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Abstract 11 

Logistic regression studies which assess landslide susceptibility are widely available in the literature. 12 

However, a global review of these studies to synthesise and compare the results does not exist. There 13 

are currently no guidelines for selection of covariates to be used in logistic regression analysis and as 14 

such, the covariates selected vary widely between studies. An inventory of significant covariates 15 

associated with landsliding produced from the full set of such studies globally would be a useful aid to 16 

the selection of covariates in future logistic regression studies. Thus, studies using logistic regression 17 

for landslide susceptibility estimation published in the literature were collated and a database created 18 

of the significant factors affecting the generation of landslides. The database records the paper the 19 

data were taken from, the year of publication, the approximate longitude and latitude of the study 20 

area, the trigger method (where appropriate), and the most dominant type of landslides occurring in 21 

the study area. The significant and non-significant (at the 95% confidence level) covariates were 22 

recorded, as well as their coefficient, statistical significance, and unit of measurement. The most 23 

common statistically significant covariate used in landslide logistic regression was slope, followed by 24 

aspect. The significant covariates related to landsliding varied for earthquake-induced landslides 25 

compared to rainfall-induced landslides, and between landslide type. More importantly, the full range 26 

of covariates used was identified along with their frequencies of inclusion. The analysis showed that 27 



2 
 

there needs to be more clarity and consistency in the methodology for selecting covariates for logistic 28 

regression analysis and in the metrics included when presenting the results. Several recommendations 29 

for future studies were given. 30 

 31 

Keywords: systematic review, landslides, logistic regression 32 
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1. Introduction 33 

Globally, landslides cause thousands of deaths and billions of dollars of damage each year (Robinson 34 

and Spieker, 1978; Nilsen et al., 1979; Brabb, 1993; Brabb, 1991; Dilley et al., 2005; Lu et al., 2007). 35 

Triggers of landslides include an increase in pore water pressure, earthquake shaking and human 36 

activity (Popescu, 2001; Bommer and Rodriguez, 2002; Smith and Petley, 2009). Brunsden (1978) 37 

separated causes of landslides into geometric changes, unloading, loading, shocks and vibrations, and 38 

changes in the water regime. Landslide hazards are one of the major life threats resulting from 39 

earthquakes, flooding and storm events in mountainous areas (Brabb, 1991; Brabb, 1993; Marano et 40 

al., 2010; Suzen and Kaya, 2011). Due to the interaction with other hazards and the spatially dispersed 41 

nature of landslide occurrences, it is necessary to map susceptibility to failure especially in areas with 42 

elements at risk (Bednarik et al., 2010). Landslide susceptibility can be mapped by fitting a statistical 43 

model to data on historical landslide occurrence and a set of covariates (Brabb, 1984; Hansen, 1984; 44 

Chacon et al., 2006; Atkinson and Massari, 2011).  45 

 46 

There have been many localised studies to determine the significant factors affecting landsliding, 47 

using either expert-dependent or data-driven methods (Suzen and Kaya, 2011). Data-driven methods 48 

aim to identify the statistically significant factors affecting landsliding based on data or historical 49 

landslide inventories. Many data-driven methods have been applied in the literature, but the majority 50 

of research has tended towards multivariate statistical analysis such as discriminant analysis (Carrara 51 

et al., 1991; Chung et al., 1995; Baeza and Corominas, 2001; Santacana et al., 2003; Guzzetti et al., 52 

2005), factor analysis (Maharaj, 1993; Fernandez et al., 1999; Ercanoglu et al., 2004; Komac, 2006) 53 

and logistic regression (Atkinson and Massari, 1998, 2011; Ohlmacher and Davis, 2003; Ayalew and 54 

Yamagishi, 2005; Das et al., 2010; Suzen and Kaya, 2011; Gorsevski, 2006). Bivariate statistical 55 

analysis, includes methods such as the weight of the evidence (Neuhauser and Terhorst, 2007; Dahal 56 

et al., 2008; Van Den Eeckhaut et al., 2009; Regmi et al., 2010; Oh and Lee, 2011; Martha et al., 57 

2013), the landslides index (Castellanos Abella and Van Westen, 2007), the  favourability function 58 
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(Fabbri et al., 2002; Tangestani, 2009) and the matrix method (Fernandez et al., 1999; Irigaray et al., 59 

2007). 60 

 61 

Generally, the typical factors that influence the generation of landslides are known. For example, 62 

Suzen and Kaya (2011) recorded at least 18 different factors used in data-driven landslide hazard or 63 

susceptibility assessment procedures in a review of 145 articles between 1986 and 2007. These factors 64 

can be categorized into four major groups: geological, topographical, geotechnical and environmental 65 

(Table 1) (Suzen and Kaya, 2011). However, in any given situation, some of these factors may be 66 

important while others are irrelevant.   67 

 68 

Table 1 Typical variables affecting landslide hazard or susceptibility grouped into four major types. From 69 

Suzen and Kaya (2011) 70 

Grouping Type Variables 

Environmental  Anthropogenic Parameters 
Position within Catchment 
Rainfall 
Land use / Land cover 
 

Geotechnical  Soil Texture 
Soil Thickness 
Other Geotechnical Parameters 

  
Topographical  Drainage 

Surface Roughness 
Topographic Indices 
Elevation 
Slope Aspect 
Slope Length 
Slope Angle 
Slope Curvature 
 

Geological  Strata-Slope Interaction 
Lineaments / Faults 
Geology / Lithology 

 71 

Suzen and Kaya (2011) compared the factors used to predict landslide hazard or susceptibility found 72 

in the literature to those for a landslide inventory in the Asarsuyu catchment in northwest Turkey and 73 

found that some factors often used in landslide susceptibility mapping were not significant for the 74 

study site. This could be due to the differences in scale and spatial resolution between the studies. At 75 

larger catchment scales, the spatial resolution of data is typically lower and less covariates are 76 
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included in the analysis compared to smaller catchment scales. Suzen and Kaya’s (2010) review 77 

covered all landslide types in the literature, which are most often derived from historical landslide 78 

inventories, with unspecified trigger types, whereas the smaller study site in Turkey was 79 

predominantly prone to earthquake-induced landsliding.  80 

 81 

The differences in scale can also be observed in determining between landslide types; at the smaller 82 

scales, where the spatial resolution of data is higher, determining landslide type is more common 83 

