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ABSTRACT Sleep is a period of rest that is essential for functional learning ability, mental health, and even
the performance of normal activities. Insomnia, sleep apnea, and restless legs are all examples of sleep-related
issues that are growing more widespread.When appropriately analyzed, the recording of bio-electric signals,
such as the Electroencephalogram, can tell how well we sleep. Improved analyses are possible due to recent
improvements in machine learning and feature extraction, and they are commonly referred to as automatic
sleep analysis to distinguish them from sleep data analysis by a human sleep expert. This study outlines a
Systematic Literature Review and the results it provided to assess the present state-of-the-art in automatic
analysis of sleep data. A search string was organized according to the PICO (Population, Intervention,
Comparison, and Outcome) strategy in order to determine what machine learning and feature extraction
approaches are used to generate an Automatic Sleep Scoring System. The American Academy of Sleep
Medicine and Rechtschaffen & Kales are the two main scoring standards used in contemporary research,
according to the report. Other types of sensors, such as Electrooculography, are employed in addition
to Electroencephalography to automatically score sleep. Furthermore, the existing research on parameter
tuning for machine learning models that was examined proved to be incomplete. Based on our findings,
different sleep scoring standards, as well as numerous feature extraction and machine learning algorithms
with parameter tuning, have a high potential for developing a reliable and robust automatic sleep scoring
system for supporting physicians. In the context of the sleep scoring problem, there are evident gaps that
need to be investigated in terms of automatic feature engineering techniques and parameter tuning inmachine
learning algorithms.

INDEX TERMS Artificial neural network, deep learning, automatic sleep scoring system, big data, feature
extraction, inter-rater variability, machine learning, sleep stages.

I. INTRODUCTION
Sleep is defined as the absence of alertness and is regarded
essential for a person’s ability to learn, mental health, and
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even the everyday activities. During sleep, the body’s major
organs closely coordinate with one another, and this impacts
the sleep at any given time. Sleep-related issues, including
insomnia, sleep apnea, and restless legs, are becoming more
widespread in the society, despite the fact that humans spend
one-third of their lives sleeping.
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Bio-signals are used to track electrical activity in
the human brains. Electromyography (EMG), Electroen-
cephalography (EEG), Electrooculography (EOG), and Elec-
trocardiography (ECG) are the most widely used types of
such signals. Large volumes of data are generated by these
recordings, and are stored in data archives, whether public
or private. A signal trace summarizes changes in the sig-
nal’s properties, analyzed from representative features that
collect and process data on key characteristics of the signal.
Statistical and machine learning tools can learn to discern
complicated patterns in the data, and to assist in making
informed choices.

This study began by reviewing sleep-related publications
published since 1968, in order to acquire insights for future
research on automatic sleep grading. Sleep stages, computa-
tional approaches, machine learning, and in particular selec-
tion or extraction of features were all discussed. The study’s
systematic search process, inclusion and exclusion criteria,
data extraction and synthesis, and data analysis and synthesis,
are all detailed in a framework that allows replication of this
part of the study.

The review’s findings provide new insights into the dimen-
sions that are frequently used in the development of auto-
matic sleep grading systems. The American Academy of
Sleep Medicine and Rechtschaffen & Kales are two sleep
scoring standards that have been published in the literature.
The following domains were investigated using various fea-
ture extraction techniques: (I)Time, (ii) Frequency, (iii) Time
and Frequency, and (iv) Non-Linear and Entropy Domain.
Finally, various machine learning methods are assembled
based on their purpose, features used, number of Sleep
Stages, dataset, and data accessibility, and their prediction
accuracy is evaluated.

A. MOTIVATION
1) AIMS AND OBJECTIVES
The advances in signal processing, computer science, and
statistical techniques incorporated in open source and simple
data analysis tools have the potential to revolutionize the neu-
roscience field, particularly the understanding of sleep signal
data. Rapid advances are ongoing in data mining, machine
learning, artificial intelligence, and digital signal processing.
However, the fields of signal processing andmachine learning
are diverse; therefore, many different algorithms, theories,
and methods are available. This appears to be an obstacle in
the adoption of these sophisticated tools by many sleep data
professionals, which could limit the use of the large amounts
of data accessible. According to the above arguments, this
paper aims to:

• Present feature extraction techniques for bio sig-
nals; propose an overall structure for them; and dis-
cuss their applications to diagnosing sleep related
problems.

• Present different machine learning techniques and pro-
vide advantages and disadvantages in the context of
automated sleep scoring.

• Discuss from automatic sleep scoring perspective

– the clinical acceptance of automated methods
– understanding the inter-rater reliability of human

scoring

• Discuss challenges or critical issues in using automated
methods in clinical practice, with further extended use
in a home environment

The next section discusses the current issues that automatic
sleep scoring encounters. This lays the foundation for a later
discussion of the importance of sleep disorders, sleep scor-
ing standards, automated feature extraction approaches, and
machine-learning as a tool for sleep data analysts to confront
such difficulties.

2) CHALLENGES OF AUTOMATIC SLEEP SCORING
Sleep medicine is among the well-established fields; how-
ever, the importance of automatic sleep scoring is not rated
high enough. It has grown in importance and is now part of the
standard of care in the field of health sciences. It enabled the
establishment of a small clinical unit to monitor patients with
various cardiac, respiratory, and metabolic problems while
they slept [1]. The discovery of electroencephalogram and
sleep stages is directly linked with modern sleep medicine.
Several educational programs to revamp the sleep medicine
study were started, e.g., a survey to assess the current (2013)
state of sleep medicine educational resources offered in the
US [2].

Key challenges have been identified as follows.

• Sleep disorder analysis and scoring standards.
• Utilization of advanced knowledge in interdisciplinary
fields

• Collaboration between Academia and Industry to adopt
new technologies.

• Large and complex datasets, and difficult problems in
their analysis

• Application of signal-processing methods (i.e., feature
extraction techniques) in bio-signal analysis

• New methods or models combining (advanced) statisti-
cal, signal processing, andmachine learning approaches.

These key challenges highlight the trend of increasing
dynamic complexity. Adding to the challenges, there is rela-
tive lack of scientific experimentation on sleep, although data
sets are available, but the high dimensionality and variety
of data, as well as the NP completeness in model training,
present challenges.

To overcome the major challenges in this complex domain,
candidate aspects with high potential include sleep scoring
standards, feature extraction alternatives, and machine learn-
ing tools. These techniques support finding highly complex
and non-linear patterns in data of various types. Further, the
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raw data need to be converted to features for classification,
prediction, regression or forecasting.

B. CONTRIBUTION AND SIGNIFICANCE OF THE STUDY
The major goal of this report is to present a systematic
literature review that explores scientific machine learning,
feature extraction and selection, and big data published in
the context of Automatic Sleep Scoring Systems, given the
importance of sleep and related difficulties, obstacles faced
by automatic sleep scoring, and driven by data availability on
bio-electric signals, as well as promising developments in the
computational artificial intelligence techniques.

II. RESEARCH METHODOLOGY
This article uses Systematic Literature Review (SLR) tech-
nique, in order to ensure impartial search and study selection.

It is characterized as a research method that aims to gather
all empirical evidence in a certain topic, evaluate the mate-
rial, and synthesize new results. This SLR adheres to the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analysis) quality reporting criteria [3]. The SLR
process is presented in Figure 1.

A. RESEARCH QUESTIONS
A set of research questions addressed in this study is listed in
Table 1.

B. SEARCH STRATEGY
1) SEARCH TERMS
The search string was generated following the PICO
approach [3], by decomposing the scope of review to its popu-
lation of interest, intervention, comparison, and outcome, see
Table 2.

