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Abstract

Wheat is globally one of the most important crops. With the current human population growth rate, there is an
increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient
and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects,
need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress
factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than
50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along
with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance.
Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to
34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably
to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by
this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew.
However, there are several other rye sources reported to make wheat more resistant to various biotic constraints
when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to
produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate
decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat
germplasm.
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Background
The use of rye chromatin in wheat
Wheat (Triticum aestivum L.) provides about 20% of the
calories in the diet of the human population. Augment-
ing its productivity is a global task of paramount import-
ance. The demand for this crop is increasing at a higher
rate than its production, and at the same time there is
also a great need for producing it without compromising
the environment. Plant breeding, in combination with
environmentally friendly production systems with in-
creased efficiency are required to meet the demands [1].
Wheat yields are constrained by several stresses, biotic

and abiotic. To counteract them, plant breeders
* Correspondence: Inger.Ahman@slu.se
2Department of Plant Breeding, Swedish University of Agricultural Sciences,
P.O. Box 101, SE 23053 Alnarp, Sweden
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
continuously try to incorporate new resistance/tolerance
traits in new cultivars by making use of the inherent diver-
sity of domesticated wheat and also of its related species.
One of the most widely used wheat relatives in this effort
is rye (Secale cereale L.). Genes from rye have been incor-
porated in wheat in the form of substitution and trans-
location lines. Indeed, several studies show chromosome
1R to contribute a yield advantage in wheat (e.g. [2–4]).
The first attempts to hybridize wheat and rye can be

traced back to the experiments conducted by Stephen
Wilson, presented in 1873 [5]. Although he considered
his results to be negative, he stated that the failure could
have been caused by improper methods. The first stable
amphiploid triticale (Triticosecale Wittmack) is attrib-
uted to Rimpau in 1888, and thereafter more efforts
were put into producing wheat-rye hybrids. The advent
of colchicine treatment and tissue culture at the
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beginning of the twentieth century greatly facilitated the
production of triticales [6].
Historically, mainly four rye sources have been used to

incorporate rye chromatin in wheat, deployed as (1B)1R
substitution or 1BL.1RS and 1AL.1RS translocation lines.
The first and most widely deployed source is 1R from
Petkus rye. Genotypes with 1BL.1RS translocations were
first developed in Germany by Riebesel via extensive
crossings between wheat and rye, and such a transloca-
tion from Petkus became ancestor of wheat cultivars re-
leased in Western Europe, Russia, Mexico, Chile and
other countries. From triticale, it is possible to develop
wheat germplasm with chromosomes or chromosome
arms exchanged for rye chromatin. The other three his-
toric sources for cultivar development were of that kind,
developed in Japan, Germany and USA [7].
Between 1960 and 1990, several hundreds of cultivars

with (1B)1R substitution, or 1BL.1RS and 1AL.1RS
translocations were released. At the International Maize
and Wheat Improvement Center (CIMMYT), 60% of the
wheat descendants were 1BL.1RS genotypes during the
1990’s [7]. In China, about 40% of the wheat cultivars re-
leased between 1960 and 2000 were 1B/1R transloca-
tions with yield gains over the years partly attributed to
this characteristic [4]. There are no recent surveys pub-
lished on the proportion of wheat cultivars with rye
chromatin. However, Schlegel [8] has compiled a world-
wide list of 2470 wheat cultivars and experimental lines
that carry alien introgressions. According to such infor-
mation and the cultivar listing by the International
Union for the Protection of New Varieties of Plants [9],
we could estimate that there are countries such as Chile
in which 34% of the commercial varieties released be-
tween 2000 and 2013 carry rye introgressions. In other
UPOV countries this percentage is as low as 1–2%, for
instance in Russia and Australia. In the USA, according
to the database of the Journal of Plant Registrations
(http://www.ars-grin.gov/cgi-bin/npgs/pvp/pvplist.pl?) and
Schlegel’s compilation, the percentage of commercial var-
ieties carrying rye chromatin is about 15%. These exam-
ples demonstrate how the current importance of rye
introgressions in wheat varies between countries.
Partly due to new pathotypes of stem and yellow rusts

invading wheat at large scale, in Africa, northern Europe
and China, there is renewed interest in using rye as a
source for new resistance genes in wheat. Here we com-
pile historic and more recent information on resistance
to biotic stresses transferred from rye to wheat.

