
 

Instructions for use

Title A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010

Author(s)
Reiner, R. C.; Perkins, T. A.; Barker, C. M.; Niu, T.; Chaves, Luis Fernando; Ellis, A. M.; George, D. B.; Le Menach,
A.; Pulliam, J. R. C.; Bisanzio, D.; Buckee, C.; Chiyaka, C.; Cummings, D. A. T.; Garcia, A. J.; Gatton, M. L.; Gething,
P. W.; Hartley, D. M.; Johnston, G.; Klein, E. Y.; Michael, E.; Lindsay, S. W.; Lloyd, A. L.; Pigott, D. M.; Reisen, W.
K.; Ruktanonchai, N.; Singh, B. K.; Tatem, A. J.; Kitron, U.; Hay, S. I.; Scott, T. W.; Smith, D. L.

Citation Journal of The Royal Society Interface, 10(81), 20120921
https://doi.org/10.1098/rsif.2012.0921

Issue Date 2013-02-13

Doc URL http://hdl.handle.net/2115/53932

Rights © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License

Rights(URL) http://creativecommons.org/licenses/by/3.0/

Type article

File Information JRSocInterface 2013_20120921.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


rsif.royalsocietypublishing.org

Review
Cite this article: Reiner Jr RC, Perkins TA,

Barker CM, Niu T, Fernando Chaves L, Ellis AM,

George DB, Le Menach A, Pulliam JRC, Bisanzio

D, Buckee C, Chiyaka C, Cummings DAT, Garcia

AJ, Gatton ML, Gething PW, Hartley DM,

Johnston G, Klein EY, Michael E, Lindsay SW,

Lloyd AL, Pigott DM, Reisen WK, Ruktanonchai

N, Singh BK, Tatem AJ, Kitron U, Hay SI, Scott

TW, Smith DL. 2013 A systematic review of

mathematical models of mosquito-borne

pathogen transmission: 1970 – 2010. J R Soc

Interface 10: 20120921.

http://dx.doi.org/10.1098/rsif.2012.0921

Received: 9 November 2012

Accepted: 22 January 2013

Subject Areas:
computational biology, biomathematics

Keywords:
infectious disease dynamics, vector-borne

disease, epidemiology, dengue, West Nile,

filariasis

Authors for correspondence:
Robert C. Reiner Jr

e-mail: rcreiner@ucdavis.edu

T. Alex Perkins

e-mail: taperkins@ucdavis.edu

†These authors contributed equally to this study.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2012.0921 or

via http://rsif.royalsocietypublishing.org.

A systematic review of mathematical
models of mosquito-borne pathogen
transmission: 1970 – 2010

Robert C. Reiner Jr1,2,†, T. Alex Perkins1,2,†, Christopher M. Barker1,3,4,
Tianchan Niu1,5, Luis Fernando Chaves7,8,9, Alicia M. Ellis1,10, Dylan B. George1,11,
Arnaud Le Menach12, Juliet R. C. Pulliam1,13,14, Donal Bisanzio16,
Caroline Buckee17, Christinah Chiyaka13, Derek A. T. Cummings1,18, Andres
J. Garcia13,15, Michelle L. Gatton1,20, Peter W. Gething21, David M. Hartley1,5,6,
Geoffrey Johnston18,19,22,23, Eili Y. Klein11,24,25, Edwin Michael26,27,
Steven W. Lindsay1,28,29, Alun L. Lloyd1,30, David M. Pigott21, William K. Reisen1,3,
Nick Ruktanonchai13,14, Brajendra K. Singh26, Andrew J. Tatem1,31, Uriel Kitron1,16,
Simon I. Hay1,21, Thomas W. Scott1,2 and David L. Smith1,12,18,19

1Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
2Department of Entomology, 3Center for Vectorborne Diseases, School of Veterinary Medicine, and
4Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine,
University of California, Davis, CA, USA
5Division of Integrated Biodefense, and 6Department of Microbiology and Immunology,
Georgetown University Medical Center, Washington DC, USA
7Graduate School of Environmental Sciences and Global Center of Excellence Program on Integrated Field
Environmental Science, Hokkaido University, Sapporo, Japan
8Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria,
Universidad Nacional, Heredia, Costa Rica
9Institute of Tropical Medicine (NEKKEN) and Global Center of Excellence Program on
Tropical and Emergent Infectious Diseases, Nagasaki University, Nagasaki, Japan
10The Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
11Department of Defense, Fort Detrick, MD, USA
12Center for Disease Dynamics, Economics and Policy, Washington, DC, USA
13Emerging Pathogens Institute, 14Department of Biology, and 15Department of Geography,
University of Florida, Gainesville, FL, USA
16Department of Environmental Studies, Emory University, Atlanta, GA, USA
17Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of
Public Health, Boston, MA, USA
18Department of Epidemiology, and 19Malaria Research Institute, Johns Hopkins Bloomberg School of
Public Health, Baltimore, MD, USA
20Malaria Drug Resistance and Chemotherapy Laboratory, Queensland Institute of Medical Research,
Herston, Queensland, Australia
21Spatial Ecology and Epidemiology Group, Department of Zoology, Oxford University, Oxford, UK
22School of International and Public Affairs, Columbia University, New York, NY, USA
23Department of Microbiology and Immunology, Columbia University College of Physicians and
Surgeons, New York, NY, USA
24Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
25Center for Advanced Modeling, Department of Emergency Medicine, Johns Hopkins University,
Baltimore, MD, USA
26Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame,
Notre Dame, IN, USA
27Department of Infectious Disease Epidemiology, Imperial College, London, UK
28Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
29School of Biological and Biomedical Sciences, Durham University, Durham, UK
30Department of Mathematics and Biomathematics Graduate Program, North Carolina State University,
Raleigh, NC, USA
31Department of Geography and Environment, University of Southampton, Highfield, Southampton, UK

& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2012.0921&domain=pdf&date_stamp=2013-02-13
mailto:rcreiner@ucdavis.edu
mailto:rcreiner@ucdavis.edu
mailto:taperkins@ucdavis.edu
http://dx.doi.org/10.1098/rsif.2012.0921
http://dx.doi.org/10.1098/rsif.2012.0921
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org


