorded push-up structures and liquefaction 

along the southern section of the fault zone, Lin et al. (2013) conclude that the AD 1854 

Ansei-Tōkai is the most likely candidate. Taking the fault scarp heights generated by the 

most recent displacement, Lin et al. (2013) suggest the average slip rate of 5 – 8 m kyr-1 

reflects an average recurrence interval of 150 – 500 years.  

 

The Ukishima-ga-hara coastal lowlands lie at the head of Suruga Bay, immediately 

adjacent to and on the Philippine Sea Plate side of the Fujikawa-Kako Fault Zone (Fig. 3, 

site 67). The stratigraphy of the site displays alternating layers of organic-rich peat and 

inorganic clay (Fujiwara et al., 2006a; 2007b; 2016; Komatsubara et al., 2007b; 

Shimokawa et al., 1999). The contacts between peat and overlying clay layers are abrupt 

and laterally continuous over tens to hundreds of metres, discounting local causal 

mechanisms such as channel migration. Analysis of diatom assemblages associated with 

two of the facies changes indicates abrupt increases in marine influence, suggesting the 

site records multiple episodes of coseismic subsidence (Fujiwara et al., 2007b; 2016). 

Six abrupt peat – clay transitions overlie the ~1500 cal. yr BP Obuchi scoria; Fujiwara et 

al. (2016) suggest that the most recent transition may reflect the expansion of rice 

cultivation on the lowlands, but infer a coseismic origin for the remaining four contacts. 

A sequence model (Supp. Info. S1.12) constrains the timing of the five inferred episodes 

of coseismic subsidence to 610 – 660, 1080 – 1120, 1190 – 1280, 1350 – 1380 and 1360 – 1410 cal. yr BP (AD 1290 – 1340, 830 – 870, 670 – 760, 570 – 600 and 540 – 590). One 

of these age ranges is consistent with the historically documented AD 684 Tenmu 

earthquake, while another is slightly older than the AD 1361 Shōhei earthquake. 

Fujiwara et al. (2016) note that caution must, however, be exercised when linking the 

evidence from Ukishima-ga-hara with documented earthquakes as independent, 

undocumented ruptures of the Fujikawa-Kako Fault Zone or the Tōkai segment could 

also provide a plausible hypothesis. The absence of evidence for the AD 1707 Hōei and 
1854 Ansei-Tōkai earthquakes may reflect cultivation and land reclamation.  

 

Sawai et al. (2015) report the occurrence of a laterally continuous sand layer 

interbedded within organic muds indicative of a freshwater wetland environment on 

the Ita Lowlands, northern Suruga Bay (Fig. 3, site 68). The 10 to 30 cm thick layer 

extends at least 200 m from the present shoreline and grades upwards from medium-

coarse sand to sandy mud. The few diatoms encountered are of mixed salinity 

preference, with brackish-marine and freshwater species present. The authors identify 

elevated concentrations of magnesium and calcium in the upper part of the sand. The 

sedimentary characteristics, mixed diatom assemblages and geochemical data suggest a 

high energy marine flow. Noting the lack of sandy deposits associated with nine 

exceptionally large storms over the last 1200 years, Sawai et al. (2015) conclude 

tsunami inundation is a more likely origin. A comprehensive dating approach, 

incorporating radiocarbon samples from above and below the sand layer, constrains the 

timing of deposition. Combining these data in a sequence model (Supp. Info. S1.13) 

yields an age range of 630 – 830 cal. yr BP (AD 1120 – 1320). Sawai et al. (2015) suggest 

possible correlations with historically documented tsunamis in AD 1096, 1099, 1293 or 

1361. The AD 1293 Einin or Kamakura earthquake occurred along the Sagami Trough 



 

 

(Fig. 1), with evidence of tsunami inundation also proposed from the Miura Peninsula 

(Shimazaki et al., 2011). Gaps in the historical record may also allow the deposit to be 

correlated with an as-yet unknown tsunami.  

 

An immense sand dome underlies part of the coastal village of Iruma on the southern tip 

of the Izu Peninsula (Fig. 3, site 69) (Asai et al., 1998; Sugawara et al., 2005). The dome, 

which reaches more than 10 m in height, 250 m in length and 140 m in width, is situated 

immediately behind the contemporary beach at the head of the V-shaped Iruma Bay. 

Historical reports and numerical modelling of wave amplification in an enclosed bay 

lead Sugawara et al. (2005) to interpret the entire dome as nearshore sands reworked 

and deposited by the AD 1854 Ansei-Tōkai tsunami. Fujiwara et al. (2009) provide a 
different interpretation, based on sedimentary analysis of a 20 m-long core. The authors 

suggest the dome is an aeolian dune, but note that five decimetre to metre-scale gravelly 

sand beds may indicate tsunami or storm surge deposition. Fujiwara et al. (2009) 

suggest the timing of deposition of uppermost bed, a metre-thick sand and gravel layer 

approximately 3.5 m below the present surface, is broadly consistent with the AD 1854 

tsunami. A marine shell within the layer provides an oldest limiting age of 10 – 60 cal. yr 

BP (AD 1890 – 1940) and we note that uncertainties over the marine reservoir 

correction (Yoneda et al., 2000) may explain this age discrepancy.  

 

Kitamura et al. (2013b) and Kitamura and Kawate (2015) report the findings of coring 

surveys on the Minami-Izu and Kisami Lowlands, two fluvial valleys on the southern tip 

of the Izu Peninsula (Fig. 3, sites 70 and 71). While the authors encountered 

sedimentary sequences exceeding 5000 years in length and indicative of a range of 

environments including floodplain, back marsh, dune and shoreface, neither site has yet 

produced evidence for tsunami inundation. 

 

The presence of sessile intertidal organisms attached to a boulder on a wave cut 

platform at Shimoda (Fig. 3, site 72) may provide evidence for transport during an 

extreme wave event (Kitamura et al., 2014). Radiocarbon dates from the emerged 

barnacles, oysters and annelid worms, killed when the boulder was moved out of the 

intertidal zone, provide five age estimates. The youngest of these suggests the transport 

of the boulder occurred after 260 cal. yr BP. Kitamura et al. (2014) propose the AD 1854 

Ansei-Tōkai tsunami as the most likely mechanism, however a number of storm surges 

and other tsunamis from sources along both the Nankai-Suruga Trough (e.g. AD 1944 

Showa-Tōnankai tsunami) and the adjacent Sagami Trough (e.g. AD 1923 Kantō 

tsunami) would also be consistent with the radiocarbon dating results.  

 

5. Discussion 

 

The combined evidence from the 72 sites summarised in section 4 constitutes the 

current state of knowledge regarding geological records of past earthquakes and 

tsunamis along the Nankai-Suruga Trough. Only a limited subset of these sites provide 

compelling evidence for coseismic deformation, shaking or tsunami inundation and we 

discuss the limitations of the palaeoseismic catalogue further in section 6. In this 

section, we highlight the best available geological evidence for earthquakes and 

tsunamis over the last ~1350 years, summarise the rupture zones of historical 

earthquakes and discuss occurrence intervals and variability in rupture modes.  

 

5.1 Rupture zones of historical earthquakes 

 

The rupture zones of the AD 1944 Showa-Tōnankai and 1946 Showa-Nankai 

earthquakes are well constrained by inversion of tsunami waveforms, geodetic data and 

seismic wave data (e.g. Ando, 1975b; Baba and Cummins, 2005; Baba et al., 2002; 



 

 

Kanamori, 1972; Tanioka and Satake, 2001a, b). Slip during the 1944 earthquake 

occurred to the east of the Kii Peninsula, but did not extend to segment E (Fig. 4a). Two 

years later, a non-overlapping rupture released strain in segments A and B to the west of 

the Kii Peninsula (Fig. 4b). Geological records are sparse for both earthquakes, however 

shaking in 1944 may be recorded in turbidite and mud-breccia records from the 

Kumano Trough (Sakaguchi et al., 2011; Shirai et al., 2010) and in liquefaction deposits 

at Tadokoro (Sangawa, 2009). Archaeological sites on the western side of the Kii 

Peninsula and in eastern Shikoku may record liquefaction resulting from the 1946 

earthquake (Sangawa, 2009). The scarcity of published records of sedimentary and 

geomorphological evidence for tsunami deposition or coseismic deformation may reflect 

anthropogenic reworking on heavily cultivated and industrialised coastlines.  

