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Abstract

Background: Compromised natural killer (NK) cell cytotoxic function is a well-documented and consistent feature

of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Other outcomes evaluated in NK cells of ME/CFS

patients, however, remain equivocal. The aim of this study was to conduct a systematic review of the literature

regarding NK cell phenotype, receptor expression, cytokine production and cytotoxicity in ME/CFS patients and

determine the appropriateness as a model for ME/CFS.

Methods: Medline (EBSCOHost), Scopus, EMBASE and PubMed databases were systematically searched to source

relevant papers published between 1994 and March 2018. This review included studies examining NK cells’ features

in ME/CFS patients compared with HC following administration of specific inclusion and exclusion criteria.

Secondary outcomes included genetic analysis in isolated NK cells or quality of life assessment. Quality assessment

was completed using the Downs and Black checklist in addition to The Joanna Briggs Institute checklist.

Results: Seventeen eligible publications were included in this review. All studies were observational case control

studies. Of these, 11 investigated NK cell cytotoxicity, 14 investigated NK cell phenotype and receptor profiles, three

examined NK cell cytokine production, six investigated NK cell lytic protein levels and four investigated NK cell

degranulation. Impaired NK cell cytotoxicity remained the most consistent immunological report across all

publications. Other outcomes investigated differed between studies.

Conclusion: A consistent finding among all papers included in this review was impaired NK cell cytotoxicity,

suggesting that it is a reliable and appropriate cellular model for continued research in ME/CFS patients.

Aberrations in NK cell lytic protein levels were also reported. Although additional research is recommended, current

research provides a foundation for subsequent investigations. It is possible that NK cell abnormalities can be used

to characterise a subset of ME/CFS due to the heterogeneity of both the illness itself and findings between studies

investigating specific features of NK function.
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Background
Myalgic encephalomyelitis (ME), also referred to as

chronic fatigue syndrome (CFS), is a clinically defined

condition characterised by profound dysregulation of the

central nervous system and immune system [1, 2], endo-

crine dysfunction [3], and impaired cellular energy metab-

olism and ion transport [4, 5]. The global prevalence of

ME/CFS is reported to range from 0.2 to 6.3%; however,

this is difficult to accurately determine due to the absence

of a diagnostic test [6]. Without a biological marker, diag-

nosis currently relies on the exclusion of all other possible

fatigue-related illnesses and identification of ME/CFS

cases using various symptom-based criteria [7–9].

In 1994, the Centers for Disease Control and Preven-

tion published the Fukuda Criteria to evaluate and clas-

sify ME/CFS patients and provide a basis for diagnosis

[8]. A case of ME/CFS is defined under these criteria by

the presence of unexplainable chronic fatigue that is not

alleviated by rest. At least four additional concurrent

symptoms including sore throat, tender lymph nodes,

muscle and/or joint pain, impaired cognition and sleep

disturbances are necessary for diagnosis. Revised proto-

cols birthed the Canadian Consensus Criteria (CCC)

(2003) and the International Consensus Criteria (ICC)

(2011) [7, 9]. Post-exertional neuroimmune exhaustion

accompanied by numerous neurological, autonomic and

neuroendocrine manifestations are notable elements of

these revised definitions necessary to formally diagnose

a case of ME/CFS.

The aetiology of ME/CFS remains elusive. The involvement

of the immune system is supported by the consistent observa-

tion of features representative of a ‘flu-like’ illness in addition

to reports of disturbed cytokine profiles [10–13], decreased

natural killer (NK) cell activity and reduced T lymphocyte re-

sponse [1, 5, 14–16]. Decreased NK cell activity is considered

the most consistent immunological observation in ME/CFS

patients [1, 7, 15–19]. Several studies have reported signifi-

cantly decreased NK cell function in ME/CFS patients com-

pared with healthy controls (HC) [1, 2, 14, 19–28]. These

studies have demonstrated variations in NK cell phenotype

and regulatory receptors, significantly reduced cytolytic pro-

teins, impaired mitogen-activated protein kinases (MAPK)

phosphorylation, increased expression of degranulation

markers and impaired calcium (Ca2+) mobilisation.

NK cells are large granular lymphocytes of the innate im-

mune system with natural cytotoxicity against tumour cells

and virus-infected cells independent of prior sensitisation

and in a non-MHC restricted manner [29]. NK cells have a

protective role in various inflammatory conditions through

immune cell activation, cytokine production and direct cyto-

toxicity [29]. In human peripheral blood, NK cell sub-

populations are defined by their expression of cell-surface

molecules, namely CD56 and CD16, which can distinguish

cells into the following subsets: CD56BrightCD16−,

CD56BrightCD16Dim-, CD56DimCD16−, CD56DimCD16Bright,

CD56−CD16Bright [30]. CD56DimCD16Bright NK cells repre-

sent at least 90% of all peripheral NK cells and display signifi-

cantly higher cytolytic capacity against infected or malignant

target cells as this sub-population contains more cytolytic

proteins and form more conjugates with target cells [31, 32].