Mathematical models of mosquito-borne pathogen trans-

mission originated in the early twentieth century to

provide insights into how to most effectively combat

malaria. The foundations of the Ross–Macdonald theory

were established by 1970. Since then, there has been a

growing interest in reducing the public health burden of

mosquito-borne pathogens and an expanding use of

models to guide their control. To assess how theory has

changed to confront evolving public health challenges,

we compiled a bibliography of 325 publications from

1970 through 2010 that included at least one mathematical

model of mosquito-borne pathogen transmission and then

used a 79-part questionnaire to classify each of 388 associ-

ated models according to its biological assumptions. As a

composite measure to interpret the multidimensional

results of our survey, we assigned a numerical value

to each model that measured its similarity to 15 core

assumptions of the Ross–Macdonald model. Although

the analysis illustrated a growing acknowledgement of

geographical, ecological and epidemiological complexities

in modelling transmission, most models during the past

40 years closely resemble the Ross–Macdonald model.

Modern theory would benefit from an expansion around

the concepts of heterogeneous mosquito biting, poorly

mixed mosquito-host encounters, spatial heterogeneity

and temporal variation in the transmission process.

1. Introduction
More than a century has passed since Ross first described

malaria transmission mathematically [1,2] and more than 50

years since Macdonald updated and extended Ross’s theory

and applied it to the Global Malaria Eradication Programme

(GMEP, 1955–1969) [3–6]. The origin of the Ross–Macdonald

theory was a pair of malaria models that Ross published in

1908 and 1911 [1,2]. After the Second World War, Macdonald

picked up where Ross left off and focused on developing a

highly applied theory to complement the global public health

rollout of DDT, the creation of the World Health Organization

and burgeoning enthusiasm for malaria eradication. The state

of mathematical theory was solidified in the 1950s by Macdo-

nald [5,7] and in the 1960s by Garrett-Jones [8,9]. The

Macdonald era effectively came to a close with Macdonald’s

death in 1967, posthumous publication of his last paper in

1968 [10], and the end of the GMEP in 1969. By that point,

Ross’s vision had been fulfilled by the development of a fully

quantitative theory, consisting of a set of linked concepts, nota-

tion and metrics for understanding and measuring mosquito-

borne pathogen transmission and control. A detailed account

of the development of the theory up to this point in history

was recently published [11].

Since the conclusion of the GMEP, the theory of mosquito-

borne pathogen transmission has expanded around popular

themes from that era. Along the way, it has also been shaped

by contemporary public health challenges. These include a

renewed interest in malaria eradication [12], an expanding

global dengue epidemic [13,14], the enormous global health

burden of filariasis [15–18], outbreaks of chikungunya virus

around the Indian Ocean [19], epidemics of Rift Valley Fever

and concerns about its potential range expansion [20] and the

epidemic invasion of West Nile virus into the New World

[14,21]. These diverse challenges have resulted in models

developed by many authors working on many different patho-

gens, with different constraints on measuring transmission,

different mosquitoes, different immune responses and with

different tools and public health concerns.

Advancing the theory of mosquito-borne pathogen

transmission into the future first requires an assessment of devel-

opments that have been made since the time of Macdonald. To

answer the challenge of describing and summarizing recent

advances, we developed a bibliography of mechanistic models

of mosquito-borne pathogen transmission and a system for clas-

sifying the full range of biological assumptions that these models

have made. In taking such a quantitative and analytical

approach, we were able to identify patterns in the literature not

readily assessed in a standard review article. The fruits of this

effort are summaries of the literature at several levels of detail:

(i) a database that contains the results of classifying 388

models; (ii) a set of 85 tables and figures that summarize the

results of this classification by pathogen and over time; and

(iii) a numerical score for each model between 0 and 15, called

the RM index, that describes in how many ways each model

has relaxed core assumptions of the Ross–Macdonald model.

Because complexity is not an unconditionally beneficial property

of a model, this index should not be interpreted as a measure of

quality but as an indication of dissimilarity from the Ross–Mac-

donald model. On the whole, though, the collection of these

scores and their components across all models allows for identi-

fication of areas of research interest within the field since 1970.

This inventory of models then culminates with a discussion of

how the field has marshalled around a few major themes yet

has neglected several topics that have been broached but that

have received insufficient attention.

2. Methods
Our intent in this study was to identify and review as many pub-

lications as possible that had the following properties: (i) it was

about a mosquito-borne pathogen, (ii) it included some sort of

equation, and (iii) the underlying model was mechanistic in its

approach to the study of transmission. We consider mechanistic

models to be those in which the equations, formulae or computer

simulations are based on assumptions about the processes or prox-

imate causal mechanisms under consideration. These stand in

contrast to purely descriptive or statistical models that seek to fit

data without consideration of underlying biological mechanisms.

2.1. Bibliographic compilation
To identify a set of publications that embodied these properties,

seven authors (C.M.B., T.N., L.F.C., A.M.E., D.B.G., A.L.M.,

J.R.C.P.) first conducted a literature search of the Science Citation

Index Expanded covering the years 1900–2009. Publications

returned by this literature search consisted of any article or pro-

ceedings paper with both of the following in its title, keyword list

or abstract: (i) the name of any of several common mosquito-

borne pathogens or pathogen-bearing mosquito species and

(ii) at least one of a list of words related to mathematical, simu-

lation or statistical modelling. This search identified a total of

2026 publications, of which 182 were subsequently determined

to have used mechanistic models.

Although we were willing to accept the inevitability that our

bibliography might never be truly complete, the fact that our

initial search resulted in a bibliography of only 182 publications

was a concern. We therefore expanded on this initial bibli-

ography by several ad hoc methods, including examination of
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our own personal bibliographies, perusal of the literature cited

by the initial 182 publications, Internet database searches using

those authors’ last names to find other publications and personal

contact with some of those authors. After expanding the bibli-

ography by these methods and making the decision to review

models published before 1970 separately [11], the bibliography

included 523 publications. To finalize the bibliography, six

authors (R.C.R., T.A.P., C.M.B., T.N., T.W.S., D.L.S.) read the

remaining publications and excluded from further review any

publications that clearly did not fit the criteria described earlier

as well as other papers that were not about transmission. Some

of the publications excluded on this premise focused instead on

infection within a single host, mosquito population dynamics

or mosquito population genetics, whereas others were purely

descriptive models that lacked a mechanistic underpinning.