 

Separated by just 32 hours, the AD 1854 Ansei-Tōkai and Ansei-Nankai earthquakes 

together ruptured segments A to E (Figs. 4c and 4d). Compelling evidence for tsunami 

deposition at Shirasuka (Komatsubara et al., 2008) as well as potential evidence for 

boulder transport at Shimoda (Kitamura et al., 2014), rupture of the Fujikawa-Kako 

Fault Zone (Lin et al., 2013) and uplift at Shimizu (Kitamura and Kobayashi, 2014a) are 

consistent with the first earthquake rupturing the three segments east of the Kii 

Peninsula (Fig. 4d). The following day, the Ansei-Nankai earthquake ruptured segments 

A and B (Ando, 1975b; Ishibashi, 2004). Palaeoseismic evidence for this second 

earthquake is limited (Fig. 4c), with Okamura and Matsuoka (2012) proposing a sand 

layer at Kani Pond as evidence of tsunami inundation and Sangawa (2009) making 

reference to liquefaction at Itano-chō. Uplifted sessile organisms reported by Shishikura 

et al. (2008) at three locations on the southern tip of the Kii Peninsula may also reflect 

coseismic deformation during either of the AD 1854 earthquakes.  

 

With extensive reports of coseismic deformation (both uplift and subsidence), tsunami 

inundation and intense long-duration shaking, historical records suggest the AD 1707 Hōei earthquake included both of the regions that ruptured in the two 1854 
earthquakes (Ando, 1975b; Ishibashi 2004). The inferred rupture zone, comprising 

segments A to E, exceeds 600 km in length (Fig. 4e). Geological evidence for the 

earthquake and accompanying tsunami also spans much of the length of the Nankai-

Suruga Trough, with possible evidence for tsunami inundation at Ryūjin Pond in 
segment Z (Okamura and Matsuoka, 2012) and at Nagaya Moto-Yashiki and Shirasuka in 

segment D (Komatsubara et al., 2008; Takada et al., 2002). Also in segment D, uplift may 

be recorded by a change in facies on the Yokosuka Lowlands (Fujiwara et al., 2007a), 

while in the centre of the subduction zone, sessile organisms suggest coseismic uplift of 

the southern Kii Peninsula (Shishikura et al., 2008). While we have been unable to 

confirm the robustness of the evidence or the chronology of marine inundations at Ryūjin Pond, Furumura et al. (2011) argue that evidence from this site favours the 

westwards extension of the rupture zone to include at least part of the Hyūga-nada 

segment (Z). Modelled tsunami run-up heights from ruptures excluding this segment are 

insufficient to inundate the pond or to match documented run-up heights in eastern 

Kyushu and western Shikoku. No geological evidence for the AD 1707 earthquake has 

yet been proposed from segment E.  

 

Historically documented shaking and coseismic land-level change associated with the AD 1605 Keichō earthquake is notably scarce (Ando, 1975b; Ishibashi, 2004). 

Yamamoto and Hagiwara (1995), however, report documentary evidence for tsunami 

run-up heights exceeding 5 m at locations in segments A to D. The discrepancy between 

the low intensity of shaking and the large tsunami implies the occurrence of a tsunami 

earthquake, with Ando and Nakamura (2013) consequently suggesting a rupture zone 

located along a shallow portion of the plate interface, up-dip of the main seismogenic 

zone in segments A to D (Fig. 4f). Published geological evidence for tsunami inundation 



 

 

and vertical land-level change is scarce, but consistent with this rupture zone. Potential 

tsunami deposits are reported from coastal lowlands at Shirasuka (Komatsubara et al., 

2008) and Nagaya Moto-Yashiki (Takada et al., 2002), both in segment D. Age ranges 

from emerged sessile organisms at Yamamibana (Shishikura et al., 2008) and 

liquefaction features at Itano-chō (Sangawa, 2001) also overlap with this earthquake.  

 

Sites in segment D are posited to record evidence for tsunami inundation following the AD 1498 Meiō earthquake (Fig. 4g). Along the Enshu-nada coastline, sand sheets at 

Nagaya Moto-Yashiki (Takada et al., 2002) and Shirasuka (Komatsubara et al., 2008) and 

environmental change recorded at Arai (Fujiwara et al., 2013a) and Lake Hamana 

(Honda and Kashima, 1997) support historical records of a damaging tsunami (Fujiwara 

et al., 2013a). Emerged sessile organisms at Shionomisaki may indicate coseismic uplift 

of the southern Kii Peninsula at this time (Shishikura et al., 2008). Proposed liquefaction 

features from segments A and B (Sangawa, 2001, 2009) could imply a rupture zone 

extending further west than previously suggested, however further historical and 

geological evidence is required to test this hypothesis.  

 

With evidence proposed from all six segments of the Nankai-Suruga Trough, the distribution of sites recording the AD 1361 Shōhei earthquake and tsunami is similar to that of the AD 1707 Hōei earthquake (Fig. 4h). Okamura and Matsuoka (2012) suggest 

inundation of coastal lakes in segments Z and A, with potential tsunami inundation also recorded at Ōike Pond in segment C (Tsuji et al., 2002). We note that the occurrence of 

tsunami evidence at a site does not necessarily imply that the adjacent segment 

ruptured; further modelling efforts, combined with detailed sea-level and shoreline 

reconstructions, are required to link palaeotsunami evidence with the rupture zone (cf. 

Furumura et al., 2011). Subsidence at Ukishima-ga-hara in segment E may relate to the 

AD 1361 earthquake (Fujiwara et al., 2007b; 2016), while Shishikura et al. (2008) 

document evidence for uplift of the Kii Peninsula at the boundary between segments B 

and C. As in AD 1707, this episode of uplift was not followed by reoccupation of sessile 

organism encrustations, suggesting a larger magnitude of uplift or a lack of subsequent 

interseismic subsidence. Turbidite occurrence in Lake Biwa (Inouchi et al., 1996) and 

liquefaction at sites on the western side of the Kii Peninsula and at Tadokoro (Sangawa, 

2001, 2009) has also been linked to shaking during this earthquake, however more 

robust chronologies are required for these sites. A rupture zone incorporating segments 

Z to E supersedes earlier interpretations incorporating segments A and B only (Ando, 

1975b). While the similarity in the distribution of evidence with the AD 1707 

earthquake and the comparable permanent uplift of the Kii Peninsula (Shishikura et al., 

2008) points towards a single large rupture, the potential for two smaller temporally 

closely spaced ruptures of segments east and west of the Kii Peninsula (cf. Ishibashi, 

2004) cannot be conclusively discounted on the basis of geological evidence alone.  

 

Ishibashi (1999, 2004) suggests the occurrence of one or more great earthquakes during 

the 13th century AD. While Ishibashi (1998) dismisses an earthquake in AD 1233 

reported by Usami (1996) as fictitious, evidence of liquefaction from archaeological sites 

in segments B and E (Sangawa, 2001) does support the occurrence of intense shaking in 

the interval between the historically documented earthquakes in AD 1099 and 1361. 

While other processes cannot be discounted for their deposition, sand layers at Nagaya 

Moto-Yashiki could reflect tsunami deposition during this time (Takada et al., 2002). 

The number, timing and rupture zones of earthquakes occurring during the 12th and 13th 

centuries AD remain unknown and should be the focus of further historical and 

geological investigation.  