(Irigaray et al., 2007). In addition, when the spatial resolution of the study site is higher, clearly 84 

defining the rupture zone is important. In lower spatial resolution studies, the whole movement can be 85 

used to analyse the relationship with causal factors with minimal errors in calculations. However, at 86 

higher spatial scales, the conditions under which landslides are generated can be very different to the 87 

conditions where the landslide debris settles further down the slope. Using the full movement of the 88 

landslide can introduce noise to the data and therefore inaccurate susceptibility maps. Care must be 89 

taken to accurately delineate the rupture zone, and use this spatial area to establish statistical 90 

relationships with causal factors. 91 

 92 

Most landslide susceptibility mapping studies do not delineate between landslide type or the 93 

triggering event, particularly at larger scales (van Westen et al., 2006; Nadim et al., 2006).   Although 94 

some studies do differentiate between landslide type on the smaller scale (Lee et al, 2008a, 2008b; 95 

Chang et al., 2007), it is most common for studies to generate statistical relationships for all landslide 96 

types merged together and the triggering factors are often ignored (Fernandez et al., 1999; van Westen 97 

et al., 2006; Irigaray et al., 2007).  98 

 99 

The significant factors affecting landslides vary with trigger type (Suzen and Kaya, 2011; Korup, 100 

2010; Meunier et al., 2008; Li et al., 2012; Chang et al., 2007). Thus, it is important to consider 101 

rainfall- and earthquake-triggered landslides separately as these trigger types are likely to be 102 

associated with different environmental factors, their mechanisms and dynamics (Li et al., 2012; 103 

Chang et al., 2007). Studies have found that earthquake-induced landslides (EILs) are often located 104 
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near to ridges, faults, hanging walls and on convex hill slopes, whereas rainfall-induced landslides 105 

(RILs) are often distributed uniformly with respect to hill slope position, and are closer to streams, 106 

further from ridges and on concave hill slopes (Korup, 2010; Meunier et al., 2008; Li et al., 2012; 107 

Chang et al., 2007). This pattern of coseismic landslides predominantly detaching from upper hill 108 

slope portions is attributed to topographic amplification of seismic shaking near these areas (Korup, 109 

2010; Meunier et al., 2008; Li et al., 2012). Chang et al. (2007) modelled landslides in the Hoshe 110 

basin of central Taiwan triggered by Typhoon Herb (1996) separately from those triggered by the Chi-111 

Chi earthquake (1999) and found that the distribution differed according to trigger type (Figure 1). 112 

 113 

 114 

Figure 1 Distribution of landslides triggered by a) Typhoon Herb in 1996, and b) the Chi-Chi earthquake in 115 

1999, taken from Chang et al. (2007, fig. 3, p. 339). 116 

 117 

Beyond landslide type and trigger type, it is important to be clear about what is being predicted, being 118 

careful to distinguish between landslide susceptibility and landslide hazard. When modelling landslide 119 

susceptibility, the conditioning (preparatory) factors which make the slope susceptible to failure need 120 

to be considered (Brabb, 1984; Hervas and Bobrowsky, 2009). Landslide hazard differs from 121 

susceptibility as it refers to the spatio-temporal probability of landsliding (Brabb, 1984; Chacon et al., 122 
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2006). When modelling landslide hazard, both the conditioning factors and triggering (causative) 123 

mechanisms, which initiate movement, should be considered (Dai and Lee, 2003; Hervas and 124 

Bobrowsky, 2009). The time dimension of landslide hazard is often established by studying the 125 

frequency of landslides or the trigger (Wilson and Wieczorek, 1995; Soeters and Van West, 1996; 126 

Zezere et al., 2004; 2005; 2008; Guzzetti et al., 2005; 2007). Popescu (2001) divides landslide causal 127 

factors into two groups determined by their timing aspect: (1) preparatory causal factors, typically 128 

slow-changing processes (e.g. weathering), and (2) triggering causal factors, fast changing processes 129 

(e.g. earthquake). Similarly, Chacon et al. (2010, 2014) emphasises the diachroneity of landslides, 130 

whereby they can develop over a long timescale due to weathering processes, but can be activated in a 131 

short period. The process by which the landslide is activated can significantly affect the size and type 132 

of resulting landslide, which has implications for landslide hazard mapping, risk and losses (Chacon 133 

et al., 2010). 134 

 135 

Commonly, several statistical methods are used to identify the significant factors affecting landslide 136 

susceptibility. In comparing statistical methods previously used to model landslide susceptibility, 137 

Brenning (2005) demonstrated that logistic regression was the preferred method as it resulted in the 138 

lowest rate of error. Logistic regression is a useful tool for analysing landslide occurrence, where the 139 

dependent variable is categorical (e.g., presence or absence) and the explanatory (independent) 140 

variables are categorical, numerical, or both (Boslaugh, 2012; Chang et al., 2007; Atkinson et al., 141 

1998). The logistic regression model has the form 142 𝑙𝑜𝑔𝑖𝑡(𝑦) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑖𝑥𝑖 + 𝑒                                   Equation 1 143 

where y is the dependent variable, xi is the i-th explanatory variable, β0 is a constant, βi is the i-th 144 

regression coefficient, and e is the error. The probability (p) of the occurrence of y is 145 

𝒑 = 𝒆𝒙𝒑(𝜷𝟎+𝜷𝟏𝒙𝟏+𝜷𝟐𝒙𝟐+⋯+𝜷𝒊𝒙𝒊)𝟏+𝒆𝒙𝒑(𝜷𝟎+𝜷𝟏𝒙𝟏+𝜷𝟐𝒙𝟐+⋯+𝜷𝒊𝒙𝒊)                                            Equation 2 146 

 147 
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The logistic regression model is most commonly fitted in a step-wise manner. In the forward step-148 

wise method, bivariate models are fitted between the dependent variable and each individual 149 

covariate. The most significant covariate is then added to the working model. At each further step, 150 

additional covariates are added one at a time and the most significant covariate is retained in the 151 

working model. Thus, each covariate added is modelled while the effects of the previously added 152 

covariates are controlled for. At a pre-determined confidence level, no further covariates are added to 153 

the model when none are found to be significant.  154 

 155 

As logistic regression has become a popular method for assessing landslide susceptibility, and will 156 

foreseeably be a common method used in the future, a review of published studies using logistic 157 

regression should act as a useful guide for future research.  There are currently no guidelines for the 158 

selection of covariates in modelling landslide susceptibility with logistic regression (Ayalew and 159 