Transfer of rye chromatin to wheat
Wheat, T. aestivum (2n=6x=42), originates from the
Near East. It is composed of three genomes (A, B and
D) from three diploid ancestors. Donors of the A and D
genomes are relatives of Triticum urartu Tumanian ex
Gandilyan and Aegilops tauschii Coss., respectively. The
origin of the B genome is not completely clarified, but
certain evidence points out Aegilops speltoides Tausch as
the relative of the donor. Hexaploid wheat originates
from the hybridization of Triticum turgidum L. (AABB)
and A. taushii (DD) relatives. Despite its polyploid na-
ture, wheat shows a diploid-like behavior with preferen-
tial pairing between homologous chromosomes during
meiosis [10–12].
Rye, S. cereale (2n=2x=14), is a diploid species that

also originates from the Near East [13]. The chromo-
some groups 1, 2, 3, 5 and 6 of wheat are essentially
homoelogous with 1R, 2R, 3R, 5R and 6R chromosomes
of rye, and 4 and 7 of wheat have partial reciprocal
homoeology with groups 4R and 7R [14].
The allopolyploid nature of wheat makes it highly tol-

erant to modifications in its genetic composition. The
homoeologous pairing between rye and wheat allows the
introduction of desirable agronomic characteristics in
wheat from rye such as resistance to certain pests and
diseases and tolerance to various abiotic stresses. Add-
itionally, the buffering capability of wheat for tolerating
important modifications in its genome has allowed the
development of different genetic stocks consisting of
monosomic, telocentric, deletion and nullisomic lines.
These types of plant material have played a significant
role in genetic research, for instance in the determin-
ation of physical locations for various molecular markers
and genes [15, 16].
The transfer of a target chromosome to be incorporated

in wheat can be done by selecting an adequate aneuploid
wheat line and cross it with rye or a previously developed
amphiploid, in this particular case triticale. Wheat-alien
substitution lines are frequently used as bridges to pro-
duce wheat-alien translocation lines [10, 16, 17].
Another strategy to obtain translocation lines is to re-

cover spontaneous wheat-rye translocations that occur
due to the centromeric breakage and fusion of the
chromosome arms. Chromosomes tend to break at the
centromeres during meiotic metaphase I forming telo-
centrics. Different telocentrics may fuse again, and
thereby exchange chromosome segments [17, 18].
Inducing random translocations by irradiation

methods in the absence of homoeologous pairing of
substitution lines is yet another strategy, although this
method can be laborious and cause several deleterious
effects [19]. The winter wheat cultivar Amigo with
the 1AL.1RS translocation was developed with this
method [20], although doubts have been expressed
whether this centric translocation was caused by the
irradiation treatment [16].
It is also possible to obtain translocation lines with the

procedure described by Lapitan et al. [21], in which the
embryos of the wheat-rye hybrids are grown in tissue

http://www.ars-grin.gov/cgi-bin/npgs/pvp/pvplist.pl?
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culture on a medium with enhanced auxin concentration
to stimulate callus formation. Recovered plants are col-
chicine treated for chromosome doubling. With this pro-
cedure the generation of translocation lines is facilitated
by the tissue culture step in which different structural
changes in the chromosomes occur. Lines produced with
this method were identified to carry 4DL.1RS, 2BS.2RL
and 2BL.3R translocations [21, 22].
Another strategy is by using a ph1b mutant of wheat.

The functional Ph1 allele in chromosome 5B inhibits
homoeologous pairing between wheat and alien chromo-
somes whereas the mutant allows pairing and recombin-
ation between homoeologues. Thus it is possible to reduce
the amount of genetic material introduced from the alien
species [10, 17]. However translocation break points be-
tween homoeologous chromosomes are mostly concen-
trated to the distal parts of the chromosomes [23].
Yet another strategy to induce homoeologous pairing

between rye and wheat chromosomes is to expose tillers
to okadaic acid before cells enter into meiosis phase.
This will induce early condensation of chromatin, which
is associated with the phenotype of ph1 mutants. When
applying optimal concentrations of okadaic acid, homo-
eologous pairing can take place even in the presence of
the Ph1 allele [24].
Many Chinese wheat cultivars have Kr alleles which

make them easily crossable with rye, something which
has been used in more recent efforts to create new
1BL.1RS translocation lines [25, 26].
Rye as a source of resistance to biotic stresses
in wheat
Rye is well documented as a rich source of resistance to
pests and pathogens in wheat. Most of its desirable char-
acteristics have been found in chromosome 1R. None-
theless, resistance is conferred to wheat from the
incorporation of other rye chromosomes as well. How-
ever, we found no reports on this from chromosome 7R
and just one report, on aphid resistance, from chromo-
some 5R [27]. One advantage of transferring rye chro-
matin into wheat is that if multiple resistances to various
diseases/pests are present in the rye chromosome of
interest, the rye chromatin is inherited as a block when
crossing with wheat. On the other hand it can be disad-
vantageous if the rye source confers undesirable traits,
and thus makes it necessary to reduce the alien
segments.
Resistance to diseases
Various rye sources incorporated in wheat have been re-
ported to confer resistance to leaf rust (Puccinia triticina
Erikss.), yellow rust (Puccinia striiformis var. striiformis
Westend), stem rust (Puccinia graminis Pers. f. sp. tritici
Erikss. and E. Henn.), and powdery mildew (Blumeria
graminis [DC.] f. sp. tritici Em. Marchal) (Table 1).
Chromosome 1R from Petkus rye has been the most