The following keywords were used in these searches:
Human Sleep Stages, Sleep Scoring Standard, Sleep EEG,
Automatic Sleep Stages, Feature Extraction Techniques,
Sleep EEG, Classification of Sleep Stages,Machine Learning
Techniques for Sleep Stages. Search Query Language expres-
sions were used to find the relevant articles, for example EEG
features extraction OR machine learning AND sleep stages’.

2) SEARCH PROCESS
We found 295 articles matching the search parameters, with
223 of them being non-duplicates that were chosen for full-
text inspection. Twenty-five articles were discarded follow-
ing title/abstract screening, another 22 were discarded in
screening based on full text due to insignificance, and 19were
eliminated during data extraction. We found 157 articles
that were chosen for full-text examination, with 130 articles
included based on qualitative evaluation and 27 on quantita-
tive synthesis, see Figure 2.

C. INCLUSION/EXCLUSION IN STUDY
The quality of this new group of studies was evaluated by
qualitative review of the article title, abstract, and keywords

FIGURE 1. Steps in Systematic Literature Review Process.

as per established inclusion and exclusion criteria. As a result,
the papers that met the assessment criteria are included in
the study sets, see Table 3. Further, the quality evaluation is
further guided by a set of questions, see Table 4

D. FRAMEWORK FOR DATA RETRIEVAL AND SYNTHESIS
Following the selection of studies, this is an important step in
which the study’s assessment criteria are developed. We pro-
vide a separate quality assessment methodology for each
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TABLE 1. Research Questions.

TABLE 2. Decomposition of Search Keywords using PICO approach.

research topic in order to answer it, which could be useful
for a new researcher starting out in this subject.

Because the human brain goes through various stages of
sleep, it’s important to keep track of the criteria for each stage
as well as the related brain signals. As a result, information
regarding sleep staging criteria and EEG signal qualities is
extracted, see Figure 3.

A number of computerized analysis approaches are based
on the concept that the EEG signal is generated by a highly
sophisticated linear system, resulting in non-stationary or
unpredictable features. The signal, on the other hand, could
alternatively stem from a deterministic system with a low
level of complexity but a lot of nonlinear features. As a result,
in order to answer the second question, we must first identify
the different types of feature extraction methodologies. The

data synthesis and processing framework is shown in Fig-
ure 3.

Machine learning algorithms can learn to perform a task
from a series of examples and after such training the equiva-
lent actions can be applied to a new data set. The problem of
sleep EEG has been addressed using a variety of ways. A data
synthesis and processing framework is created to address the
third research question, see Figure 3.

E. THREATS TO VALIDITY
A systematic literature review starts with a complete litera-
ture search of all the relevant studies from the major bibli-
ographic databases, after identifying the research questions.
The searches in this study were formulated using the PICO
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FIGURE 2. PRISMA Flow Diagram for the selection of studies on automated sleep scoring.

technique, which includes specifying search keywords and
examining the numbers of results returned.

The eligibility criteria for study selection must be defined.
To address this danger to validity, a set of inclusion and
exclusion criteria has been established.

What criteria were used to evaluate the quality of
each study? Data extraction and synthesis frameworks are
defined to address the research issues in order to answer
this query. The discrepancies between studies should be
described.
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FIGURE 3. Quality Assessment Framework and Data Synthesis.

III. STRUCTURING AND EXPLANATION OF SLEEP
SCORING STANDARDS AND SLEEP STAGES
The SLR identified the sleep scoring standards, Rechtschaf-
fen & Kales (R & K) [4] and American Academy of Sleep
Medicine (AASM) [5]. The former has six sleep stages
while the latter has five of them, defined by brain activ-
ity characteristics. Neuroscientists have identified various

brain signals associated with these stages, named as Alpha,
Beta, Delta, and Theta waves that can distinguish the stages
(see Figure 4).

According to R&K rule [4] these stages are classified as:

• Wake (W) define feeling relaxed, fall asleep quickly or
in less than 10 minutes.
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TABLE 3. Criteria for Inclusion or Exclusion from Study.

TABLE 4. A set of questions for quality evaluation.

• STAGE 1: Non-rapid eye movement (N-REM) Refers
to very light sleep (feeling like in a cloud, when hearing a
noise in the house or room not feeling like responding to
it but can still understand overheard conversation). The
quick beta waves of awareness are replaced by slower
alpha waves, and the slower theta wave emerges after a
period of falling asleep.

• STAGE 2: N-REM state light sleep indicates that the
subject can still hear but cannot understand speech. The
EEG signals continue to decrease in frequency while
increasing in amplitude during this period of light sleep.
Burst activity known as sleep spindles disrupts theta
waves, which have a frequency of 8-14 Hz. During
sleep stage 2, the K-complex, or fast and high amplitude
waves, can be seen.

• STAGE 3: N-REM belongs to deep stage (subject no
longer hears anything, cuts off the world). During the
third stage of N-REM, delta waves occur on the EEG.
Sleep spindle and K-complex waves do appear, but they
are less frequent than in stage 2.

FIGURE 4. Signals related to sleep stages.

• STAGE 4: N-REM shows sleeping deeply. In stage 4,
delta waves are influential, and overall neural activity is
at its lowest. The range of frequencies is less than 2Hz.

• Rapid eye movement (REM): REM refers to dream
sleep, inwhich the brain recharges its battery and records
what it has learned during the day. It is distinguished by
theta, beta, and gamma frequencies of 4-8, 16-32, and
>32 Hertz, respectively.

However, AASM [5] defined sleep stages as W, S1, S2, S3
and S4 instead of N-REM stage1, N-REM stage 2, N-REM
stage 3 and N-REM stage 4 respectively. Meanwhile the
representations of stages N-REM stage 3 and N-REM stage
4 are identical; the AASM merged stage 3 and stage 4 into
deep sleep or to the slowwave sleep (S3) stage. The standards
and characteristics of EEG signals associated with each sleep
stage are given in Table 5.

Besides the simplification of the sleep stage classification
problem, the following challenges are faced [6]: healthy to
unhealthy subjects ratio, test or validation test dataset size,
class imbalance problem, visual inspection time, human error
in the manual annotation, and inter-rater reliability, etc.

One noteworthy discovery is that the R&K sleep grading
standards have been used in research for decades. Another
significant conclusion is that, following the release of the
revised sleep scoring standard by AASM in 2007, the
research community is split between the two standards. As a
result, fewer sleep datasets are rated with AASM than with
R&K. The use of AASM in automatic sleep scoring research
is highlighted in the publications evaluated for the litera-
ture analysis. This observation is explained by the fact that
studying human brain events is a difficult undertaking that
necessitates a large amount of work in order to get relevant
insights from brain signal data. The bulk of the investigations
used EEG signals instead of EMG or EOG signals, which is
a noteworthy finding.

IV. TECHNIQUES FOR EXTRACTING FEATURES
A set of selected features must be retrieved from EEG in
order to obtain meaningful information. The waveform of
the EEG signal changes over time (i.e., it has different
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TABLE 5. Sleep stages in each standard with description.

frequencies). As a result, extracting information from two
domains namely time and frequency could be beneficial.
Frequency-domain features are generated from frequency
spectra, while time-domain features are derived from EEG
signals in time. The entire purpose of signal processing is lost
if either domain is ignored, so evaluation should utilize the
time-frequency domain. A list of feature extraction strategies
has been produced from the finalized set of previous tests.

A. STRUCTURING OF FEATURE EXTRACTION TECHNIQUES
WITH ADVANTAGES
Raw brain signals do not give enough information for effec-
tive analysis due to noise. An important step in signal pro-
cessing is the feature extraction that converts noisy signals
into meaningful values. A number of methods, each with
its specific advantages and disadvantages, exists. They have
potential for use in diagnoses of sleep related problems. The
main purpose of this section is to provide insight into the
feature extraction techniques.