Yamagishi, 2005). The choice of covariates selected for logistic regression analysis varies between 160 

published studies. This review consolidates previous studies and identifies common covariates and 161 

their frequency of inclusion, providing an inventory of covariates that future logistic regression 162 

studies can select from. The inventory also provides a basis of comparison to determine how 163 

comprehensive the choice of covariates is in published logistic regression studies. Recommendations 164 

to inform future landslide studies using logistic regression analysis are also provided. 165 

 166 

We undertook a systematic review of the literature to assess the significant factors affecting landslide 167 

occurrence for all (unspecified) landslide types, including analysis of EILs and RILs separately, and 168 

analysis by landslide type. A database was created from the systematic literature search. Any 169 

commonalities or differences in significant covariates in the logistic regression models were identified 170 

and explored, and differences between EIL and RIL covariates and landslide type covariates were also 171 

examined.  172 

 173 

Logistic regression was chosen as a constraint on the scope of the literature search (i.e., only papers 174 

using logistic regression were included) for several reasons: (i) it is one of the most common 175 
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statistical methods used to model landslide susceptibility (the other being discriminant analysis) 176 

(Brenning, 2005), meaning that it was possible to generate a sufficiently large sample; (ii) in a limited 177 

study, Brenning’s (2005) review of landslide susceptibility models determined logistic regression to 178 

result in the lowest rate of error, increasing confidence in the results of any review and comparison; 179 

(iii) logistic regression analysis generates a statistical significance value for each covariate in the 180 

model, which allows comparison of covariates between studies; and (iv) logistic regression analysis 181 

can generate probabilities of landslide susceptibility and hazard (rather than predicted categories as in 182 

discriminant analysis), which is of use in risk and loss assessments.  183 

 184 

Four research questions were addressed by this study (i) what are the significant covariates affecting 185 

landslide occurrence in logistic regression studies; (ii) what are the covariates found to be not 186 

significant in determining landslide occurrence in logistic regression studies; (iii) how do the 187 

significant covariates in logistic regression studies vary for EILs compared to RILs; and (iv) how do 188 

the significant covariates in logistic regression studies vary by landslide type? The steps in the 189 

systematic literature review are outlined in the next section. 190 

 191 

2. Method 192 

2.1 Search Process  193 

A manual systematic literature search was conducted following the structure of Figure 2 between 15 194 

February 2013 and 05 July 2013. All papers were restricted to English language peer-reviewed journal 195 

articles with access rights granted by the University of Southampton. The bibliographic databases 196 

Web of Knowledge and Science Direct were used as the primary search tools, with later steps 197 

supplemented with journal searches of the key journals commonly publishing relevant literature. The 198 

key journals searched were Landslides, Geomorphology and Engineering Geology between 2001 and 199 

2013. 200 

 201 
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Papers using logistic regression to model landslide hazard or susceptibility with explicitly itemised 202 

covariates were included in the database. Papers were excluded from the database if they were 203 

qualitative, employed expert-driven models, if no statistical method was outlined, or if the method 204 

used to calculate significant factors was not stated.  205 

 206 

Figure 2 presents a flow chart outlining the search terms and database selection process. For each step 207 

in the systematic search, papers were selected and downloaded based on a reading of the paper 208 

abstract and title online to determine if the paper was relevant. When conducting the searches, no 209 

papers were downloaded to be assessed in more detail if they had already been selected from the 210 

search result of a previous step. This avoided potential duplication of data. Of the selected and 211 

downloaded papers, only papers conforming to the aforementioned conditions were accepted into the 212 

database. The conformity of the paper to the conditions was determined by a more thorough reading 213 

of the downloaded paper. 214 

 215 

Each journal article was reviewed by one researcher and the details in the paper recorded into a 216 

spreadsheet. The final four steps (Step 6, Step 7, Step 8, and Step 9 in Figure 2) of the systematic 217 

literature search did not yield any new papers to be added to the database because the papers relevant 218 

for the database had already been accepted into the database from previous stages. See Appendix A 219 

for a full list of the reviewed references used to compile the database. 220 
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 221 

Figure 2 Flowchart describing the systematic literature review method and resulting actions. 1 from the search 222 

results, these papers were selected based on a reading of the paper abstract and title to determine if the paper 223 

was relevant. 2 these papers were accepted for the database from the previous selection (1 or 3) based on 224 

suitability for the database (for full details see main text). 3 these papers were selected based on the same 225 

principle as 1, but no duplicates of previously selected were selected.  226 

 227 
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2.2 Data Collection 228 

The database records the source reference, the year of publication, the trigger method (or 229 

‘unspecified’ when the information was not available) and the most dominant type of landslides 230 

occurring in the study area (if noted in the article). The significant and non-significant factors reported 231 

by the authors were recorded, as well as their coefficients, statistical significance, and unit of 232 

measurement where appropriate. Significance was determined at the 95% confidence level. A code 233 

associated with each factor was assigned (Table 2). The covariate ‘Other’ was used to combine 234 

covariates with a single occurrence incidence in the database; for a list of these covariates, see 235 

Appendix B. 236 

 237 

Table 2 Covariates found in the literature search and their code used in this paper. 238 

Covariate Code Description 

ASP Aspect 

ASP_OTHER Aspect properties not covered by aspect (e.g. tan of aspect) 

CONC Slope (concave) 

CONT Upslope contributing area 

CURV Slope curvature 

DRAIN_DENS Density of drainage / river / stream 

DRAIN_DIST Distance to drainage / river / stream 

ELEV Elevation 

ELEV_RANGE Elevation range 

FAULT_DENS Density of faults 

FAULT_DIST Distance to fault 

FLOW_ACC Accumulated flow 

FLOW_DIR Flow direction 

GEOL Geology 

LAND Land use / land cover 

LIN_BUFFER Buffer around lineament 

LIN_DIST Distance to lineament 

LITH Lithology / rock type 

OTHER Covariate used only once in studies. See Appendix B. 