This resulted in a final bibliography of 325 publications, which

is available in the electronic supplementary material, S1.

The collection of models that we then analysed, however,

was somewhat larger than this collection of publications because

there is not a one-to-one correspondence between models and

publications. In some cases, two or more models were presented,

for the first time, within a single publication. In other cases, mul-

tiple publications presented the same analysis on the same

models. Consequently, our final collection of models was the

result of lumping and splitting the content of publications such

that each model–analysis pair was included only once. If the

same model was analysed in two different ways in two different

publications, then these publications were analysed separately.

Multiple models from a single publication were more often

split than a single model from multiple publications was

lumped, resulting in a final collection of 388 models (see the

electronic supplementary material, table S1).

2.2. Model classification
To evaluate each model in a standardized way, 26 reviewers

(R.C.R., T.A.P., C.M.B., T.N., L.F.C., A.L.M., J.R.C.P., D.B., C.B.,

C.C., D.A.T.C., A.J.G., M.L.G., P.W.G., D.M.H., G.J., E.Y.K.,

E.M., S.W.L., A.L.L., D.M.P., W.K.R., N.R., B.K.S., A.J.T., D.L.S.)

used a 79-part questionnaire (see the electronic supplementary

material, S2) to evaluate the richness of biological details

incorporated by models. To compensate for differences between

reviewers, each model was scored twice by two different

reviewers. For some models, the two resulting scores for the

same model were considerably different from each other. In

these cases, two reviewers (R.C.R. and T.A.P.) went through

those scores individually and either deemed one of the scores

preferable, or, if neither was adequate, then the model was

scored a third time. Each scoring thus constitutes a consensus

view from multiple evaluations of a model by multiple people.

The questionnaire and the final database resulting from this pro-

cess are available in the electronic supplementary material, S2

and S3, respectively.

In designing the questionnaire, our goal was to encompass

the full spectrum of biological details that have been included

in mechanistic models of mosquito-borne pathogen transmission

in the past 40 years (table 1). Three major sections of the ques-

tionnaire focus on the three essential components common to

all of these models: a host, a mosquito and encounters between

them. The host section comprised five questions about popu-

lation dynamics and nine questions about infection dynamics.

The mosquito section was divided into four questions about

aquatic ecology, six questions about adult ecology, and seven

questions about infection dynamics. The section about encoun-

ters between hosts and mosquitoes consisted of five questions

about topics such as heterogeneous biting (i.e. mosquitoes bite

some hosts more than others) and mixing between hosts and

mosquitoes. The questionnaire also contained sections about

spatial dynamics (three questions), control (two questions) and

approaches to analysing models (one question). A small number

of models made simplifying assumptions about transmission

such that mosquitoes were not included in the model. The struc-

ture of the questionnaire diverted evaluators of these models to

special sections, depending on whether the model was structured

similarly to one for directly transmitted pathogens (two questions)

or whether the model assumed that mosquito dynamics were ‘fast’

Table 1. Overview of the questionnaire used for model classification.

section topic questions

spatial dynamics spatial configuration 33, 34

which species moves 35

aquatic mosquito

ecology

adult emergence 36

larval population

dynamics

37, 38

differences across

space

39

quasi-direct

transmission

how it was

implemented

40, 41

minimal mosquito

assumption

how it was

implemented

42 – 44

adult mosquito

ecology

demography 45, 46

blood feeding 47, 48

differences across

space

49

other 50

mosquito infection

dynamics

host infection states 51, 52

pathogen latency 53, 54

other 55

differences among

types

56, 57

host population

dynamics

host attributes 58

population dynamics 59 – 61

differences across

space

62

host infection

dynamics

host infection states 63 – 65

waning immunity 66

clinical outcomes 67

superinfection 68, 69

differences among

types

70, 71

mixing and biting biting distribution on

hosts

72, 73

assumptions about

mixing

74

transmission

efficiencies

75, 76

control types considered 77

aspects analysed 78

analysis types performed 79
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and effectively equilibrated on the relatively ‘slow’ time-scale of

infection dynamics in vertebrate hosts (three questions). The

logic structure of the questionnaire also meant that not every ques-

tion was answered for every model. Consequently, results about

some sections of the questionnaire were limited to a subset of

models included in the inventory.

2.3. Ross – Macdonald dissimilarity index
Although there is value in the complex and nuanced dataset that

resulted from classifying models according to the questionnaire,

we also wanted to quantitatively assess in a straightforward way

the extent to which models of the past 40 years adhered to or

departed from Ross–Macdonald assumptions. To accomplish

this, we identified a set of 15 core questions from the questionnaire

that embodied consensus features of the Ross–Macdonald model

(table 2). We then evaluated whether each model agreed with the

consensus Ross–Macdonald assumption corresponding to each

of the 15 questions on the questionnaire (table 2). If a model’s

assumptions matched those of the Ross–Macdonald model or

made even simpler assumptions, the model’s Ross–Macdonald

dissimilarity index (or RM index for short) remained unchanged.

If, for a particular question, the model expanded on the Ross–

Macdonald assumption, then the RM index for that model was

augmented by 1. For example, if a model explicitly incorporated

a pathogen latency period in the mosquito (question 53), then its

RM index was augmented by 1 because the Ross–Macdonald

model incorporated this feature only implicitly. This procedure

was repeated for each of the 15 questions in table 2. Thus, values

of the RM index range from 0 (identical to or simpler than Ross–

Macdonald) to 15 (more complicated than Ross–Macdonald in

every way we measured).