Before looking into the feature extraction techniques, the
terms used are briefly introduced. These techniques are
known for their ability to solve problems that often appear
in the automatic sleep scoring domain. Obstructive Sleep
Apnea (OSA) is a critical sleep disorder in which breathing
stops and starts periodically while sleeping. Neonatal EEG is
used to study sleep staging in newly born babies. Nocturnal
Oximetry is an oxygen test that is used to evaluate oxygen
need during sleep. Sleep spindles are rhythmic oscillations
with a frequency range of 10 to 14 Hz. A seizure is uncon-
trolled electrical disturbance in the brain.

As explained before, feature extraction techniques have
been developed for research on human sleep related prob-
lems. This SLR identified four types of feature extraction
techniques for the EEG signals (see Figure 5) that most
studies have utilized.

1) TIME DOMAIN FEATURES
• Zero Crossing: An event is counted whenever a zero
crossing of the signal occurs i.e. a point at which the
wave form performs a crossing of the time axis.

Zero Crossing =
1

T − 1

T−1∑
t=1

1R<0(StSt − 1)

where S is a signal of length T.

This is useful as an indicator of noise, but the value also
varies by sleep stage. For automatic sleep scoring, the
delta wave (0.5-2Hz) in infants is detected. This feature
is used to measure the number of baseline zero crossing
in a fixed period interval [7].

• Hjorth Parameters: Derivatives of signals are used to
calculate the Hjorth parameters.

Activity =
var(y(t))
Mobility

=

√
var( dydt y(t))
var(y(t))

Complexity =
Mobility( dydt y(t))

Mobility(y(t))

where: y(t) represents the signal and var takes the vari-
ance of function. It has been used to detect OSA. It is
sensitive to noise and is one of the candidates to con-
struct automatic sleep staging [8].

• Arithmetic Mean: This summarizing feature is used to
extract information from a signal.

AM = ArithmeticMean =
1
N

N∑
n=1

xn.

Its use as a feature is obvious, e.g. in sleep staging in
neonatal, especially REM state detection [9].

• Median: It is used to extract information from a signal.

Median =
(N + 1)

2

th

This feature is used in sleep apnea diagnosis from noc-
turnal oximetry [10].

• Variance: It is calculated from squared differences of
each number in a data set from the mean.

Var =

∑N
i=1 (xi − AM )2

N − 1

It is used to classify neonatal sleep states [11].
• Standard Deviation: An alternative to amplitude for
characterising strength of signal.

S =

√√√√ 1
N − 1

N∑
i=1

(xi − AM )2

It is used as a feature for topographic study of neonatal
biosignals [11].
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FIGURE 5. Classification of Feature Extraction Techniques for Automatic Sleep Scoring.
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• Skewness: It is used to define an irregularity from a
probability distribution in a set of real data. It can be pos-
itive or negative depending on how the data are skewed.

S =

∑N
i=1 (xi − AM )3

(N − 1)SD3

In a study on automatic sleep stage classification, skew-
ness was used as a feature [12].

• Kurtosis: This numerical measure is used to describe
the shape of the data, indicating whether the data are
heavy or light tailed.

K =

∑N
i=1 (xi − AM )4

(N − 1)SD4

It is widely used as feature from a biosignal, also in
computer based sleep staging [12], and in an automated
sleep stage classification system using an ensemble tech-
nique [13], among others.

• Detrended Fluctuation Analysis: This method is help-
ful to detect a long-range correlation in a noisy signal.

F(n) =

√√√√ 1
N

N∑
K=1

[y(k)− yn(k)]2

It is used in different sleep EEG related studies, e.g.,
on the relation of sleep stages and sleep apnea with heart
rate variability [14].

• Matched Filtering: This method is helpful to find a
template matching. Matched filtering is used for per-
ceiving a signal that contains strong noise. The filter
increases the signal to noise ratio. It has been used to
detect cyclic alternating patterns in sleep. Three types of
matched filter were used to detect k-complex in sleep
stages. It has been used for sleep spindle detection.
The disadvantage of this method is that the frequency
deviation within the spindle may be problematic because
matched filter output is relying on the spindle tem-
plate [15].

• Teager Energy Operator: It measures the energy of the
input signal in a particular frequency band [16].

ψTs(n) = ψ2
s (n)− ψs(n− 1)ψs(n+ 1)

where9 s (n) and9 Ts is the nth sample value of signal
and Teager Energy Operator as output. Automatic sleep
spindle detection was done in biosignals during NREM
sleep stage [15]. It is used to detect K-complex signals
in sleep EEG automatically [16]. It’s been used success-
fully in a variety of signal processing applications.

• Mutual Information (MI): measures the mutual infor-
mation among two random variables. Two steps are
needed to estimate the MI: calculating the joint distri-
bution and computing the MI from the joint distribution.

I (S;R) = I [p(S;R)] =
∑
s,r

p(s, r)log(
p(s, r)
p(s)p(r)

)

It is applied in EEG to measure the effects of total sleep
deprivation [17].

• Tsallis Entropy: It is used for diagnosis based on
the entropic index of biosignals. This method provides
better accuracy than Shannon entropy, since it maxi-
mizes the probabilities of the events by using entropic
index [10].

Sq(pi) =
k

q− 1
(1−

∑
i

pqi )

Improving sleep stage separation by using Markov
model was based on Tsallis entropy [18] and its use to
analyse sleep stages [19] has been reported.

2) FREQUENCY DOMAIN FEATURES
Investigation of signals in a frequency domain gives new
insights for sleep data analysis. A set of commonly used
spectral features and associated signal processing techniques
is described in this section.

• Fast Fourier Transformation This algorithm helps to
decrease the number of computations in non-stationary
tests for power spectrum analysis. There are two classes:
Parametric and Non-parametric methods [20]. Fast
Fourier Transformation is advantageous for the detec-
tion of sleep spindles [21]. It was also applied in the
analysis of preterm infant signal spectrum [22].

• Parametric Spectral Analysis: It finds the parameters
of a signal. For parametric analysis based on the occur-
rence of poles, the following models are used: (i) Auto
Recursive, (ii) Yule-Walker and Burg’s, (iii) Moving
Average, and (iv) Prony’s Auto Regressive Moving
Average. AR modelling is a popular technique for anal-
ysis, because of its advantage in finding positions in
signals with low noise levels and determining the short
data record [23].
It is appropriate for signals that do not change with time,
for spectral estimation and stability assessed in human
biosignals analysis [24].

• Kalman Filtering: It is an optimal estimator for a large
class of problems. It follows two stages (i) predict the
state of system (ii) refinement to estimation using noisy
measurements.
The major advantage of this method is that it does signal
parameterization. It is applied for sleep dynamics anal-
ysis and automatic arousal detection with an AR model
of the signals [25].

• Higher order spectral analysis: This uses higher-order
moment spectra for deterministic signals. Cumulant
spectra are defined for random processes. It is used
in signal processing to: (i) contain Gaussian Noise of
unknown data (ii) reform the phase and magnitude
response of signals and (iii) to identify and distinguish
non-linearity in the data. Sleep EEG of healthy neonates
is an important topic, and parametric bi-spectrum anal-
ysis [26] has been used for this.
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• Spectral Entropy: It measures the irregularity or com-
plexity levels of signals.

E = −
f= fs

2∑
f=− fs

2

PSDn(f )log2[PSDn(f )]

It is used as spectral information during OSA diagnosis
and in Automatic REM sleep stage detection [27].

• Spectral Edge Frequency: It is defined as a frequency
below which X% of total signal power is located. It dif-
ferentiates between different sleep stages. In neonates,
it is used to distinguish between active and quiet
sleep [28].

• Spectral Mean Frequency: It is a mean value from
power spectrum of signal.

fmean =
n∑
i=0

Ii · fi /
n∑
i=0

Ii.

Quiet sleep is investigated in premature and full term
infants and spectral moment has been suggested for
automatic sleep stage detection [29].