 

Despite the lack of a historically documented tsunami, Ando (1975b), Ishibashi (1999, 

2004) and others list the AD 1099 Kowa earthquake as a megathrust earthquake 



 

 

rupturing segments A and B (Fig. 4i). The absence of a tsunami and restricted evidence 

for intense shaking suggests the rupture zone may not have been analogous to the later 

AD 1854 and 1946 Nankai earthquakes. Instead, the 1099 earthquake may have 

ruptured a smaller area of the plate interface or an upper plate fault. Geological evidence 

for this earthquake is severely limited. While turbidites are proposed from the Tosabae 

Trough (Iwai et al., 2004) and Lake Biwa (Inouchi et al., 1996), neither site is 

underpinned by a chronology that is robust enough to discount other possible 

earthquakes. Consequently, there is currently insufficient evidence to consider the AD 

1099 Kowa earthquake as a magnitude 8-class subduction megathrust earthquake.  

 

The rupture zone of the AD 1096 Eichō earthquake, derived from historical records, 

incorporates segments C and D (Ishibashi, 1999, 2004). Evidence for potential tsunami inundation at Ōike and Suwa Ponds in segment C (Tsuji et al., 2002), Nagaya Moto-

Yashiki in segment D (Takada et al., 2002) and the Ōtagawa Lowlands (Fujiwara et al., 2013a) and Ōya Lowlands (Kitamura et al., 2013a) in segment E support this 

interpretation (Fig. 4j).  

 

Historical records suggest the AD 887 Ninna earthquake ruptured segments A and B 

(Ando, 1975b; Ishibashi, 1999). Palaeoseismic evidence from these segments is limited 

(Fig. 4k). Our age-depth model (Supp. Info. S1.1) suggests turbidite emplacement in the 

Tosabae Trough in segment B may have occurred around this time, while ages from 

sessile biota at Ameshima and Suzushima on the Kii Peninsula are also consistent with 

coseismic uplift in AD 887 (Shishikura et al., 2008). Ishibashi (2004) suggests 

concurrent rupture of segments C and D based on historical records. Evidence for 

shaking at Tadokoro (Sangawa, 2009) could support this eastwards extension. Further 

dating is required to confirm the association of a proposed tsunami deposit on the Ōtagawa Lowlands in segment E with this earthquake (Fujiwara et al., 2008).  

 

Ando (1975b) maps the AD 684 Tenmu earthquake as a rupture of segments A and B, 

with Ishibashi (1999, 2004) tentatively extending the rupture zone into segments C, D 

and E. Palaeoseismic evidence supports this larger rupture zone (Fig. 4l), with possible 

evidence for coseismic subsidence of the Ukishima-ga-hara lowlands at the eastern end 

of the subduction zone (Fujiwara et al., 2007b; 2016). Sangawa (2001, 2009) 

additionally attributes liquefaction features in segments D and E to this earthquake, 

while Shishikura et al. (2008) provide evidence for the abrupt uplift of the southern tip 

of the Kii Peninsula. To the west of the peninsula, sand sheets in Ryūjin, Tadasu and Kani 
Ponds suggest tsunami inundation (Okamura and Matsuoka, 2012). As in AD 1707 and 1361, inundation of Ryūjin Pond may support rupture of at least part of segment Z 

during the 684 earthquake, however further shoreline reconstructions and modelling 

efforts are required (Furumura et al., 2011). Temporally closely spaced ruptures of 

more limited spatial extent provide an alternative hypothesis for the evidence that has 

been linked to the AD 684 earthquake.   

 

5.2 Intervals between earthquakes 

 

Historical records suggest earthquakes ruptured part or all of the Nankai-Suruga Trough 

twelve times between AD 684 and 1946, yielding an average interval (± 1 σ) for major 

or great earthquakes occurring anywhere along the subduction zone of 115 ± 89 years. 

An average belies the variability in occurrence, with individual intervals ranging from 

32 hours between the two AD 1854 earthquakes to 262 years between the AD 1099 and 

1361 earthquakes. Looking at the intervals between ruptures of the same area of the 

plate interface (rather than the subduction zone as a whole), the shortest intervals are 

92 years for the Hyūga-nada and Nankai segments (Z, A and B) and 90 years for the Tōnankai and Tōkai segments (C, D and E). If we reject the AD 1099 earthquake as a 



 

 

great interplate earthquake due to the lack of records of tsunami occurrence and the 

paucity of geological data, the longest interval between two ruptures of the same 

segment is the 474 years that separated the AD 887 Ninna and 1361 Shōhei 
earthquakes. If the AD 1605 earthquake occurred solely at the shallowest portion of the 

interface (Ando and Nakamura, 2013), the main seismogenic zone may not have 

ruptured for the 209 years between AD 1498 and 1707. Furthermore, if the AD 1498 

earthquake did not extend into the Nankai region (segments A and B), this interval may 

be extended further back to encompass the 376 years between AD 1361 and 1707. 

Shorter intervals may, however, be inferred if additional great earthquakes occurred 

during periods with fragmentary and incomplete documentary records. Further 

geological and historical research is required to resolve these uncertainties.  

 

Palaeoseismic records have the potential to yield information on intervals between 

earthquakes over timescales longer than the historical record; however, at present, few 

sites along the Nankai-Suruga Trough display suitably long, well-dated sequences. 

Okamura and Matsuoka (2012) suggest Tadasu Pond records 14 tsunamis at consistent 

intervals averaging 270 years, while Ryūjin Pond records longer and more variable 
intervals of between 300 and 700 years. The authors note that later tsunamis may erode 

evidence for earlier inundations, resulting in longer apparent intervals. Our modelling of 

the timing of sand sheet emplacement on the Ōsatsu Lowlands (Mitamura et al., 2001; 

Okahashi et al., 2005b) suggests the eight intervals average 400 – 600 years (2 σ). 
P_sequence modelling of the Tosabae Trough record (Iwai et al., 2004) indicates an 

average interval between turbidites of 200 – 230 years over the last 5500 years. 

Sequence modelling of the timing of five episodes of coseismic subsidence on the 

Ukishima-ga-hara Lowlands (Fujiwara et al., 2016) suggests intervals of less than 100 

years, with an average of 180 – 200 years. The occurrence intervals for each site reflect 

both the true intervals between megathrust earthquakes and also site-specific 

thresholds. A site’s palaeoseismic record only includes the earthquakes or tsunamis that 

exceed both creation and preservation thresholds (Nelson et al., 2006; McCalpin and 

Nelson, 2009). Consequently, a single site may underrepresent the number of 

earthquakes or tsunamis within a given period if a subset of these events fail to exceed the site’s thresholds. A site may also potentially overestimate earthquake frequency due 

to misidentification of features of a non-seismic origin as palaeoseismic evidence 

(discussed further in section 6).  

 

5.3 Maximum earthquake and tsunami size 

 

As discussed in section 5.1, historical records suggest that the six proposed segments of 

the Nankai-Suruga Trough ruptured together during a single great earthquake in AD 

1707. No geological evidence for this earthquake has yet been proposed from segment 

E; whether the rupture extended this far east remains equivocal and future 

investigations should focus on the coastal lowlands fringing Suruga Bay and on the 

Fujikawa-Kako Fault Zone to resolve this question. Geological evidence suggests that the 

earthquakes of AD 1361 and 684 may have been of similar rupture length. There is no 

published geological evidence that currently suggests that earthquakes with longer 

rupture lengths have occurred along the Nankai-Suruga Trough; however, few attempts 

have been made to use geological evidence to compare the absolute or relative 

magnitudes of different historical or prehistoric earthquakes in this region 

(Komatsubara and Fujiwara, 2007; Komatsubara et al., 2006a).  

 

Several attempts have been made to address the related question of the relative sizes of 

tsunamis to have impacted coastlines facing this subduction zone. Investigating records 

of tsunami deposition in coastal lakes, Okamura and Matsuoka (2012) link the presence 

or absence of sand layers and their characteristics to variation in the height of tsunamis 



 

 

striking western Kyushu and southern Shikoku. While Ryūjin Pond preserves evidence 
for the AD 1707 tsunami, the absence of sand layers relating to the subsequent AD 1854 

and 1946 tsunamis suggests they were not of comparable height and did not inundate 

the lake. The presence of deposits related to the AD 1361 and 684 tsunamis at Ryūjin 
and Kani Ponds, suggests that these tsunamis may have been of comparable size to 1707 

in this location. The potential for variation in the threshold for evidence creation must 

be considered, with changing relative sea level, shoreline progradation, the height of the 

tide at the time of tsunami impact and the availability of erodible sediment also 

important factors. 