Table 2. Questions and responses used to create RM index.

questions Ross – Macdonald assumption refinement (RM 1 1)

question 25. Which one of the following best describes

the way aquatic populations were modelled?

implicitly explicitly

question 28. How many spatial locations were included in

or implied by the model?

one place with no immigration or

emigration

there was more than one location or place;

or the model included terms describing

immigration

question 29. How many mosquito taxa, genotypes or

phenotypes were considered?

one more than one

question 30. How many pathogen taxa, genotypes or

phenotypes were considered?

one more than one

question 31. How many vertebrate taxa, genotypes or

phenotypes were considered?

one more than one

question 46. What assumptions were made about adult

mosquito mortality in the absence of control?

constant per capita mortality any further refinement

question 47. What assumptions were made about

mosquito blood feeding rates in the absence of

control?

blood feeding occurred at a constant

per capita rate

any further refinement

question 48. What assumption was made about the

proportion of blood meals taken on the pathogen’s

host(s)?

feeding on other vertebrate hosts

was included only implicitly or

not at all

any further refinement (excluding one only

based on there being multiple host

species)

question 53. Did the model consider pathogen latency in

mosquitoes?

implicitly explicitly

question 66. Was it possible for immunity to wane? no yes

question 68. Was it possible for a vertebrate host to be

‘superinfected’ or ‘co-infected?’

no yes

question 72. How were blood meals distributed among

vertebrate hosts?

homogenously heterogeneously

question 74. Which one of the following describes

mixing?

well-mixed not well-mixed

question 75. Which of the following parameters or terms

describe transmission from the infectious mosquito to

its vertebrate host?

set to constant differed based on some aspect of system

question 76. Which of the following parameters or terms

describes transmission from the infectious host to the

mosquito?

set to constant differed based on some aspect of system
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Analysis of the RM-index data involved examining the dis-

tribution of RM-index values across all models, across models

of each pathogen, and by which core assumptions contributed

the most to RM-index values. We also examined which core assump-

tions tended to be relaxed together in the same model to determine

which combination of assumptions may be over- or underrepre-

sented in the literature. Finally, we calculated an evenness index of

RM-index contributions from different core assumptions to deter-

mine the extent to which refinements of the Ross–Macdonald

model have been isolated to a limited subset of core assumptions.

The evenness index we used [22] is related to a type of entropy

measure and varies between 0 (only one assumption contributes to

RM index) and 1 (even distribution).

3. Results
Evaluating 388 models according to a 79-part questionnaire

produced a wealth of information. To satisfy the curiosities of

readers who wish to examine this information at various

levels of detail, we present the results in three ways. First, the

greatest amount of detail is contained in the full database that

resulted from evaluation of the questionnaire for each model

(see the electronic supplementary material, S3). Second, a

more accessible but still comprehensive presentation of the

data is available in a collection of 85 tables in the electronic sup-

plementary material, S4. Third, we highlight only the most

striking results below, in the figures, and with the RM-index

analysis. It is important to note that for ease of interpretation,

we often report the number of elaborations on the Ross–

Macdonald model relative to the fraction of models to which

they are pertinent; as such, for many of the proportions

presented, the denominator equals the fraction of pertinent

models, not the total number of models considered. For

example, out of 388 total models, 139 consider control, and

thus results concerning control present the per cent of models

out of those 139 that investigate a particular control strategy.

3.1. Pathogen
Consistent with the long history of malaria as an object of

mathematical modelling and its heavy burden on public

health worldwide, it is not surprising that over half of the

models we reviewed concerned malaria (59%, 230/388; elec-

tronic supplementary material, table S15). Dengue was the

second most frequently modelled pathogen (20%, 77/388; elec-

tronic supplementary material, table S15), and West Nile virus

was third (8%, 31/388; electronic supplementary material,

table S15). Several other pathogens have been modelled less

frequently, including filariasis and viruses associated with

Rift Valley fever, yellow fever, chikungunya, Ross River

fever, Japanese encephalitis, Murray Valley encephalitis and

western equine encephalitis.

With few exceptions, all of the models in our inventory

before the 1990s concerned malaria (figure 1). Models of

other pathogens started appearing somewhat more frequently

in the 1990s (25%, 14/56), and by the 2000s, models of other

pathogens comprised almost half of all models in our inven-

tory from that time period (49%, 133/272). Of particular

note, models of West Nile virus only began appearing after

its spread across North America in 1999, and an increase in

the publication of models of dengue has accompanied the

growth of the worldwide epidemic of dengue in recent years.

On the whole, the publication of models of all mosquito-

borne pathogens has been increasing over the past 40 years

(figure 1), with 53 per cent published between 2005 and 2010

(207/388; figure 1).

3.2. Host
Owing to the short time scales usually considered by models

of mosquito-borne pathogen transmission, it is not surprising

that many models did not incorporate host population

dynamics (37%, 119/318, electronic supplementary material,

1970
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Figure 1. Temporal trend in the publication of models included in the bibliography, grouped by pathogen and binned by (a) year and (b) 5-year period.
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table S57). Many more, however, explicitly modelled host

infection dynamics with at least one state of infection (e.g.

exposed or infectious classes; 85%, 318/373; electronic sup-

plementary material, table S19) but not clinical outcomes of

infection (e.g. mild or severe symptoms; 24%, 75/318;

electronic supplementary material, table S65). The most

common complications to a basic model of host infection

were the inclusion of waning immunity (29%, 92/318; elec-

tronic supplementary material, table S64), simultaneous

infection with multiple pathogens (20%, 65/318; electronic

supplementary material, table S67), and differences in infection

dynamics based on host age (18%, 57/318; electronic sup-

plementary material, table S55). As with many of the results,

waning immunity and simultaneous infection with multiple

pathogens appear to be commonly examined complexities

in large part because of their relevance to the issues of drug

resistance and superinfection in malaria, which is the most

commonly modelled disease. Proportionally fewer models

have allowed for multiple pathogen types or strains in recent

years, however, and a larger share of them have been applied

to filariasis and dengue (figure 2c).

Additional details about hosts were often included when

multiple host species or types were modelled. The most

common differences between multiple host species or types

were the intensity of infection and infectiousness (38%,

15/39), their attractiveness to mosquitoes (46%, 18/39) and

the duration of the infectious period (38%, 15/39; electronic

supplementary material, table S69). Heterogeneities among

different host species and across space were modelled

simultaneously only once [23].

