

Scalable Model-based Robustness Testing: Novel

Methodologies and Industrial Application

Shaukat Ali

Thesis submitted for the degree of Ph.D.

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

September 2011

© Shaukat Ali, 2011

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo

No. 1154

ISSN 1501-7710

All rights reserved. No part of this publication may be

reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.

Printed in Norway: AIT Oslo AS.

Produced in co-operation with Unipub.

The thesis is produced by Unipub merely in connection with the

thesis defence. Kindly direct all inquiries regarding the thesis to the copyright

holder or the unit which grants the doctorate.

i

Abstract
Embedded systems, as for example communication and control systems, are being

increasingly used in our daily lives and hence require thorough and systematic testing

before their actual use. Many of these systems interact with their environment and,

therefore, their functionality is largely dependent on this environment whose behavior can

be unpredictable. Robustness testing aims at testing the behavior of a system in the

presence of faulty situations in its operating environment (e.g., sensors and actuators). In

such situations, the system should gracefully degrade its performance instead of abruptly

stopping execution. To systematically perform robustness testing, one option is to resort to

Model-Based Robustness Testing (MBRT), which is a systematic, rigorous, and automated

way of conducting robustness testing. However, to successfully apply MBRT in industrial

contexts, new technologies need to be developed to scale to the complexity of real

industrial systems. This thesis presents a solution for MBRT on industrial systems,

including scalable robustness modeling and executable test case generation.

One important contribution of this thesis is a scalable RobUstness Modeling

Methodology (RUMM), which is achieved using Aspect-Oriented Modeling (AOM). It is a

complete, automated, and practical methodology that covers all features of state machines

and aspect concepts necessary for MBRT. Such methodology, relying on a standard

(Unified Modeling Language or UML) and using the target notation as the basis to model

the aspects themselves, is expected to make the practical adoption of robustness modeling

easier in industrial contexts. The applicability of the methodology is demonstrated using an

industrial case study. Results showed that the approach significantly reduced modeling

effort (98% on average), improved separation of concerns, and eased model evolution. The

approach is further empirically evaluated using two controlled experiments involving

human subjects and results showed that the proposed methodology significantly improves

the readability of models as compared to modeling using standard UML notations.

Another important contribution of this thesis is an efficient approach for solving

constraints (written in Objects Constraint Language (OCL)) on the operating environment

of a system, which is mandatory for emulating faulty situation in the environment for the

purpose of MBRT. A set of novel heuristics is devised for various OCL constructs, which

are required for the application of search algorithms. The heuristics have been empirically

evaluated on an industrial case study for robustness testing and the results showed to be

ii

very promising and significantly better than the existing works in the literature on OCL

constraint solvers.

A final contribution of the thesis is robustness test case generation from the models

developed using RUMM. Test case generation also includes scripts generation for

environment emulation, which is mandatory for automated robustness testing again using

an industrial case study. In preliminary experiments, the execution of test cases found one

critical, robustness fault in a deployed industrial system.

iii

Acknowledgements
First of all, I would like to thank my supervisors Lionel Briand and Andrea Arcuri.

Without their deep knowledge in software engineering and constant guidance throughout

my PhD, this work couldn’t have been possible. Lionel is an excellent supervisor and his

profound knowledge and passion for research has instilled in me a passion to conduct

quality research. Andrea is an outstanding supervisor and his immense knowledge about

search algorithms and statistics have provided me an opportunity to grasp these topics very

quickly. I would also like to thank Erik Arisholm, who was my supervisor during earlier

part of the PhD. I always had good discussions with him. I would also like to thank Simula

Research Laboratory (SRL) and Simula School of Research and Innovation (SSRI) for

funding my PhD and providing an excellent multicultural research environment.

I would like to thank Marius Liaaen from Cisco, whose intense passion for model-based

testing enabled me to successfully apply and evaluate my model-based methodologies in

Cisco. I would also like to thank Suneth Walawege from Cisco, who is also a friend, for

helping in modeling Cisco's case study and running experiments.

I would like to specially thank my best friend Tao Yue, for her unconditional support in

everything. Particularly, during my PhD she helped in conducting controlled experiments

in Pakistan and China. Special thanks to my best friend and office mate, Aiko Yamashita

for providing an excellent company in the office and outside. She has been a wonderful

friend in many different ways. I would also like to thank my best friends in Simula,

Rajwinder Panesar-Walawege, Zohaib Zafar, and Hadi Hemmati for all the good

discussions at work and fun times in general.

Last but not least, I would also like to thank my parents, brother, and sisters for their

love, support, and care.

iv

List of papers
The following papers are included in this thesis:

Paper 1. A Systematic Review of the Application and Empirical Investigation of

Search-based Test-Case Generation

S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege

Published in the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp.

742-762, 2010

Paper 2. Modeling Robustness Behavior Using Aspect-Oriented Modeling to Support

Robustness Testing of Industrial Systems

S. Ali, L. Briand, and H. Hemmati

Accepted for a publication in the Journal of Software and Systems Modeling (SOSYM),

Springer, 2011.

Paper 3. Does Aspect-Oriented Modeling Help Improve the Readability of UML State

Machines?

S. Ali, T. Yue, and L. Briand

Submitted to the the Journal of Software and Systems Modeling (SOSYM), Springer,

2011.

Paper 4. Solving OCL Constraints for Test Data Generation in Industrial Systems

with Search Techniques

S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand.

Submitted to ACM Transactions on Software Engineering and Methodology (TOSEM),

2011

Paper 5. An Industrial Application of Robustness Testing using Aspect-Oriented

Modeling, UML/MARTE, and Search Algorithms

S. Ali, L. Briand, A. Arcuri, and S. Walawege.

In: ACM/IEEE 14th International Conference on Model Driven Engineering Languages

and Systems (Models 2011), ACM/IEEE, 2011.

The five papers are self-contained and thus some information might be redundant across

the papers. Different abbreviations may have been used in the papers.

v

My contributions

For all papers except the first paper, I was the main contributor. My supervisors

contributed in all phases of the work. For Paper 1, all authors equally contributed to the

paper. In case of Paper 2, I was main contributor for the idea, implementation, and case

study design and application. The controlled experiments reported in Paper 3 are

conducted in collaboration with Tao Yue and Lionel Briand. I was responsible for creating

the experiment material, experiment execution, data collection and analysis, and writing of

the paper. Tao Yue and Lionel Briand were involved throughout the process. In Paper 4, I

was the main contributor, but got help from supervisors (Andrea Arcuri and Lionel Briand)

and collaborator Mohammad Zohaib Zafar. In the last paper, I was the main contributor for

the idea, implementation, and case study design and application.

In addition, during my PhD study, I also contributed in other papers which are not

included in this thesis. Paper 6 is not included since the journal version of the paper (Paper

4) is included in this thesis. Paper 7 is excluded since it is a result of an equal contribution

from all authors and is a basic framework which was needed to conduct the research

reported in this thesis. Paper 8 and Paper 9 are not directly related to this PhD thesis, but

are preliminary extensions to the work presented in the thesis. Paper 10 is an additional

controlled experiment, which was conducted to evaluate the modeling methodology

presented in Paper 2. The paper was submitted to a conference at the time of submission of

this thesis for evaluation.

Paper 6. A Search-based OCL Constraint Solver for Model-based Test Data

Generation

S. Ali, M. Z. Iqbal, A. Arcuri, L. Briand

In: Proceedings of the 11th International Conference on Quality Software (QSIC 2011),

pp. 41-50, IEEE, 2011.

Paper 7. Model Transformations as a Strategy to Automate Model-Based Testing - A

Tool and Industrial Case Studies.

S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand

vi

Technical Report 2010-01, Simula Research Laboratory

Paper 8. Automated Transition from Use Cases to UML State Machines to Support

State-based Testing.

T. Yue, S. Ali, and L. Briand.

In: Seventh European Conference on Modeling Foundations and Applications

(ECMFA), 2011

Paper 9. An Enhanced Test Case Selection Approach for Model-Based Testing: An

Industrial Case Study.

H. Hemmati, L. Briand, A. Arcuri, and S. Ali.

In: 18th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), ed. by Gruia-Catalin Roman and André van der Hoek, ACM (ISBN:

978-1-60558-791-2), 2010.

Paper 10. Comprehensively Evaluating Conformance Error Rates of Applying Aspect

State Machines for Robustness Testing,

S. Ali, T. Yue, Z. Malik,

Accepted for a Publication in International Conference on Aspect-Oriented Software

Development (AOSD 2012), 2012

vii

Contents

Summary .. 1
1 Introduction .. 1

2 Background .. 4

2.1 UML-based Modeling .. 4

2.1.1 UML Extension Mechanism ... 4

2.1.2 Standard UML Profiles ... 6

2.2 Object Constraint Language (OCL) ... 6

2.2.1 OCL Evaluator .. 7

2.2.2 OCL Constraints Solver .. 7

2.3 Aspect-Oriented Modeling (AOM) .. 7

2.4 Testing .. 8

2.4.1 Model-based Testing (MBT) ... 8

2.4.2 Search-based Software Testing (SBST) .. 9

2.5 Empirical Evaluation .. 10

2.5.1 Case Study ... 10

2.5.2 Survey/Systematic Reviews .. 10

2.5.3 Controlled Experiment .. 11

3 Automated Model-based Robustness Testing .. 12

3.1 Modeling Robustness Behavior .. 12

3.2 Model-based Robustness Testing ... 15

4 Research Methodology ... 18

4.1 Identification of a Research Problem ... 19

4.2 Conducting a Systematic Review ... 19

4.3 Functional MBT ... 19

4.3.1 Development of Functional MBT Methodology ... 19

4.3.2 Tool Support.. 20

4.3.3 Evaluation of TRUST.. 21

4.4 Robustness Modeling ... 22

4.4.1 Methodology ... 22

4.4.2 Tool Support.. 22

4.4.3 Empirical Evaluation ... 22

4.5 Robustness Testing ... 23

4.5.1 Methodology ... 23

4.5.2 Tool Support.. 23

4.5.3 Empirical Evaluation ... 23

5 Summary of Results ... 25

5.1 Paper 1 .. 25

5.2 Paper 2 .. 26

5.3 Paper 3 .. 28

5.4 Paper 4 .. 29

5.5 Paper 5 .. 31

6 Future Directions .. 33

7 Conclusion.. 35

Paper 1: A Systematic Review of the Application and Empirical Investigation of Search-based Test-
Case Generation .. 41
1 Introduction .. 41
2 Background .. 42