 

The compilation of assessments of the maximum inland extent of tsunami deposits with 

detailed reconstructions of shoreline positions over time may facilitate comparison of 

the relative inundation distances of past tsunamis. While further chronological and 

stratigraphic information is required, initial findings suggest no tsunami during the 

historical period has inundated the most landward regions of the lowlands to the east of 

Lake Hamana (Fujiwara, 2013; Fujiwara et al., 2013b). On the Rokken-gawa and 

Hamamatsu Lowlands, swales 3 – 5 km inland from the present coastline only preserve 

evidence for tsunamis older than 3150 cal. yr BP. More recent tsunami deposits are 

confined to swales closer to the current coastline, suggesting that over the last few 

thousand years, no tsunami has inundated the whole of the Hamamatsu coastal plain 

(Fujiwara, 2013). The continued development of this approach and its replication in 

other regions along the Nankai-Suruga Trough may provide additional constraints on 

the largest inundation distances associated with past tsunamis. Such studies and 

associated modelling of source fault ruptures must, however, acknowledge that true 

inundation distances may considerably exceed the inland extent of identifiable coarse-

grained deposits (Abe et al., 2012; Goto et al., 2011; Shi et al., 1995).  

 

While the maximum amplitude of tsunami waves in far-field locations (those located 

separated by ocean basins from their source earthquakes) correlates with earthquake 

magnitude, this relationship breaks down in locations close to the source (Abe, 1979). 

Consequently, the largest tsunamis to have struck locations along the Nankai-Suruga 

Trough may not have been generated by the largest earthquakes. Further field evidence 

for maximum tsunami run-up heights, inundation distances and their along-strike 

distribution should be sought to address the question of the maximum size of Holocene 

tsunamis.  

 

5.4 Rupture modes, segmentation and supercycles 

 

Historical records, supported by geological data, suggest the Nankai-Suruga Trough is 

characterised by six segments, with earthquakes rupturing the subduction zone in a 

range of different multi-segment combinations (see section 5.1). The occurrence of full-

length ruptures in AD 1707, 1361 and 684, with lesser magnitude earthquakes 

rupturing smaller areas of the fault during the intervening periods, suggests the 

existence of supercycle behaviour (cf. Cisternas et al., 2005; Goldfinger et al., 2013; 

Herrendörfer et al., 2015; Sieh et al., 2008). Such fault behaviour is currently difficult to 

identify over the longer timescales afforded by geological evidence. Nevertheless, the 

repeated reoccupation of sessile biotic encrustations on the southern tip of the Kii 

Peninsula before final, permanent abandonment, could support this hypothesis 

(Shishikura et al., 2008; Shishikura, 2013). Within each encrusting mass, up to three or 

four mortality events are each followed by colony reoccupation, before a final uplift 

episode with no subsequent reoccupation. Shishikura et al. (2008) suggest this could 

reflect a series of moderate episodes of coseismic uplift, each followed by interseismic 

subsidence, before a final episode of outsized coseismic uplift. Whether such outsized 

uplift is associated with a larger earthquake incorporating a greater number of 



 

 

segments and/or variation in the depth of slip on the plate interface remains 

unresolved. Hyodo and Hori (2013) provide a potential mechanism for variation in 

coseismic deformation between different earthquakes, with their numerical model 

suggesting that larger earthquakes could feature slip to the trench, while smaller 

ruptures are restricted to the main seismogenic zone.  

 

The AD 1605 earthquake stands out as dissimilar from other Nankai-Suruga Trough 

ruptures, with historical records suggesting an extensive and damaging tsunami despite 

a lack of strong ground motion (Ando, 1975b; Ishibashi, 2004). As discussed in section 

5.1, these characteristics are consistent with a tsunami earthquake, with slip restricted 

to the shallowest portion of the interface. With a plate convergence rate of 50 mm yr-1, 

just 100 years are required to accumulate sufficient slip to explain the historically 

documented tsunami run-up heights (Ando and Nakamura, 2013). The lack of other 

proposed tsunami earthquakes, inferred from records of intense shaking associated 

with the other historical ruptures (Ando, 1975b; Ishibashi, 2004), may provide further 

support for shallow slip occurring simultaneously with ruptures of the main 

seismogenic zone or could indicate that the shallow portions of the interface are only 

partially locked. Geological records are currently insufficient to identify the occurrence 

of prehistoric tsunami earthquakes along the Nankai-Suruga Trough.   

 

Ando (1975a) and Ishibashi (1976; 1981) identified the Tōkai region (segment E) as a 

mature seismic gap, a finding that contributed to the implementation of the 1978 Large 

Scale Earthquake Countermeasures Act by the Japanese Government and the intensive 

and ongoing monitoring of the region by the Japanese Meteorological Agency (Rikitake, 

1979). The frequency of ruptures of the Tōkai segment and the simultaneity with 

ruptures of the Tōnankai region (segments C and D) remain poorly understood. 

Geological or historical records support rupture of both regions in AD 1854, 1707, 1361 

and 684, while instrumental records suggest the 1944 earthquake ruptured only the Tōnankai segments and did not extend eastwards into the Tōkai segment. An episode of 

coseismic subsidence identified from the Ukishima-ga-hara Lowlands does not correlate 

with any major historically documented earthquake (Fujiwara et al., 2007b; 2016) and 

could reflect an undocumented rupture of the Tōkai segment or of the Fujikawa-Kako 

Fault Zone. A lack of further palaeoseismic evidence for independent rupture of segment 

E could reflect the magnitudes of coseismic deformation, shaking and tsunami 

inundation being insufficient to surpass thresholds for evidence creation, rather than 

the absence of single segment earthquakes in this location.  

 

6. Problems and potentialities  

 

Despite the breadth of sites investigated and the length of some of the resulting 

palaeoearthquake records, a complete and coherent picture of the timing, occurrence 

intervals, rupture zones and magnitudes of past earthquakes along the Nankai-Suruga 

Trough cannot currently be derived from geological data. This is in contrast to other 

subduction zone settings, where the integration of records from multiple sites has 

yielded a more comprehensive understanding of prehistoric great earthquakes, 

including in Alaska (Shennan et al., 2014a, b), Cascadia (Goldfinger et al., 2012; Nelson et 

al., 2006) and Chile (Moernaut et al., 2014). We identify four key issues that currently 

limit the contribution of palaeoseismic records to understanding seismic hazards along 

the Nankai-Suruga Trough: 1) alternative hypotheses for proposed palaeoseismic 

evidence; 2) insufficient chronological control to correlate between evidence at different 

sites; 3) research designs insufficient to address maximum earthquake and tsunami 

magnitudes and 4) incomplete appreciation of the variation in palaeoseismic thresholds 

over time and between sites. These issues are not unique to the Nankai-Suruga Trough 



 

 

and the identified difficulties and subsequent recommendations presented below have 

implications for palaeoseismic research globally.  

 

6.1 Alternative hypotheses 

Geological records may overrepresent the frequency of earthquakes or tsunamis when 

features of a non-seismic origin are incorrectly identified as palaeoseismic evidence. 

Misidentification arises from equifinality, the principle that dissimilar processes can 

produce similar sedimentary or geomorphic signatures (Chorley, 1962; McCalpin and 

Nelson, 2009). Along the Nankai-Suruga Trough, we illustrate this issue with reference 

to the most widely investigated lines of evidence: turbidites, liquefaction features and 

tsunami deposits. The limitations of other palaeoseismic approaches are detailed briefly 

throughout section 4 and at length in comprehensive reviews, including those by Dura 

et al. (2016), Carver and McCalpin (2009), Nelson et al. (1996) and Pilarczyk et al. 

(2014).  

 

Marine and lacustrine sediment sequences have the potential to preserve long, 

continuous records of intense shaking during multiple great earthquakes. While Lake 

Biwa records turbidites at closely spaced intervals, storms, hyperpycnal river discharge 

and shaking during smaller, more local crustal earthquakes may also induce turbidity 

currents (Talling, 2014; Shirai et al., 2010). Such alternative hypotheses are yet to be 

conclusively discounted for either the Lake Biwa record or offshore turbidite records 

from the Kumano and Tosabae Troughs. Indeed, the presence of turbidites in the 

Kumano Trough that cannot be linked to recent historical earthquakes indicates that 

local seismicity or non-seismic processes must also be active (Shirai et al., 2010). The 

issue of equifinality affects turbidite palaeoseismology globally and key ways forward 

include establishing site sensitivity through calibration of deposits with the historical 

record, correlation of multiple cores using independent marker horizons (e.g. tephras), 

sedimentary provenance analysis, and confluence tests (Goldfinger et al., 2012; 

Moernaut et al., 2014; Pouderoux et al., 2014; Van Daele et al., 2015). 