CD56Bright NK cells are potent cytokine producers. The

major cytokines produced include interferon-γ (IFN-γ),

tumour necrosis factor-α (TNF-α), granulocyte-macrophage

colony-stimulating factor, interleukin (IL)-10 and IL-13 [30].

NK cell function relies on the rise of intracellular Ca2+

concentrations [33]. Several steps during cytotoxicity are

Ca2+-dependent including lytic granule polarisation, immune

synapse formation and exocytosis of cytolytic proteins [33].

During NK cell activation, the interaction between NK cells

and target cells initiates intracellular signals through the

MAPK phosphorylation cascade [34]. Downstream phosphor-

ylation of MAPK is responsible for the polarisation and

release of cytotoxic granules, otherwise referred to as de-

granulation. Degranulation marker CD107a is expressed ex-

tracellularly following NK cell activation and is used to detect

functional activity of NK cells [35]. NK cell cytotoxicity in-

volves the exocytosis of lytic proteins, predominantly perforin,

granzyme A and granzyme B, and concludes with apoptosis

of the target cell. Perforin, a membrane-disrupting glycopro-

tein, creates a pore to facilitate the influx of granzyme prote-

ases [36]. Granzyme B possesses the strongest apoptotic

activity owing to its ability to rapidly cleave and activate pro-

caspases, ultimately leading to deoxyribonucleic acid (DNA)

fragmentation and subsequent cell death [37]. Conversely,

granzyme A is a slow-acting activator of apoptosis [38].

Previous investigators have reported equivocal differ-

ences in NK cell phenotype, cytokine production and

cytotoxicity. However, it is believed that ME/CFS severity

or a subset of disease is associated with specific NK cell

sub-populations and functional profiles. Using NK cells as

vectors for research and diagnostic approaches for ME/

CFS is supported by a growing body of evidence, which

will be examined in this review. Specifically, NK cell

phenotype, receptor expression, cytokine production and

cytotoxicity in ME/CFS will be the focus of this review.

Method
Literature search

This review was performed according to PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-analyses)

guidelines. PubMed, Scopus, EMBASE and Medline (EBS-

COHost) databases were searched. The following full-text

terms were searched: ‘chronic fatigue syndrome’ OR ‘myal-

gic encephalomyelitis’ OR ‘ME/CFS’ AND natural killer

cell*. Medical subject headings (MeSH) terms were used for

chronic fatigue syndrome/myalgic encephalomyelitis (in-

cluding systematic exertion intolerance disease) and natural

killer cells. Boolean operators ‘OR’ was used to combine all
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expressions of cases including abbreviation while ‘AND’ was

used to include NK cells in conjunction with ME/CFS in the

search. Proximity operators were not used during the litera-

ture search. Two literature searches were completed in this

systematic review on separate occasions by two authors and

using the same method. Reference list checking and citation

searching was completed, and no additional papers were

selected. Searching for unpublished literature was not per-

formed. The primary search completed by the first author

(NEF) was on 31st of May 2018 and the final search con-

cluded by another author was on 21st of August 2018 (by

HC). No additional papers were identified in the final search

or through alternative search databases such as Griffith

University institute library or Google Scholar.

Inclusion and exclusion criteria

This systematic review was designed to include observa-

tional studies using quantitative methods to compared

NK cell profiles and cytotoxic activity in ME/CFS pa-

tients compared with HC. Titles and abstracts were

screened according to the following criteria by two au-

thors (NEF and HC): (i) all studies reported on NK cell

cytotoxicity, NK cell phenotype or receptor profiles,

MAPK phosphorylation, degranulation or lytic proteins

in ME/CFS patients compared with HC as their primary

outcome; (ii) studies were published between 1994 and

2018 to exclude non-Fukuda-based case definitions; (iii)

ME/CFS diagnosis fulfilled either Fukuda, CCC or ICC;

(iv) human studies in adults age 18 years and above; (v)

free full text publications available through institutional

access; and (vi) based upon original research.

Studies were excluded if only one out of the two key-

words were present in the title or abstract. Studies were ex-

cluded if the ME/CFS cohort was compared with another

patient group (e.g. fibromyalgia (FM), multiple sclerosis

(MS), chronic fatigue) and not compared with HC. Studies

were excluded if pharmacological, exercise or sleep inter-

ventions were used. Secondary outcomes evaluated include

genetic investigations and quality of life (QoL).

Screening of the articles

All papers obtained from the search were imported to

Zotero for storage and subsequent screening. To remove

the potential for selection bias, two authors also independ-

ently completed the screening of papers. The inclusion

and exclusion criteria mentioned above were used for

publication selection. After review of abstracts and titles

by two authors, full texts were also screened. Publications

that met the criteria for inclusion were finally reviewed by

another author (SMG) and underwent data collection.