• Hilbert Transform Filter: It derives the analytic rep-
resentation (filter negative frequency component) of a
signal and is useful for envelope detection.

H (u)(t)=p.
∫
∞

−∞

u(τ )h(t−τ )dτ=
1
π
p.

∫
∞

−∞

u(τ )
t−τ

dτ

It is useful for detecting spike activity in newborns as
well as calculating variance between two quite sleep pat-
terns in preterm and full-term infants. The instantaneous
envelope and frequency waveform have been considered
for micro-structure of sleep spindles [30], [31].

• Itakura Distance: It measures the degree of similarity
between EEG and EOG with different sleep stages [32].

dt (A, Â) = ln[
1
2π

∫ π

−π

|A(ej)| 2 / |A(ej)| 2 d ]

−ln [dLR(A, Â)+ 1].

• DirectedTransformFunction: determines the relation-
ship between channels as a function of frequency and
time.

DTF2
j→i(f ) = |Hij(f )| 2/

k∑
m=1

|Him(f )|

2

It recognizes the main centres’ of EEG activity during
sleep and wakefulness, and the direction of information
flow is estimated through presleep wake and early sleep
stages [33].

• Spectral Centroid: It measures the power spectrum
‘‘centre of mass’’ by employing Fourier transform fre-
quency and magnitude information [34].

SC =

∑N−1
m=0 m|X (m)|∑N−1
m=0 |X (m)|

It is useful to detect and classify human stress
and for automatic classification of healthy and sick
neonates [35].

• Spectral Flatness or Wiener Entropy: A method to
quantify the noise of spectrum known asWiener entropy.

SF =
N−1∏
m=0

|X (m)|
1
N /

1
N

n−1∑
m=0

|X (m)|

It is a feature parameter and used for automatic detection
of snoring in studies conducted on sleep [36].

• Spectral Coherence Analysis: It depicts the relation-
ship between two signals as a function of frequency.
It represents the degree of integration among frequency
components of two signals andmay indicate a large scale
functional connectivity in the brain.

Cxy(f ) =
|Pxy(f )|2

Pxx(f )Pyy(f )

It is widely used in various studies and for the pur-
pose of sleep related oscillation (slow-wave and spin-
dle), and temporal evolution in human sleep brain
signals. It is applied during the wake-sleep transition
period [37], [38].

• Non-parametric Spectral Analysis: Wolfowitz coined
the term non-parametric in 1942 for cases when the
parameters of variables are unknown and they do not
rely on the estimation of parameter’s mean and standard
deviation. This is also known as parameter-free or distri-
bution free. It has been used to investigate the relation-
ship between fitness, behaviour and sleep [20]. Spectral
analysis is proposed to identify the inter-dependencies
among heart rate and sleep recording [21].

3) TIME AND FREQUENCY DOMAIN FEATURES
This representation is used to analyse non-stationary signals
(sleep EEG) in both time and frequency domains [20]. The
methods used in time-frequency analysis are given in this
section.
• Short Time Fourier Transforms: The signal is divided
into segments by using a window function (i.e., in terms
of time and frequency), defined as:

STFTwx t, f =
∫
∞

−∞

[x(t).w∗(t − t )].e−j2π ftdt

Here x(t) is signal, w(t) is window function, and * is the
complex conjugation. It is used for analysis of respira-
tory cycle related EEG changes in sleep. Further, human
sleep onset estimation is achieved by this feature and it
is found useful for sleep spindle detection. Furthermore,
this feature was proposed to visualize both macro and
micro levels of human sleep [39].

• Wavelet Transform: This feature can provide the
time-frequency of signals, and can be expressed as:

F(a, b) =
∫
∞

−∞

f (x)ψ∗(a,b)(x)dx
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where * indicates complex conjugation and ψ is the
generating function. It can detect automatic arousals
and classify sleep/wake stages. It is proposed to capture
sleep spindle activity. Because they are borderline in the
time-frequency domain, certain spindles are difficult to
recognize. Wavelet transform was applied to calculate
features for coefficients of decomposition scale during
EEG sleep in neonates [40].

• Match Pursuits: is used with dictionaries of Gabor
functions in time-frequency analysis of signals and has
following advantages (i) explicit parametrization of tran-
sients, (ii) robust time frequency estimate [41].

x ≈
M−1∑
n=0

(Rnx, gγn )gγn

This can be suitable for finding and parametrizing delta
waves and sleep spindles. The MP algorithm is used for
EEG structures like Slow Wave Activity (SWA) with
time-frequency parameters [42].

• Empirical mode decomposition (Hilbert - Haung
transform): based on the function known as Intrinsic
Mode Function (IMF), decomposes the signal into its
component IMFs alongwith trends and extracts instanta-
neous frequency data [43]. Since a signal is decomposed
in the time-domain and is of the same original signal
length, it allows maintaining varying frequency. It can
be compared with other transformations such as Fourier
transform and wavelet decomposition. It is calculated
easily and yields high time and frequency resolution.
It is employed to analyze sleep stages and automatically
detect sleep spindle. It is used for automatic sleep stag-
ing with the nearest neighbor algorithm [44].

• Wigner-Ville distribution: This is also a good choice
for extracting features from a signal that comprises only
a single component [45], defined as:

WV (t,w) =
∫
∞

−∞

f (t +
t0
2
)f ∗(t −

t0
2
)e−jt0wdw0

Here WV(t,w) is energy distribution of signal, * the
complex conjugate of signal and w is the frequency. It is
utilized to locate the sleep spindle’s structural position
and to solve the difficulty of detecting K-Complexes and
Delta waves [46].

4) NON-LINEAR ENTROPY BASED FEATURES
Non-Linear Entropy Based Features provide complementary
information in sleep EEG analysis. Although reliability and
interpretability of results are important issues, a good under-
standing of these techniques helps in their application and
interpretation. A list of commonly used features is given
below:
• Correlation Dimension: The Grassberger-Procassia
algorithm is a fast and simple numerical method for
calculating a fractal measure’s Correlation Dimension.
It successfully identified sleep stages and considered

slow wave activity both in adults and infants [47]. Auto-
matic REM detection is based on the spectral mea-
sure [48].

• Lyapunov Exponent: measures the convergence or
divergence rate of trajectories and describes the per-
formance of a dynamical system. The exponent can be
positive, negative, or zero and this reveals the behavior
it implies [20]. Positive value indicates that the system is
chaotic; a negative value relates to converging trajecto-
ries; and a zero indicates the systemmaintains its relative
position.

λ= limt→∞
1
t
ln|1x(X0 t)|/|1X0

where λ is the Lyanpunov exponent and X0 and X0 + 1
X0 are two EEG data points in space. This is utilized in
studies done on EEG sleep analysis, for predictability of
different sleep stages [49], and it provides information
regarding the neural process of brain during sleep [50].
EEG signal characterization in different sleep stages has
been calculated by positive LE [51]. Automatic REM
stage detection is based on non-linear measures such as
LE and correlation dimension [48].

• Fractal Dimension: It is a scaling parameter that
describes how patterns change with the scale, and this
is associated with signal complexity. It can be employed
for short segments of EEG signals [20] and to clas-
sify physiological function of a state [23]. Kats and
Higuchi’s algorithms are used to calculate the FD.
Behavior of fractal dimension has been studied during
the different sleep stages in infants [52] and adults [53].
Higuchi fractal dimension has been calculated on com-
paring sleep spindle and anesthesia [54]. Multifractal
analysis of sleep EEG characterization has been investi-
gated by using wavelet transforms [55].

• Entropy Measures: Those measure the disorder in a
signal.

• Approximate Entropy: It measures the anomalies in a
time series’ variation. A low value suggests strong regu-
larity and predictability, whereas a large value indicates
unpredictability and random data variances.