3.3. Mosquito
Consistent with the fact that mosquitoes are, by definition,

essential to the transmission of mosquito-borne pathogens,

most models explicitly modelled mosquito populations with

at least one state variable (62%, 231/373; electronic sup-

plementary material, table S18). A majority of models with

explicit mosquito dynamics implemented various aspects of

mosquito biology with constant or constant per capita rates,

including death (82%, 190/231; electronic supplementary

material, table S38) and blood feeding (74%, 172/231). The

aquatic phase of the mosquito life cycle was not often

included explicitly in models (12%, 45/373; electronic sup-

plementary material, table S17), although more models have

accounted for it in recent years (figure 2a). Density dependence

in the aquatic phase was included even less often (62%, 28/45;

electronic supplementary material, table S29). Pathogen

latency in mosquitoes was ignored completely in 38 per cent

of models of mosquito infection dynamics (88/230; electronic

supplementary material, table S48; figure 3a), and its depen-

dence on temperature was treated in only 16 per cent of those

that considered it at all (23/142; electronic supplementary

material, table S49; figure 3a). Of those models that both

implicitly included the aquatic phase of the mosquito and

explicitly included mosquitoes, over half of these models

assumed that mosquito density was constant (61%, 72/119,

electronic supplementary material, table S37), whereas only

14 per cent varied it either sinusoidally or based on a pattern

derived from data (17/119; electronic supplementary material,

table S37). Moreover, the proportion of models including some

form of pathogen latency in mosquitoes has been relatively

consistent over time (figure 2b).

3.4. Mosquito-host encounters
Given the opportunity for a mosquito to take a blood meal on

any one of several individual hosts, nearly all models (82%,

303/369; electronic supplementary material, table S72)

assumed that blood meal had an equal probability of taking
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Figure 2. Themes and trends. (a) Number by pathogen (bars) and relative per cent ( points) of models that explicitly modelled aquatic mosquito populations
by year (question 25). (b) Number by pathogen and relative per cent of models that modelled pathogen latency in mosquitoes by year (question 53).
(c) Number by pathogen and relative per cent of models that incorporated potential co-infections or superinfection by year (question 68). (d ) Number by pathogen
and relative per cent of models that used a simulation-based approach by year (questions 51 and 63).
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place on any of the available hosts (i.e. homogeneous distri-

bution of blood meals; figure 3b). Depending on the extent to

which mosquito and host populations are well-mixed, a given

mosquito may only have the opportunity to take a blood

meal on a limited subset of hosts in the population. The most

common assumption (78%, 291/373; electronic supplementary

material, table S75) was that contacts were well mixed, i.e. there

was an equal probability of any given mosquito encountering

any given host (figure 3b). This assumption is especially unrea-

listic at large spatial scales, yet only 17 per cent of models

included two or more spatial locations (64/371; electronic sup-

plementary material, table S20). Inclusion of space in a model

usually made it necessary to also model movement patterns

of mosquitoes or hosts. Host movement was modelled in

69 per cent (44/64) of those models, mosquito movement

in 59 per cent (38/64) and both in 38 per cent (24/64; electronic

supplementary material, table S27). Only 17 papers estimated

parameters relevant to spatial dynamics (host search or selec-

tion by mosquitoes, mosquito movement or host movement;

electronic supplementary material, table S5), as the remainder

of models either lacked relevant data or were framed generally

and not around any particular place.

3.5. Transmission
Models without explicit representation of mosquitoes either

assumed that exposure to pathogens was determined by a

quantity such as vectorial capacity (23%, 85/373; electronic

supplementary material, table S18) or borrowed directly from

theory and models used for directly transmitted pathogens

(9%, 32/373; electronic supplementary material, table S18).

When mosquito infection dynamics were explicitly modelled,

a very common simplifying assumption was that the mos-

quito-to-host and host-to-mosquito transmission probabilities

were constant parameters (87%, 325/373, electronic sup-

plementary material, table S76, and 82%, 304/373, electronic

supplementary material, table S78, respectively) rather than

depending on pathogen load or other factors. Analysing trans-

mission metrics was a very common technique, and almost half

of the models in our inventory either estimated transmission

with data or provided data that could be used to do so

(39%, 152/388; electronic supplementary material, table S8).

The most frequently estimated transmission metrics were R0

or some other reproductive number (22%, 85/388), the force

of infection (16%, 63/388), the prevalence of infection in ver-

tebrate hosts (19%, 75/388), vectorial capacity (15%, 60/388)
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Figure 3. Selected results. (a) Assumptions about pathogen latency in mosquitoes, grouped by pathogen and in total (numbers of each in parentheses). The range
of assumptions includes: pathogen latency was not modelled at all (yellow); it was either implicitly or explicitly modelled (blue, red); and it was modelled with or
without temperature dependence (dark, light). (b) Assumptions about the mixing of mosquito – host encounters (well-mixed or not well-mixed, top versus bottom
rectangles) and the distribution of blood meals on hosts (homogeneous or heterogeneous, left versus right rectangles). The area of each square corresponds to the
proportion of models that make each combination of assumptions, and colour denotes difference from the Ross – Macdonald model. (c) Number of models that
included individual control measures and combinations thereof. Each bar represents a unique combination of control measures included in at least one model.
Bars are grouped according to how many control measures appeared in a single model, and multicoloured bars indicate which control measures comprised
each combination.
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and the entomological inoculation rate (14%, 54/388; electro-

nic supplementary material, table S7). Temporally varying

transmission dynamics at short or long time scales received

minimal attention, and the implications of seasonal varia-

tion were not studied commonly (13%, 52/388; electronic

supplementary material, table S84).

3.6. Control
Although the field of mosquito-borne pathogen transmission

is inherently an applied one, only 37 per cent of models

included a control measure (139/373; electronic supplemen-

tary material, table S24). The remainder appear to be less

overtly applied and to focus more narrowly on basic under-

standing of transmission dynamics. Control was considered

even less often in models of dengue (25%, 19/76) and West

Nile (32%, 10/31) compared with malaria (47%, 102/219)

and filariasis (46%, 6/13; electronic supplementary material,

table S24). It is important to note that some models that expli-

citly consider control of mosquito-borne pathogens were

excluded from our inventory on the premise that they did

not explicitly link to a transmission model. This was likely

the case for a number of models of genetically modified

mosquitoes and larval control.