deployed of the rye resistance sources over the years
since the 1960’s. This has conferred resistance to several
important diseases of wheat. It carries Lr26, Yr9, Sr31
and Pm8 resistance genes for leaf rust, yellow rust, stem
rust and powdery mildew, respectively. Unfortunately,
diseases are able to overcome major race-specific resist-
ance genes like these. However, one remarkable case is
the resistance gene Sr31 from Petkus rye that remained
effective against stem rust for more than 30 years. When
found defeated first in Uganda in 1999 [28], this posed a
major threat to global wheat production because a great
proportion of cultivars worldwide carried this gene [29].
Apart from Petkus rye and the wheat cultivars with

the 1BL.1RS translocation derived from this source, like
Kavkaz and Veery, there are several other 1R sources of
resistance to diseases. Insave rye deployed as 1AL.1RS
chromatin in Amigo wheat carry stem rust resistance
gene Sr1RSAmigo and powdery mildew resistance gene
Pm17, allelic to Pm8, and Imperial rye provides stem
rust resistance gene Sr50/SrR. In China there are many
recent attempts to transfer new yellow rust resistance
from rye sources, such as that from dwarf rye R12 with
temporary gene designation YrR212, a 1BL.1RS trans-
location giving recessive yellow rust resistance from the
1BL.1RS source SW1862 and Aigan rye contributing a
non-designated YR gene. Also in China, there are now
breeding lines and cultivars with 1RS derived from
Petkus rye but with other alleles than Yr9 and Pm8, tem-
porarily designated as YrCn17 and PmCn17. Since rye is
out-crossing, there may be such within-cultivar allelic
variation [25] (Table 1).
There are less cases of disease resistance in source

chromosomes other than 1R. However, from 2R there
are two designated genes for leaf rust resistance, Lr25
and Lr45, and one stem rust resistance gene, Sr59, giving
resistance to many stem rust races including Ug99. The
2BS.2RL-SLU source gives resistance to leaf rust, stem
rust and powdery mildew. In 2R introgressions there are
three more cases of powdery mildew resistance, one of
which has gene designation Pm7. Lr25 and Pm7 are de-
rived from the same rye source, Rosen. In 3R only the
gene Sr27 for stem rust resistance has been reported so
far, from the rye cultivar Imperial. Furthermore, there is
powdery mildew resistance in 4R and 6R, from Kustro
and German white rye, and in 6R from Prolific rye with
gene designation Pm20 (Table 1). Rahmatov et al. [30]
investigated a large set of rye introgression lines in
spring and winter wheat for resistance to several virulent
races of stem rust and found (1D) 1R, (2D) 2R, (3D) 3R
substitution or translocation lines likely to carry new re-
sistance genes. The same large set of rye introgression
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lines was also tested for yellow rust resistance, with
promising results in terms of resistance from hitherto
unexploited triticale origin [31].
Even though rye chromatin with resistance genes is

present, such genes may not be expressed due to the
presence of suppressors in wheat. There are leaf rust re-
sistance suppressors reported in the three genomes of
hexaploid wheat [32]. Suppression of the powdery mil-
dew resistance gene Pm8 is reported to be associated
with Pm3 alleles located in the 1A chromosome. Initially
the hypothesis was that the gliadin loci Gli-A1 and Gli-
A3 were suppressing Pm8. Later, when the gene Pm3
was cloned and shown to be closely linked to the gliadin
locus, its role in Pm8 suppression became evident as a
post-translational process [33–37].
The gene Pm8 has been reported to give different

virulence/avirulence patterns in different countries.
For instance in Hungary it appears to be ineffective
[38] whereas in Norway it is more effective than in
China [39].

Resistance to pests
There are several examples where genes from rye confer
resistance to some of the most important wheat pests;
like the aphids Schizaphis graminum (Rondani), Diura-
phis noxia (Mordvilko), Rhopalosiphum padi L. and Sito-
bion avenae (F.); the cecidomyid Mayetiola destructor
(Say); the nematodes Heterodera avenae (Wollenweber)
and Heterodera filipjevi (Madzhidov) Stelter; and the
mite Aceria tosichell Keifer (Table 1).
One of the first reports of transferring resistance to in-

sects from rye into wheat is the resistance gene Gb2 ef-
fective against certain biotypes of S. graminum. This
gene originates from the chromosome 1RS of Insave rye
and is present in the winter wheat cultivar Amigo. The
Gb2 gene confers resistance to biotypes B, C and J of S.
graminum. However, likely due to the presence of high
S. graminum genetic diversity in nature, the Gb2 resist-
ance gene became ineffective in cultivated wheat. An-
other resistance gene was reported later, Gb6, which also
originates from the 1RS chromosome arm of Insave rye
and this is in addition effective against biotypes E, G, I
and K. The S. graminum biotypes E and I are currently
the most commonly found biotypes in wheat crops in
the USA and cause a greater yield loss than the other
biotypes [40–42].
Another important example of insect resistance from