PGA Peak ground acceleration 

PL_CURV Planform curvature 

PR_CURV Profile curvature 

PPT Precipitation 

RIDGE_DIST Distance to ridge 

ROAD_DENS Density of roads 

ROAD_DIST Distance to road 

ROUGH Terrain roughness / standard deviation of slope gradient 



13 
 

SED_TRANS Stream sediment transport index or capacity 

SL Slope gradient 

SL_OTHER Slope properties not covered by slope gradient (e.g. slope2) 

SOIL Soil type 

SOIL_OTHER Soil properties, not covered by soil type 

SPI Stream index or power (SPI) 

TOPOG Topography type, geomorphology, landform unit 

TWI Topographic wetness index (TWI) 

VEG Vegetation / NDVI 

WEATH Weathering 

 239 

The longitude and latitude of each study site was taken from details in the paper if available. If this 240 

information was not recorded in the paper, the approximate centre of the study area was estimated 241 

using details of the paper’s study site, such as the site name, local landmarks, and the landslide 242 

inventory map. These details were then matched visually in Google Earth to select and record the 243 

central location of each study site. 244 

 245 

The type of triggering event was determined by the type of landslide inventory map used in the 246 

logistic regression analysis. Each study was allocated as an ‘earthquake’ or ‘rainfall’ type if the 247 

landslide inventory map used in the logistic regression was constructed in the immediate aftermath of 248 

an earthquake or rainfall event causing landslides.  249 

 250 

The type of triggering event was termed ‘unspecified’ if long-term landslide inventories were used, 251 

typically recorded in a national database of landslide occurrences, or inferred from aerial photography 252 

or satellite sensor imagery to determine the locations of past landslides over a specified time period. 253 

The trigger mechanism of these landslides is generally not recorded and these landslide inventory 254 

maps, therefore, represent the generic landslide hazard. Often the dominant triggering method can be 255 

surmised from the published paper (e.g. the site is located in an area of high precipitation, but not near 256 

any active faults). However, as the records do not specify directly the triggering mechanism, it was 257 

not possible to be certain about the trigger type for these long-term landslide inventories. 258 

 259 
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The literature search database was further divided into landslide type using the landslide classification 260 

scheme developed by Varnes (1978). Where the landslide type was recorded, the site was then 261 

classified in the database according to the main type of movement. For example, a debris slump 262 

would be categorised as a slide (Table 3). In some instances, there were multiple landslide types 263 

found at the site and included in the landslide inventory. In these cases, if there was a dominant 264 

landslide type present, it was recorded as the main landslide type; if there was not a clear dominant 265 

type, they were classified as complex slope movements. 266 

 267 

Table 3 An abbreviated and modified version of the landslide classification scheme developed by Varnes 268 

(1978).  Taken from Sidle and Ochiai (2006, p. 24, Table 2.1). 269 

Type of movement Type of material 

Bedrock  Engineering soils 

Coarse  Fine  

Falls Rock fall  Debris fall Earth fall 
Topples Rock topple Debris topple Earth topple 
Slides Rotational Rock slump Debris slump Earth slump 

Translational Rock block slide; 
rock slide 

Debris block 
slide; debris slide 

Earth block slide; 
earth slide 

Lateral spreads Rock spread Debris spread Earth spread 
Flows Rock flow (deep 

creep) 
Debris flow (soil 
creep) 

Earth flow (soil 
creep) 

Complex slope movements (i.e., combinations of two or more types)  

 270 

3. Results 271 

The literature search yielded 75 papers (Figure 2). For nine of the papers, more than one site was 272 

studied and logistic regression modelling was applied separately for each site. Thus, from the 75 273 

papers, 91 discrete study sites were recorded. Figure 3 shows the country where each study took place 274 

for all of the logistic regression studies. 275 
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 276 

Figure 3 Plot of the country of origin for each logistic regression landslide study. 277 

 278 

Figure 4 shows an increase in logistic regression landslide studies per year from 2001 to 2013. The 279 

number of published studies increased in 2005 and again in 2010, suggesting logistic regression 280 

analysis increasing in popularity as a method for assessing landslide susceptibility during these 281 

periods. This pattern also corresponds with the increased utilisation and availability of geographic 282 

information systems, which make fitting logistic regression models to landslide and environmental 283 

data increasingly less demanding. 284 
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 285 

Figure 4 Cumulative frequency plot of study sites for the year of publication. 286 

 287 

The main finding from the literature search was the lack of consistent and uniform approaches to the 288 

methodology, the selection of covariates included in the logistic regression model, and in the 289 

presentation of results. The statistical significance used to determine which covariate to include in the 290 

model was not published in all papers. In addition, presenting the coefficient of each significant 291 

covariate was not uniformly adopted across all studies; this practice was commonly excluded for 292 

categorized covariates. At the end of this paper, proposed recommendations for future publication of 293 

logistic regression studies of landslides are provided to address the issues found in the literature 294 

search. 295 

 296 

There was a perceptible variation in the choice of covariates selected by authors in the logistic 297 

regression modelling of landslide probability. The literature search yielded 37 types of covariates, 298 
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classified in Table 2. However, there are more than 37 covariates in total published in the studies. 299 

Covariates occurring only once in the search are classified under the coding ‘other’, and covariates 300 

representing additional properties or transformations of aspect, slope and soil are classified as 301 

‘aspect_other’, ‘slope_other’ or ‘soil_other’. Whilst some covariates appeared more frequently in the 302 

studies than others, the literature search does show that there is a wide range of potential covariates 303 

which can be used in landslide models. The method by which covariates are selected initially to fit the 304 

logistic regression model to is rarely published in the papers. With the exception of slope and aspect 305 

(and lithology combined with geology) there does not appear to be much commonality in the 306 

covariates selected across all studies.  307 

 308 

Of the 91 study sites, 39 published covariates found not to be significantly associated with 309 

landsliding. The remaining 52 sites did not publish any non-significant covariates. This suggests 310 

either (1) the selection of the initial covariates to include in the modelling yielded only significant 311 

relationships with landsliding, or (2) the covariates found not to be significantly associated with 312 

landsliding were not published in the final paper, only including those covariates found to be 313 

statistically significant. 314 

 315 

Landslide density for categorized covariates was presented as part of the results in 25% of the studies. 316 

Landslide density is obtained by dividing the area occupied by landslides within a mapping unit by 317 

the total area of the unit, for each factor (Yilmaz, 2009). Where this was performed, further analysis 318 

of the relationship between landsliding and significant covariates was carried out in more detail. This 319 

provides a more in-depth exploration of the relationship, which is useful for understanding the nature 320 

of the correlation and the processes that govern landslide initiation. However, this practice was not 321 

commonly carried out across all 91 studies. 322 

 323 

60% of studies published details on the landslide type recorded in the landslide inventory. For 59 324 

study sites, long-term landslide inventories were used; nine studies used an earthquake-induced 325 

landslide inventory, and 23 used a rainfall-induced landslide inventory. The majority of these EIL- 326 
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and RIL-specific papers modelled landslide susceptibility, while four modelled landslide hazard (two 327 

studies included an earthquake trigger covariate, and two included a rainfall trigger covariate). 328 