Selection of studies and data extraction

Following screening of titles and abstracts, eligible studies

were analysed and the following details were extracted and

summarised in Tables 1, 2 and 3: (i) author, (ii) year, (iii)

country, (iv) study design, (v) sample type (i.e. ME/CFS or

HC), (vi) sample size, (vii) outcome(s) and (viii) statistical

results. Two authors independently assessed full-text arti-

cles for suitability for inclusion in this review.

Search strategy validation

The search strategy used in this systematic review was

validated by an independent party on Wednesday 10th

April 2019. No additional papers were found during val-

idation and no papers were excluded.

Quality assessment

Studies were evaluated for quality and bias (performed

by NEF and SDP) using the Joanna Briggs Institute (JBI)

Checklist for case controls [39]. Additionally, the Downs

and Black checklist was also included for items asking

further information pertaining to clear description of

outcomes and findings, reported probability outcomes,

recruitment details and participant representation of

populations [40, 41]. Items 3, 4, 8, 9, 13, 14, 15, 17–19,

23–27 of the Downs and Black checklist were excluded

due to their specificity for interventional studies and

overlap with the JBI checklist.

Results
A total of 523 papers were identified from Medline

(EBSCOhost) (111), Embase (159), PubMed (73) and

Scopus (180). Papers were screened according to the

aforementioned inclusion and exclusion criteria. Figure 1

summarises the results of the literature search using

PRISMA.

Overview of papers

The PRISMA flow diagram including information of pa-

pers screened, excluded and included is displayed in

Fig. 1. The characteristics and primary outcomes of the

17 papers included in this review are summarised in

Tables 1 and 2. All papers in this review were observa-

tional case control studies that examined NK cells in

ME/CFS patients compared with HC. No potentially

relevant papers were excluded from this review

dependent on availability. At the end of the search and

screening of the papers, authors reported no

discrepancies.

Participant and study characteristics

The mean number of participants across all papers was

89. Specifically, the mean number of ME/CFS patients

was 48 and 41 for HC.

Six studies used isolated NK cells [2, 5, 21, 42–44],

seven used PBMCs [23, 25, 45–49], three used whole

blood [20, 50, 51] and one used PBMCs as well as iso-

lated NK cells [17]. Primary outcomes included NK cell
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cytotoxicity, NK cell immunophenotyping and receptor/

channel expression, intracellular lytic protein stores and

degranulation. NK cell phenotyping was completed in 11

studies [2, 17, 20, 21, 23, 25, 42, 43, 47, 48, 51]; 11 exam-

ined NK cell cytotoxicity [2, 5, 20, 23, 25, 42–45, 47];

five examined NK cell degranulation [5, 21, 23, 25, 47];

six examined NK cell lytic proteins [20, 21, 23, 25,

46, 47]; three examined cytokine production [23, 25,

47]; six examined NK cell receptors and markers [5,

17, 25, 45, 47, 48]; one examined NK cell MAPK

phosphorylation [23]; and two examined NK Cell

Ca2+ influx [5, 49].

Other outcomes included genotyping and polymorph-

ism analysis in addition to QoL scores. Three of the

studies reported genotyping analysis [2, 44, 47]; one used

the short form 36 health survey (SF-36) [51]; one used

the Fatigue Severity Scale (FSS) [17]; two employed Dr.

Bell’s Disability Scale [17, 46]; two used the Karnofsky

Performance Scale [17, 46]; and one applied the FibroFa-

tigue Scale [17].

Literature reporting NK cell cytotoxic function in ME/CFS

patients

Studies that analysed NK cell cytotoxicity are summarised

in Table 2. Of these papers, seven reported significant re-

duction in cytotoxic activity in ME/CFS patients com-

pared with HC [2, 20, 25, 42–45]. Additionally, one study

reported decreased inhibition of NK cell cytotoxicity fol-

lowing exposure to 0.1 μM (p = 0.004) and 0.01 μM (p =

0.009) of adrenaline, however did not reach significance

[47]. One of these studies analysed NK cell cytotoxicity

over 12 months [45]. This paper reported significant re-

ductions in NK cell cytotoxicity in ME/CFS patients com-

pared with HC at 0 month, 6 months and 12 months (p <

0.05). Two of these seven papers used the Chromium

(51Cr) release assay to determine the percentage of NK cell

target cell death [20, 45], while the remaining five used

flow cytometry [2, 25, 42–44].

Of the 11 publications examining NK cell cytotoxicity,

three reported no significant changes after stimulation

with a target cell line alone [5, 47, 48] (Table 2);

Fig. 1 PRISMA flow diagram of literature search displaying selection and exclusion of publications
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however, methods were not consistent which may not

reflect the validity of NK cell cytotoxicity results.