Drugs were the most commonly modelled type of control

for malaria and likewise overall (26%, 36/139; electronic

supplementary material, table S80; figure 3c). Adult

mosquito spraying (23%, 32/139), larvicides (11%, 15/139)

and bednets (20%, 28/139) were also commonly modelled

(see the electronic supplementary material, table S80; figure

3c). Even though vaccines are not yet available for most

mosquito-borne diseases, they were commonly modelled as

a precursor to anticipated vaccine development and distri-

bution (24%, 34/139, electronic supplementary material,

table S80; figure 3c). Most models of control considered

only one type (73%, 102/139, electronic supplementary

material, table S81; figure 3c), but 28 unique combinations

of up to five controls have been modelled at least once

(figure 3c). In particular, entomological controls (i.e. spraying

adults, larvicides) are commonly considered in combination

with other controls (see the electronic supplementary material,

table S80; figure 3c). Efficacy is typically the only aspect of con-

trol analysed (74%, 103/139), with financial or operational

constraints considered far less often (9%, 13/139; electronic

supplementary material, table S82).

3.7. Ross – Macdonald dissimilarity index
The largest RM index that we observed was eight out

of a maximum of 15, with 53 per cent of models having a

score of 0 or 1 and 76 per cent having a score of 2 or

less (figure 4a). Across all pathogens, the most common
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refinements to the Ross–Macdonald framework were

modelling pathogen latency in mosquitoes (32%, 125/388,

question 53), waning immunity (22%, 86/388, question 66),

simultaneous infection with multiple pathogens (17%, 65/

388, question 68) and multiple spatial locations (16%, 64/388,

question 28). The least common refinements were assuming

that mosquito-host encounters are not well-mixed (5%, 21/

388, question 74), modelling multiple mosquito species or

types (4%, 15/388, question 29) and blood feeding on non-

host species (3%, 12/388, question 48). All other refinements

were modelled between 23 and 45 times, which highlights

the predominance of waning immunity, multiple pathogen

types and, especially, pathogen latency in mosquitoes as com-

monly explored model refinements. The inclusion of such

details has been facilitated more in recent years by the increas-

ing adoption of simulation-based approaches to modelling

transmission (figure 2d ).

Certain pairs of core assumptions were commonly

relaxed together (figure 4b). For example, when models expli-

citly incorporated pathogen latency (question 53), they also

tended to explicitly model aquatic mosquito populations

(question 25) or to allow for waning immunity (question 66).

Co-occurrence of some pairs was due in part to the fact that

they were common in general (e.g. questions 53 and 66).

Co-occurrence of other pairs appeared to reflect a common

underlying biological theme, such as mosquito ecology (e.g.

questions 25, 46, 47 and 53; figure 4b). In contrast to the com-

monness of pairs of assumptions, a different comparison is

made when one looks at which pairs of core assumptions

are highly correlated (either in their joint presence or joint

absence; figure 4c). For example, the most negatively corre-

lated pair was explicit modelling of aquatic mosquito

populations (question 25) and allowance for superinfection

in vertebrate hosts (Question 68; r ¼ 20.14), which clearly

pertain to different modelling themes (e.g. mosquito ecology,

host infection dynamics).

Both the magnitude and composition of the RM index dif-

fered somewhat for models of different pathogens (figure 4d ).

Although the median RM index for all pathogens was 1, the

maximum—which reflects the variance—was greater for

malaria (8) than for all other pathogens (7). The composition

of the RM index also differed by pathogen. Explicitly model-

ling aquatic populations (question 25) was one of the most

common refinements of models of dengue (22%, 17/77)

and West Nile (32%, 10/31), yet it was among the least

common refinements for models of malaria (5%, 12/230)

and was never included in models of filariasis (0%, 0/16;

figure 4d ). This pattern could be partially attributable to the

notion that modelling aquatic dynamics enhances the realism

of fine-scale temporal dynamics of mosquito populations. In

that case, these details would be of greatest importance for

pathogens whose hosts remain infectious for relatively short

periods of time during which that fine temporal variation

matters most (i.e. dengue, West Nile). Whether models con-

sidered multiple types of pathogens, mosquitoes or hosts

also varied by pathogen. In accordance with their biology,

modelling multiple pathogen strains (question 30) has been

relatively common in models of dengue (19%, 15/77) and

modelling multiple host species (Question 31) has been

common in models of West Nile (23%, 7/31; figure 4d ).

Calculation of the evenness index showed that, in general,

models of malaria addressed the full range of core Ross–

Macdonald assumptions with relatively equal effort

(evenness ¼ 0.9), whereas models of dengue (0.86), West

Nile (0.73) and filariasis (0.69) tended to focus effort on

pathogen-specific subsets of core assumptions (figure 4d ).

Models of other pathogens as a group devoted relatively

equal attention to the full range of core Ross–Macdonald

assumptions (0.93), which reflects the fact that models of

the several pathogens comprising that group tended to each

focus on limited, but complementary subsets of core assump-

tions. The breadth of core assumptions addressed by models

of malaria, in contrast, is likely due to the historical and

numerical prominence of those models.

4. Discussion
Over the past 40 years, mathematical models have expanded

on the simple but elegant themes introduced by the Ross–

Macdonald model. The theory now includes a rich set of

models describing immunity, complex infection dynamics,

seasonality, stochasticity, superinfection, pathogen evolution,

mosquito aquatic ecology, hydrology, heterogeneous biting,

host and mosquito behaviour, spatial dynamics, clinical dis-

ease, and multiple host and mosquito species. Despite these

numerous expansions to the theory, our literature review

found that most models published in the past 40 years have

adopted most of the same simplifying assumptions used by

Ross and Macdonald. Although models typically differ

from the Ross–Macdonald model in at least one way, few

differ in more than three ways, and most of the attention

has been focused on relatively few modelling themes. Some

of the assumptions that have been questioned least are

those of homogeneous mosquito biting, well-mixed encoun-

ters between mosquitoes and hosts, and temporal constancy

(figure 3b).