ApEn(Sn,m)= ln[
Cm(r)
Cm+1(r)

]

where Sn is approximate entropy for length m and simi-
larity criterion r.
A low ApEn indicates predictability and high regularity
of time series data and high ApEn shows unpredictabil-
ity and random deviation. ApEN performed well in the
classification of sleep EEG signals to sleep stages [56].
It is used to compare the sleep spindle and anesthesia in
EEG signals [54].

• Sample Entropy: This is an improved version of the
approximate entropy. It is based on the negative loga-
rithm of the probability. It is more reliable, unbiased,
and ideal for brief data segments. It is also unaffected
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by sample size.

SampEn(K , r,N ) =
−ln(A(K ))
B(K − 1)

It is used to record and indicate the characteristics of
sleep [57]. It was used to analyze different sleep stages
and deeper sleep was associated with a lesser SampEn
value [23].

• Recurrence Plot: This tool helps visualize the recur-
rence state in the phase space, when the distance
between two points on a trajectory is smaller than the
threshold. It is represented by two-dimensional matrices
of black and white dots with time axes. It can help
find interrelations and visualize time dependencies in the
data [58].
Recurrence is typically a visual aid for the analysis of
dynamical systems. It has been used in the analysis of
EEG signals at different sleep stages [59]. Recurrence
analysis of sleep EEG data has been studied to obtain
information regarding treatment effects in patients with
depression [60].

• Hurst Exponent: It is used tomeasure the self-similarity
in a time series. It evaluates the presence or absence
of long range dependencies and irregularity in a time
series [61]. Its value ranges between 0 and 1; higher
values show a smoother signal with less roughness.

H=
log(RS )

log(T )

where T is duration of a sample of the data and R/S is
the corresponding value of the re-scaled range. It has
been used for characterizing non-stationary behaviour in
sleep EEG data [62].

B. CHALLENGES OF FEATURE EXTRACTION TECHNIQUES
A very common challenge is feature extraction from single or
multiple channels. For automatic sleep stage classification it
remains to be determined whether single or multiple channels
would perform better. Nevertheless, attempts to diagnose
sleep related problems and stage classification highlight the
need for a set of feature extraction techniques. Especially,
due to the increased attention of clinical practitioners, and
researchers, different types of feature extraction techniques
are available. Adding to the signal variation and complexity,
combinations of different feature extraction techniques are
becoming more common in diagnosing various sleep related
problems: sleep apnea, automatic spindle detection, etc.

Another challenge is usefulness of single or multiple fea-
ture(s) to diagnose sleep related problem(s). It has to be taken
into account that not only single features are used to diagnose
the problem but multiple ones are employed for diagnostic
purposes, e.g. inMatched Filtering and Teager Energy Opera-
tor for sleep spindle detection, etc. Secondly, many alternative
or complementary feature extraction techniques are used in
the sleep context. One motivation for this is that the EEG

signal is difficult to understand as it involves changes in fre-
quency and in amplitude. Further, one must consider effects
of the human subject’s age and mental state, disease, etc.
Therefore the study of neuron activity can benefit both linear
and non-linear signal processing techniques and needs to be
considered along with physiological aspects. Hence, several
types of extracted features can help with gaining insights into
sleep EEG data.

V. FEATURE SELECTION TECHNIQUES
All features present in available data are not useful for a spe-
cific classification task. Instead, some features can reduce the
classifier performance due to irrelevance and/or noise. Fea-
ture selection refers to the process of selecting a discriminat-
ing subset of features in order to avoid over-fitting. In order
to increase the classification accuracy, feature selectionmeth-
ods or algorithms remove the unnecessary or redundant fea-
tures from the given dataset. Hence, the dimensionality of
the dataset is reduced, and learning accuracy increased with
improved results. Sequential forward and backward selection
are two common techniques for selecting features. Both are
greedy approaches to a combinatorial optimization problem,
and the subset of features obtained might be far from ideal.
A summary of pros and cons of the feature selection meth-
ods [63] is given as follows:

Euclidean distance is linear in computational cost having
O(n) time complexity. It is sensitive to noise and outliers.
If time series similarity measurement is required then it
requires extensive data preprocessing.

The T-test does not necessitate a huge dataset and elim-
inates subject to subject variation. Its drawback is that it is
unconcerned about feature dependencies and disregards the
classifier’s interaction.

Information gain is an entropy that aids in the elimination
of redundancy and ensures feature relevance with other fea-
tures.

When compared to other methods, the Correlation Based
Feature (CBF) feature selection method has a lower comput-
ing complexity and is less prone to over-fitting. However, it is
very reliant on the model, which may fail to fit the data.

The Markov blanket filter (NBF) approach can handle
large datasets. It is independent of the classification technique
and computationally simple. Its disadvantage is that it ignores
feature dependencies and does not take into account commu-
nication with the classifier, resulting in poorer classification
especially in comparison to other feature selection methods.

The feature goodness for classification is measured using
the fast correlation based feature (FCBF) selection method.
It removes the feature of a class with a near-zero linear corre-
lation. It eliminates repetition among certain characteristics.
It is slow and less scalable than univariate approaches, and it
ignores classifier interaction.

In x2 feature selection method, over-fitting is reduced, and
learning precision is improved. In terms of time and space
complexity, it is effective. However, it ignores the classifier’s
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individual heuristics and biasing, which could lead to reduced
classification accuracy.

Linear Discriminant Analysis (LDA) and Principal Com-
ponent Analysis (PCA) reduce dimensionality, i.e. the count
of attributes or features for an item to be labelled by the
classifier. Instead of selecting from existing features, PCA
and LDA create new ones that usefully summarize the given
ones.

Feature selection is carried out using meta-heuristic meth-
ods such as the Genetic Algorithm (GA) or Particle Swarm
Optimization. FCBF, t-test, ReliefF, and Fisher score are all
examples of fast correlation based filters used for feature
selection [64], [65].

VI. TYPES OF MACHINE LEARNING TECHNIQUES
A feature may be classified based on a measure of its similar-
ity to each class. A set of classification algorithms has been
studied for sleep EEG signal analysis. This section discusses
different categories of machine learning algorithms available
in the literature.
Artificial Neural Network: It is a frequently used in dif-

ferent applications in aerospace, military, electronics, signal
processing, and medical field, etc., due to giving non-linear
models with computational efficiency [66].

It was used in an investigation of sleep EEG for automated
k-complex detection [67], [68], for sleep stages and apnea in
children [69], diagnosis of OSA [70], [71] and in a study of
drug effects [72]. Back-propagation trained ANN has been
used for REM, sleep spindles, and waking state in their auto-
matic detection [71]. Identification of arousal [73] and spike
detection in neonates [50] from Polysomnography recordings
was based on ANN. Finally, a system based on ANN for
micro and macro-structure of sleep is presented in [74].
Multilayer Perceptron: This type of neural network com-

prises three categories of layers: input, (multiple) hidden,
and output layers. Any continuous function can be arbitrarily
well approximated, provided the hidden layer is made large
enough [41]. It may be flexible for classification but too
sensitive to over-fitting [75].

They have been used to examine EEG recordings
taken during sleep [76], automatic sleep spindle detection
[77]–[79], automatic REM detection [80], OSA diagno-
sis [81], and automatic sleep staging [82], [83].
Self-Organizing Maps: This allows visualization of multi-

dimensional data [41] and clusters data into several classes.
It is suited for applications with a small amount of input data
and no output available [41]. In the cooperative learning the
neurons not only adjust themselves to the data but also to the
neighbouring neurons as well.

The SMO have been applied in automatic sleep stage
detection [84], [85], and in the classification of patterns of
k-complexes during sleep [86].
Linear Discriminant Analysis: Fisher linear discriminant

analysis is another name for this method. The basic idea is
to search for a linear combination of variables (predictors)
which distinguishes the data into various classes separated by

hyperplanes. This requires that the classes should be linearly
separable, and the method is numerically robust, but cannot
handle strongly nonlinear class boundaries [87].