 

Similarly considered a record of intense shaking during great earthquakes, liquefaction 

features may also suffer from overrepresentation caused both by shaking during smaller 

earthquakes and the misidentification of similar sedimentary features of non-seismic 

origin (Obermeier, 1996, 2009). With earthquakes with surface wave magnitudes as low 

as 5 capable of generating peak ground accelerations large enough to cause liquefaction 

(Ambraseys, 1988), the occurrence of local upper plate earthquakes could explain some 

liquefaction features at sites along the Nankai-Suruga Trough. Particularly in sediments 

with very high liquefaction susceptibility, rapid sedimentation, landsliding, permafrost 

and artesian springs may also generate analogous sedimentary features. Along with 

judicious site selection to avoid the influence of some of these processes, the 

identification of liquefaction features at multiple locations within a few kilometres, 

combined with geotechnical testing, can assist in determining a seismic origin (Green et 

al., 2005; Olson et al., 2005).    

 

While the papers discussed in this review frequently invoke tsunamis to explain sand 

sheets found in coastal lakes and lowlands adjacent to the Nankai-Suruga Trough, storm 

surges may also deposit coarse-grained sand sheets with similar features to the 

sedimentary imprints of tsunamis. Typhoon-driven storm surges occur along the 

Nankai-Suruga Trough and there are few seismically active regions where major storms 

do not occur, at least on geological timescales. The consistent and reliable differentiation 

between storm and tsunami deposits remains an ongoing issue for the community 

(Engel and Brückner, 2011; Kortekaas and Dawson, 2007; Morton et al., 2007; 

Shanmugam, 2011). Careful application of detailed sedimentological criteria (e.g. 

Komatsubara et al., 2008; Fujiwara and Tanigawa, 2014) and multi-proxy approaches 



 

 

(e.g. Chague-Goff et al., 2011; Goff et al., 2012; May et al., 2015a) may assist in avoiding 

misidentification. Further in-depth characterisation and comparison of the deposits left by recent tsunamis (e.g. Abe et al., 2012; Brill et al., 2012; Goto et al., 2014; Szczuciński, 
2012) and storms (e.g. Hawkes and Horton, 2012; May et al., 2015a, b; Williams, 2009) 

in a wide range of depositional settings remains crucial. Novel methods of sedimentary 

analysis, such as micro-computed tomography (May et al., 2015a), anisotropy of 

magnetic susceptibility (Schneider et al., 2014; Wassmer et al., 2010) and microfossil 

analysis (Uchida, 2010) may also assist in discriminating between the origins of 

different extreme wave event deposits.  

 

6.2 Chronological control 

The issues surrounding the use of radiocarbon dating to discriminate between closely-

spaced events are well-documented (Atwater et al., 1991; Nelson et al., 1995). The short 

intervals between Nankai-Suruga earthquakes, known from the historical record to 

include periods of just hours to a few years, prevent the use of radiocarbon dating to 

establish unequivocal correlations between palaeoseismic evidence at different sites. 

Such issues are less often encountered where intervals exceeding several centuries 

separate recorded palaeoearthquakes, as appears to be the case in Alaska (Shennan et 

al., 2014b), and where earthquake timing is constrained by very high resolution 

chronologies, such as those based on annual varves (e.g. Moernaut et al., 2014). More 

precise constraints on the timing of palaeoseismic evidence are clearly desirable, 

particularly to assist with characterising the sedimentary fingerprint of historical 

earthquakes. Komatsubara and Fujiwara (2007) highlight the issue of ambiguous 

relationships between radiocarbon dated samples and proposed palaeoseismic 

evidence. We advocate for this information, including sample depth, context, material, 

conventional radiocarbon age and isotopic fractionation, to be routinely reported in 

future. Advances in radiocarbon analyses can be gained through the use of age 

modelling, particularly when combined with strategically planned sampling approaches 

(c.f. Bronk-Ramsey, 2009; Lienkaemper and Bronk Ramsey, 2009). Additionally, the use 

of alternative dating methods, including annual varves, short lived radionuclides (137Cs 

and 210Pb), luminescence dating techniques, tephrochronology and other 

chronohorizons (pollen, pollution markers), may help to improve correlations between 

sites and between palaeoseismic evidence and historically recorded earthquakes. Both 

age modelling and the application of a diverse suite of complementary dating 

approaches may serve to enhance chronological control on the sedimentary evidence for 

earthquakes and tsunamis along the Nankai-Suruga Trough and in other seismically 

impacted regions around the world.  

 

6.3 Research design 

The Central Disaster Management Council of the Japanese Cabinet Office emphasizes the 

need for greater understanding of the maximum magnitude of earthquakes and the 

largest possible tsunamis (CDMC, 2011, 2012). This deterministic approach to hazard 

assessment provides an alternative and complementary approach to probabilistic 

assessments. Nevertheless, the majority of currently published research has not been 

designed with questions of magnitude as a central focus. Accurate assessment of the 

run-up and inland extent of past tsunamis depends on detailed mapping and 

characterisation of tsunami deposits, as well as comprehensive understanding of 

palaeoshorelines and sea levels (Fujiwara, 2013). At present, these complementary data 

are not consistently explored when interpreting tsunami deposits. While the extent of 

identifiable deposits may remain a minimum estimate of inundation distance, this still 

constitutes a valuable constraint for testing models of tsunami inundation and fault 

rupture (e.g. Sugawara, 2014; Witter et al., 2012). Future coastal studies should, 

therefore, seek to better understand palaeoshoreline positions and coastal evolution 



 

 

and combine mapped tsunami deposit distributions with inundation and fault slip 

models.  

 

Turbidite records also have the potential to provide information on the rupture extents 

and magnitudes of past earthquakes (e.g. Goldfinger et al., 2003; Howarth et al., 2014; 

Moernaut et al., 2014; Pouderoux et al., 2014). While existing publications identify both 

lacustrine and marine basins as having the potential to hold records of shaking during 

past Nankai-Suruga Trough earthquakes, these sites have not been exploited to their full 

extent and reanalysis, combined with investigations of new locations, could yield 

additional insights into the largest magnitude earthquakes that have struck this 

subduction zone. As discussed in the preceding paragraphs, the current lack of high 

resolution chronologies and issues over the differentiation between seismoturbidites 

and those generated by other processes currently limits the utility of turbidite records. 

Renewed efforts should attempt to fingerprint the sedimentary record of known 

historical earthquakes, establish the defining characteristics of seismoturbidites and use 

this understanding to exploit longer sedimentary records in marine and lacustrine 

settings.  

 

Additional palaeoseismic approaches, used successfully elsewhere but previously only 

rarely if at all along the Nankai-Suruga Trough, may supplement existing methods and 

provide further insights into past earthquake and tsunami occurrence. Sugawara and 

Goff (2014), for example, propose that beach ridges may respond to seismic forcing and 

could provide a geomorphic record of the timing of past earthquakes along the Japan 

Trench. The presence of beach ridge systems on coastal plains facing the Nankai-Suruga 

Trough (Matsubara, 2005) raises the possibility for the application of analogous 

approaches along this subduction zone.  

 

6.4 Palaeoseismic thresholds 

The presence of evidence for past earthquakes and tsunamis depends on thresholds of 

both creation and preservation (Nelson et al., 2006; McCalpin and Nelson, 2009). For 

example, for a tsunami-deposited sand sheet to be discovered in the sub-bottom 

stratigraphy of a coastal lake, the tsunami must have been of sufficient height to overtop 

the lake’s sill with sufficient energy to transport sand (a creation threshold) and the 

sand layer must have withstood subsequent taphonomic alteration, for instance through 

bioturbation (a preservation threshold). The sensitivity with which a site preserves 

evidence for earthquakes or tsunamis should be explicitly assessed, principally through 

calibrating historic earthquake and tsunami deposits with their causal events (c.f. 