4.1. Modelling themes
The elaboration on the Ross–Macdonald model that has

taken place over the last 40 years can be summarized in sev-

eral overarching themes. One major theme is the role of

temperature in driving patterns of transmission. It was recog-

nized early in the study of mosquito-borne pathogens that

transmission is often highly seasonal, which first appeared

in the 1970s in models with seasonally forced mosquito den-

sities [24]. Since then, models have incorporated temperature

dependence into specific components of the life cycle of mos-

quitoes and pathogens within them, including pathogen

latency in mosquitoes (figure 3a), larval development rates,

blood feeding rates and adult survival ([25–27] and others

thereafter). Much of this relatively recent interest in tempera-

ture dependence was prompted by rising concern about

climate change and the potential expansion of the geographi-

cal range of malaria and dengue [27,28]. The impact of rising

temperatures on the geographical range of malaria remains

difficult to assess, however, given competing forces such

as vector control and economic development that have

contracted its range [29].

Perhaps one of the reasons why seasonality has been so

difficult to model is that the distribution of mosquitoes is,

like most species distributions, affected by multiple interact-

ing factors. There has been a need to develop better models

of mosquito population dynamics, including the ecology of

immature mosquitoes in their aquatic habitats, but such

models remain uncommon. The most common convention
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has been to consider emergence of adults from aquatic habitats

as a parameter, perhaps with seasonal forcing, but to ignore

the dynamics of mosquitoes in their aquatic habitat. Some

models have recently attempted to incorporate larval ecology,

but this has usually been done in large computer simulation

models, such as CIMSiM [25,30], HYDREMATS [23,31] and

a malaria model by Depinay et al. [32]. In fact, models of

this kind have been used increasingly with the growing

power and availability of computing resources (figure 2d).

These details of mosquito ecology often require elabor-

ation on the spatial landscape on which these ecological

processes unfold. Research on this topic has roots as far

back as 1905, when Ross published a model of random move-

ment of adult mosquitoes and the geographical extent of a

zone required to eliminate malaria from an area with larval

source management [33]. Otherwise, explicit recognition of

space was not integrated into transmission models until the

early 1970s, when partial differential equation models with

diffusive movement of vectors and hosts were used. Since

Bailey’s summary of this approach [34], this class of models

has largely been neglected. A more recent development has

been the use of patch-based metapopulation models, such

as [35], with increasingly well-developed notions of mosquito

and human movement. In addition to variety in how spatial

units are defined, there has also been enormous variety in the

scales at which spatial patterns are investigated, ranging from

a single population [36] to the entire planet [29]. This diver-

sity of spatial models clearly reflects the diversity of

purposes for which they have been constructed.

Perhaps the most common innovations on the Ross–

Macdonald model have been more ‘realistic’ models of

pathogen infection in the host. In malaria, these began

with models of superinfection [37,38], and extended next to

consider partial immunity [37,39], realistic infections [40]

and then complicated within-host models [41]. Compartment

models have been developed for arboviral diseases [34,42],

and in the case of dengue, these have been expanded to con-

sider strain interactions, including antibody-dependent

enhancement [43] and temporary cross-immunity [44,45]. In

filariasis, models with multiple infections have been called

‘macroparasite models’, which count the number of worms

per host. A question that has been discussed for decades in

models of filariasis is the possibility of a backwards bifurcation

because of host–parasite interactions [46–48]. More recently,

this phenomenon has also been proposed for malaria [49,50]

and dengue [51].

4.2. Modelling deficiencies
Although progress has been made in marshalling efforts

around a few important themes, there is still work to be

carried out on these and other topics. Based on their under-

representation in the inventory and the importance that

empirical studies assign to them, we propose that the follow-

ing themes deserve more attention hereafter: (i) variation

in individual host attributes and their consequences for

heterogeneous biting [52,53], (ii) poorly mixed mosquito-

host encounters [54], and (iii) spatial heterogeneity as well

as temporal variation [55,56].

Host heterogeneity and its consequences for transmission

have been addressed with models before. The first paper

to do so in the context of mosquito-borne pathogens was

Hairston & de Meillon’s [57] discussion of the efficiency

versus intensity of filariasis transmission when biting is

highly unequal. These ideas stem from work on sexually

and other directly transmitted pathogens and have been

applied in a number of important works on mosquito-

borne pathogens since [58–61]. Heterogeneities among

hosts have also been incorporated into models with multiple

host species [62,63], which have been published increasingly

since the invasion of West Nile virus to North America.

Especially for pathogens with an enzootic cycle, variation

among host species may be amplified by spatial variation

in vertebrate host species’ densities [64]. Nonetheless, our

inventory suggests that the examination of host hetero-

geneities has been limited mostly to these few pioneering

works, despite their demonstrated impact on fundamental

concepts, such as the basic reproductive number and the effi-

cacy of control measures [60,61,65,66]. Certainly, there is

much potential to push these ideas further and especially to

apply them in specific contexts and to connect them with

data. Modern empirical techniques, such as blood meal

analysis and analyses of pathogen ancestral relationships,

could stimulate breakthroughs in this area.

Not only has heterogeneity in the preferences of mosqui-

toes for certain hosts been largely ignored, but so too has

spatial heterogeneity in mosquito density and factors that

underlie it (but see Le Menach et al. [67]). Mosquito aggregation

at locations that oft-bitten hosts frequent accentuates hetero-

geneous transmission further than what accounting for their

individual attributes would suggest. The impact of all of

these heterogeneities in a model of transmission dynamics,

however, hinges on the model’s assumptions about mixing.

Some 78 per cent of models we inventoried assumed that

encounters between hosts and mosquitoes were well-mixed,

rendering the impact of these heterogeneities moot. Well-

mixed models effectively average over these heterogeneities,

when, in reality, heterogeneities are present at very fine spatial

scales [53] and transmission dynamics tend to behave dif-

ferently at different scales [68,69]. Some models [23,31] have

incorporated details of fine-scale spatial heterogeneity in

mosquito density by, for instance, linking remotely sensed

abiotic data to mosquito density in specific geographical

areas of interest. These efforts are a good start, but an une-

quivocal and empirically supported demonstration of the

unique importance of multiple types of heterogeneity impact-

ing the dynamics of mosquito-borne pathogen transmission

will require a concerted effort addressing multiple types of

heterogeneity. Progress in this area will ultimately require

that models address several important complexities simul-

taneously, rather than in a piecemeal fashion as has been the

norm for the past 40 years.