 329 

In logistic regression model fitting there are two common approaches to select the best model: 330 

backward stepwise fitting and forward stepwise fitting. The backward stepwise method begins with 331 

all covariates and eliminates the least significant variable at each step until the best model is obtained. 332 

The forward stepwise model operates in reverse, beginning with no covariates, and adding the most 333 

significant variable at each step until the best model is fitted. Nine studies used the backward-stepwise 334 

fitting of the logistic model method, 21 used the forward-stepwise fitting method and the remaining 335 

61 studies did not specify the direction method. 336 

 337 

3.1 Search Results 338 

Figure 5 shows a plot of common covariates and how often they were cited as significant or not 339 

significant in the literature review database as a percentage of the total number of sites. Slope was a 340 

statistically significant covariate in 95% of all landslide logistic regression studies. The next most 341 

common significant covariate was aspect (64%). There is a grouping of several covariates found to be 342 

significant in 35-45% of studies; these are vegetation, lithology, land cover, elevation and distance to 343 

drainage. In 10-25% of studies, the following covariates were significant: curvature, geology, distance 344 

to faults, soil type, distance to roads, topographic wetness index (TWI), precipitation, other soil 345 

properties, and stream power index (SPI). The remaining covariates were significant in less than 10% 346 

of the studies. 347 

 348 

Lithology was found significant covariate in 42% of studies, and geology in 25% of studies. 349 

Combined, they are significant in 67% of studies, placing them as the second most common 350 

significant covariate, behind slope, and before aspect. They are recorded as separate covariates in the 351 

systematic review, reflecting the terminology they are classified as in the original literature. However, 352 

they both are measurements of rock properties: lithology is the study of the general physical 353 

characteristics of rocks, whilst geology is the physical structure and substance of the earth. 354 
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 355 

Distance to drainage, curvature and aspect were not statistically significant in 10-20% of studies. 356 

Elevation, distance to faults, upslope contributing area, and land cover were not significant in 5-10% 357 

of studies. The remaining covariates were not significant in less than 5% of the studies. 358 

 359 

Figure 5 Percentage at which covariates were found to be significant or non-significant for all types of 360 

landslides in the literature review database. The description for each covariate type code is given in Table 2. 361 

 362 

3.2 Search Results by Trigger 363 

For 59 of the 91 study sites, the type of triggering event was not specified, nine were earthquake-364 

induced landslides (EILs), and 23 were rainfall-induced landslides (RILs). The studies were split into 365 

earthquake-induced landslide (EIL) and rainfall-induced landslide (RIL) studies and the significant 366 

covariates (Figure 6) were compared. 367 
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 368 

Figure 6 Percentage at which covariates were found to be significant for (a) rainfall-induced landslides and (b) 369 

earthquake-induced landslides in the literature review search. The description for each covariate type code is 370 

given in Table 2. 371 

 372 
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The most common significant covariate for both RIL and EIL studies was slope (95-100%), with 373 

aspect and elevation the next most common significant covariates, occurring in over 50% of studies. 374 

Geology and lithology were significant covariates in both RIL and EIL studies, occurring in 22-33% 375 

of studies. Topographic Wetness Index (TWI) was significant in 11-13% of studies. 376 

 377 

In the RIL studies vegetation was a significant covariate in 69% of studies, compared to 11% for EIL 378 

studies. Soil properties were considered significant in 39% of RIL studies, but in 0% of EIL studies. 379 

Plan curvature, curvature, and land cover/use were found to be significant in 17-26% of RIL studies, 380 

but in 0% of EIL studies. Similarly, elevation range and topography were found to be significant in 381 

13% of RIL studies, but in 0% of EIL studies. 382 

 383 

For the EIL studies soil type and distance to fault lines were significant in 44% of studies, but were 384 

only significant in 13% of RIL studies. Distance to ridge lines and profile curvature were found to be 385 

significant in 11% of EIL studies, but in 0% of RIL studies. Peak ground acceleration was only found 386 

to be significant in EIL studies (in 22% of studies). 387 

 388 

3.3 Search Results by Landslide Type 389 

Of the 91 sites, 55 published details of the landslide type. Of these 55 studies, there were two falls, 27 390 

slides, six flows, 20 complex slides and no topples or lateral spreads. The following section presents 391 

the significant covariates associated with each landslide type found in the literature search.  392 

 393 

Slides 394 

Slides were the most common landslide type found in the logistic regression studies. From the 27 395 

studies investigating this landslide type, 18 covariates were found to be significantly related to 396 

landsliding (Figure 7). The two most common significant covariates were slope and aspect (Figure 7). 397 
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 398 

Figure 7 Plot of significant covariates associated with the slide type of landsliding. 399 

 400 

Complex Slope Movements 401 

Complex slope movements were the next most common type of landsliding after slides. 20 studies 402 

investigated complex slope movements using logistic regression analysis. From these studies, 24 403 

covariates were found to be significantly associated with landsliding (Figure 8). Complex slope 404 

movements have a wider range of significant covariates than any other type of landsliding. Slope and 405 

aspect were the two most common significant covariates found in the studies (Figure 8). 406 
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 407 

Figure 8 Plot of significant covariates associated with complex types of landsliding. 408 

 409 

Flows 410 

Six studies investigated flows as the dominant type at the site. Only seven covariates were found to be 411 

significantly associated with flows. In 50% of the studies, slope, aspect, and lithology were found to 412 

be significantly related to landsliding. In 30% of the studies, elevation, elevation range and vegetation 413 

were found to be significantly associated with landsliding. Topography was significant in 15% of 414 

cases. The significant covariates associated with flows are mostly topographical, with geological and 415 

environmental types (Table 1). 416 

 417 

Falls 418 

Two studies investigated falls as the dominant landslide type at the site.  Only seven covariates were 419 

found to be significantly associated with falls. In both studies, slope was found to be a significant 420 

covariate related to landsliding. In 50% of the falls, fault distance, peak ground acceleration, 421 
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curvature, distance to roads, geology and lithology were significantly associated with falls. The 422 

covariates are dominated by topographical and geological types in these studies (Table 1). 423 