Literature reporting changes in NK cell

Immunophenotype

Of the 17 publications included in this review, 14 investigated

NK cell phenotypes and receptor expression (Table 2) [2, 5,

17, 20, 21, 23, 25, 42, 43, 47–51]. Four studies reported a sig-

nificant decrease in CD56Bright NK cell subset in ME/CFS pa-

tients compared with HC [2, 42, 43, 50]. One paper reported

a significant reduction in CD56Bright NK cells after 6 months

in the ME/CFS patient group [43]. Stewart et al. reported a

significant decrease in CD56BrightCD8+/− NK cells [50], while

an increase in CD56Bright NK cells was reported in another

paper [51]. Of the 14 papers reporting on NK cell phenotype

and surface marker expression, five lacked significance for the

CD56Dim NK cell subset between ME/CFS patients and HC

[2, 17, 23, 42, 43], while three reported no significance in

CD56Bright NK cells between groups [23, 25, 48].

One study reported increased MHC Class II receptor

HLA-DR on CD56Dim NK cells [47]. Two studies investigated

transient receptor potential (TRP) TRPM (melastatin) 3 chan-

nel expression on NK cells, with both reporting a significant

decrease in CD56BrightTRPM3+ expression [5, 49], whereas a

Table 1 Summary of study and participant characteristics

Paper details Sample size

Author Year Study
design

Diagnostic
criteria

Country Sample ME/CFS (female%)[years] HC (female%)[years]

Brenu et al. [42] 2010 Case
Control

Fukuda Australia NK cells 10 10

Brenu et al. [2] 2011 Case
Control

Fukuda Australia NK cells 95 (70.5%) [46.47 ± 11.7] 50 (57.7%) [41.9 ± 9.6]

Brenu et al. [43] 2012 Case
Control

Fukuda Australia NK cells 65 (75.4%) [47.2 ± 11.5] 21 (66.7%) [45.2 ± 9.3]

Brenu et al. [14] 2013 Case
Control

Fukuda Australia PBMCs 30 [51.15 ± 1.92] 25 [50.42 ± 1.76]

Curriu et al. [48] 2013 Case
Control

Fukuda Spain PBMCs 22 (73%) [44] 30 (55%) [38]

Fletcher et al. [45] 2010 Case
Control

Fukuda USA PBMCs 176 (83%) [44] 230 (86%) [41]

Hardcastle et al. [46] 2015 Case
Control

Fukuda Australia PBMCs Severe n = 12 (83%) [41.27 ± 10.05] 18 (72%)[41.94 ± 10.76]

Moderate n = 12 (67%) [44.73 ± 12.9]

Hardcastle et al. [46] 2015 Case
Control

Fukuda Australia PBMCs, NK
cells

Severe n = 12 (83.3%) [41.25 ± 2.77] 18 (66.7%) [40.39 ± 2.65]

Moderate n = 15 (73.3%) [45.93 ± 2.96]

Huth et al. [21] 2014 Case
Control

Fukuda Australia NK cells 29 [48.28 + 2.63] 27 [49.15 + 2.51]

Huth et al. [16] 2016 Case
Control

Fukuda Australia PBMCs 14 [53.5 ± 2.17] 11 [48.82 ± 3.46]

Maher et al. [20] 2005 Case
Control

Fukuda USA Whole
blood

30 (83.3%) [46 ± 10] 19 [43 ± 10]

Marshall-Gradisnik
et al. [44]

2016 Case
Control

Fukuda Australia NK cells 39 (71.8%) [51.69 ± 2] 30 (56.7%) [47.6 ± 2.39]

Nguyen et al. [49] 2016 Case
Control

Fukuda Australia PBMCs 17 (82%) [48.68 ± 1.06] 19 (68%) [46.48 ± 1.22]

Nguyen et al. [5] 2017 Case
Control

Fukuda Australia NK cells 25 (68%) [48.82 ± 9.84] 15 (70.6%) [39.2 ± 12.12]

Rivas et al. [51] 2018 Case
Control

CCC Spain Whole
blood

76 (82.9%) [49.78] 73 (82.2%) [48.71]

Stewart et al. [50] 2003 Case
Control

Fukuda USA Whole
blood

90 (69%) [36.7 ± 7.3] 50 (76%) [35.7 ± 9.2]

Theorell et al. [47] 2017 Case
Control

CCC Sweden,
Norway

PBMCs 24 (75%) [44]a 28 (71%) [44]a

24 (79%) [30]b 24 (79%) [30]b

ME/CFS myalgic encephalomyelitis/chronic fatigue syndrome, HC healthy control, USA United States of America, NK natural killer, PBMC peripheral blood

mononuclear cells
aLocation: Stockholm
bLocation: Oslo
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significant increase was reported for CD56DimTRPM+ in one

paper [5]. Note that TRPM3 expression on CD56Bright NK

cells was significant without stimulants, whereas CD56Dim

TRPM3 expression was significant following Pregnenolone

sulfate and Ionomycin stimulation [5]. Two papers examined

CD2, CD11 and CD18 expression on NK cells [17, 21]. One

study reported a significant increase in CD18+CD11c− and

CD18+CD2− NK cells in ME/CFS patients compared with

HC [17], while another reported a significant decrease in

CD56BrightCD2+CD18+ and CD56DimCD18+CD11a+CD11c+

NK cells [21].