Temporal variation similarly received very little attention

in the models we surveyed. In some systems, seasonal vari-

ation in transmission and disease has been shown to

correlate with climatological drivers, such as rainfall and

temperature [39]. In other systems where disease is endemic,

models have rarely been leveraged to investigate the causes

of interannual variation in epidemics and their severity,

with the exception of models that have accounted for the

additional forcing that may be related to El Niño and other

interannual climatological drivers [70]. At extremely fine tem-

poral scales, temperature fluctuations within a day were

recently shown to have consequences for factors such as

pathogen latency in mosquitoes [71,72], yet this variation

has not been considered in models either.
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4.3. Model complexity
One possible reason the aspects of transmission we identified

have not been more thoroughly addressed is that these fea-

tures are inherently more difficult to parametrize than

others. Much of the challenge lies in the fact that it is difficult

to identify the level of spatial and temporal detail that is

necessary in a model while simultaneously collecting suffi-

cient data to parametrize those levels of detail. To know

what level of detail is sufficient, one needs a model that

allows for excessive detail and a considerable amount of

data to parametrize it. Only then will an optimum become

identifiable. After gaining some understanding of how trans-

mission behaves at different scales, a secondary goal could be

to identify and evaluate targeted control efforts that take

advantage of the natural scales of transmission. The quest for

this type of understanding dates back to Ross [33] but remains

elusive due in part to the fact that it has gone unnoticed by

many modelling studies. The vast majority of models either

did not include data, or the data–model combination was

designed only to estimate one to two parameters at a time

(82%, 318/388, electronic supplementary material, table S6).

The issue of deciding on the appropriate level of detail to

include in a model, however, depends very much on its pur-

pose. A relevant philosophical perspective to bear in mind

when interpreting results from our inventory is Levins’ idea

that inherent trade-offs exist between different types of

models, namely along three axes: realism, generality and pre-

cision [73]. For example, the models of Ross and Macdonald

could be described as only somewhat realistic, quite general

and imprecise. By contrast, the Garki’s model [39] is a good

example of a model that is realistic and precise, but of limited

generality. It is important to note that models at any of these

extremes should not be construed as being inherently more or

less valuable based simply on this premise. Simple, directed

analyses often yield more meaningful results than ones that

incorporate interesting, but empirically unjustified complex-

ities, though complex models are, in some cases, justified

on the basis of available data and the intent of the model.

In either case, the complexity of a model should be dictated

by its purpose, and it should be recognized that theory as a

whole advances when consensus is built around principles

that have support from these varied approaches.

4.4. The legacy of Ross and Macdonald
Our RM index analysis shows that the models developed by

Ross, Macdonald and others in the early- to mid-twentieth

century have left an indelible mark on modern theory. The

reasons for this influence are clear. The models are biologi-

cally motivated, they helped make advances in guiding

public health policy for malaria during the GMEP, and they

are simple enough to provide a common language for scien-

tists, public health professionals and policy-makers working

towards a common goal.

In many ways, the essence and appeal of the Ross–

Macdonald theory of transmission can be distilled down to

a single quantity: vectorial capacity. This influential quantity

attempts to summarize the extent to which mosquitoes

propagate pathogens among hosts and is at the heart of the

basic reproductive number for mosquito-borne pathogens.

Moreover, its formulation is parsimonious, relying on par-

ameter averages and linear relationships, and it allows for

straightforward prediction of the efficacy of control measures

via the estimation of component parameters and consider-

ation of their exponentiation. For example, on this basis, the

effect of reducing adult mosquito survival is expected to

grow approximately cubically with additional control efforts,

whereas reducing mosquito densities via larval habitat

reduction is expected to only have a linear effect [74].

Insightful as these metrics may appear to be, it is impor-

tant to bear in mind that they are only useful to the extent

that they reflect reality. For instance, the impact of control

on transmission depends not only on how changes in a par-

ameter affect a quantity such as vectorial capacity but also on

how much variation there is in those parameters to begin

with. Given limited resources to implement controls, the

question of how much of a monetary or operational commit-

ment is required to effect a given change in a parameter is

also crucial, yet only 13 models in our inventory considered

costs or operational constraints of control (see the electronic

supplementary material, table S66). Even more troubling is

the fact that estimates of vectorial capacity based on estimates

of its component parameters tend to be inaccurate [75] and

to not scale properly with transmission intensity [76]. These

significant obstacles to translating a simple theory into action-

able policy recommendations in a complex world all point

towards the need to recast modern theory around the empiri-

cally supported complexities that our inventory suggests

have been largely ignored.

Advancing theory in this way will require not only the

ability to pose the right question or to construct an appropri-

ate model but also the means to analyse and interpret those

models. In the past 40 years, the most prominent analyses

have centred around thresholds (e.g. R0) and steady states

(e.g. equilibrium disease prevalence; electronic supplemen-

tary material, tables S16 and S67). These metrics are indeed

useful for gaining insights into the biological factors that con-

tribute to transmission and the promise of control measures,

but this is true only insofar as these metrics properly capture

necessary nuances of the transmission process. For questions

involving spatial, temporal, and inter-individual hetero-

geneities, underused tools must be leveraged (e.g. matrix

representations of the basic reproductive number, time- or

space-varying estimates of the force of infection) and new con-

cepts and metrics developed. The seeds for this new generation

of theoretical innovation have been sewn by exemplary papers

highlighted herein. It is now time to look to them as the

basis for developing new models, designing experiments and

answering questions of scientific and medical importance.

4.5. A direction forward
There appears to be a need for the theory of mosquito-borne

pathogen transmission to identify ecological conditions under

which the Ross–Macdonald model can be appropriately

applied, as well as to extend the theory and develop new

means of analysis when those conditions are not met. The

Ross–Macdonald framework has provided tremendous

insights since its inception over 100 years ago, but routine and

uncritical application may now be limiting progress. Moving

forward will require a greater emphasis on variation in individ-

ual host attributes and their consequences for heterogeneous

biting, the concept of poorly mixed mosquito-host encounters

and temporal variation. Although these concepts have been

successfully addressed at times, they have not been widely

appreciated or used. Focusing more modelling effort on these
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heterogeneities should elevate the theory of mosquito-borne

pathogen transmission, making it more robust, accurate and

useful for addressing the profound public health challenges

currently posed by mosquito-borne pathogens.
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