viii

2.1 Search-based software testing ... 43

2.2 Systematic reviews .. 44

2.3 Empirical studies for search-based software testing ... 45

3 Framework .. 46
3.1 Test problem specification .. 46

3.2 Metaheuristic search algorithm specification .. 47

3.3 Empirical study design .. 48

3.3.1 Objectives and experimental hypotheses ... 48

3.3.2 Target application domain ... 49

3.3.3 Subject systems (Software Under Test or SUT) specification ... 49

3.3.4 Measures of cost and effectiveness for SBST techniques .. 50

3.3.5 Measures for scalability assessment .. 52

3.3.6 Baselines for comparison ... 52

3.3.7 Parameter settings .. 53

3.3.8 Accounting for random variation in SBST results ... 53

3.3.9 Data analysis .. 54

3.3.10 Discussion on validity threats .. 57

4 Research Method .. 58
4.1 Research questions .. 59

4.2 Study selection strategy .. 60

4.2.1 Source selection and search keywords ... 60
4.2.2 Study selection based on inclusion and exclusion criteria ... 62

4.2.3 Data extraction ... 64

5 Results ... 65
5.1 RQ1: What is the research space of search-based software testing? .. 65

5.2 RQ2: How are the empirical studies in search-based software testing designed and reported? 65

5.2.1 RQ2.1: How well is the random variation inherent in search-based software testing,

accounted for in the design of empirical studies? .. 66

5.2.2 RQ2.2: What are the most common alternatives to which SBST techniques are compared? 68

5.2.3 RQ2.3: What are the measures used for assessing cost and effectiveness of search-based

software testing? .. 69

5.2.4 RQ2.4: What are the main threats to the validity of empirical studies in the domain of

search-based software testing? ... 72

5.2.5 RQ2.5: What are the most frequently omitted aspects in the reporting of empirical studies in

search-based software testing? ... 73

5.2.6 Conclusion ... 74

5.3 How convincing are the reported results regarding the cost, effectiveness, and scalability of

search-based software testing techniques? ... 75

5.3.1 RQ3.1: For which metaheuristic search algorithms, test levels, and fault types is there

credible evidence for the study of cost-effectiveness? ... 75
5.3.2 RQ3.2: How convincing is the evidence of cost and effectiveness of search-based software

testing techniques, based on empirical studies that report credible results? ... 76
5.3.3 RQ3.3: Is there any evidence regarding the scalability of metaheuristic search algorithms for

test case generation? ... 78
5.3.4 Conclusion ... 80

6 Threats to the Validity of this Review .. 80
6.1 Incomplete selection of publications .. 80

6.2 Inaccuracy in data extraction .. 81

6.3 Unbiased quality assessment .. 81

7 Conclusion .. 81

ix

Paper 2: Modeling Robustness Behavior Using Aspect-Oriented Modeling to Support Robustness
Testing of Industrial Systems ... 87

1. Introduction .. 87

2. Case Study and Running Example ... 91

2.1 Functional models of S-Saturn ... 92

2.2 Robustness behavior ... 93

3. Robustness Modeling Methodology ... 94

4. Concepts, Techniques, and Tools Required for RUMM .. 96

4.1 Definitions .. 97

4.1.1 Faults and Failures in the context of UML state machines ... 97

4.1.2 Fault classification based on taxonomy ... 97

4.2 The AspectSM profile .. 98

4.2.1 Domain view of the profile ... 100

4.2.2 UML representation .. 103

4.2.3 Example of an application of AspectSM ... 104

4.3 RobustProfile .. 106

4.3.1 Fault Modeling Profile (FMProfile) .. 107

4.3.2 Fault Recovery Profile (FRProfile) ... 108

4.3.3 Example of an Application of RobustProfile .. 109

4.4 Guidelines to model properties of an environment based on the fault taxonomy 111

4.5 Aspect state machine .. 112

4.6 Template for Modeling Weaving-Directive state machine ... 112

4.7 Weaver ... 112

5 Application Of RUMM to Our Simplified Industrial Case Study .. 115

5.1 Activity A1: Develop a conceptual model of a system .. 115

5.2 Activity A2: Develop a behavioral model of the system as UML state machines 116

5.3 Activity A3: Identify relevant faults from fault taxonomy ... 116

5.4 Activity A4: Develop a class diagram for a robustness aspect ... 117

5.5 Activity A5: Develop a state machine for the robustness aspect .. 118

5.5.1 Modeling recovery from media faults ... 118

5.5.2 Constraining input parameter values ... 121

5.6 Activity A6: Define ordering of aspects using a state machine .. 121

5.7 Activity A7: Weave aspects with behavioral models ... 123

5.7.1 Modeling recovery from media faults ... 123

5.7.2 Constraining input parameter values ... 124

6 Results from the Complete Industrial Case Study .. 126

6.1 Behavioral models of Saturn .. 126

6.2 Modeling robustness behavior .. 126

6.3 Results and discussion .. 127

6.3.1 Reduced modeling effort ... 127

6.3.2 Enhanced separation of concerns .. 128

6.3.3 Improved readability ... 129

6.3.4 Easier model evolution .. 129

6.3.5 Systematic fault modeling ... 130

6.4 Limitations ... 130

7 Related Work ... 131

7.1 Robustness modeling methodologies ... 131

7.2 AOM profiles for UML state machines .. 132

7.3 Comparisons with Generic AOM weavers ... 134

7.4 Testing based on Aspect-Orientation Modeling ... 135

8 Conclusion.. 136

x

Paper 3: Does Aspect-Oriented Modeling Help Improve the Readability of UML State Machines? ... 153

1. Introduction ... 154

2. Background ... 156

2.1 UML State Machines .. 156

2.2 Aspect State Machines .. 157

2.2.1 Main Concepts in AspectSM ... 158

2.2.2 Example of applying AspectSM .. 160

3. Experiments Planning ... 161

3.1 Goal, Research Questions and Hypotheses ... 161

3.2 Participants .. 163

3.3 Material ... 164

3.3.1 Case Study System... 164

3.3.2 Design Defect Classification .. 165

3.3.3 Seeded Defects ... 166

3.3.4 Comprehension Questionnaire ... 167

3.3.5 Answer Sheets ... 167

3.3.6 Pre- and Post-Lab Questionnaire ... 168

3.4 Design ... 168

3.4.1 Design of the Initial Experiment .. 168

3.4.2 Design of the Replication... 169

3.5 Dependent Variables ... 171

3.6 Data Collection ... 173

3.7 Training ... 173

3.8 Replication .. 174

3.8.1 Reduced External Validity Threats .. 174

3.8.2 Improved hierarchical modeling of ECS.. 174

3.8.3 Improved Assignments of Subjects to Treatments ... 175

3.8.4 Coverage of UML Features ... 175

3.8.5 Other Differences ... 175

3.9 Overview of Statistical Tests .. 175

3.9.1 Statistical Tests .. 175

3.9.2 Power Analysis .. 177

4. Results and Discussion ... 178
4.1 Results and Analysis for Defect Identification (RQ1) .. 178

4.1.1 Results for the Initial Experiment .. 178

4.1.2 Results for the Replication ... 181

4.1.3 Discussion .. 182

4.1.4 Overall Discussion ... 186

4.2 Results and Analysis for Defect Fixing (RQ2) ... 187

4.2.1 Results for the ECS system .. 187

4.2.2 Results for the VCS system ... 189

4.2.3 Discussion .. 190

4.3 Results and Analysis for Comprehensibility (RQ3) .. 192

4.3.1 Results for the Initial Experiment .. 192

4.3.2 Results for the Replication ... 193

4.3.3 Discussion .. 193

4.4 Results and Analysis for Effort (RQ4) .. 194

4.4.1 Results.. 194

4.4.2 Discussion .. 195

4.5 Concluding Remarks ... 196
5. Threat to Validity .. 196

5.1 Conclusion Validity Threats ... 196

xi

5.2 Internal Validity Threats .. 197

5.3 Construct Validity Threats ... 197

5.4 External Validity Threats ... 198

6. Related Work ... 198
7. Conclusion and Future Work ... 200

Paper 4: Solving OCL Constraints for Test Data Generation in Industrial Systems with Search

Techniques ... 214
1. Introduction .. 215

2. Background .. 217

3. Related Work ... 218

3.1 Comparison with OCL Constraints Evaluation .. 218

3.2 OCL-based Constraint Solvers ... 219

3.3 Search-based Heuristics for Model Based Testing ... 223

4. Definition of the Fitness Function for OCL ... 223

4.1 Primitive types .. 225

4.2 Collection-Related Types ... 226

4.2.1 Equality of collections (=) ... 225

4.2.2 Operations checking existence of one or more objects in a collection 229

4.2.3 Branch distance for iterators .. 231

4.3 Tuples in OCL .. 238

4.4 Special Cases .. 239

4.4.1 Enumerations ... 239

4.4.2 oclInState ... 239

4.4.3 oclIsTypeOf(),oclIsKindOf(), and oclIsNew() .. 241

4.4.4 User-defined Operations .. 241

5. Case study: Robustness Testing of Video Conference System .. 243

5.1 Empirical Evaluation .. 244

5.1.1 Experiment Design .. 244

5.1.2 Experiment Execution ... 245

5.1.3 Results and Analysis .. 246

5.2 Comparison with UMLtoCSP .. 252

6. Empirical Evaluation of Optimization Defined as Fitness Functions ... 254

6.1 Experiment Design ... 254

6.2 Experiment Execution .. 255

6.3 Results and Analysis .. 256

7. Overall Discussion ... 258

8. Tool Support ... 259

9. Threats to Validity .. 260

10. Conclusion.. 262

Paper 5: An Industrial Application of Robustness Testing using Aspect-Oriented Modeling,

UML/MARTE, and Search Algorithms .. 267
1 Introduction .. 267

2 Case Study .. 269

3 Scalable Robustness Modeling ... 270

3.1 Functional Behavior of Saturn .. 270

3.2 Robustness Modeling using RUMM .. 271

4 Test Case Generation ... 273

4.1 An Overview of TRUST .. 274

4.2 Integration of the AspectSM Weaver with TRUST ... 274

4.3 Integration of Search-based Constraint Solver with TRUST ... 274

xii

5 Test Case Execution .. 275

5.1 Setup for Test Case Execution .. 276

5.2 Preliminary Test Case Execution Results ... 276

6 Experience and Lessons Learned .. 277

6.1 Robustness Modeling .. 278

6.2 Test Case Generation .. 280

6.3 Test Case Execution .. 282

6.4 Current Limitations ... 283

7 Related Work .. 283

8 Conclusion and Future Work .. 284

9 References ... 285

1

Summary

1 Introduction

In our daily life, many important activities are directly or indirectly dependent on

embedded, control and communication systems [1]. For instance, the use of smart phones

and tele-presence systems has been quickly increasing. The correct functioning of these

systems largely depends on their operating environment, whose behavior is inherently

unpredictable. Assuring a reasonable dependability level for these systems in the presence

of dysfunctional or hostile environment conditions is very important and such behavior is

commonly denoted as robustness behavior.

Robustness, as defined by an IEEE Standard [2], is “the degree to which a system or

component can function correctly in the presence of invalid inputs or stressful environment

conditions”. Such robustness is considered very critical in many standards such as in the

IEEE Standard Dictionary of Measures of the Software Aspects of Dependability [3], the

ISO’s Software Quality Characteristics standard [4], and the Software Assurance Standard

[5] by NASA. A system should be robust enough to handle the possible abnormal

situations that can occur in its operating environment and invalid inputs. For example, in

our industrial case study (Cisco Systems, Norway), modeling such robustness behavior for

a videoconferencing system (VCS) means to model its behavior in the presence of

problems with the network and other communicating VCSs, such as high percentage of

packet loss and high percentage of corrupt packets. The VCS should not crash, halt, or

restart in the presence of such problems. Furthermore, the VCS should continue to work in

a degraded mode, such as continuing the videoconference with low audio and video

2

quality. In the worst case, the VCS should return to the most recent safe state instead of

bluntly stopping execution. Such behavior is very important for a commercial VCS and

must be tested systematically and automatically to be scalable.