rye is the gene Dn7 for D. noxia resistance. This gene
originates from the 1RS chromosome arm of Turkey 77
rye. In the USA, D. noxia was first found in 1986, and
only one biotype prevailed until 2003 when a new bio-
type designated as biotype 2 appeared in wheat [43].
Only Dn7 is effective to biotype 2 of all the known Dn
genes. Many additional D. noxia biotypes have been
found since then, and presently there is no known effect-
ive resistance in wheat to biotype 3 of D. noxia [44, 45].
Resistance to D. noxia in Syria was localized to rye intro-
gressions (1D) 1R, 3DL.3RS and (5D) 5R, but so far
without gene designations [27].
Centromeric breakage-fusion and the utilization of

ph1 mutants were exploited by Lukaszewski [23, 46–50],
Lukaszewski et al. [51] and Zhang et al. [52] to produce
and analyze various substitution, translocation and re-
combinant lines from different sources of rye in the
background of the spring wheat cultivar Pavon F76. Out
of this set of 61 lines, certain 1R or 1RS lines from two
triticale sources, Panda and Presto, show seedling resist-
ance to both of aphid species R. padi and S. avenae. It is
not known as yet whether resistance is conferred by the
same or different rye genes. One line with 1RS from
Amigo wheat was resistant to S. avenae both at seedling
and adult plant stage.
Another rye gene in Amigo wheat, Cmc3 in 1AL.1RS,

gives resistance to the mite A. tosichell. Furthermore, re-
sistance to the cecidomyid M. destructor has been found
in 2RL and 6RL and gene designations have been made
as H21 and H25, respectively. Resistance to the nema-
todes H. filipjevi and H. avenae has been reported in 6R
wheat derives (Table 1).
Examples of other traits affected by rye
chromatin in wheat
Depending on the wheat genetic background, the rye
source and the type of abiotic stress factors, studies have
shown that rye transferred into wheat may have both
positive and negative effects on wheat performance.
Hoffman [53] and Waines and Ehdaie [54] have reported
1RS to promote root biomass growth. Karki et al. [55]
concluded that the 1BL.1RS translocation is more suited
to withstand moisture limitations compared to 1AL.1RS
or 1DL.1RS. However, Monneveux et al. [56] have re-
ported that 1BL.1RS negatively impacts yield when
wheat is grown under rainfed conditions and heat stress,
depending on the wheat background. It is possible that
these differences in performance may be due to the pres-
ence of suppressors in wheat as is the case in relation to
certain diseases.
Kim et al. [3] tested different rye sources of 1R in the

genetic background of the spring wheat cultivar Pavon
F76. They concluded that it is important to consider
which 1RS source is to be transferred into wheat,
whereas a favourable 1RS confers higher yield regardless
of which wheat chromosome, 1A, 1B or 1D, it is translo-
cated into. However, the position of 1RS in the wheat
genome can negatively affect baking quality, and geno-
types 1AL.1RS are preferred over 1BL.1RS and 1DL.1RS
in this respect [57].
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Additional traits that can potentially be exploited are
aluminum and acid soil tolerance. It is known that rye
possesses tolerance to these soil conditions in chromo-
somes 3R, 4R and 6R. However, presence of gene sup-
pressors in the wheat genome may hamper full
expression of these traits [58]. Furthermore, there are
loci in chromosomes 1R and 7R that can increase wheat
zinc efficiency [59] and loci in 5RL that increase copper
efficiency [60]. Allelopathic effect on weeds is another
favorable trait of rye chromatin in wheat, predominantly
found in 1R and 2R substitutions [61].

Conclusions
Plant breeders are continuously trying to find new
sources for resistance that can be transferred into elite
wheat germplasm. To find and transfer resistance genes
that are effective against a wide range of strains of the
key pathogen is ideal. Furthermore, it is desirable that
those durable resistance genes are also effective against
other pathogens, and other pests. Genes giving these
plant characteristics have only been found in hexaploid
wheat so far. For instance Lr34 and Lr67 leaf rust resist-
ance genes provide pleiotropic effects on powdery mil-
dew, yellow rust and stem rust [62–64]. However, the
information we present here facilitates decision making
in terms of combining resistances from different wheat-
rye derived lines into a single wheat genotype. Primarily,
we expect breeders to use existing rye introgressions in
wheat. However, with improved materials and methods
for making introgressions, and molecular tools for detec-
tion of rye chromatin in wheat, we expect also new
introgression lines to be developed and used in wheat
breeding.
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