 424 

4.0 Discussion 425 

This systematic literature review shows that there are several clear common significant covariates 426 

associated with all landsliding. These are slope, aspect, vegetation, lithology, land cover, elevation 427 

and distance to drainage. The significant covariates related to landsliding vary between earthquake-428 

induced landslides compared to rainfall-induced landslides, and between landslide types. Although 429 

there are common significant covariates associated with landsliding, the logistic regression models are 430 

site-specific. For the two most common significant covariates (slope and aspect), there is no 431 

consistent relation between landslide density and slope (or aspect) across the sites. 432 

 433 

4.1 Slope 434 

Slope was the most common significant covariate in all studies: it was found to be significant in 95% 435 

of the 91 studies. Of these, 23 sites published the landslide density for slope gradient classes. A 436 

consistent method of grouping slope classes in the studies was not used. The landslide density at each 437 

slope class for each study was recorded. The mean for each slope class was then used to re-assign the 438 

landslide density value into a new slope class for further analysis.  Figure 9 shows the landslide 439 

density found at each of the 23 sites grouped into nine slope gradient classes at 5° intervals ranging 440 

from 0° to 45°, with an additional class for those greater than 45°. The thicker line indicates the 441 

median, with the surrounding box indicating the 25th and 75th percentile (Figure 9). The dashed lines 442 

indicate the minimum and maximum data points, excluding outliers. The outliers are indicated by the 443 

small circles; outliers are data points greater than 1.5 interquartile ranges away from the 75th 444 

percentile. There is significant spread in the landslide density for each slope gradient class for all 445 

landslide types as shown by the outliers in Figure 9. Figure 9 also shows the landslide density for the 446 

same slope gradient classes for the six studies for the slide type of landsliding; there are less outliers 447 

in this plot than when all landslide types are combined. 448 
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 449 

Figure 9 Box plot of landslide density for all types (black) and slide types (red) of landslides and grouped into 450 

slope gradient classes for consistency.  The thicker line is the median, with the 25th and 75th percentiles indicated 451 

by the surrounding box; the dashed lines indicate maximum and minimum data points, excluding outliers; 452 

outliers are indicated by small circles. For all types of landslides, there were 23 published sites; the plot shows 453 

that there is significant spread with outliers for most of the slope gradient categories. For slide types of 454 

landslides, there were 6 published sites; the plot shows less spread compared to the all types box plots. 455 

 456 

There is no consistent relation between landslide density and slope across the sites. This is because the 457 

slope gradient most susceptible to landsliding depends on the landslide type. Sidle and Ochiai (2006) 458 
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suggest that “it is clear that debris slides, debris avalanches, and debris flows (shallow, rapid failure 459 

types) initiate on the steeper slopes, while earthflows, slumps, and soil creep (generally deep-seated 460 

mass movements) typically initiate on gentler slopes”; rock falls occur on slopes with 30-90° gradient 461 

(Dorren, 2003). This can be seen in the difference between the landslide density per slope gradient 462 

class for all landslides compared to specifically slide types (Figure 9). The all landslides slope 463 

gradient plot has a widely dispersed scattering of landslide density, whilst slides have less scatter, and 464 

greater landsliding at the higher slope gradient classes. However, there is still scatter within the slope 465 

gradient for the slide type of landslide, suggesting additional influences on landslide susceptibility 466 

other than slope gradient. Slope gradient should not be used as the sole indicator of landslide 467 

susceptibility as the landslide type significantly influences the most susceptible slope gradient and 468 

other factors significantly affect landslide susceptibility. Therefore, other geomorphic, geologic and 469 

hydrological processes must be taken into consideration as significant contributing factors of slope 470 

stability (Sidle and Ochiai, 2006). 471 

 472 

4.2 Summary 473 

When lithology and geology as covariates are combined, they are the second most common 474 

significant covariate associated with landsliding. This is in keeping with knowledge of landslide 475 

processes (Radbruch-Hall and Varnes, 1976; Nilsen et al., 1979). The type of rock and its associated 476 

properties is a significant factor in whether failure occurs. Geologic types particularly susceptible to 477 

landsliding include poorly consolidated younger sedimentary rocks, exposed sheared rocks, or soft 478 

weak rocks overlain by hard, resistant rocks (Radbruch-Hall and Varnes, 1976). Weathering processes 479 

affect rock types at different rates, making some more susceptible to weathering, and therefore weaker 480 

(Sidle and Ochiai, 2006). Unstable bedding sequences can also lead to weaknesses within the geology, 481 

exacerbated by weathering processes, faulting, tectonic uplift, fracturing and folding, making them 482 

more susceptible to landsliding (Sidle and Ochiai, 2006).  483 

 484 
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There is a clear difference in the range and type of significant covariates associated with different 485 

landslide types. For example, lithology is found to be significant in ≥50% of studies for all landslide 486 

types, except slides (11%). Flows and falls have very small sample sizes (six and two studies 487 

respectively), which accounts for the proportion of times lithology was found to be significant; 488 

however, complex slides had 21 studies, and slide types had 28 studies. The difference in the 489 

frequency lithology was found significant between complex slides and slide types are because several 490 

studies were conducted in the same geographical region, and also selection bias by the authors. Three 491 

of the complex slide studies were conducted in Malaysia, and two in Turkey by the same authors, all 492 

included lithology in the covariates for logistic regression, and all found it to be significant (Pradhan 493 

et al., 2010; Akgun et al., 2012; 2012). Three of the slide type studies were conducted in Switzerland, 494 

and five in Japan by the same authors, none of the studies included lithology in the covariates for 495 

logistic regression, and therefore could not be found to be significant (von Ruette et al., 2011; Wang 496 

et al., 2013). 497 

 498 

Whilst generalising across all landslide types will mask the patterns of significant covariates 499 

associated with a specific landslide type, the number of studies for specific landslide types using 500 

logistic regression analysis is fairly limited. Therefore, it was useful to examine all landslides together 501 

because they form a larger database from which to characterise the relations of interest. In addition, it 502 

was necessary to investigate the covariates associated by landslide type and by trigger. More studies 503 

of landslide susceptibility and hazard are required for specific landslide types and by trigger type in 504 

order to draw definitive conclusions about the significant covariates associated with specific 505 

landsliding processes, to understand the conditions in which landslides occur, and to model landslide 506 

susceptibility and hazard across different sites.  507 

 508 

The review cannot act as a definitive guide to all covariates which might potentially influence 509 

landslide susceptibility for different landslide types because the sample size is not large enough. Thus, 510 

when conditioning the results to a particular landslide type or trigger, sampling variation will be large. 511 