In practice, robustness testing is often manual and hence is not rigorous and is limited in

scope. To perform rigorous, systematic, and automated robustness testing, which

eventually reduces the number of faults in the delivered systems, one needs to resort to

testing methodologies such as model-based testing (MBT). This thesis presents a solution

to Model-based Robustness Testing (MBRT), which includes the contributions discussed

below:

� A RobUstness Modeling Methodology (RUMM) that enables the systematic

modeling of robustness behavior in a practical and scalable way. The main

contributions with respect to RUMM are:

1) A UML 2.0 profile (RobustProfile), which is based on a fault taxonomy

in [6] and the IEEE standard classification for anomalies [7], to model

faults, recovery mechanisms, and failure states.

2) The application of the Modeling and Analysis of Real-Time and

Embedded Systems (MARTE) profile [8] in conjunction with

RobustProfile to model faulty environment conditions.

3) A UML 2.0 profile (AspectSM) to support comprehensive aspect

modeling for UML 2.0 state machines and enable automated robustness

testing. AspectSM supports modeling crosscutting behavior on all

modeling elements of UML 2.0 state machines and supports all basic

features of AOSD such as pointcuts, introduction, joinpoints, and advice.

4) An empirical evaluation and discussion of the benefits of modeling

robustness behavior of an industrial system using RUMM and

AspectSM.

5) Tool support, based on model transformations in Kermeta [9], to

automatically weave AspectSM aspects into base state machines

(modeling the core functional behavior of a system).

6) Empirical evaluation of the benefits provided by the methodology via

two controlled experiments.

� Robustness behavior is modeled based on different functional and non-

functional properties (e.g., bandwidth of a communication network), whose

violations lead to faulty situations. Such properties can be related to the System

3

Under Test (SUT) or its environment such as the network and other systems

interacting with the SUT. These properties are modeled as constraints (e.g.,

bandwidth = 0 kilo bits per second) which need to be solved to emulate faulty

situations and thus automate robustness testing. In our context, such properties

are modeled using the Object Constraint Language (OCL) [10], which is a

standard language to express constraints on UML models based on first order

logic and set theory. To solve these constraints, this thesis reports on novel

heuristics for the application of search-based techniques, such as Genetic

Algorithms (GAs), (1+1) Evolutionary Algorithm (EA), and Alternating

Variable Method (AVM), to solving OCL constraints (covering the entire OCL

2.2 semantics [10]) in order to generate test data to emulate faulty situations. A

search-based OCL constraint solver is implemented and evaluated on the first

reported, industrial case study on this topic.

� Finally, to successfully apply MBRT in industrial contexts, new technologies

need to be developed to scale to the complexity of real industrial systems. This

thesis finally reports on our experience of performing MBRT on VCSs

developed by Cisco Systems, Norway and discuss various techniques and tools

that are developed and integrated to achieve a fully automated MBRT that is

able to detect previously uncaught software faults in those systems.

This thesis has two parts:

Summary: This part of the thesis consists of the following sections: Section 2 provides

the background information required to understand the summary of the thesis. Section 3

briefly presents the contributions of the thesis and Section 4 presents the research

methodology that was followed during the thesis. Section 5 provides salient results from

the research papers submitted as part of the thesis; Section 6 outlines future research

directions, whereas Section 7 concludes the thesis.

Papers: The second part of the thesis presents the published or submitted research

papers, which are included in this thesis.

4

2 Background

In this section, the background knowledge necessary to understand the rest of the thesis is

presented. Section 2.1 introduces modeling with the Unified Modeling Language (UML),

including a discussion on UML extension mechanisms, and Section 2.2 provides a brief

overview of the Object Constraint Language (OCL). Section 2.3 provides an introduction

to Aspect-Oriented Modeling (AOM), Section 2.4 provides details on testing topics, i.e.,

Model-Based Testing (MBT) and Search-Based Software Testing (SBST). Finally, Section

2.5 provides a brief introduction to various types of empirical evaluations conducted in this

thesis.

2.1 UML-based Modeling

UML [11] is the de-facto standard for modeling software systems. UML provides a

unified, precise, and consistent way to communicate information among different people

involved in software development. The architecture of UML is standardized based on the

Meta-Object Facility (MOF) [12], which provides standardized mechanisms for defining

new modeling languages. MOF is a metamodel [12], which precisely defines the concepts

necessary to define a modeling language. The semantics of UML are captured in its

metamodel, which is an instantiation of the MOF metamodel.

UML provides a variety of diagrams for various purposes. For example, the static

structure of software systems can be modeled using diagrams such as class and composite

structure diagrams. Similarly, the behavior of software systems can be modeled using

diagrams such as state machines and activity diagrams. In addition, UML diagrams can be

defined at different levels of details. For instance, a UML model can be defined at a

coarse-grained level of detail for the purpose of analysis or communication with a

stakeholder (e.g., a high level domain model). Alternatively, a UML model can be at a

fine-grained level of details for the purpose of automated code generation and test case

generation (e.g., a state machine including action specifications).

2.1.1 UML Extension Mechanism

UML provides a standard extension mechanism that allows adding extensions to the

semantics of pre-defined UML concepts using a UML profile. A UML profile enables the

extension of UML for different domains and platforms, while avoiding any inconsistency

with UML semantics. A profile allows defining stereotypes (annotations), on metaclasses

defined in the UML metamodel, which can have attributes representing properties of the

5

stereotype. For instance, in Figure 1, a stereotype Motor is defined on the Class metaclass

of the UML metamodel. The arrow from Motor to Class is an extension arrow showing

that Motor can be applied to an instance of the UML metaclass Class. The Motor

stereotype has an attribute named type, which is of type MotorType Enumeration having

two literals Electrical and Mechanical. Figure 2 shows an example of applying the Motor

stereotype, which is applied to a StepperMotor, which is an instance of UML metaclass

Class. The attribute of Motor is set to Electrical telling that the stepper motor is an

electrical motor.

Figure 1 An example of defining a stereotype on a UML metaclass

Figure 2 An example of applying a stereotype

Two main approaches for profile creation are discussed in [13]. The first approach

directly implements a profile for key concepts of a target domain. Such an approach has

been used to define the Systems Modeling Language (SysML) [14]. The second approach

involves first creating a conceptual model outlining the key concepts of a target domain

followed by creating a profile for the identified concepts. This latter approach has been

used for defining profiles such as Modeling and Analysis of Real-Time and Embedded

Systems (MARTE) [8], QoS and Fault Tolerance specifications [15], and UML Testing

Profile (UTP) [16]. The second approach is more systematic than the first one as it

separates the profile creation process into two stages. In the first stage, we develop a

conceptual model which helps identify domain concepts and their relationships. In the

second stage, we identify a mapping between the main concepts and UML modeling

elements and define corresponding stereotypes on UML metaclasses. Finally, the

relationships between stereotypes are obtained from the relationships that were identified

between the domain concepts in the first stage.

6

2.1.2 Standard UML Profiles

A set of UML profiles has been standardized by the Object Management Group (OMG)

including QoS and Fault Tolerance specifications [15], and UML Testing Profile (UTP)

[16], and Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [8]. The

most relevant profile in the context of this thesis is MARTE, which is specifically defined

to model real-time embedded systems. The MARTE profile has a package dedicated to

modeling non-functional properties (NFP). It provides different data types, such as

NFP_Percentage and NFP_DataTxRate, which are helpful to model properties of the

environment, for instance jitter and packet loss in communication networks. When the

built-in data types of MARTE are not sufficient, the open modeling framework of MARTE

can be used to define new NFP types by either extending the existing NFPs or by defining

completely new NFPs.

2.2 Object Constraint Language (OCL)

OCL [10] is a standard language that is widely accepted for writing constraints on UML

models. OCL is based on first order logic and is at a higher expressive level than Boolean

predicates written in programming languages such as C and Java. The language allows

modelers to write constraints at various levels of abstraction and for various types of

models. It can be used to write class and state invariants, guards in state machines,

constraints in sequence diagrams, and pre and post conditions of operations. A basic subset

of the language has been defined that can be used with metamodels defined in Meta Object

Facility (MOF) [12] (which is a standard defined by Object Management Group (OMG)

for defining metamodels). This subset of OCL has been largely used in the definition of

UML for constraining various elements of the language. Moreover, the language is also

used in writing constraints while defining UML profiles.

Due to the ability of OCL to specify constraints for various purposes during modeling,

for example when defining guard conditions or state invariants in state machines, such

constraints play a significant role when testing is driven by models. For example, in state-

based testing, if the aim of a test case is to execute a guarded transition (where the guard is

written in OCL based on input values of the trigger and/or state variables) to achieve full

transition coverage, then it is essential to provide input values to the event that triggers the

transition such that the values satisfy the guard. Another example can be to generate valid

parameter values based on the pre-condition of an operation.

7

2.2.1 OCL Evaluator

An OCL evaluator tells whether a constraint on a class diagram satisfies an instantiation of

the class diagram provided to it. Several OCL evaluators are currently available that can be

used to evaluate OCL constraints such as the IBM OCL evaluator [17], OCLE 2.0 [18],

EyeOCL [19], and OCL evaluation in CertifyIt by Smarttesting [20].

2.2.2 OCL Constraints Solver

The purpose of an OCL constraint solver is to verify whether the constraints can be

satisfied. In other words, an OCL constraint solver checks whether correctness properties

such as satisfiability or absence of contradictory constraints hold for a model with

constraints written with OCL. This is achieved by searching a solution, which is simply a

set of values of variables used in a constraint, which satisfies the constraint. In the context

of UML and OCL, it is a valid instance of a class diagram. If any such solution exists, it

means the satisfiability property holds.

A number of approaches use constraint solvers for analyzing OCL constraints for

various purposes. These approaches usually translate constraints and models into a

formalism (e.g., Alloy [21], temporal logic BOTL [22], FOL [23] , Prototype Verification

System (PVS) [24], graph constraints [25]), which can then be analyzed by a constraint

analyzer (e.g., Alloy constraint analyzer [26], model checker [22], Satisfiability Modulo

Theories (SMT) Solver [23], theorem prover [23], [24]).

2.3 Aspect-Oriented Modeling (AOM)

Aspect-orientation provides enhanced modularization by separating out crosscutting

concerns as separate entities called aspects. Aspect-orientation is a very active field [27] of

research, which has mainly focused on aspect-oriented programming (AOP), but also led to

significant progress in the realms of design and modeling, denoted as aspect-oriented

Modeling (AOM) [27-29]. Crosscutting concerns, for example related to robustness or

security behavior, are modeled as aspect models and are subsequently woven into a

primary/base model capturing nominal functional behavior. AOM is expected to yield

benefits such as improved readability, enhanced modularization, easier evolution, and

increased reusability of models, as well as reduced modeling effort [28, 29].