It has been used for artefact detection in sleep EEG [88]
and for the classification of newborn baby’s brain state
and burst suppression pattern [55]. Further, it has been
used for automatic sleep state recognition between preterm
and full-term infants [89]. It was applied to low and
high voltage pattern discrimination of infants in sleep
stages [90].
Support Vector Machine: This technique is useful both for

classification as well as for regression problems. It is based
on the design of an optimal hyperplane which classifies all
training vectors into two classes and this optimal hyperplane
leaves the maximum margins to the two classes [41]. It can
be used to classify data in both linear and non-liner clas-
sifications. It is a useful tool for non-linear classification
since it uses a kernel function to map the feature space for
classification [41].

It’s commonly utilized in sleep EEG analysis including
automatic spindle recognition [78], arousal detection [73],
[91], [92], sleep staging [93], [94], and automatic REMdetec-
tion [95]. It has been applied in recognition of behavioural
sleep states in infants [62].
Hidden Markov Model: At each time step, a system’s

alternative states and transition probabilities between them
are given [66]. This works well because of simplicity and
the parameters can be estimated for various real world appli-
cations. It has been employed in automatic sleep staging
schemes [96], [97].

Based on probabilistic principles, it’s been used to create
sleep staging algorithms in place of the R & K rules [96],
[97]. However, this method has been proposed for sleep EEG
including automatic sleep stage classification in infants and
adults [98], k-complex detection [99], demonstrated for sleep
EEG dynamic activity [100], and for automatic sleep stages
and for sleep apnea diagnosis [101].
Naïve Bayes: The probabilities of each class are predicted

first using this probabilistic classifier and then call is made
of that class which has the highest probability, based on a
set of observations. It allows you to calculate the posterior
probability p (c|x) of a class using the prior probability,
predictor (p (c). p (x)) and likelihood (p (x|c)). NB performs
well in classification speed and accuracy for large training
datasets [102].

NB classifier has not commonly been used but has been
employed in sleep EEG analysis including sleep stage dis-
crimination [76] and for neonatal state discrimination [62].
K-nearest Neighbors: It’s a nonlinear lazy learning tech-

nique that can be used to solve regression and classification
problems. It makes predictions based on known labels of the
K closest neighbours [102], [103] according to some distance
function, often the Euclidean distance.

KNN has been recommended for the analysis of EEG sig-
nals [104]. It has been used to detect sleep apnea occurrences
using ECG signals during the night [105], [106]. It performed
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FIGURE 6. Most used ML techniques for Automatic Sleep Scoring.

well with low computation complexity in automatic sleep
stage classification [107].
Fuzzy Classification: It can work with other classification

systems, such as neuro-fuzzy classifiers and fuzzy decision
trees, to improve performance [41].

Fuzzy reasoning-based classifier (FRBC) is a reliable tool
for automatic sleep EEG staging [85]. Fuzzy ganglionic lat-
tices have been applied to classify the sleep/wake states in
newborns. Fuzzy based methods have been applied for the
detection of alpha activity [108] and automatic cyclic alter-
nating pattern detection [109] in sleep EEG analysis. The
classification of sleep stages in newborns has been done using
neuro-fuzzy classifiers (NFC) [110], [111] and used to detect
the k complex in EEG signals from sleep [112].

A list of feature extraction techniques in each category
was extracted from the finalized set of the studies, and the
extracted information was synthesized, see Table 6.

A. ADVANTAGES OF MACHINE LEARNING TECHNIQUES
ML approaches have a number of general advantages, includ-
ing the ability to tackle (although imperfectly) NP complete
problems like bio-signal analysis. The following discussion
organizes the advantages of machine learning, with a focus
on capacity to handle high-dimensionalmulti-variate data and
extract implicit associations. The classification and analysis
of sleep bio-signal data is complicated by the nature and
necessitates multidisciplinary expertise.

ML approach reduces cycle time, and improves execu-
tion time and resource utilization in sleep stage classifica-
tion. Moreover, it provides powerful tools for performance
improvement in diagnosis of sleep related problems, such as
sleep apnea or spindle detection.

The ability to handle high-dimensional issues is one of
the benefits of machine learning. As sleep EEG data avail-
ability is increasing, it is becoming more important to uti-
lize ML techniques, but it’s also true that the majority of
the advantages and disadvantages of individual algorithms
aren’t generalizable. Support Vector Machines and Artificial
Neural Networks are two approaches that excel in dealing
with large dimensionality [117], [127]. As stated before, most
ML techniques are applicable to sleep bio-signal analysis, and
the ability to handle high-dimensional data is considered an
advantage.

Another benefit of machine learning approaches is the
accessibility and usefulness of open source algorithm pack-
ages like WEKA.

In data mining, machine learning techniques are used to
identify unknown knowledge and relationships in data sets.
The requirements for training data vary depending on the
properties of ML algorithms. ML algorithms have been suc-
cessfully demonstrated in applications to sleep data analy-
sis [107], [117], [119], [120], [124], [125].

While sleep bio-signals are complicated and dynamic,
machine learning algorithms can learn from them and adapt
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TABLE 6. Synthesis of Machine Learning Techniques with Data Extraction
Framework.

TABLE 6. (Continued.) Synthesis of Machine Learning Techniques with
Data Extraction Framework.

to changing environments (depending on the ML method-
ology) very quickly, and in almost all situations faster than
traditional approaches [117], [119], [120].

Machine learning approaches assist in the discovery of
patterns in existing data sets, which can be used to develop
approximations. Clinical decision-making could be aided by
the knowledge acquired. As a result, some machine learning
algorithms aim to find patterns, regularities, or abnormalities.

Generally, ML performance varies in prediction speed,
memory usage, and interpretability. It is not suggested to base
the selection of the ML technique on previously reported
comparisons. Each algorithm’s performance is determined
by the type of problem and data provided, as well as
pre-processing and parameter choices.

B. MACHINE LEARNING TECHNIQUES’ CHALLENGES
In sleep data analysis, a typical challenge is the acquisition
and availability of relevant data. There are also issues with
the quality and the composition of data that affect the per-
formance of an ML algorithm. An example of the chal-
lenges is the high dimensionality of data, as it can contain
irrelevant and redundant variables. Several factors impact the
result, including the algorithm and its parameter settings.
Obtaining any data is a general challenge. Though machine
learning allows for the extraction of information and pro-
duces better outcomes than most traditional approaches with
fewer requirements for training data, certain characteristics
of data must still be considered. Overall, this emphasizes
the increased requirement to comprehend data in order to
use a machine learning algorithm. In contrast to traditional
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approaches, which spend a lot of time extracting information,
ML spends a lot of effort preparing the data.

Following the collecting of data, the next step is to prepro-
cess it according to the algorithm’s specifications. The results
are heavily influenced by data preprocessing. Standardized
tools are frequently used to normalize and filter data. It is
also tested to see if the data is balanced, as this can provide a
problem when training some algorithms. Missing values is a
common problem in industrial or medical databases and the
use of different types of sensors may cause varying quality
of data, even within one dataset. These issues may bias the
classification results, and in a clinical application a patient’s
problem may be misdiagnosed.

A key decision to make is the choice of ML algorithm.
Generally, some strengths and weaknesses of ML algorithms
are well-known. Due to the increasing use by practitioners
and academics, a huge variety of diverse ML algorithms and
their modifications are available in medical areas. Literature
available can show effective applications of machine learning
techniques for specific issues. On the other hand, in most
situations, the test dataset is not publicly available, making
an unbiased evaluation of the results impossible. The steps in
selecting a suitableML algorithm for a certain problem (type)
are as follows:

1) Screening the available data, i.e., labelled, unlabelled,
etc. Make a choice between supervised, and unsuper-
vised approaches.