Moernaut et al., 2014; Van Daele et al., 2015). At present, few studies from the Nankai-

Suruga Trough have addressed site sensitivity and corresponding palaeoseismic 

thresholds. Furthermore, such thresholds may vary over time, for example the relative elevation of a lake’s sill decreasing or increasing due to sea-level rise or fall, 

complicating the relationship between the initial process and the resulting stratigraphic 

or geomorphic evidence. When comparing evidence for repeated tsunamis or 

earthquakes, the impact of changes in these thresholds must be considered if the 

relative magnitude of each event is to be discerned.  

 

7. Conclusions 

 

A critical examination of proposed palaeoseismic evidence from 72 sites along the 

Nankai-Suruga Trough reveals the current state of knowledge regarding geological 

evidence for past earthquakes and tsunamis along this subduction zone. Sites include 

marine, coastal, lacustrine and terrestrial locations that record evidence for intense 

shaking, coseismic deformation and/or tsunami inundation. A minority of sites provide 

compelling, well-dated evidence, with issues including the differentiation of seismic and 



 

 

non-seismic evidence and insufficient chronological control limiting the contribution of 

many locations to understanding past fault behaviour. An attempt to apply 

macroseismic scales such as the Environmental Seismic Intensity Scale (ESI; Michetti et 

al., 2007) to each earthquake would be stymied by the lack of data. Currently no 

publication from the Nankai Trough has attempted to infer intensity using the ESI scale 

and attempting to do so in the absence of full records of the environmental effects at 

each site would be insufficiently complete and potentially misleading. 

 

We use the best available evidence to constrain the most likely rupture zones of eleven 

earthquakes for which historical records also exist. This spatiotemporal compilation 

suggests the AD 1707 earthquake might have involved slip on at least five of six 

proposed seismic segments; an along-strike distance in excess of 600 km. The 

distribution of geological evidence suggests earthquakes in AD 1361 and 684 possibly 

ruptured all six segments, although further research is required to conclusively discount 

the possibility of closely temporally spaced ruptures of adjacent segments. Intervening 

earthquakes probably involved smaller areas of the subduction interface, including at 

least one rupture potentially confined to the area up-dip of the main seismogenic zone, 

highlighting a high degree of variability in rupture mode. We find insufficient geological 

evidence to consider the AD 1099 earthquake a great interplate event, but note that 

additional previously undocumented subduction megathrust earthquakes may have 

occurred during the historical period.  

 

The combined historical and geological record suggests intervals between ruptures of 

the same seismic segment ranged from 90 to 474 years over the last ~1350 years. Over 

the longer timescales afforded by palaeoseismic data, individual sites suggest intervals 

between earthquakes of 200 to 700 years. These figures do not just reflect the intervals 

between great earthquakes, however, and future assessments must consider thresholds 

of evidence creation and preservation when assessing the intervals between 

earthquakes from palaeoseismic data.  

 

While the Central Disaster Management Council of the Japanese Cabinet Office has called 

for historical and geological data to be used to define the largest magnitude of past 

earthquakes (CDMC, 2012), few attempts have yet been made to use palaeoseismic data 

to compare relative sizes or quantify absolute magnitudes of past earthquakes along the 

Nankai-Suruga Trough. As such, there is currently no evidence for the occurrence of a 

larger magnitude earthquake or greater tsunami inundation than that experienced in AD 

1707. Future research efforts should address the question of maximum magnitude 

through combined field and modelling efforts. Amongst the diverse range of 

palaeoseismic evidence types available, records of turbidite emplacement in marine and 

lacustrine settings and tsunami inundation from coastal lowlands and lakes appear best 

placed to provide new insights into the dimensions of past fault ruptures. These 

approaches and complementary methods will also be crucial to future attempts to 

answer a range of additional questions pertinent to probabilistic seismic hazard 

assessments. These include uncertainties over the permanence of segment boundaries 

over time, the simultaneity of ruptures of the Nankai, Tōnankai and Tōkai regions and 
the occurrence, frequency and characteristics of tsunami earthquakes.   
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port.pdf (Accessed 3 Dec. 2015).  Chagué-Goff, C., Schneider, J.L., Goff, J.R., Dominey-Howes, D., Strotz, L., 2011. Expanding 

the proxy toolkit to help identify past events – Lessons from the 2004 Indian Ocean 

Tsunami and the 2009 South Pacific Tsunami. Earth-Science Rev 107, 107–122. 

Chiba, T., Fujino, S., Kobori, E., 2015. Reconstruction of co-seismic and inter-seismic 

movements due to the past Nankai earthquakes at Tainohama, Japan, during the 

late Holocene. International Tsunami Field Symposium, Phuket, Thailand. 

Chorley, R.J., 1962. Geomorphology and General Systems Theory. US Government 

Printing Office, Washington, DC. 

Cisternas, M., Atwater, B.F., Torrejón, F., Sawai, Y., Machuca, G., Lagos, M., Eipert, A., 
Youlton, C., Salgado, I., Kamataki, T., 2005. Predecessors of the giant 1960 Chile 

earthquake. Nature 437, 404–407. 

Cummins, P.R., Baba, T., Kodaira, S., Kaneda, Y., 2002. The 1946 Nankai earthquake and 

segmentation of the Nankai Trough. Phys. Earth Planet. Inter. 132, 75–87. 

Cummins, P.R., Hori, T., Kaneda, Y., 2001. Splay fault and megathrust earthquake slip in 

the Nankai Trough. Earth Planets Sp 53, 243–248. 

DeMets, C., Gordon, R.G., Argus, D.F., 2010. Geologically current plate motions. Geophys. 

J. Int. 181, 1–80. De Batist, M., Heyvaert, V.M.A., Hubert-Ferrari, A., Fujiwara, O., Shishikura, M., Yokoyama, Y., Brückner, H., Garrett, E., Boes, E., Lamair, L., Nakamura, A., Miyairi, Y., 

Yamamoto, S., 2015. The QuakeRecNankai Team. New Geological Evidence of Past 

Earthquakes and Tsunami Along the Nankai Trough, Japan. American Geophysical 

Union Fall Meeting, San Francisco, USA (Abstract NH33A-1904). 

Dura, T., Hemphill-Haley, E., Sawai, Y., Horton, B.P., 2016. The application of diatoms to 

re- construct the history of subduction zone earthquakes and tsunamis. Earth Sci. 

Rev. 152, 181–197. Engel, M., Brückner, H., 2011. The identification of palaeo-tsunami deposits – a major 

challenge in coastal sedimentary research. Coastline Reports. Vol. 17, pp. 65–80.  

Fujino, S., Komatsubara, J., Shishikura, M., Kimura, H., Namegaya, Y., 2008. Preliminary 

results on paleotsunami study by hand coring in Shima Peninsula, Mie Prefecture, 

central Japan. Annu. Rep. Act. Fault Paleoearthq. Res. 8, 255–265 (In Japanese).  

Fujiwara, O., 2013. Earthquake and tsunamis along the Nankai Trough, inferred from 

geology and geomorphology — examples in Tokai region. Geol. Surv. Jpn. Chishitsu 

News 2, 197–200 (In Japanese). 

Fujiwara, O., 2015. Reconsideration of the Recurrence Mode of Tokai Earthquakes from 

the Historical Tsunami Deposits. Hokudan International Symposium on Active 

Faulting, Awaji City, Japan, pp. 15–16. 

Fujiwara, O., Tanigawa, K., 2014. Bedforms record the flow conditions of the 2011 

Tohoku-Oki tsunami on the Sendai Plain, northeast Japan. Mar. Geol. 358, 79–88.  

Fujiwara, O., Komatsubara, J., Takada, K., Shishikura, M., Kamataki, T., 2006a. Temporal 

de- velopment of a late Holocene strand plain system in the Shirasuka area along 



 

 

western Shizuoka Prefecture on the Pacific coast of central Japan. Chigaku Zasshi 

115, 569 (In Japanese). 

Fujiwara, O., Komatsubara, J., Sawai, Y., 2006b. Holocene earthquakes along the Nankai 

Trough and sedimentary facies of the Ukishima-ga-hara lowland beside Suruga Bay, 

Shizuoka Prefecture, central Japan: a preliminary report. Annu. Rep. Act. Fault 

Paleoearthq. Res. 6, 89–106 (In Japanese). 