Five papers examined NK cell expression of killer-cell

immunoglobulin-like receptors (KIRs), activating recep-

tors or signalling lymphocytic activation molecule (SLAM)

receptors [17, 21, 46, 48, 51]. Huth et al. reported no sig-

nificant differences between ME/CFS patients and HC

[21]. Conversely, one paper reported significantly in-

creased SLAM receptors [17] and another reported signifi-

cant increases in selected KIRs and a decrease in NK

receptor group 2 member D (NKG2D) and KIR2DL2/DL3

[46]. One investigation reported significantly increased

NKp46 [48], whereas another reported significantly de-

creased NKp46 [17]. The remaining paper reported a sig-

nificant decrease in NKG2C in ME/CFS patients

compared with HC [51].

Moreover, two papers reported significantly increased

expression of activation marker CD69 [48, 51] in ME/

CFS patients compared with HC. By contrast, one paper

reported significantly decreased CD69 expression in

ME/CFS patients compared with HC following pharma-

cological and target cell stimulation; however, the signifi-

cance was not reported at baseline [5].

Literature reporting changes in NK cell cytokine

production

Three papers examined NK cell-dependent cytokine pro-

duction in ME/CFS patients compared with HC [23, 25, 47]

(Table 2). Two reported significantly increased IFN-γ

production [25, 47], while one reported no significant differ-

ences in IFN-γ, TNFα and GM-CSF between control and

patient groups [23].

Literature reporting changes in NK cell lytic proteins

Six publications examined lytic proteins in NK cells of ME/

CFS patients compared with HC [20, 21, 23, 25, 45, 47]

(Table 2). A significant reduction in Granzyme B was re-

ported in two papers [21, 25]. One publication reported a

significant reduction in perforin [20]. No significant differ-

ences were reported in four publications for perforin and

granzyme A [21, 23, 25, 45] and three reported no signifi-

cant changes in Granzyme B [23, 45, 47].

Literature reporting changes in degranulation

Four of the included papers investigated the NK cell de-

granulation markers CD107a and CD107b [5, 21, 23, 25]

(Table 2). One paper reported a significant increase in

CD107a [25]. Conversely, three publications lacked sig-

nificance for these degranulation markers [5, 21, 23].

Literature reporting secondary outcomes

Three of the 17 papers included genotype analysis in

ME/CFS patients [2, 44, 47] (Table 3). One study used

quantitative reverse transcription polymerase chain reac-

tion (qRT-PCR) to measure gene expression [2]. Brenu

et al. reported a significant reduction in mRNA coding

for granzyme A, granzyme K, perforin, and IFN-γ. Add-

itionally, one study examined polymorphisms in PRF1,

the gene coding perforin, however did not report any

significant difference [47]. Lastly, one paper examined

678 single-nucleotide polymorphisms (SNPs) in ME/CFS

patients; of these, 11 were associated with TRPC (Ca-

nonical) 4, TRPC2, TRPM3 and TRPM8; and 14 SNPs

were associated with nicotinic and muscarinic acetylcho-

line receptors (AChR) [44].

Three papers examined correlation between NK cell fea-

tures and patient severity or QoL [17, 51, 52]. Hardcastle

Table 3 Summary of genotyping secondary outcomes

Author Year Assessed Method Significance NS

Brenu et al. [2] 2011 NK cell lytic proteins qRT-PCR Granzyme A (p < 0.05)
Graznyme K (p < 0.05)
IFN-γ (p < 0.05)

Marshall-Gradisnik et al. [44] 2016 NK cell ion channel SNP TRPC4 (p < 0.05)
TRPC2 (p < 0.05)
TRPM3 (p < 0.05)
TRPM8 (p < 0.05)

AChR receptors CHRNA3 (p < 0.05)
CHRNA2 (p < 0.05)
CHRNB4 (p < 0.05)
CHRNA5 (p < 0.05)
CHRNE (p < 0.05)

Theorell et al. [47] 2017 Perforin (PRF1) PCR PRF1

NK natural killer, NS no significance, qRT-PCR qualitative reverse transcription polymerase change reaction, SNP single-nucleotide polymorphism, PCR polymerase

chain reaction, AChR acetylcholine receptors, TRPC transient receptor potential canonical, TRPM transient receptor potential melastatin
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et al. reported a negative correlation between Dr. Bell’s Dis-

ability Scale and the Karnofsky Performance Scale (KPS)

with CD56Dim NK cells with CD18+CD11c− in ME/CFS pa-

tients [17]. One study used the SF-36 to examine patient se-

verity and QoL in association with NK cell phenotypes [51].