2) The structure, data categories, and overall volume of
available data must all be considered when evaluating
the general applicability of existing algorithms.

3) Previous applications ofML algorithms to solve similar
problems should be explored.

The analysis of the findings poses another challenge.
Attention has to be given to ensure that the output format and
its interpretation are relevant. Points to be considered: algo-
rithm specification, parameter settings, planned outcome, and
also data preprocessing. Over-fitting, bias, and variance are
typical issues that need attention. In order to address the over-
fitting, following techniques can be used in the context of
sleep data. Regularization techniques include early stopping,
batch normalization, weight decay, dropout, particle swarm
optimization, max-norm regularization, data augmentation
and cross validation [135]–[137].

VII. THEORETICAL APPLICABILITY OF MACHINE
LEARNING TECHNIQUES TO AUTOMATE SLEEP SCORING
CHALLENGES
Before looking into the applicability of machine learn-
ing (ML) for sleep stage classification, a quick review of the
terminologies is in order. ML is known for its potential to
handle problems of an NP-complete nature.

See Table 7 for a summary of sleep research over the
previous decade. As sleep disorders becomemore common in
today’s culture, developments in machine learning and data
analysis techniques provide academics new opportunity to

TABLE 7. Exploration of Machine Learning and Feature Extraction
Techniques over the years: single or multiple EEG channels along with
choice of classifier.

investigate the problem and build automatic sleep scoring
systems. As previously stated, the EEG is utilized to record
human brain activity, and even a single signal channel can
yield good findings. Electrical monitoring systems have been
used in a few investigations to target numerous channels.

Focus on a single channel simplifies the problem, at the
risk of potentially poor performance. K-Nearest Neighbours
(KNN), Support Vector Machine (SVM), Naive Bayes (NB),
and Artificial Neural Network (ANN), have all been used in
reported studies of sleep disorders, together with Time and/or
Frequency-domain characteristics.

ANNs are frequently used because they allow non-linear
activation functions combined with computational efficiency.
For both linear and non-linear classification tasks, SVMs can
be useful. Non-linear classification with an SVM is based
on a kernel function that maps the feature space non-linearly
for classification, but does it implicitly via manipulating the
inner product. The KNNmethod is a non-linear lazy learning
method that can be used to solve classification and regression
problems. When it comes to classification speed and accu-
racy, NB does better with large training datasets. Figure 6
shows a summary of the state-of-the-art machine learning
algorithms employed.

Machine Learning (ML) approaches have been used in
a number of studies on automatic sleep rating. The reason
for this is possibly the rise in number of people suffer-
ing sleep disorders world-wide. Another conclusion is that
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due to developments in ML approaches in other biomedical
domains, researchers and/or health practitioners are working
on automatic sleep scoring systems.

Deep neural networks were used in a small number of
studies that did not use feature engineering approaches. The
reported levels of accuracy range around 84 to 88 percent,
although feature engineering methods have yielded more
accurate results at the cost of more human labor in the imple-
mentation of classification.

There is no discernible trend in the techniques’ perfor-
mance. The technique used, the size of the data collection,
the target (i.e., the number of sleep stages to detect), and the
feature extraction techniques used all influence the accuracy
of the results. The performance of machine learning systems
for automatic sleep scoring is unclear, which supports this
observation. The absence of evident advances in classifier
performance could be due to the fact that this discipline is
very young, and when more trials are published in scientific
journals, such trends may develop.

Given the challenge of high dimensional data, and possible
changes in measurements and thereby in sets of features,
ML has a distinct advantage because of its adaptability to
changes. The designer of automatic sleep scoring does not
need to provide solutions for all possible situations, instead
the developed tools can adapt by re-training to new types of
data. Adaptability to and learning from a changing environ-
ment are major strengths of ML.

Data are analyzed using machine learning algorithms to
extract patterns and information. We seek to crystallize the
information in accumulated data by learning from it a clas-
sifier of sleep stages. A more thorough examination of the
existing machine learning approaches, as well as their advan-
tages and disadvantages, is required, and the ML perspective
on automatic sleep scoring has to be further elaborated and
pursued.

VIII. DEEP LEARNING TECHNIQUES
A. HAND ENGINEERED FEATURES
Hand engineering features for sleep stage classification affect
(1) signal preprocessing and dataset preparation, (2) extrac-
tion of features, (3) classification, and (4) performance evalu-
ation [153]. Filtering and normalizing of signals are included
in the preprocessing phase. Signal features can be extracted
using time, frequency, or time-frequency domain features.
The classifiers in the third phase represent typical machine
learning techniques. Finally, the last phase is performance
evaluation.

B. WITHOUT HAND ENGINEERED FEATURES
Deep learning processes data hierarchically in multiple lay-
ers, extracting highly non-linear and complex features. Com-
puter vision and natural language processing applications
are the key drivers in this domain. In sleep data anal-
ysis, it involves preprocessing and labelling the dataset
for 30-second epochs. The network’s ability to extract a

near-optimal collection of features without human bias is
advantageous. Deep Belief Nets (DBNs) and Convolutional
Neural Networks (DeepSleepNet) are examples of deep
learning [119], [122]. Although the methods can be used on
raw data, their blackbox nature is disadvantageous [154].

C. STRUCTURING OF DEEP LEARNING TECHNIQUES
1) AUTOENCODER
These expand linear dimension reduction (commonly done
with principal component analysis) to nonlinear dimension
reduction, using a neural network with a bottleneck layer that
encodes, while this encoding is expanded to (approximately)
the input as the target output.

Does not require labelled data for training and has many
variants, e.g., k-sparse, de-noising, contractive, and separable
deep auto-encoder. The vanishing gradient problem affects
the trained model as well.

2) RESTRICTED BOLTZMANN MACHINE
It’s a bidirectionally trained stochastic neural network. Con-
trasting divergence is used to speed up the sampling proce-
dure. Because it is trained without supervision, there is no
guarantee that the features extracted from Restricted Boltz-
mann Machine hidden layer will be helpful for supervised
work in the future.

3) DEEP BELIEF NET
It combines Restricted Boltzmann Machine and sigmoid
belief networks to provide a deep hierarchical representa-
tion of the training data. Pre-training and discriminative
fine-tuning are the two stages in the training process. The
advantages include: high-dimensional raw data is trans-
formed into a homogeneous representation. It is good in
learning features, processing unlabeled data, and avoiding
problems with over-fitting, but run-time complexity is high.

4) RECURRENT NEURAL NETWORK
These are used for time sequence data, with the output
depending on previous computations, and the same weights
are shared by sets of nodes. It maintains data in the form
of activations and is utilized in natural language processing.
It has problems with gradient vanishing and exploding, and it
can’t be layered for really deep models.

5) CONVOLUTIONAL NEURAL NETWORK
In at least one of its layers, it is a Neural Network that uses
convolution operations instead of basic matrix multiplication.
It can handle sparsity in data and share the parameters in
different functions. A limitation is that a large amount of
training data is required.

6) GENERATIVE ADVERSARIAL NETWORK
It’s made up of two models: a generative G model and a dis-
tribution D model. This can be used in any domain, including
music, images, and speech. It is not required to have Mote
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Carlo approximation in training of generative adversarial
network and it is faster than completely transparent belief nets
at generating samples. It is unable to generate discrete data,
such as text.

D. CHALLENGES OF DEEP LEARNING TECHNIQUES
Data Volume: The polysomnography signals are more com-
plex than many other data types, because each patient record-
ing spans overnight (8 hours). The training time also increases
with this huge amount of data, or big data.

Data Quality: Heterogeneity, noise, improper recording
devices, fluctuations in voltage, faults in instruments, blinks
of the eye, movements of the eyes, muscular movement, and
missing values due to other reasons, pose challenges to DL.
The DL model needs to tolerate sparsity, missing values, and
data redundancy.