Moreover, there may be several site-specific factors which determine the set of covariates that we 512 
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could not control for. The results, however, remain useful. The systematic review acts as a window, 513 

and it is for the reader to interpret these results bearing in mind the small sample sizes and inherent 514 

lack of control. 515 

 516 

The covariates associated with EILs and RILs in this reported literature search were found to be 517 

different. This is likely because the triggering type determines the mechanistic processes, which are 518 

different for EILs compared to RILs. For example, vegetation is a common significant covariate 519 

associated with RILs, but much less so for EILs. This may be because RILs are driven by soil water 520 

content; vegetation types can significantly increase or decrease susceptibility to landsliding when the 521 

soil is saturated due to heavy precipitation by affecting the cohesion of the soil and infiltration rates. 522 

Vegetation, particularly woody vegetation such as trees, can exert an influence on landslide 523 

susceptibility through reduction of soil moisture content through evapotranspiration, and/or through 524 

providing root cohesion to the soil mantle (Sidle and Ochiai, 2006; Dai et al., 2001). Similarly, land 525 

cover or land use can represent the vegetation type which can influence landslide susceptibility as 526 

previously covered. Land cover also provides information on how the land is used, which can increase 527 

landslide susceptibility, such as clearing of forests and converting land to agriculture which reduces 528 

rooting strength and alters the soil regime, making it more susceptible to rainfall-induced landslides 529 

(Sidle and Ochiai, 2006). Urban development can overload a slope with weak, poorly compacted 530 

material, remove support through excavation of hillsides, altering drainage patterns and removing or 531 

altering the root systems (Sidle and Ochiai, 2006).  532 

 533 

Furthermore, the systematic literature search found that EILs were commonly associated with distance 534 

to faults, soil type, and distance to ridge lines in more instances than for RILs. Since the main driving 535 

force for EILs is the shaking intensity from an earthquake, susceptibility to landslides increases closer 536 

to the source of greatest shaking, which is likely to be related to faulting. Fault lines are the source of 537 

most earthquake ruptures and the location of the greatest amount of ground motion. Therefore, the 538 

distance from faults is a useful proxy for determining EILs. Weaker soil types can amplify seismic 539 

waves, as they have a low elastic modulus, and can undergo a greater displacement (Hovius and 540 
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Meunier, 2012).  Topographic amplification of ground acceleration occurs during earthquake events, 541 

as seismic waves are reflected and diffracted along the surface, causing higher levels of shaking near 542 

ridge lines (Hovius and Meunier, 2012). Therefore, distance to ridge lines provides another covariate 543 

related to EILs in logistic regression analysis. 544 

 545 

Differentiating by landslide trigger is relatively uncommon in the literature search; 59 of the 91 546 

studies did not differentiate between landslide trigger; this could have implications on the accuracy of 547 

logistic regression susceptibility models. It has been established that EILs and RILs are mechanically 548 

different, are significantly related to different covariates, and act on different timescales. By 549 

combining all landslides together and not differentiating between the initiating events, the patterns of 550 

susceptibility can be masked, and susceptibility to either EILs or RILs can be overemphasises or 551 

underrepresented. For example, if a region is dominated by RILs, but within the landslide inventory, 552 

an EIL event inventory is included, the resulting logistic regression susceptibility model may 553 

underrepresent the significant covariates associated with RILs, if they are not significantly related to 554 

the EIL inventory. By dividing logistic regression analysis by trigger type, the separate RIL and EIL 555 

susceptibility models will represent the pattern of landsliding and associated significant covariates for 556 

each type of landsliding more truthfully, thus improving the accuracy of the models.  557 

 558 

4.3 Potential for selection bias 559 

Selection bias of the covariates by the authors could, in part, account for: the range of significant 560 

covariates related to all landsliding; the recorded differences between EIL and RIL covariates; and the 561 

variance in covariates by landslide type. Landslide type and trigger could be a controlling factor not 562 

only in the choice of covariates to be entered into the model, but also determining the significant 563 

covariates. From all the possible covariates to choose from with possible relations to landsliding, a 564 

section of these covariates are inherently relevant to the landslide type (e.g. geomorphological 565 

covariates may be important for rock falls), the geography of the study site (e.g. a region dominated 566 

by undercutting of hillslopes by river processes), or the triggering mechanism (e.g. peak ground 567 
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acceleration for earthquake triggered landslides). Authors select the covariates for input into the 568 

logistic regression model from this smaller subset of covariates, and from these, some are determined 569 

to be significantly associated with landsliding, and others may not be significantly related. This 570 

review of the literature is, therefore, limited to whether the covariates selected by the authors are 571 

determined significant or not significant through logistic regression. There is no way of determining 572 

whether the covariates not selected by the authors are significant or not significantly related to 573 

landsliding. Nevertheless, the choices made by the authors are informative in themselves, in relation 574 

to which of those covariates were found to be significant (see Figure 4; Figure 10). 575 

 576 

4.4 A note on landslide hazard models 577 

Logistic regression is used to analyse landslide occurrence for two purposes: to predict susceptibility 578 

and to predict hazard. Susceptibility refers to the pre-existing condition of the land; these studies use 579 

covariates which are relatively stable such as geology, slope, aspect, vegetation. These conditions can 580 

change over a longer time period (e.g. vegetation type and land cover), but are mostly stable 581 

conditions pre-existing in the landscape. Logistic regression modelling to predict landslide hazard 582 

must include the trigger mechanism (rainfall or ground shaking), which acts on a much shorter time 583 

frame.  584 

 585 

Triggering covariates are rarely included in logistic regression analysis. Of the 23 studies specifically 586 

modelling RILs, only two studies (8%) used a precipitation covariate (Hadji et al., 2013; Dai and Lee, 587 

2003). Of the nine studies specifically modelling EILs, only two studies (22%) included a peak 588 

ground acceleration covariate (Carro et al., 2003; Marzorati et al., 2002). Both studies on EILs found 589 

the triggering mechanism to be significantly associated with EILs. Whilst this indicates the utility of 590 

including a triggering mechanism to model landslide probability, there are limitations in determining 591 

a suitable covariate to represent the trigger and the availability of such data. For example, no 592 

consistent covariate was used in logistic regression analysis of landslides to represent precipitation. 593 