This publication reported a negative trend between fatigue

and pain scores with NKG2C expression in ME/CFS pa-

tients where this was not observed in HC.

Quality assessment of papers

All papers were assessed for quality and bias by two authors

using both the Downs and Black checklist and the JBI

checklist for case-control studies (Additional file 1: Table

S1). The JBI checklist was used due to its specificity with

case-control studies. All 17 papers met the JBI criteria for

(i) criteria used for cases and controls; (ii) outcomes

assessed in standard, valid and reliable way; and (iii) appro-

priate statistical analysis was used. All 17 papers met the

Downs and Black criteria for (i) aims and objectives clearly

described, (ii) main outcomes clearly described, (iii) main

findings clearly described, (iv) provides estimates of random

variability, (v) studies were without data dredging and (vi)

main outcomes measured were accurate. Twelve of the 17

papers met the Downs and Black checklist for actual prob-

ability values [5, 17, 20, 25, 45–48, 50, 51]. No papers were

representative of the entire population from which they

were recruited. One publication commented on recruit-

ment time period [43].

All papers provided an internationally accepted case

definition for ME/CFS patients and stated appropriate

exclusion criteria. Minimal information was provided for

the inclusion of HC for the papers included in this sys-

tematic review. All papers, excluding Huth et al. (2014)

and Nguyen et al. (2016) [24, 52], appropriately matched

HC and ME/CFS participants. No papers commented on

controlling for confounding variables.

Discussion
The aim of this systematic review was to summarise and

examine the evidence available on NK cells in ME/CFS

patients. NK cell cytotoxicity, immunophenotype, de-

granulation, lytic proteins and cytokine production were

analysed. Seventeen studies met the inclusion criteria for

this review and demonstrated a consistent loss in NK

cell cytotoxicity; however, reports regarding the other

mentioned outcomes were inconsistent.

Study characteristics

A significant limitation of 15 of the 17 studies was the use

of the Fukuda criteria. In comparison to other definitions

such as the CCC and ICC, the Fukuda definition is consid-

ered broad and can predispose to the misdiagnosis of ME/

CFS as the defining symptoms are not specific or limited

to ME/CFS. The release of the Fukuda definition was

intended to guide ME/CFS research in adult populations

[53]. For this reason, the Fukuda definition is the most

widely used definition in ME/CFS research and clinical

evaluation of patients. An important feature of the CCC

and ICC definitions is the requirement of post-exertional

malaise and neuroimmune exhaustion, respectively. A re-

view by Brurberg and colleagues examined case definitions

employed by 38 studies and reported that no empirical

data indicated that any case definition specifically identi-

fied ME/CFS patients as having a neuroimmunological

condition [54], suggesting that these revised definitions

are not vastly superior to the original Fukuda criteria in

discerning cases of ME/CFS. Regardless, all these diagnos-

tic criteria require the exclusion of any active or previous

medical conditions that may explain for the presence of

symptoms.

A consistent laboratory method was the use of flow

cytometry to analyse fluorescence of target proteins on

NK cells. Flow cytometry is considered a gold standard

technique when measuring cell function, expression of

surface markers, cytokine and signalling proteins and

discriminating between apoptotic and viable cells. Three

papers used the 51Cr release assay to measure NK cell

cytotoxic activity [20, 45, 47]. Comparison studies have

shown flow cytometric methods to be more sensitive

and obtain higher target cell lysis values than the 51Cr

release assay [55, 56]. However, the use of both flow cy-

tometry and 51Cr release assay in different papers in-

cluded in this review yielded consistent results of

reduced NK cell cytotoxicity.

Natural killer cells in ME/CFS

The findings generated from investigations into NK cell

phenotypes in ME/CFS patients vary. A significant re-

duction in CD56Bright NK cell subset was a consistent

finding across four of the 11 papers reporting on NK cell

phenotype. A recent study included in this systematic re-

view, which consisted of 76 ME/CFS patients defined in

accordance with the CCC matched with 73 HC, reported

that CD56Bright NK cell subset was significantly higher in

ME/CFS patients [51]. This report is not consistent with

earlier reports using low sample sizes that employed the

Fukuda criteria. Hence, it emphasises the need for con-

sistent case definitions and similar sample sizes to be

used to facilitate comparison and may suggest anomalies

in NK cell phenotypic profiles in ME/CFS patients or a

subset of patients. For example, reduced CD56Bright NK

cells are often observed in patients with juvenile

rheumatoid arthritis [30]. Pridgen et al. reported that NK

cell subsets in peripheral blood lacked significant differences

to samples from healthy donors; however, synovial fluid of

adult rheumatoid arthritis patients almost exclusively con-

tained CD56Bright NK cells [57]. Thus, any inconsistencies in

results presented in this review may be explained by the
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distribution of NK cells in different tissues or may be repre-