Since the standard UML notations are not enough to support AOM, several extensions

have been proposed in the literature. All these extensions are broadly classified as either

extensions based on defining a UML profile to support AOM [30-36] or defining a new

Domain Specific Language (DSL) to support AOM [37, 38]. A DSL defines a new

8

language, which does not follow standard notations, and thus may be difficult to transfer to

some industrial contexts.

2.4 Testing

This section provides an overview of MBT (Section 2.4.1) and SBST (Section 2.4.2),

which are necessary to understand the rest of the thesis.

2.4.1 Model-based Testing (MBT)

Deriving test cases from a behavioral model of a system, known as MBT [39], is not a new

domain of research in software engineering. However, in recent years, the level of interest

for MBT in industry and academia has been rapidly increasing. This interest can be seen

from the many academic studies [40-43] and industrial projects [20, 44] on model-based

testing being reported. This suggests that there is an increasing awareness of the benefits

offered by MBT.

The general process of MBT starts with modeling a SUT and making the resulting

model ready for test generation. The next step is deriving abstract test cases from the test

ready model according to a test strategy, which is typically defined based on a test model

and coverage criteria to guide its traversal [39]. Finally, executable test cases are generated

using abstract test cases and input test data.

In the context of MBT based on UML models, most techniques have focused on state-

based testing (SBT). This is due to the reason that many systems, such as real-time and

embedded systems [45, 46], and multimedia systems [47], exhibit state-driven behavior.

UML state machines, which are extensions of traditional Finite State Machines (FSM), can

be used to model such behavior. Traditional FSMs cannot model software systems with

concurrent behavior. Concurrency in UML state machines is modeled using composite

states with two or more regions [11]. When modeling complex software systems with

FSMs, the number of states and transitions can grow exponentially with system size. This

can be handled by UML state machine features for modeling submachine states.

To apply MBT on UML state machines as the input model, several test strategies are

presented in the literature, such as piecewise, all transitions, all transitions k-tuples, all

round-trip paths, M-length signature, and exhaustive coverage [48]. For example, for all

round-trip strategy, a test tree also known as a transition tree (consisting of nodes and

edges corresponding to states and transitions in a state machine) is constructed by depth-

first traversal of the state machine. A node in the transition tree is a terminal node if the

node already exists anywhere in the tree that has been constructed so far or is a final state

9

in the state machine. Now, by traversing all paths in the transition tree, we cover all round

trip paths and all simple paths (the paths in the state machine that begins with the initial

state and ends with the final state) [48]. Another stopping criterion for the transition tree

construction is proposed in [49], where a node is terminal if (i) it is a final state of the state

machine or (ii) it is a node that already exists on the path that leads to the node. This

stopping criterion makes the all round-trip strategy more demanding. This strategy has

been experimentally evaluated to be more cost-effective than the all transitions and all

transition pairs criteria [49]. Henceforth, the transition tree or all round-trip paths coverage

criterion refer to the modified versions proposed in [49].

To automate testing based on UML state machines, test data must be generated to fire

triggers associated with transitions, which typically require parameter values. Test data can

be generated randomly from the possible set of values, or using more sophisticated

techniques such as constraint solvers [50, 51], or search-based techniques (for example

using Genetic Algorithms for test data generation [52, 53]) .

Constraints defined on UML state machines, such as state invariants, guards, and

pre/post conditions of triggers, should be evaluated during the execution of the generated

test cases. As shown by many studies, constraints are a very effective way to detect faults

[54, 55], e.g., state invariants serving as oracles in state-based testing. These constraints are

usually written as OCL expressions in the context of UML models.

2.4.2 Search-based Software Testing (SBST)

Several software engineering problems can be reformulated as a search problem, such as

test data generation [56]. An exhaustive evaluation of the entire search space (i.e., the

domain of all possible combinations of problem variables) is usually not feasible. There is

a need for techniques that are able to produce “good’’ solutions in reasonable time by

evaluating only a tiny fraction of the search space. Search algorithms can be used to

address this type of problem. Several successful results of using search algorithms are

reported in the literature for many types of software engineering problems [52, 57, 58].

To use a search algorithm, a fitness function needs to be defined. The fitness function

should be able to evaluate the quality of a candidate solution (i.e., an element in the search

space). The fitness function is problem dependent, and proper care needs to be taken for

developing adequate fitness functions. The fitness function will be used to guide the search

algorithms toward fitter solutions. Eventually, given enough time, a search algorithm will

find a satisfactory solution.

10

There are several types of search algorithms. Genetic Algorithms are the most well-

known [56], and they are inspired by the Darwinian evolution theory. A population of

individuals (i.e., candidate solutions) is evolved through a series of generations, where

reproducing individuals evolve through crossover and mutation operators. (1+1)

Evolutionary Algorithm (EA) is simpler than GAs, in which only a single individual is

evolved with mutation. Alternating Variable Method (AVM) is a local search algorithm,

which is similar to the Hill Climbing (HC) algorithm. The algorithm performs an

exploratory search on a variable, where the value of the variable is slightly modified every

time. If the fitness of the modified variable value is better than the previous one, the

current value becomes the optimum solution. To verify that search algorithms are actually

necessary because they address a difficult problem, it is a common practice to use Random

Search (RS) as a comparison baseline [56].

2.5 Empirical Evaluation

According to [59] empirical studies can be classified as controlled experiments, case

studies, and surveys.

2.5.1 Case Study

A case study is an in depth observational study [59], whose purpose is to examine projects

or evaluate a system under study. Case studies are mostly used to demonstrate the

applicability of an approach. For example, in the context of software modeling, the goal of

a case study could be to demonstrate the applicability of modeling non-functional behavior

(e.g., security) of an industrial context and reporting lessons learnt during this process.

2.5.2 Survey/Systematic Reviews

A survey is an exploration of existing literature and is a descriptive research method with

no control over measurements. Surveys summarize existing works in an abstract and a

broader sense. In contrast, a systematic review is a type of a survey, which is more

systematic in the sense that all the steps of conducting a systematic review are reported.

This includes the search query used, search engines used, research questions, and so on. In

other words, a systematic review is a way to collect all existing information about a

particular topic or area of research in such a manner that limits bias in the gathering,

critical evaluation and synthesis of all relevant studies. Initially, systematic reviews were

conducted in medicine and other social sciences. Later on it was adopted in almost every

field of science, including computer science. The purpose of a systematic review is to find

11

gaps in the existing literature to place new proposals in the context of existing knowledge.

It provides the foundation for proposing future research agendas and make

recommendations for research [60].

2.5.3 Controlled Experiment

A controlled experiment [59] is performed in a controlled environment with the aim to

manipulate one or more variables and maintain other variables at fixed values to measure

the effect of change (outcome). Experiments usually have two or more treatments, whose

outcomes are to be compared. For example, in the context of software modeling, an

example of a controlled experiment could be to measure effort required by two techniques,

which are developed to solve a particular modeling problem, such as modeling non-

functional properties.

12

3 Automated Model-based Robustness Testing

Modeling software functional behavior has always been an important focus of the

modeling community to support many development activities such as model-based testing

(MBT) and automated code generation. Regarding MBT, which is the specific focus of this

thesis, much less attention has been given to modeling non-functional behavior such that

the testing of non-functional properties (e.g., safety and robustness) can be automated.

Though several UML profiles have been proposed to address the modeling of non-

functional properties (including the UML profile for QoS and Fault Tolerance [15], the

MARTE profile [8], and UMLSec [61]), it is not yet clear whether they can fully support

test automation.

The main motivation of this thesis is to provide a complete solution to MBRT and in

this respect Figure 3 provides an overview of its contributions. Overall the thesis can be

divided into two main parts: robustness modeling and robustness testing.

Figure 3 Scope of the thesis

3.1 Modeling Robustness Behavior

Robustness behavior is typically crosscutting many parts of the system functional behavior

and, as a result, modeling such behavior directly within the functional models is not

practical since it leads to many redundancies and hence results in large, cluttered models.

To cope with this issue, we decided to adopt Aspect-Oriented Modeling (AOM) [27],

which provides Separation of Concerns (SoC) during design modeling. Crosscutting

concerns are modeled as aspect models and are woven into a primary model (base model),

modeling non-crosscutting concerns (e.g., nominal functional behavior). AOM can

13

potentially offer several benefits such as: 1) enhanced modularization, 2) easier evolution

of models, 3) increased reusability, 4) reduced modeling effort, and 5) improved

readability [27, 37].

Our aim is to provide a complete solution in terms of both aspect and state machine

features necessary for MBRT. Furthermore, we want to minimize the effort involved in

learning a new language over standard UML and enable automated MBT. To achieve this,

we developed a RobUstness Modeling Methodology (RUMM) to model robustness

behavior using AOM and assessed it on an industrial case study involving a commercial

videoconferencing system. Such studies are rare in the research literature and are rarely run

and reported in a satisfactory manner [62]. To the knowledge of the authors, only a few

industrial applications of AOM have been reported to date [31, 63-65] and had very

different objectives than RUMM. The core of RUMM is the definition of a UML state

machine profile for AOM: AspectSM (shown as a white artifact in Figure 3 in

RobustnessModeling). We limited our profile to UML state machines as: 1) They are the

main notation currently used for model-based test case generation [66] and are particularly

useful in control and communication systems, 2) Like it is often the case, our industrial

case study exhibits state-based behavior so that it is natural to initially provide support for

UML state machines. The profile can, however, be extended to other UML diagrams in the

future, following similar principles. We rely on developing a profile instead of developing

a domain specific language since, in our case study context as in many others, minimizing

extensions to UML is expected to ease practical adoption. Modelers of functional aspects

of the system can be different from the ones specifying its robustness behavior. The latter

make use of AspectSM to model aspect state machines.

Additionally, we evaluated the “readability” of state machines when modeling

crosscutting behavior using AspectSM. Readability is indirectly measured through defect

identification and fixing rates in state machines, and the scores obtained when answering a

comprehension questionnaire about the system behavior. With AspectSM, crosscutting

behavior is modeled using so-called “aspect state machines”. Their readability is compared

with that of system state machines directly modeling crosscutting and standard behavior

together. An initial controlled experiment and a much larger replication were conducted

with trained graduate students, in two different institutions and countries, to achieve the

above objective. We used two baselines of comparisons—standard UML state machines

without hierarchical features (flat state machines) and standard state machines with

hierarchical/concurrent features (hierarchical state machines).

14

Another important part of the RUMM is another UML profile (RobustProfile) shown as

a white artifact in Figure 3, based on the fault taxonomy defined by [67] and the IEEE

standard classification for anomalies [7]. The profile is used by a robustness modeler to

develop aspect state machines and is defined specifically to assist in defining test strategies

for robustness testing. In addition, the profile helps generating test scripts based on classes

of faults modeled using the profile. Once again, the profile is defined on UML state

machines, as they are the main focus of this paper. We follow the widely accepted and

used definitions in [67] for faults and failures. A fault is an incorrect state of a system or its

environment in the presence of which the system cannot provide a correct service. Such

deviation from the correct service is called a failure. A fault type is identified based on a

fault taxonomy (white artifact in Figure 3) and the UML profile MARTE is used to model

it in a UML class diagram (AspectClassDiagram, dark grey artifact in Figure 3). In a

subsequent step, aspect class diagrams are used to model actual faulty behavior as aspect

state machines (AspectStatemachines) using both AspectSM and RobustProfile.