Fujiwara, O., Ono, E., Satake, K., Sawai, Y., Umitsu, M., Yata, T., Abe, K., Ikeda, T., Okamura, 

Y., Sato, Y., Aung, T.T., Uchida, J., 2007a. Trace of the AD1707 Hoei earthquake from 

the coastal lowland, Shizuoka Prefecture, central Japan. Annu. Rep. Act. Fault 

Paleoearthq. Res. 7, 157–171 (In Japanese). 

Fujiwara, O., Sawai, Y., Morita, Y., Komatsubara, J., Abe, K., 2007b. Coseismic subsidence 

recorded in the Holocene sequence in the Ukishima-ga-hara lowland, Shizuoka 

Prefecture, central Japan. Annu. Rep. Act. Fault Paleoearthq. Res. 7, 91–118 (In 

Japanese). 

Fujiwara, O., Ono, E., Yata, T., Umitsu, M., Kamataki, T., Uchida, J., 2008. Late Holocene 

environmental change and tsunami deposits in the southwestern part of Otagawa 

lowland, central Japan. Annu. Rep. Act. Fault Paleoearthq. Res. 8, 187–202 (In 

Japanese). 

Fujiwara, O., Hirakawa, K., Abe, K., Irizuki, T., 2009. Drilling investigation of the AD 1854 

Ansei Tokai earthquake tsunami deposit on the southern tip of Izu Peninsula, 

Pacific coast of central Japan. Hist. Earthq. 24, 1–6 (In Japanese). 

Fujiwara, O., Hirakawa, K., Irizuki, T., Hasegawa, S., Hase, Y., Uchida, J., Abe, K., 2010a. 

Millennium-scale recurrent uplift inferred from beach deposits bordering the 

eastern Nankai Trough, Omaezaki area, central Japan. Island Arc 19, 374–388. 

Fujiwara, O., Ono, E., Yata, T., Umitsu, M., Sato, Y., Heyvaert, V.M.A., 2010b. Geomorphic 

impact by the 1498 Meio earthquake along the Hamana River on the Enshu-nada 

coast, Central Japan: evidence from the cored sediments. Hist. Earthq. 25, 29–38 (In 

Japanese). 

Fujiwara, O., Ono, E., Yata, T., Umitsu, M., Sato, Y., Heyvaert, V.M.A., 2013a. Assessing the 

impact of 1498 Meio earthquake and tsunami along the Enshu-nada coast, central 

Japan using coastal geology. Quat. Int. 308, 4–12. 

Fujiwara, O., Sato, Y., Ono, E., Umitsu, M., 2013b. Researches on tsunami deposits using 

sediment cores: 3.4 ka tsunami deposit in the Rokken-gawa lowland near Lake 

Hamana, Pacific coast of central Japan. Chigaku Zasshi 122, 308–322 (In Japanese). 

Fujiwara, O., Kitamura, A., Sato, Y., Aoshima, A., Ono, E., Kobayashi, K., Ogura, K., 

Tanigawa, K., 2015. Relative sea-level rise in the middle to late Yayoi Era observed 

in the Otagawa lowland, Pacific coast of central Japan. Daiyonki-Kenkyu 54, 11–20 

(In Japanese). 

Fujiwara, O., Fujino, S., Komatsubara, J., Morita, Y., Namegaya, Y., 2016. Paleoecological 

ev- idence for coastal subsidence during five great earthquakes in the past 1500 

years along the northern onshore continuation of the Nankai subduction zone. Quat. 

Int. 397, 523–540. 

Furumura, T., Imai, K., Maeda, T., 2011. A revised tsunami source model for the 1707 

Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, 

Japan. J. Geophys. Res. Solid Earth 116, B02308. 

Garrett, E., Shennan, I., Watcham, E.P., Woodroffe, S.A., 2013. Reconstructing 

paleoseismic deformation, 1: modern analogues from the 1960 and 2010 Chilean 
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Earthq. Technol. 42, 147–158. Szczuciński, W., 2012. The post-depositional changes of the onshore 2004 tsunami de- 

posits on the Andaman Sea coast of Thailand. Nat. Hazards 60, 115–133. 

Takada, K., Satake, K., Sangawa, A., Shimokawa, K., Kumagai, H., Goto, K., Haraguchi, T., 

Aoshima, A., 2002. Survey of tsunami deposits at an archaeological site along the 

eastern Nankai trough. Chikyu Mon. 24, 736–742 (In Japanese). 

Takahashi, N., Kodaira, S., Nakanishi, A., Park, J., Miura, S., Tsuru, T., Kaneda, Y., Suyehiro, 

K., Kinoshita, H., Hirata, N., 2002. Seismic structure of western end of the Nankai 

trough seismogenic zone. J. Geophys. Res. Solid Earth 107 (B10), 2212. http://dx. 

doi.org/10.1029/2000JB000121. 

Talling, P.J., 2014. On the triggers, resulting flow types and frequencies of subaqueous 

sediment density flows in different settings. Mar. Geol. 352, 155–182. 

Tanigawa, K., Shishikura, M., Fujiwara, O., Namegaya, Y., Matsumoto, D., 2015. Geological 

study on tsunami deposits in Kochi Prefecture, western Japan. International 

Quaternary Union Congress, Nagoya, Japan (Abstract T21-P10). 

Tanioka, Y., Satake, K., 2001a. Coseismic slip distribution of the 1946 Nankai earthquake 

and aseismic slips caused by the earthquake. Earth Planets Space 53, 235–241.  

Tanioka, Y., Satake, K., 2001b. Detailed coseismic slip distribution of the 1944 Tōnankai 
earthquake estimated from tsunami waveforms. Geophys. Res. Lett. 28, 1075–1078.  

Tsuji, Y., Okamura, M., Matsuoka, H., Murakami, Y., 1998. Study of tsunami traces in lake 

floor sediment of the Lake Hamanako. Hist. Earthq. 14, 101–113 (In Japanese).  

Tsuji, Y., Okamura, M., Matsuoka, H., Goto, T., Han, S.S., 2002. Prehistorical and historical 

tsunami traces in lake floor deposits, Oike Lake, Owase City and Suwaike Lake, Kii-

Nagashima City, Mie Prefecture, central Japan. Chikyu Mon. 24, 743–747 (In 

Japanese). 



 

 

Tsuji, Y., Yanuma, T., Hosokawa, K., 2013. Heights and damage of the tsunami of the 

1498 Meio Tokai earthquake along the coast of Shizuoka prefecture. Rep. Tsunami 

Eng. 30, 123–141 (In Japanese). 

Tsukuda, E., Okamura, M., Matsuoka, H., 1999. Earthquakes of recent 2000 years 

recorded in geologic strata. Chikyu Mon. 24, 64–69 (In Japanese). 

Uchida, J., Fujiwara, O., Hasegawa, S., Kamataki, T., 2010. Sources and depositional 

processes of tsunami deposits: analysis using foraminiferal tests and hydrodynamic 

verification. Island Arc 19, 427–442. 

Usami, T., 1996. Materials for Comprehensive List of Destructive Earthquakes in Japan. 

University of Tokyo Press (493 pp. [In Japanese). 

Van Daele, M., Moernaut, J., Doom, L., Boes, E., Fontijn, K., Heirman, K., Vandoorne, W., 

Hebbeln, D., Pino, M., Urrutia, R., Brummer, R., De Batist, M., 2015. A comparison of 

the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 

lakes: implications for quantitative lacustrine palaeoseismology. Sedimentology 62, 

1466–1496. 

Wassmer, P., Schneider, J.-L., Fonfrege, A.-V., Lavigne, F., Paris, R., Gomez, C., 2010. Use of 

anisotropy of magnetic susceptibility (AMS) in the study of tsunami deposits: 

application to the 2004 deposits on the eastern coast of Banda Aceh, North Sumatra, 

Indonesia. Mar. Geol. 275, 255–272. 

Williams, H.F.L., 2009. Stratigraphy, sedimentology, and microfossil content of 

Hurricane Rita storm surge deposits in southwest Louisiana. J. Coast. Res. 25, 1041–
1051. 