sentative of a subset of patients. Moreover, a limitation of

these studies is that some authors investigated different

CD56BrightCD16− or CD56BrightCD16Dim subsets, rendering it

difficult to make comparisons or draw conclusions. A review

by Poli et al. suggested research techniques be harmonised

and both sub-populations be grouped together as CD56Bright

NK cells [30], which is supported by the current review.

The reactivity of NK cells is determined by the balance

of activating and inhibitory receptors, including, but not

limited to, KIRs and natural cytotoxicity receptors (NCRs).

NCRs including NKp46, NKp30 and NKp44 are involved

in virally infected and tumour cell elimination [58]. There

are ambiguous and limited reports on NK cell receptor ex-

pression in ME/CFS patients. An Australian investigation

reported decreased NKp46 expression in ME/CFS patients

[17], whereas one publication included in this review per-

formed in Swedish and Norwegian populations reported a

significant increase in NKp46 expression in patients com-

pared with HC [48]. A repeated investigation by Rivas and

colleagues in a Spanish cohort reported lack of signifi-

cance in NKp46 expression on NK cells of ME/CFS pa-

tients compared with HC [51]. The latter, as already

mentioned, included a high number of participants all ful-

filling the CCC, thereby increasing the statistical power

and its ability to conclusively detect notable differences

between groups. The disparity in findings may be attribut-

able to the use of different case definitions to identify ME/

CFS patients and that these studies were completed in

different countries. However, though observations were

conflicting, changes in NK cell receptor profiles should

not be discredited until additional research is completed.

NKG2C, a KIR activating receptor, was reported signifi-

cantly reduced in ME/CFS patients compared with HC [51].

Conversely, Theorell and colleagues reported no differences

in NKG2C [47]. Both papers recruited a large sample size

fulfilling the CCC criteria. The discrepancies in findings may

emphasise the immunological heterogeneity of ME/CFS.

One paper examining multiple KIRs reported a significant

increase in several KIRs [46]. Moreover, Rivas et al. reported

that changes in NKG2C NK cell expression along with

changes in regulatory T lymphocytes phenotypes had 70%

accuracy when identifying cases of ME/CFS. Additional re-

search is recommended on NK cell receptors as unbalanced

inhibitory and activating receptors may contribute to im-

paired NK cell cytotoxicity in a subset of patients.

This systematic review included ten papers that exam-

ined NK cell cytotoxicity in ME/CFS patients compared

with HC. Seven of these reported a significant decrease

in NK cell cytotoxicity in ME/CFS. Brenu et al. was the

first to report that NK cell cytotoxicity is consistently re-

duced over 12 months of illness [43]. The loss of overall

NK cell cytotoxic activity is the most reliable report

among all outcomes examined in this systematic review.

Additionally, another investigation by Masuda and col-

leagues reported a significant reduction in NK cell cyto-

toxicity in ME/CFS patients compared with non-ME/

CFS fatigued controls [18]. Note that this publication

was excluded from this review due to the inclusion of

chronic fatigue patients as a comparison group. Collect-

ively, the papers included in this review demonstrate

that reduced NK cell cytotoxicity is a useful indicator of

immune dysfunction in ME/CFS patients. However, the

evidence for why this reduction occurs is limited and re-

quires additional research into possible ME/CFS subsets.

Degranulation is measured by surface expression of

CD107a and CD107b [35]. Similar to other areas of NK

cell research in ME/CFS patients, there are inconsistent

reports of changes in degranulation compared with HC.

One paper included in this review reported a significant

increase in CD107a after stimulation using K562 cell line

[25]. Huth et al. reported an increase in CD107a on

CD56Dim NK cells in ME/CFS patients compared with

HC; however, this did not reach significance likely due

to the small sample size [23]. An increase in NK cell de-

granulation in ME/CFS patients may lead to the inability

to induce sufficient cytotoxicity resulting in increased

activation. Additionally, due to abnormalities in NK cell

receptors and MAPK phosphorylation, along with new

evidence of impaired Ca2+ influx in NK cells, dysregu-

lated cellular pathways may compromise degranulation

in ME/CFS patients.