The aspect state machines developed with RUMM, and more specifically using

AspectSM, are woven into the base state machine by a weaver. Ordering between different

aspect state machines is specified using a weaving-directive state machine, which is a

standard UML state machine with control flow features. The weaver reads the base state

machine, aspect state machines, and a weaving-directive state machine and produces a

woven state machine. The weaver is developed using Kermeta [9], which is a

metamodeling language [68] that allows manipulating models by defining transformation

rules at the metamodel level. Kermeta conforms to OMG’s metamodeling language

Essential Meta Object Facility (EMOF) and Ecore [68]. Figure 4 shows the architecture of

the weaver by using transformations in Kermeta to weave one or more aspect state

machines into a base state machine. The AspectSM profile is defined on the UML 2.0

metamodel. An aspect state machine is defined as a UML 2.0 state machine by applying

the AspectSM profile. A base state machine is a standard UML 2.0 state machine.

Transformations rules in Kermeta are defined on the UML 2.0 metamodel and the

AspectSM profile. Finally, the Kermeta engine uses the transformation rules that read an

aspect state machine and the base state machine and weaves the aspect state machine into

the base state machine. The Kermeta engine then produces a woven state machine, which

is again an instance of the UML 2.0 metamodel, since the woven state machine is a

standard UML 2.0 state machine. The woven state machines can then be used as input for

the TRansformation-based tool for Uml-baSed Testing (TRUST) (Section 3.2). The

15

weaver is fully automated and does not require any additional inputs from the user apart

from aspect state machines and a base state machine.

Figure 4 Aspect weaver implemented in Kermeta

 Finally the woven state machines produced by the weaver are in turn used by the

TRUST tool [69] to generate executable test cases. Other MBT tools such as Conformiq

Qtronic [44] and CertifyIt [15] cannot be used in our context for robustness test case

generation since the woven state machines contain concepts from RobustProfile (Section

3.1), which facilitates defining specialized robustness coverage criteria for robustness test

case generation.

3.2 Model-based Robustness Testing

The second main contribution of this thesis is Model-Based Robustness Testing (MBRT).

As it can be seen in Figure 3, test cases are generated with TRUST. It is an MBT tool,

which was initially developed for functional model-based testing. The tool was developed

by using a software architecture and implementation strategy that can easily facilitate its

customization to different contexts by supporting extensible features such as input models,

test models, coverage criteria, test data generation strategies, and test script languages

(Figure 5). For example, the tool is extensible with respect to coverage criteria if it lets the

user select among several coverage criteria such as all transitions and all round trip path

coverage criteria [48].

To generate robustness test cases with TRUST, we needed to solve complex OCL

constraints on the properties of the environment emulating faulty situations. These

constraints must be solved during test case generation to set the environment properties in

such a way as to trigger faulty situations. To efficiently solve these constraints, we

16

developed a search-based OCL constraint solver [70], since current OCL solvers were not

able to handle the complexity of our model’s constraints within reasonable time. Figure 6

shows the architecture diagram for our Search-based Constraint solver. The tool is

developed in Java, and it interacts with an existing library, an OCL evaluator called the

EyeOCL Software (EOS) [19]. EOS is a Java component that provides APIs to parse and

evaluate an OCL expression based on an object model. Our constraint solver implements

the heuristics (e.g., branch distance) that were defined for various expressions in OCL. To

calculate the branch distance for an OCL expression, the expression is sent to EyeOCL for

parsing, which returns a parse tree of the expression. The parse tree is further manipulated

such that a branch distance can be calculated, which heuristically tells how far input data

are from satisfying a constraint. The manipulated tree is reconstructed as an OCL

expression. The reconstructed expression is sent to EyeOCL with the current set of values

for variables in the expression and a branch distance is obtained. The search algorithms

were also implemented in Java and includes Genetic Algorithms, (1+1) Evolutionary

Algorithm, and Alternating Variable Method [70].

Figure 5 Details on the TRUST tool

Figure 6 Architecture of OCL constraint solver

17

Finally, TRUST generates test cases in Python, which is used as a test script language

by our industry partner (Cisco Systems, Norway). To execute generated robustness test

cases, a test setup is needed to execute them. Figure 7 shows the test execution setup for

executing robustness test cases generated by TRUST. The current setup involves Saturn,

which is the system under test (SUT) and three video conferences systems (VCSs). Since

the execution of test cases requires emulating faulty situations in the environment, we

needed a network emulator. For this purpose, a software-based emulation facility (netem

[71]) is used. The setup of network emulator requires setting up a PC with three network

interface cards (NICs). All communication to/from Saturn (SUT in Figure 7) passes

through NetworkEmulator. Saturn is connected to NIC3 of NetworkEmulator and all

incoming and outgoing traffic from Network comes through NIC1. NIC1 is bridged to

NIC3 and hence all the traffic goes to Saturn via NIC3. Our test case execution system is

directly connected to NIC2 of NetworkEmulator and through this NIC all faulty situations

in the network are introduced by test scripts. All other communication from the test

execution system to SUT and VCSs takes place through NIC2 of NetworkEmulator. This

separation was necessary because if the faulty situations are introduced via the same NIC

as other communication flows, we might end up affecting the commands that introduce

faulty situations. Thus, we may end up not introducing faulty situations at all.

Figure 7 Test execution setup for robustness test execution

18

4 Research Methodology

This section of the thesis presents the research methodology that was followed in this

thesis. The methodology is explained with the help of different research activities which

are shown in Figure 8.

Figure 8. Research activities conducted in the thesis

19

4.1 Identification of a Research Problem

To ensure practical relevance, the thesis initiated with the identification of a research

problem in an industrial setting, where in our case the industrial partner was Cisco

Systems, Norway. More specifically, it involved the division of Cisco that develops video

conferencing systems. The process included several discussions with a test manager and

testing team members at Cisco. The current testing activities at Cisco were discussed along

with the problems and challenges faced, while conducting testing. After several detailed

discussions, it was decided that robustness testing was a high impact problem and that

providing support for MBT was a priority, with a focus on MBRT in this thesis.

4.2 Conducting a Systematic Review

After identification of the research problem with our industry partner, we decided to

conduct a systematic review on SBST. We decided so because MBT, although making

testing very systematic and thorough, nevertheless requires sophisticated automation

techniques. For instance, to automate test script generation, test data are required to be

generated such that test cases can be executed without any human intervention. More

specifically, in the context of MBRT, constraints on the environment of a SUT must be

solved to automate faulty situations in the environment. The application of search-based

heuristics for MBT has received significant attention recently (e.g., [53], [72]) and proved

to be very beneficial in automating many parts of MBT such as test data generation [52,

70, 73] and test case selection [74, 75]. The systematic review on SBST helped us to

understand the existing literature on SBST and helped us to identify how to properly

conduct and report experiments involving search algorithms.

4.3 Functional MBT

This activity is the foundation for MBRT since robustness testing is not possible without

conducting functional MBT. Robustness testing is indeed concerned with testing the

behavior of a system, when something unexpected happens in its operating environment.

This activity was performed in collaboration with two other PhD students and is not

included as a contribution of this thesis. The activity involves three steps, which are

discussed below:

4.3.1 Development of Functional MBT Methodology

We proposed a methodology for developing MBT tools, TRansformation-based tool for

Uml-baSed Testing (TRUST). The methodology facilitates its customization to different

20

contexts by supporting extensible features such as input models, test models, coverage

criteria, test data generation strategies, and test script languages. For example, the tool is

extensible with respect to coverage criteria if it lets the user easily incorporate new

coverage criteria (e.g., all transitions and all round trip path coverage criteria [48]) with

minimum changes to the existing tool .

The approach that we have taken for implementing TRUST (Figure 9) is based on

model transformations. The idea (inspired by Model-Driven Architecture (MDA) [12]

concepts), is to generate a test model using a series of horizontal (endogenous and

exogenous) model–to-model transformations on an input design model, modeling the

Platform Independent Model (PIM) [12] of a system. Then, a vertical, exogenous model–

to-text transformation is used to generate test scripts.

Figure 9 Model transformation-based approach for test case generation

4.3.2 Tool Support

We instantiated TRUST for UML state machines as 1) they are the main notation currently

used for model-based test case generation [47] and are particularly useful in control and

communication systems, 2) our industrial case study exhibits state-based behavior so that it

is natural to provide support for UML state machines. The tool can, however, be

instantiated to other UML diagrams in the future, following similar principles. The tool

accepts UML 2.0 state machines with a support for concurrency and hierarchy. Constraints

on state machines are written in OCL because it is an OMG standard for writing

constraints on UML diagrams. Furthermore, the general model transformation-based

approach, given in Figure 9, is instantiated on UML 2.0 state machines, as shown in Figure

10.

21

4.3.3 Evaluation of TRUST

As the aim of our approach is to provide a framework that allows instantiating new,

context specific MBT tools by extending TRUST with customized features, such as input

models, test models, coverage criteria, test data generation strategies, and test script

languages. To demonstrate the extensibility of TRUST, we instantiated two tools for two

industry partners, by extending TRUST with different test models, coverage criteria, and

test scripting languages. On the basis of these case studies, we also evaluated the costs,

challenges, and likely benefits of using TRUST in industrial case studies.

The companies where the case studies took place are international leaders in their

respective fields. In both case studies, the models represent the state behavior of real world

systems and the generated test cases are executable on the companies’ testing platforms.

The first company is Cisco Systems, Norway, whereas the name of the second company is

not disclosed due to confidentiality restrictions. Both state machines are complemented by

constraints specifying state invariants, which will be useful to derive automated test

oracles. The first case study is the core subsystem of a video conferencing system, whereas

the second case study is a safety monitoring component in a safety-critical control system.

Both cases are suitable choices since these systems exhibit a complex state-based behavior

that can be modeled as UML state machines.

Figure 10 Model transformation-based approach for TRUST when configured for state machines

22

4.4 Robustness Modeling

This section describes the contributions of this thesis for robustness modeling. First, a

brief overview of methodology is presented in Section 4.4.1, followed by automation in

Section 4.3.2, and finally empirical evaluation in Section 4.4.3.

4.4.1 Methodology

To model robustness behavior, a novel solution is devised, i.e., RobUstness Modeling

Methodology (RUMM) which (1) is complete in terms of aspect and state machine

features, (2) minimizes the learning curve over standard modeling skills, and (3) enables

automated MBT. The RUMM methodology (Section 3.1) is suitable for systems which

implement substantial robustness behavior to deal with faulty situations in the

environment, such as communication and control systems.

4.4.2 Tool Support

To automatically weave aspect state machines modeled using AspectSM for automated test

case generation with TRUST, we developed a weaver whose details are provided in

Section 3.1.