Precipitation was used as a covariate in a total of 15 study sites, only two of which used specific RIL 594 
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inventory maps. From the literature search, the following units of measurement were used: annual 595 

precipitation, mean rainy seasonal precipitation, mean annual precipitation, monthly variation in 596 

precipitation, 30 year annual average precipitation, maximum monthly rainfall, and rolling 24 hr 597 

rainfall. The variation in units of measurement suggests precipitation is used in the literature both as a 598 

conditioning factor (long-term indicators, e.g. annual precipitation) and as a triggering factor (short-599 

term thresholds, e.g. rolling 24 hr rainfall) (Popescu, 2001). In addition, accurate maps of peak ground 600 

acceleration are rarely available, particularly in more remote locations (Chacon et al., 2006).  601 

 602 

Susceptibility modelling is more common in the literature as hazard modelling requires data on the 603 

trigger variable, which are frequently not available (Chacon et al., 2006). However, landslide hazard 604 

models have the advantage that they can be used to predict the likely locations of landslides in future 605 

conditional upon the occurrence of a triggering event. In particular, hazard modelling of EILs, in 606 

contrast with susceptibility modelling, can represent the influence of non-uniform spatially distributed 607 

ground motion on landsliding.  608 

 609 

Many more studies are needed which model landslide probability specifically as a result of earthquake 610 

or rainfall triggers to increase our understanding and prediction capability. Hovius and Meunier 611 

(2012) proposed that the correlation between landsliding and peak ground acceleration is the “key to 612 

understanding the global attributes of regional and local patterns of earthquake-induced landsliding”. 613 

Similarly, greater understanding of the appropriate rainfall variable for landslide probability 614 

modelling is needed, particularly at a time when climate change could increase the frequency or 615 

intensity of rainfall events in susceptible locations. 616 

 617 

5.0 Conclusions 618 

The systematic literature search shows there are several covariates that are most commonly found to 619 

be significantly related to landsliding. The most common covariates are slope, aspect and 620 

geology/lithology. However, there is variation in which significant covariates are the most common, 621 

when classified by trigger mechanism and landslide type.  622 
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 623 

As discussed previously, there is a potential for selection bias in the covariates chosen to be included 624 

in the logistic regression analysis. The review therefore shows significant covariates from those 625 

initially chosen by the authors; other covariates not included in the analysis may be significant, but are 626 

unreported. There is a lack of explanation of the criteria by which authors select factors to be included 627 

in the logistic regression. In addition, the statistical threshold for including covariates in the logistic 628 

regression model as a significant covariate is often not reported in the reviewed papers. 629 

 630 

The review provides a list of covariates found to be significantly associated with landslide occurrence 631 

in previous literature. This can be of use in future logistic regression analysis studies. However, using 632 

the list of covariates should be approached with an understanding of the systematic review; in 633 

particular, the small sample sizes, especially when dividing the sample into trigger mechanism or 634 

landslide type. When selecting covariates for logistic regression analysis, researchers should use their 635 

understanding and knowledge of landslide processes to logically select covariates to be included in 636 

the study. 637 

 638 

It is apparent from the systematic literature review search that there is no consistent methodology for 639 

applying logistic regression analysis for landslide susceptibility and hazard mapping. There are no 640 

guidelines or universal criteria for selection of covariates in logistic regression modelling of landslide 641 

susceptibility (Ayalew and Yamagishi, 2005). Also, the methods of presenting the results from 642 

logistic regression in the literature are not consistent. Therefore, several suggestions for future 643 

publication of research on logistic regression analysis of landslide occurrence are identified here from 644 

the systematic literature review search. 645 

 646 

5.1 Recommendations 647 

1) Select covariates to be included in logistic regression in an informed and systematic way. The 648 

choice of covariates to include in the logistic regression analysis will naturally be dependent 649 

on data availability and a range of site-specific factors. However, a more comprehensive list 650 
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of covariates should be initially included, before systematically eliminating the non-651 

significant covariates through fitting the model. The systematic literature search undertaken 652 

here provides valuable information in the form of a list of previously selected and significant 653 

covariates which can be used as a starting point for selecting covariates to be included in any 654 

future logistic regression modelling.  655 

2) Publish all the covariates entered into the logistic regression, whether or not they are found to 656 

be significant as a result of the logistic regression fitting. Reporting of non-significant 657 

covariates, not just significant covariates, is valuable in fully understanding the relations of 658 

environmental variables with landsliding. 659 

3) Publish the statistical significance of covariates included in logistic regression models. The 660 

confidence level should be stated explicitly such that the results can be interpreted and 661 

potentially compared between studies.  662 

4) Publish the coefficients for all covariates found to be significant in the logistic regression. 663 

5) Publish the landslide types recorded in the landslide inventory because landslide type can 664 

affect which covariates are found to be significant in logistic regression. When multiple types 665 

are present, report the proportion of each type of landslide found in the study site. 666 

6) Publish the landslide density for the covariates found to be significant in the logistic 667 

regression studies. This will provide a more in-depth understanding of the relationship 668 

between landsliding and covariates. 669 

 670 

5.2 Final Conclusion 671 

The literature search yielded over 37 covariates used in logistic regression modelling for landslide 672 

probability. Slope was the most frequently significant covariate for 95% of studies. The significant 673 

covariates associated with landsliding differed between earthquake-induced-landslides and rainfall-674 

induced landslides. Landslide type also affected which covariates were found to be significantly 675 

related to landsliding. The selection of covariates to use in logistic regression modelling of landslide 676 

probability varied across the studies. 677 

 678 
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This systematic review provides guidelines and a list of covariates commonly found to be associated 679 

significantly with landslide occurrence which can be used in future logistic regression studies. This 680 

has the potential to increase the consistency of results published in the subject area and allow further 681 

comparison between studies and sites. Logistic regression analysis is a widely used method for 682 

landslide susceptibility mapping in the literature. However, there needs to be more clarity and 683 

consistency in the methodology for selecting covariates for the logistic regression analysis and in the 684 

presentation of the results. 685 
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Appendix B:  Covariates assigned to the ‘Other’ label in the systematic literature search.  1084 

Bedrock depth  

Bedrock-slope relationship  

Convergence index 

Crown density 

Debris 

Distance to drainage2 

Distance to path 

Distance to residential area 

Elevation2 

Exposition 

Forest age 

Forest degradation 

Forest density 

Forest diameter 

Groundwater depth 

Kinematic depth 

Liquidity index 

(Marly limestone) x (log of slope angle) 

Mean watershed angle 

Potential radiation 

Proximity to old rock slide 

Regolith thickness 

Relative permeability 

Strata orientation 

Tectonic uplift 

Tree age 

Tree diameter 

Wood age 
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