Temporality: The static vector based models cannot deal
with dynamic changes happening as time passes.

Domain Complexity: Sickness of heterogeneous type,
unavailability of information about majority of ailments, and
limited number of patients add complexity to the domain.

Interpretability: In biomedicine, quantitative algorithms
as well as significance estimates are also important. Model
interpretability is vital for gaining expert confidence to ML
based calls.

IX. BIG DATA IN SLEEP SCIENCE AND MEDICINE
‘‘Big data’’ as a modern term refers to a situation with a large
amount of data that is complex and heterogeneous so that
conventional techniques are unable to analyze it. It demands
large computational resources for processing and analysis,
therefore, the term ’’Big Data Analytics’’ has been coined.
Typically one wants to extract significant patterns, trends,
interactions, and associations. Three V’s are used to charac-
terize many big data situations: Velocity (Data Acquisition
speed), Volume (Amount of Data), and Variety (Number of
sources to create big data sets) [155], [156].

A wealth of physiological information is available in
polysomnography, which is helpful in clinical research and
decision making. The databases available to public include
those at NSRR (National Sleep Research Resource), NHLBI
(a new National Heart, Lung, and Blood Institute), PhysioNet
(accessible at www.physionet.com), and the MASS (Mon-
treal Archive of Sleep Studies). Clinical databases support
big data research goals and can support heterogeneity (a
heterogeneous dataset possibly suitable for clustering and
other exploratory methods) and diversity.

However: ’’Academic centres may have different referral
biases, for example, being enriched for complicated cases.
Although most clinical laboratories have standardized physi-
ological recording protocols, the collection of self-reported
clinical information may not be standardized. Variation
across recording and scoring technologists may contribute
heterogeneity despite quality efforts required in accredited
laboratories. Centralized scoring common to large clinical
trials may not be practical for clinical databases’’ [155].

X. INTERRATER VARIABILITY OF MANUAL AND
AUTOMATED SLEEP SCORING
In sleep stage scoring, interrater variability is well-known and
requires clarification. The degree of (dis)agreement between
experienced sleep scoring experts is called interrater reliabil-
ity [157]. This variability exists due to different rules used
to score events and their interpretation. The variability exist
because it is difficult to determine whether in transitional
epochs, the wake stage lasts longer than 15 seconds, spindles
of sleep are present, and delta waves last longer than 6 sec-
onds in a 30-second epoch.

It is critical to assess the reliability of human-assisted
manual sleep scoring. Credibility necessitates a high level of
trustworthiness. TheAASM Inter-scorer Reliability Program,
which began in April 2010, was created for this aim. The
evaluation of inter-scorer dependability can be done based on
a very large number of scorers due to the experience gathered
through this program. The sleep stage R has a high level of
reliability, with 90.5 percent agreement, while the sleep stage
N1 has the lowest level of agreement, just 63.0 percent [158].

Manual or visual scoring in sleep medicine involves rules,
such as those given by R&K (Rechtschaffen and Kales)
almost half a century ago [159]. Manual scoring by an expert
is expensive and time consuming by its nature [160], and has
many limitations: (I) Sleep depth is thought to progress in
stages from light to moderate to profound. (II) In stages 1 to
3 of non-REM sleep, there is a lot of inter-scorer variability on
this small scale. (III) Variability among EEG features: sleep
spindles and K complexes, arousal intensity, alpha intrusion
amount and frequency.

Digital analysis may reduce the variability in labelling
stages, and solve the above mentioned problems, but it is
challenging to develop that system. It is argued that such sys-
tems have implemented the R&K rules efficiently but do not
explore the micro structure of sleep that contains clinically
important information. In the past decades, for automated
sleep scoring, numerous systems have been developed, with
some of them clinically proven. However, their use in clinical
practice faces resistance. The main criticism leveled against
these systems is that they are unreliable and require human
assistance. Therefore, the apparent advantages in economy,
speed and consistency are lost partly due to the lack of human
trust [161].

The study [162] presents arguments favoring an automated
system. The evidence for benefits: the digital system can
reproduce the R&K staging, andmore information is obtained
than from manual scoring; further, the automated system
demonstrated yields similar calls as those by experienced
technologists. It is concluded that laboratory efficiency may
increase if manual editing is supplemented.

It seems appealing to develop a home based sleep moni-
toring system or device, but lack of adequate monitoring of
EEG and quantification of sleep time objectively are major
obstacles. Manual scoring of a home sleep testing system
would add considerable costs. Further, the manual scoring
has both inter-scorer and intra-scorer variability. Therefore,
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its reliability and reproducibility are questionable. Numerous
attempts have beenmade for automation but the available sys-
tems have moderate accuracy and are perceived as expensive.

To address the above considerations, some studies have
assessed interrater variability and reliability. Further, there is
no acceptable tolerance limit for accuracy of an automated
sleep scoring system. The various sleep research centres
would need to collaborate to measure the variability among
their systems. However, while the clinical acceptance of auto-
mated systems is low, they are superior to manual systems
because they require less labour, and several attempts have
been made to reduce the criticism. As far as the home based
clinical systems are concerned, the above arguments show
that a lot of research would be required to develop a handy
portable device for novice users.

It is obvious from the databases investigated that studies
on automatic sleep scoring have intensified in the preceding
decade. We believe this is due to the availability of published
sleep data in the modern IT systems. Another aspect is
the high expense of manual sleep stage analysis by sleep
technologists or experts, which has fueled the demand for
automated sleep scoring. Brainstorming, feature selection or
creation, appropriateness evaluation, feature improvement,
and repeating as needed are all common feature engineering
processes. A further factor contributing to this trend is the
overall drive toward automation, particularly in measure-
ment, in order to eliminate operator-dependent outcomes.

XI. CONCLUSION
The current study’s major purpose was to assess state-of-
the-art in sleep scoring standards, bio-electric signal feature
extraction methodologies, and sleep data classification using
machine learning approaches. The study’s second goal was to
figure out how the components above are combined to create
an autonomous sleep rating system. The project aims to learn
more about the human sleep problem while also providing a
foundation for young researchers.

Two sleep scoring standards have been identified in this
study: (i) R&K, and (ii) AASM. The second finding is that
the features fall into four categories: (i) time domain, (ii)
frequency domain, (iii) time-frequency domain, and (iv) non-
linear domain. Finally, sleep data are frequently collected
using both single and multiple channel signals. Additionally,
sleep data are classified using a set of machine learning
approaches.

It is obvious from the databases examined that automatic
sleep scoring studies have been strongly pursued over the
past decade. A small number of feature extraction approaches
were used. Automated techniques often dominate manual
feature engineering. The study’s main finding is that machine
learning techniques have been deployed without fully uti-
lizing their adjustable parameters. Furthermore, based on
prediction speed, memory utilization, and call interpretability
or traceability, or which categorization algorithms would be
the most effective for sleep data analysis, have yet to be

determined. Furthermore, it was discovered that classifier
performance is affected not only by the size of the data set,
but also by the feature extraction choices.

These findings suggest that the AASM standard should be
used and that the collection of datasets should be expanded.
Other sorts of signals outside EEG can also be investigated,
according to the review. Multiple aspects must be considered
since each one contributes to understanding sleep in the diag-
nostic context.

Automatic feature engineering techniques and parameter
choices for machine learning algorithms, in the context of
sleep scoring, are two areas that need to be researched more
in the future. Parameter adjustment will not only allow for
a fair comparison of machine learning options, but it may
also enhance accuracy to a level comparable to sleep expert
calls. As a result, this study indicates that using an alternate
sleep scoring standard, as well as numerous feature extraction
with selection approaches, machine learning algorithms with
parameter tweaking, and big data analytics, physicians can
produce a practically useful automatic sleep scoring system.
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