4.4.3 Empirical Evaluation

The empirical evaluation of robustness modeling is conducted based on an industrial case

study and two controlled experiments, which are briefly discussed below.

Industrial case study: RUMM is applied to an industrial case study, which is part of a

project aiming at supporting automated, model-based robustness testing of a core

subsystem of a video conference system (VCS) called Saturn [76]. The core functionality

to be modeled manages the sending and receiving of multimedia streams. Audio and video

signals are sent through separate channels and there is also a possibility of transmitting

presentations in parallel with audio and video. Presentations can be sent by only one

conference participant at a time and all others receive it. To demonstrate the applicability

of RUMM, this particularly important subsystem (Saturn) was modeled and other

functionalities of the VCS were left out. This subsystem was selected because robustness

testing is concerned with testing the behavior of VCS in the presence of abnormal

environment situations, which can only be tested when the VCS is in a conference call with

other systems, which is what Saturn manages. Saturn is complex enough to demonstrate

the applicability and usefulness of RUMM while still remaining manageable in the context

of a case study.

23

Controlled experiments: Two controlled experiments (one initial experiment and its large

scale replication) were conducted to evaluate the “readability” of state machines modeling

crosscutting behavior using AOM, in our context AspectSM. “Readability” means the ease

with which state machines can be understood, analyzed, and changed by a human to

perform various tasks. Models developed with AspectSM are compared with UML state

machines modeling crosscutting behavior directly. The two controlled experiments were

conducted in two different geographical locations (Pakistan and China) and used two case

study systems. One of the case study systems was adapted from an actual system

developed by Cisco Systems, Norway.

4.5 Robustness Testing

In this section, research activities in terms of a methodology (Section 4.5.1), tool support

(Section 4.5.2), and empirical evaluation (Section 4.5.3) for robustness testing are

presented.

4.5.1 Methodology

Test data generation is an important component of any MBT automation. For UML

models, with constraints in OCL, test data generation is a non-trivial problem. A few

approaches in the literature address this issue. But most of them targets only a small subset

of OCL [73, 77], are not scalable, or lack proper tool support [78]. This is a major

limitation when it comes to the industrial application of MBT approaches that use OCL to

specify constraints on models. To overcome these limitations, this thesis reports on a set of

novel heuristics for the application of search-based techniques, such as Genetic Algorithms

(GAs), (1+1) Evolutionary Algorithm (EA), and Alternating Variable Method (AVM), to

solve OCL constraints in order to generate test data. In this context, OCL constraints on the

environment are solved to emulate faulty situations and perform robustness testing.

4.5.2 Tool Support

To automated test data generation, a tool was developed in Java, whose details are

provided in Section 3.2. In addition, the TRUST tool is extended for robustness testing

since the existing version of the tool only supported for functional testing.

4.5.3 Empirical Evaluation

Empirical evaluation of OCL solver: In our case study, test data generation using constraint

solving for MBRT of the VCS was targeted. Testing is performed at the system level and

specifically focused on robustness faults, for example related to faulty situations in the

24

network and other systems that comprise the environment of the SUT. Test cases are

generated from the system state machines using TRUST [76] as discussed in Section 4.3.

To execute test cases, appropriate data were needed for state variables of the system, state

variables of the environment (network properties and in certain cases state variables of

other VCS), and input parameters that may be used in the following UML state machine

elements: (1) guard conditions on transitions, (2) change events as triggers on transitions,

and (3) inputs to time events.

Empirical evaluation of TRUST for Robustness: TRUST for robustness testing was applied

to the industrial case study of a Cisco VCS. Robustness test cases were generated using the

extended TRUST (Section 4.5.2). OCL constraints on the environment were solved using

our search-based constraint solver (Section 4.5.2) to introduce faulty situations in the

environment. The test cases were executed using the setup presented in Section 3.2.

25

5 Summary of Results

In this section, a summary and the key results of the papers submitted as part of this thesis

are presented.

5.1 Paper 1

“A Systematic Review of the Application and Empirical Investigation of Search-based

Test-Case Generation”, S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege, in

the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp. 742-762, 2010.

In this paper, we answered the following research questions via a systematic review.

RQ1: What is the research space of search-based software testing?

In the context of search-based software testing, most of empirical studies have used

Genetic Algorithms, Simulating Annealing, and their various extensions to automate test

case generation at the unit testing level. A few of the papers target specific application

domains and the most frequently observed domains were real-time and embedded systems.

Most of the papers defined test cases as test data (or test input) and did not target any

specific faults. The papers that did not target any specific faults, aimed to achieve a

specific coverage of a test model, thus indirectly targeting certain types of faults (models

are used as automated oracles). The most frequently observed test model was the control

flow graph, where a variety of control flow-based criteria were applied to generate test

cases.

RQ2: How are the empirical studies in search-based software testing designed and

reported?

In our context, defining good and relevant cost and effectiveness measures is a prerequisite

for a useful empirical study. Almost all of the papers use appropriate (though not perfect)

cost and effectiveness measures to perform empirical studies. However, there were two

major problems in the majority of the papers. First, most of the papers do not account for

the random variation in cost and effectiveness of SBST techniques. Even the majority of

the papers that did account for the random variation did not use proper data analysis and

reporting methods (descriptive statistics and statistical hypothesis testing). Thus, there is a

general lack of rigor in the statistical analysis and reporting of results in most empirical

26

studies assessing the use of search algorithms for test case generation. Second, most of the

papers did not demonstrate the benefits of SBST by comparing it with simpler, techniques

such as random search or hill climbing. These two factors are highly important for yielding

interpretable empirical studies in the context of test case generation using SBST

techniques. Furthermore, many other relevant aspects of empirical studies such as

reporting of validity threats, definition of formal hypotheses, object selection strategy, and

data collection methods are not reported by most of the papers. We concluded that most

empirical studies in the context of test case generation using SBST techniques are still not

properly conducted and reported. Improving this situation should be an important objective

of the research community in future studies.

RQ3: How convincing are the reported results regarding the cost, effectiveness, and

scalability of search-based software testing techniques?

We found that the number of papers which contain well-designed and reported empirical

studies in the domain of test case generation using SBST is very small. As a result, there is

a limited body of credible evidence that demonstrates the usefulness of SBST techniques

for test case generation. This evidence is, in addition, very partial as it mostly focuses on

the use of Genetic Algorithms at the unit testing level. This evidence, however,

consistently shows that the Genetic Algorithms outperform random search in terms of

structural coverage. More empirical studies must be conducted to provide strong and

generalizable evidence about the suitability and applicability of different search algorithms

for test case generation at different testing levels and for test objectives other than

structural coverage.

5.2 Paper 2

S. Ali, L. Briand, and H. Hemmati. Modeling Robustness Behavior Using Aspect-Oriented

Modeling to Support Robustness Testing of Industrial Systems, Accepted for publication in

the Journal of Software and Systems Modeling, Springer, 2011.

Model-based robustness testing requires, precise and complete behavioral, robustness

modeling. For example, state machines can be used to model software behavior when

hardware (e.g., sensors) breaks down and given in input to a tool to automate test case

generation. But robustness behavior is a crosscutting behavior and, if modeled directly,

27

often results in large, complex state machines. These in practice tend to be error-prone and

difficult to read and understand. As a result, modeling robustness behavior in this way is

not scalable for complex industrial systems. To overcome these problems, AOM can be

employed to model robustness behavior as aspects in the form of state machines

specifically designed to model robustness behavior. In this paper, we presented a

RobUstness Modeling Methodology (RUMM) that allows modeling robustness behavior as

aspects. Our goal was to have a complete and practical methodology that covers all

features of state machines and aspect concepts necessary for model-based robustness

testing. At the core of RUMM is a UML profile (AspectSM) that allows modeling UML

state machine aspects as UML state machines (aspect state machines). Such an approach,

relying on a standard (UML) and using the target notation (State machines) as the basis to

model the aspects themselves, is expected to make the practical adoption of aspect

modeling easier in industrial contexts.

We have used AspectSM to model the crosscutting robustness behavior of an industrial

videoconferencing system developed by Cisco Systems, Norway. The results of the

application of the case study are summarized as follows:

Reduced modeling effort: Overall, results on the industrial case study suggested that the

modeling effort can be significantly reduced when using aspect state machines for

modeling crosscutting behavior using AspectSM. While modeling various crosscutting

behaviors on a complete industrial case study, by analyzing the number of modeling

elements involved in various models, we estimated the saved modeling effort to be around

98% on average.

Enhanced separation of concerns: Modeling crosscutting behavior in UML state

machines provides enhanced separation of concerns. This means that a modeler, or several

of them with possibly different expertise, can focus on each crosscutting concern

separately and therefore model them separately from the core functionality and other

crosscutting concerns. This is very important for our industrial partner since they have

separate groups for different kinds of testing activities including functional testing, video

testing, audio testing, and network testing. Using our methodology each group can model

aspects which are related to their expertise and our tool can then be used to automatically

weave these aspects with the behavioral base models (models developed by the functional

testing group).

Systematic fault modeling: Using RUMM, we systematically identified possible classes

of faults for a specific SUT based on the proposed fault taxonomy. Furthermore, we

28

instantiated specific fault types from the identified classes, which were considered critical

in the SUT environment.

5.3 Paper 3

S. Ali, T. Yue, and L. Briand Does Aspect-Oriented Modeling Help Improve the

Readability of UML State Machines?, Submitted to Systems and Software Modeling

Journal (SOSYM), 2011

In this paper, the “readability” of state machines when modeling crosscutting behavior

using AOM, and more specifically AspectSM (Paper 2), was evaluated. Readability is

indirectly measured through defect identification and fixing rates in state machines, and the

scores obtained when answering a comprehension questionnaire about the system

behavior. With AspectSM, crosscutting behavior is modeled using so-called “aspect state

machines”. Their readability is compared with that of system state machines directly

modeling crosscutting and standard behavior together. An initial controlled experiment and

a much larger replication were conducted with trained graduate students, in two different

institutions and countries, to achieve the above objective. Two baselines of comparisons—

standard UML state machines without hierarchical features (flat state machines) and

standard state machines with hierarchical/concurrent features (hierarchical state machines)

—were used.

Results showed that the defect identification and defect fixing rates of aspect state

machines are significantly higher than the ones for the hierarchical and flat state machines.

For instance, for the industrial case study in the replication, aspect state machines showed,

on average, increases of 28% and 19% in defect identification rates when compared to

hierarchical and flat state machines, respectively. This is most likely due to the fact that

aspect state machines are less complex than hierarchical and flat state machines in terms of

modeling elements such as states and transitions. But on the other hand, aspect state

machines can be potentially difficult to comprehend in terms of mentally processing how

an aspect is woven into its base state machine. This may explain why, based on subjects’

responses to a comprehension questionnaire, results showed that the subjects that were

given hierarchical state machines outperformed the ones that were assigned aspect state

machines, though that difference was not statistically significant with the employed

statistical tests at the chosen significance level (0.05). No significant difference in effort

29

was observed between any types of state machines in both defect identification and

comprehension. Based on the results, our practical recommendation is to model

crosscutting behaviors using aspect state machines in combination with

hierarchical/concurrent features of UML state machines, where applicable, in order to

improve the overall readability of crosscutting behaviors.