Changes in lytic proteins are not always consistent find-

ings, but anomalies in perforin and granzyme B levels

were reported [14, 21, 25]. There are many theories re-

garding the disparities observed in NK cells. Researchers

suggest that it is a consequence of paucities in lytic pro-

teins. Lytic proteins are vital for the immune response due

to their involvement in elimination of pathogens as part of

immune surveillance [59]. Perforin knockout mice had ab-

normal immune function and were at increased risk of in-

fection, developing autoimmune diseases and lymphomas

[60]. Theorell and colleagues in addition to measuring

intracellular lytic proteins, investigated polymorphisms to

PRF1 [47]. While most ME/CFS participants were deter-

mined to have reduced perforin levels compared with HC,

only one participant had the PRF1 p.491 V variant that ex-

plained these low levels. Although, the mechanism re-

sponsible for reduced perforin in ME/CFS remains

unknown, it is still believed to contribute to the loss of

NK cell cytotoxicity in these patients.

Impaired phosphorylation of MAP kinases and p38 has

been implicated in the pathogenesis of ME/CFS and other

chronic inflammatory diseases [61]. MAPK phosphoryl-

ation mediates fundamental immunological processes

leading to cytokine translation, polarisation of cytolytic

granules and release of lytic proteins. Huth et al. reported

an increased phosphorylation of MEK1/2 in CD56Bright
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NK cells in ME/CFS patients [23], which may explain pre-

viously reported increased IFN-γ production [25]. More-

over, one paper included in this review reported decreased

inhibition of IFN-γ production compared with HC after

in vitro treatment with adrenaline [47], possibly indicating

abnormalities in NK cell signalling of ME/CFS patients or

impaired receptor function. Moreover, the significant re-

duction reported in ERK1/2 phosphorylation reported in

ME/CFS may be positively correlated with impaired Ca2+

mobilisation described in recent publications by Nguyen

and colleagues. NK cells are dependent on Ca2+ for the re-

cruitment and phosphorylation of MAP kinases in

addition to translation of lytic proteins, creation of the im-

mune synapse, polarisation of cytolytic granules and the

release of lytic proteins [62, 63].

Recent reports of impaired TRP ion channel function

in ME/CFS patients may provide an explanation for im-

mune dysfunction. Two papers included in this review

examined TRPM3 channel expression and Ca2+ influx in

addition to NK cell function [5, 49]. A significant reduc-

tion of TRPM3 surface expression was reported on NK

cells in ME/CFS patients compared with HC along with

a reduction in cytoplasmic Ca2+ in response to Ca2+

modulators. Moreover, a recent electrophysiology inves-

tigation used whole-cell patch clamp techniques to

report impaired TRPM3 function in NK cells CFS pa-

tients/CFS patients and HC [64]. This paper was not in-

cluded in this review as other NK cell features were not

reported. There is growing evidence to suggest the

underlying pathomechanism for ME/CFS involves ion

channelopathy. As TRP channels are expressed ubiqui-

tously across multiple organ systems, NK cells may act

as a suitable model for other TRPM3 expressing tissues

and to explore their functions.

Quality assessment

Quality assessment was mostly consistent among several

studies. While all papers were reported as not applicable

or unclear for standardisation or reliability measurement

of exposure, all publications used similar methods that

are considered standard including flow cytometry and
51Cr release assay. Four of the included publications un-

fortunately did not provide details for defining their

methods to correct for multiple comparisons during

statistical analysis [2, 5, 44, 50]. Shortcomings were due

to limited information on sources of confounding vari-

ables and sources of bias. Although there was no direct

mention of controlling for confounding variables, studies

attempted to address confounding in the following ways:

(i) sex- and age-matching; and (ii) restricting comorbidi-

ties including but not limited to hypothyroidism et

cetera. Selection bias may be a particular issue with

some papers as limited information was provided re-

garding the recruitment of HC. Additional information

should be provided regarding the clinical history of all

participants including but not limited to ME/CFS onset,

routine medications and comorbidities in addition to

relevant medical information of HC. The selection cri-

teria for ME/CFS patients appeared mostly consistent

throughout all publications and all adhered to inter-

nationally accepted criteria. Conclusions drawn from all

publications in this systematic review are consistent in

many respects. For example, aberrations in NK cell cyto-

toxic activity or receptor profiles are significant immuno-

logical issues in ME/CFS patients that may compromise

their ability to battle infections. Any shortcomings are un-

likely to discredit the merit of the findings generated by

these studies as they are not considered major limitations.

However, it is recommended that for future investigations

in this area, information be provided for patient socio-

demographics, methods of participant recruitment and

justification for the reported sample size.

Conclusion
The aim of this systematic review was to examine the

current literature available on NK cell cytotoxicity, cyto-

kine production, lytic protein levels, degranulation and

immunophenotypes in ME/CFS patients. Some of the

publications included in this review provided evidence

to suggest that NK cells may represent an important bio-

logical marker for investigating and identifying subsets

of ME/CFS patients. NK cell cytotoxicity, and perforin

levels to a lesser extent, remained a consistent immuno-

logical consequence of ME/CFS to provide a suitable

foundation for future research in this area.
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