Witter, R.C., Zhang, Y., Wang, K., Goldfinger, C., Priest, G.R., Allan, J.C., 2012. Coseismic 

slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon 

lake and earthquake-triggered marine turbidites. J. Geophys. Res. Solid Earth 117, 

B10303. 

Woodruff, J.D., Donnelly, J.P., Okusu, A., 2009. Exploring typhoon variability over the 

mid- to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, 

Japan. Quat. Sci. Rev. 28, 1774–1785. 

Woodruff, J.D., Kanamaru, K., Kundu, S., Cook, T.L., 2015. Depositional evidence for the 

Kamikaze typhoons and links to changes in typhoon climatology. Geology 43, 91–
94. 

Yamamoto, T., Hagiwara, T., 1995. On the earthquake of 16 December Keicho era 

(1605): a tsunami earthquake off Tokai and Nankai? In: Hagiwara, T. (Ed.), Search 

for Paleo- Earthquakes: Approach to Offshore Earthquakes. University of Tokyo 

Press, pp. 160–260 (In Japanese). 

Yasuhara, M., Okahashi, H., Hirose, K., Mitamura, M., Yoshikawa, S., Uchiyama, M., 

Haraguchi, T., 2002. Preliminary report on ostracode assemblages from event de- 

posits in Holocene coastal marsh deposits from Osatsu. 34. Daishiki, Toba City, Mie 

Prefecture, Central Japan, pp. 27–31 (In Japanese). 

Yoneda, M., Kitagawa, H., van der Plicht, J., Uchida, M., Tanaka, A., Uehiro, T., Shibata, Y., 

Morita, M., Ohno, T., 2000. Pre-bomb marine reservoir ages in the western north 

Pacific: preliminary result on Kyoto University collection. Nucl. Instrum. Methods 

Phys. Res. Sect. B Beam Interact. Mater. Atoms 172, 377–381. 

Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T., Suzuki, 

A., Kawahata, H., 2007. Radiocarbon marine reservoir ages in the western Pacific 

estimated by pre-bomb molluscan shells. Nucl. Instrum. Methods Phys. Res. Sect. B 

Beam Interact. Mater. Atoms 259, 432–437.  



 

 

Figures 

 

 

Figure 1: a) Tectonic setting of Japan, including the location of b) The Nankai-Suruga 

Trough, with the distribution and classification of sites discussed in this paper. 

Abbreviations: SB: Suruga Bay, FKFZ: Fujikawa-Kako Fault Zone, ISTL: Itoigawa-

Shizuoka Tectonic Line; letters Z, A, B, C, D and E refer to seismic segments. Segment Z is also known as “Hyūga Nada”; segments A and B are collectively “Nankai”; segments C and D are collectively “Tōnankai”; segment E is “Tōkai”. Contours of the upper boundary 

of the subducting Philippine Sea slab marked with dashed grey lines at 20 km intervals 

(following Baba et al., 2002; Hirose et al., 2008; Nakajima and Hasegawa, 2007a). c) 

Summary of historical Nankai-Suruga Trough earthquakes, including calendar year, era name (nengō) and proposed rupture zone segments from historical records (following 

Ando, 1975b; Ishibashi, 2004).   



 

 

 

Figure 2: Representative photographs of different lines of palaeoseismic evidence that 

have been employed along the Nankai-Suruga Trough. a) Emerged sessile organisms at 

Suzushima close to the boundary between segments B and C. Mass mortality of colonies 

of intertidal annelid worms reflects coseismic uplift during an earthquake 

approximately 2000 cal. yr BP (Shishikura et al., 2008). b) An emerged wave cut 

platform near Cape Ashizuri. The platform lies at an elevation of approximately 1 – 

1.2 m above present mean sea level and may reflect uplift during the AD 1946 

earthquake (M. Shishikura, unpublished data). c) Layers of sand and mud probably left 

by the AD 1605 tsunami at Shirasuka (Fujiwara et al., 2006). d) Liquefaction features 

(sand blows) induced by intense shaking during the 2011 Tōhoku earthquake (O. 

Fujiwara, unpublished data). e) An abrupt transition from peat to tidal flat mud 

resulting from coseismic subsidence of the Ukishima-ga-hara Lowlands in segment E 

(Fujiwara et al., 2016). Peat accumulating on a marsh (i.) is abruptly overlain by 

inorganic mud (ii.) after a rapid rise in water level, followed by a gradual return to 

organic sedimentation and the recovery of the marsh (iii. and iv.). f) A lacustrine 



 

 

turbidite from a lake in segment E possibly caused by intense shaking during an 

earthquake (L. Lamair, unpublished data).  



 

 

 

Figure 3: Summary of the spatial and temporal distribution of proposed evidence for 

past megathrust earthquakes along the Nankai-Suruga Trough. We emphasise that for 

many of the records summarised here, alternative, non-seismic formation mechanisms 

are yet to be discounted. Upper panel displays site locations, lower panels give age 

ranges and limiting dates for proposed palaeoseismic evidence. Site numbers: 1 Ryūjin 
Pond*; 2 Azono*; 3 Funato*; 4 Tadasu Pond†; 5 Kani Pond*; 6 Cape Muroto; 7 Tosabae 

Trough‡; 8 Kamoda Lake*; 9 Itano-chō*; 10 Shimonaizen*; 11 Kosaka-tei-ato*; 12 

Ikeshima Fukumanji*; 13 Iwatsuta Shrine*; 14 Sakai-shi Shimoda*; 15 Tainaka*; 16 

Hashio*; 17 Sakafuneishi*; 18 Kawanabe*; 19 Fujinami*; 20 Hidaka Marsh§; 21 

Kuchiwabuka†; 22 Ameshima†; 23 Shionomisaki†; 24 Izumozaki†; 25 Arafunezaki†; 26 



 

 

Ikeshima†; 27 Yamamibana†; 28 Taiji†; 29 Suzushima†; 30 Kii-Sano§; 31 Atawa§; 32 

Shihara§; 33 Ōike Pond†‡; 34 Umino Pond§; 35 Suwa Pond†; 36 Katagami Pond§; 37 

Kumano Trough W*; 38 Kumano Trough E†‡; 39 IODP core C0004†; 40 Kogare Pond§; 

41 Funakoshi Pond§; 42 Shijima Lowlands§; 43 Kō§; 44 Ōsatsu Town‡; 45 Lake Biwa*; 

46 Tadokoro*; 47 Nagaya Moto-Yashiki‡; 48 Shirasuka‡; 49 Arai‡; 50 Goten-ato*; 51 

Lake Hamana†; 52 Rokken-gawa Lowlands‡; 53 Hamamatsu Lowlands§; 54 Ōtagawa 
Lowlands†; 55 Fukuroi-juku*; 56 Sakajiri*; 57 Tsurumatsu*; 58 Harakawa*; 59 

Yokosuka Lowlands‡; 60 Omaezaki; 61 Yaizu Plain §; 62 Agetsuchi*; 63 Kawai*; 64 Ōya 
Lowlands†‡; 65 Shimizu Plain‡; 66 Fujikawa-Kako Fault Zone; 67 Ukishima-ga-hara‡; 

68 Ita Lowlands†‡; 69 Iruma§; 70 Minami-Izu§; 71 Kisami§; 72 Shimoda†. Sites with 

calibrated ages taken from original publications marked *, sites with ages recalibrated in 

this publication marked †, sites with ages modelled in this publication marked ‡ (see 
also Supp. Info.), sites with no chronological data or where chronological data cannot be 

related to palaeoseismic evidence marked §. Abbreviations: SB: Suruga Bay, FKFZ: 

Fujikawa-Kako Fault Zone, letters Z, A, B, C, D and E refer to seismic segments.  



 

 

 

Figure 4: Summary of inferred rupture zones of historical great Nankai-Suruga Trough 

earthquakes and the distribution of associated geological evidence. Question marks 

indicate uncertainty over the chronology or the origin of evidence at a site. * Rupture 

zones of the AD 1946 and 1944 earthquakes are approximated from Baba and Cummins 

(2005) and Tanioka and Satake (2001a, b). † Rupture zone of the AD 1605 earthquake 
following Ando and Nakamura (2013) and Park et al. (2014).  