5.4 Paper 4

S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand. Solving OCL Constraints for Test Data

Generation in Industrial Systems with Search Techniques, Submitted to TOSEM, 2011.

This paper is a journal extension of the following paper:

S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand. A Search-based OCL Constraint Solver for

Model-based Test Data Generation, In: Proceedings of the 11th International Conference

On Quality Software (QSIC 2011), pp. 41-50, IEEE, 2011.

Test data generation is an important component of MBT automation. For UML models,

with constraints in OCL, test data generation is a non-trivial problem. A few approaches in

the literature exist that address this issue. But most of them, either target only a small

subset of OCL [73, 77], are not scalable, or lack proper tool support [78]. This is a major

limitation when it comes to the industrial application of MBT approaches that use OCL to

specify constraints on models.

This paper presented a contribution by devising novel heuristics for the application of

search-based techniques, such as Genetic Algorithms (GAs) and (1+1) Evolutionary

Algorithm (EA), to solving OCL constraints (covering the entire OCL 2.2 semantics [10])

in order to generate test data. A search-based OCL constraint solver is implemented and

evaluated on the first reported, industrial case study on this topic. The following research

questions were addressed in this paper:

RQ1: Are search-based techniques effective and efficient at solving OCL constraints

in the models of our industrial case study?

The results showed that (1+1) EA outperformed both RS and GA, whereas GA

outperformed RS. We can observe that, with an upper limit of 2000 iterations, (1+1) EA

achieved a median success rate of 80% but GA did not exceed a median of roughly 60%.

All success rates for (1+1) EA were above 50% and most of them were close to 100%.

Constraints with the lowest success rates were seven and eight clauses long. Even taking

30

the lowest success rates for the most difficult constraints, which was 50%, this would entail

that, with r runs of (1+1) EA, we would achieve a success rate of 1 - (1 - 0.5)r. For

example, with r = 7, we would obtain a success rate above 99%. This entails a computation

time of approximately 3.8*7=27 minutes since it took on average 3.8 minutes for 2000

iterations. Given that we used a slow prototype (EyeOCL [19]) for OCL expression

analysis and that we could easily parallelize the search on a cluster or a network of

computers, our results suggested that our approach is effective, efficient, and therefore

practical, even for difficult constraints.

RQ2: Among the considered search algorithms, which one performs best in solving

OCL constraints?

The results showed that there is statistically strong evidence to claim that (1+1) EA is

significantly more successful than the other analyzed algorithms, i.e., GA and RS.

In the journal version, there were the following differences:

1. Additional heuristics for various OCL operations were presented, which were

absent from Paper 4.

2. The industrial case study was extended and 10 new constraints were included. In

addition, more rigorous empirical evaluation was performed, where results of each

individual constraint were discussed and evaluated.

3. Comparison with the most relevant existing work in literature was augmented. All

industrial problems were run and compared with the corresponding tool.

4. A new empirical evaluation was presented, where individual heuristics were

evaluated using additional artificial problems.

5. A new search algorithm, Alternating Variable Method (AVM), was added in the

empirical evaluations.

The following research questions were answered:

RQ1: Are search-based techniques effective and efficient at solving OCL constraints

in the models developed for our industrial case study?

The results show that AVM not only outperformed all the other three algorithms, i.e., (1+1)

EA, RS, and GA but in addition achieved a consistent success rate of 100%. (1+1) EA

outperformed GA and RS and achieved an average success rate of 98%. Finally, GA

outperformed RS, whereas GA achieved an average success rate of 65% and RS attained

an average success rate of 49%. With an upper limit of 2000 iterations, (1+1) EA achieved

31

a median success rate of 98% and GA exceeded a median of roughly 80%, whereas RS

could not exceed a median of roughly 45%. All success rates for (1+1) EA were above

90% and most of them were close to 100%.

RQ2: Among the considered search algorithms (AVM, GA, (1+1) EA), which one

fared best in solving OCL constraints and how do they compare to RS?

The results suggested that AVM has more chances of success than GA. Similar results

were observed for (1+1) EA, which significantly outperformed GA. For AVM vs RS, for

almost all of the problems and in particular the most complex ones, AVM performed

significantly better than RS. Similar results were observed for (1+1) EA vs RS and GA vs

RS, where both (1+1) EA and GA significantly outperformed RS.

RQ3: Does the optimized branch distance calculation improve the effectiveness of

search?

In this research question, we empirically evaluated whether the fine grained fitness

functions (optimized branch distance calculation we proposed) for various OCL operations

really improve performance of search algorithms as compared to using simple branch

distance functions, yielding 0 if an expression is true and k otherwise. The results showed

that (1+1) EA and AVM with optimized branch distance calculations significantly

improved their success rates. In worst cases, when there were no differences in success

rates, (1+1) EA and AVM took significantly less iterations to solve the problems.

5.5 Paper 5

S. Ali, L. Briand, A. Arcuri, and S. Walawege. An Industrial Application of Robustness

Testing using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms, In:

ACM/IEEE 14th International Conference on Model Driven Engineering Languages and

Systems (Models 2011), ACM/IEEE, 2011.

This paper reported our successful application of MBRT in an industrial case study. We

reported on our overall experience of performing MBRT on video conferencing systems

developed by Cisco Systems, Norway. We discussed how we developed and integrated

various techniques and tools which were discussed in Paper 2 to Paper 5 to achieve a fully

automated MBRT that is able to detect previously uncaught, critical software faults in

those systems. We provided an overview of how we achieved scalable modeling of

32

robustness behavior using aspect-oriented modeling (Paper 2 and Paper 3), test case

generation using search algorithms (Paper 4 and Paper 5), and environment emulation for

test case execution. Our experience and lessons learned further identified challenges and

open research questions to better support the industrial application of MBRT. Our

preliminary experiments revealed one critical robustness fault in a deployed version of a

videoconference system.

33

6 Future Directions

In this section, we discuss possible future directions, based on the two main parts of thesis,

i.e., robustness modeling and robustness testing.

As we discussed, our robustness modeling methodology (RUMM) was specifically

developed for modeling robustness behavior to facilitate automated model-based testing.

While developing the methodology, we took into consideration only those issues which are

relevant for modeling the behavior of a system in the presence of faulty situations in the

environment. We have not investigated whether other non-functional crosscutting

concerns, such as security and dependability, can be successfully modeled using RUMM or

an adapted version of it. The reason is that RUMM starts with modeling faults based on a

fault taxonomy for the system environment, which may not be necessary, for instance,

when modeling security concerns such as logging. In addition, since RUMM is developed

for model-based testing, we only considered issues which are important to support

automated testing. For instance, we focused on UML state machines, which are often used

for automated testing in control and communication systems as they typically exhibit state-

driven behavior. We also focused on modeling crosscutting behavior on those modeling

elements of state machines that are mandatory to support test automation such as states

(including state invariants, entry, exit, and do activities) and transitions (including guard,

trigger, and effect). In AspectSM, we write pointcuts as OCL queries, and we have not yet

empirically evaluated and compared their expressiveness when using other related

languages and notations such as the one presented in [37]. We used OCL to write pointcuts

as it is the only standard for writing constraints in UML models, an important advantage in

industrial contexts. Last, our work for defining interactions and ordering between different

aspect state machines still requires further investigation. In the future, we will investigate

to which extent our profile is applicable for other types of crosscutting behaviors to be

modeled as state machines. In addition, we need to investigate the effort required by

developers and testers to learn and apply RUMM. A series of controlled experiments and

case studies are required for this purpose, which we are planning to conduct in the future.

Our work on modeling interactions and ordering between various aspects still needs further

investigation and evaluation. Currently, we only evaluated the readability of AspectSM

using controlled experiments. In the future, we are planning to replicate the experiment to

study the readability of aspect state machines in the presence of interactions between

34

aspects as well as compare the understandability, modeling effort, and quality of aspect

state machines with flat and hierarchical state machines.

For robustness testing, we needed to model faulty situations in the network, media

streams, and VCSs communicating with a VCS under test (VUT). To date, we

experimented only with emulating faulty situations in the network, which is just one aspect

of the environment. Although we have already modeled the faulty situations in media

streams (e.g., echo in audio and miss-synchronization between audio and video) [7], we do

not have an appropriate media stream emulator yet. In addition to the media stream

emulator, we also need to update our test script generator to generate test scripts that will

control the media streams emulator during test case execution. For emulating faulty

situations in other VCSs communicating with the VUT, we have not yet modeled the VCSs

from that perspective. But we do expect that the models of the VCSs should be quite

similar to the models of VUT, except for the need to select test paths from the models that

will trigger faulty situations. For this purpose, we do have software-based emulators for

VCSs, which can be utilized to emulate faulty situations during test case execution.

Finally, we are planning to extend the TRUST tool with more sophisticated test

strategies specifically tailored to discovering robustness faults in a VCS. We also plan to

perform robustness testing in the presence of faulty situations in other aspects of the

environment such as in media streams and VCSs.

35

7 Conclusion

This thesis reported a scalable, automated, and systematic Model-Based Robustness

Testing (MBRT) approach, whose scalability and applicability is thoroughly evaluated in

realistic settings. We discussed how we integrated different tools and techniques to achieve

the ultimate goal of automated and systematic MBRT. First, we addressed how we

achieved scalable modeling of robustness behavior using Aspect-oriented Modeling

(AOM) and more specifically using the AspectSM profile. AspectSM is a UML profile

specifically designed to model robustness behavior with minimum extensions to UML to

ease practical adoption. We also provided details on the weaver for AspectSM. Second, we

provided details on the use of search algorithms (e.g., Genetic Algorithms) to solve

complex constraints on environmental properties, expressed with the standard Object

Constraint Language (OCL), to emulate faulty situations. Third, we described the

integration of the abovementioned tools with our model-based testing tool

TRansformation-based tool for Uml-baSed Testing (TRUST) to achieve fully automated

MBRT. Finally, we discussed the setup required to execute the test cases generated by

TRUST whose execution revealed a critical robustness fault in an industrial, deployed

video conferencing system (VCS) that had remained undetected by previous testing.

Failures were triggered in the presence of duplicate packets in the network during a

videoconference. We also reported various empirical studies that we performed to evaluate

our proposed solutions, such as the evaluation of robustness modeling using two controlled

experiments and one industrial case study, the evaluation of our search-based constraint

solver using one industrial case study, and the evaluation of robustness testing using one

industrial case study. Results showed that our modeling methodology can significantly

reduce modeling effort (on average 98%), improve separation of concerns, improve

readability, and ease model evolution. In addition, our OCL constraint solving heuristics

turned out to be very effective and efficient, and significantly better than existing works in

the literature. Furthermore, preliminary experiments with our robustness testing

methodology revealed one critical robustness fault in a deployed VCS.

36

References for the Summary

[1] Artemis, http://artemis-ju.eu/embedded_systems, 2011
[2] "IEEE Standard Glossary of Software Engineering Terminology," IEEE, IEEE Std

610.12-19901990.
[3] "IEEE Standard Dictionary of Measures of the Software Aspects of Dependability,"

IEEE Std 982.1-2005 (Revision of IEEE Std 982.1-1988), pp. 1-34, 2006.
[4] "Standard for Software Quality Characteristics," International Organization for

Standardization, ISO-9126-32003.
[5] "Software Assurance Standard," NASA Technical Standard, NASA-STD-

8739.82005.
[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic Concepts and

Taxonomy of Dependable and Secure Computing," IEEE Transactions on
Dependable and Secure Computing, vol. 1, pp. 11-33, 2004.

[7] "IEEE Standard Classification for Software Anomalies," IEEE, IEEE Std 1044-
20092009.

[8] Modeling and Analysis of Real-time and Embedded systems (MARTE),
http://www.omgmarte.org/, 2010

[9] Kermeta - Breathe Life into Your Metamodels, http://www.kermeta.org/, 2010
[10] Object Constraint Language Specification, Version 2.2,

http://www.omg.org/spec/OCL/2.2/, 2010
[11] T. Pender, UML Bible: Wiley, 2003.
[12] Meta Object Facility (MOF), http://www.omg.org/spec/MOF/2.0/, 2006
[13] F. Lagarde, H. Espinoza, F. Terrier, C. André, and S. Gérard, "Leveraging Patterns

on Domain Models to Improve UML Profile Definition," in Fundamental
Approaches to Software Engineering, 2008.

[14] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Analysis, Design:
Tim Weilkiens, 2008.

[15] UML Profile for Modeling QoS and Fault Tolerance Characteristics and
Mechanisms, http://www.omg.org/spec/QFTP/1.1/, 2010

[16] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, I. Schieferdecker, and C. Williams,
Model-Driven Testing: Using the UML Testing Profile: Springer, 2007.

[17] IBM OCL Parser, http://www-01.ibm.com/software/awdtools/library/standards/ocl-
download.html, 2010

[18] D. Chiorean, M. Bortes, D. Corutiu, C. Botiza, and A. Cârcu, "OCLE," V2.0 ed,
2010.

[19] M. Egea, "EyeOCL Software," 2010.
[20] CertifyIt, http://www.smartesting.com/index.php/cms/en/product/certify-it, 2011
[21] B. Bordbar and K. Anastasakis, "UML2Alloy: A tool for lightweight modelling of

Discrete Event Systems," in IADIS International Conference in Applied
Computing, 2005.

[22] D. Distefano, J.-P. Katoen, and A. Rensink, "Towards model checking OCL," in
ECOOP-Workshop on Defining Precise Semantics for UML, 2000.

[23] M. Clavel and M. A. G. d. Dios, "Checking unsatisfiability for OCL constraints," in
In the proceedings of the 9th OCL 2009 Workshop at the UML/MoDELS
Conferences, 2009.

[24] M. Kyas, H. Fecher, F. S. d. Boer, J. Jacob, J. Hooman, M. v. d. Zwaag, T. Arons,
and H. Kugler, "Formalizing UML Models and OCL Constraints in PVS,"
Electron. Notes Theor. Comput. Sci., vol. 115, pp. 39-47, 2005.

37

[25] J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. ster, "Translation of Restricted
OCL Constraints into Graph Constraints for Generating Meta Model Instances by
Graph Grammars," Electron. Notes Theor. Comput. Sci., vol. 211, pp. 159-170,
2008.

[26] D. Jackson, I. Schechter, and H. Shlyahter, "Alcoa: the alloy constraint analyzer,"
in Proceedings of the 22nd international conference on Software engineering
Limerick, Ireland: ACM, 2000.

[27] R. Yedduladoddi, Aspect Oriented Software Development: An Approach to
Composing UML Design Models: VDM Verlag Dr. Müller, 2009.

[28] R. France, I. Ray, G. Georg, and S. Ghosh, "Aspect-oriented Approach to Early
Design Modelling," IEEE Software, vol. 151, 2004.

[29] R.Chitchyan, A.Rashid, P. Sawyer, J. Bakker, M. P. Alarcon, A. Garcia, B.
Tekinerdogan, S. Clarke, and A. Jackson, "Survey of Aspect-Oriented Analysis and
Design," Aspect-Oriented Software Engineering Special Interest Group, Lancaster
University, AOSD-Europe-ULANC-9, 2005.

[30] G. Zhang, "Towards Aspect-Oriented State Machines," in 2nd Asian Workshop on
Aspect-Oriented Software Development (AOASIA'06) Tokyo, 2006.

[31] T. Cottenier, A. v. d. Berg, and T. Elrad, "The Motorola WEAVR: Model Weaving
in a Large Industrial Context," in Aspect Oriented Software Development (AOSD),
2007.

[32] J. Evermann, "A meta-level specification and profile for AspectJ in UML," in
Proceedings of the 10th international workshop on Aspect-oriented modeling
Vancouver, Canada: ACM, 2007.

[33] G. Zhang, M. M. Hölzl, and A. Knapp, "Enhancing UML State Machines with
Aspects," in In Proceedings of the 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS), 2007.

[34] J. Zhang, T. Cottenier, A. V. D. Berg, and J. Gray, "Aspect Composition in the
Motorola Aspect-Oriented Modeling Weaver," Journal of Object Technology, vol.
6, 2007.

[35] Z. Jingjun, "Modeling Aspect-Oriented Programming with UML Profile," 2009, pp.
242-245.

[36] J. U. Júnior, V. V. Camargo, and C. V. F. Chavez, "UML-AOF: a profile for
modeling aspect-oriented frameworks," in Proceedings of the 13th workshop on
Aspect-oriented modeling Charlottesville, Virginia, USA: ACM, 2009.

[37] J. Whittle, A. Moreira, J. Araújo, P. Jayaraman, A. Elkhodary, and R. Rabbi, "An
Expressive Aspect Composition Language for UML State Diagrams," in Model
Driven Engineering Languages and Systems, 2007.

[38] J. Whittle and P. Jayaraman, "MATA: A Tool for Aspect-Oriented Modeling Based
on Graph Transformation," in Models in Software Engineering, G. Holger, Ed.:
Springer-Verlag, 2008, pp. 16-27.

[39] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach:
Morgan-Kaufmann, 2007.

[40] D. Xu and W. Xu, "State-based incremental testing of aspect-oriented programs," in
Proceedings of the 5th international conference on Aspect-oriented software
development Bonn, Germany: ACM, 2006.

[41] D. Xu, W. Xu, and K. Nygard, "A State-Based Approach to Testing Aspect-
Oriented Programs," in 17th International Conference on Software Engineering
and Knowledge Engineering Taiwan, 2005.

38

[42] W. Xu and D. Xu, "A Model-Based Approach to Test Generation for Aspect-
Oriented Programs," in First Workshop on Testing Aspect-Oriented Programs,
2005.

[43] D. Xu, W. Xu, and W. E. Wong, "Testing Aspect-Oriented Programs with UML
Design Models," International Journal of Software Engineering and Knowledge
Engineering.

[44] QTRONIC, http://www.conformiq.com/qtronic.php, 2010
[45] T. Weigert and R. Reed, "Specifying Telecommunications Systems with UML," in

UML for Real: Design of Embedded Real-time Systems: Kluwer Academic
Publishers, 2003, pp. 301-322.

[46] J. Perala, "Improving TTCN-3 Test System Robustness Using Software Fault
Tolerance," in Advances in System Testing and Validation Lifecycle, 2009. VALID
'09. First International Conference on, 2009, pp. 48-56.

[47] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior Using
Aspect-Oriented Modeling to Support Robustness Testing of Industrial Systems,"
2011.

[48] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[49] M. Samar, C. B. Lionel, L. Yvan, and P. Massimiliano Di, "Assessing, Comparing,
and Combining State Machine-Based Testing and Structural Testing: A Series of
Experiments," IEEE Transactions on Software Engineering, vol. 99, 2010.

[50] J. Cabot, R. Claris, and D. Riera, "Verification of UML/OCL Class Diagrams using
Constraint Programming," in Proceedings of the 2008 IEEE International
Conference on Software Testing Verification and Validation Workshop: IEEE
Computer Society, 2008.

[51] B. K. Aichernig and P. A. P. Salas, "Test Case Generation by OCL Mutation and
Constraint Solving," in Proceedings of the Fifth International Conference on
Quality Software: IEEE Computer Society, 2005.

[52] M. Alshraideh and L. Bottaci, "Search-based software test data generation for
string data using program-specific search operators: Research Articles," Softw.
Test. Verif. Reliab., vol. 16, pp. 175-203, 2006.

[53] C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, "GA-based Automatic
Test Data Generation for UML State Diagrams with Parallel Paths," Advanced
Design and Manufacture to Gain a Competitive Edge, pp. 147-156, 2008.

[54] L. C. Briand and Y. Labiche, "A UML-Based Approach to System Testing," in
Proceedings of the 4th International Conference on The Unified Modeling
Language, Modeling Languages, Concepts, and Tools, 2001.

[55] L. C. Briand, M. D. Penta, and Y. Labiche, "Assessing and Improving State-Based
Class Testing: A Series of Experiments," IEEE Transactions on Software
Engineering, vol. 30, pp. 770-793, 2004.

[56] M. Harman, S. A.Mansouri, and Y. Zhang, "Search based software engineering: A
comprehensive analysis and review of trends techniques and applications," King’s
College,Technical Report TR-09-032009.

[57] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-Based Test Case
Generation," IEEE Transactions on Software Engineering, vol. 99, 2009.

[58] A. Andrea, "Longer is Better: On the Role of Test Sequence Length in Software
Testing," International Conference on Software Testing, Verification, and
Validation, 2010, pp. 469-478.

39

[59] C. Wohlin, P. Runeson, and M. Höst, Experimentation in Software Engineering: An
Introduction: Springer, 1999.

[60] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
"Systematic literature reviews in software engineering - A systematic literature
review," Information and Software Technology, vol. 51, pp. 7-15, 2009.

[61] J. Jürjens, "UMLsec: Extending UML for Secure Systems Development," in
Proceedings of the 5th International Conference on The Unified Modeling
Language: Springer-Verlag, 2002.

[62] H. Runeson and M. Höst, "Guidelines for Conducting and Reporting Case Study
Research in Software Engineering," Empirical Software Engineering, vol. 14, pp.
131-164, 2009.

[63] A. Aldini, R. Gorrieri, F. Martinelli, and J. Jürjens, "Model-Based Security
Engineering with UML," in Foundations of Security Analysis and Design III. vol.
3655: Springer Berlin / Heidelberg, 2005, pp. 42-77.

[64] J. Péreza, N. Ali, J. A. Carsı´b, I. Ramosb, B. Álvarezc, P. Sanchezc, and J. A.
Pastorc, "Integrating aspects in software architectures: PRISMA applied to robotic
tele-operated systems," Information and Software Technology, vol. 50, pp. 969-
990, 2008.

[65] T. Cottenier, A. v. d. Berg, and T. Elrad, "Stateful Aspects: The Case for Aspect-
Oriented Modeling," in Proceedings of the 10th international workshop on Aspect-
oriented modeling Vancouver, Canada: ACM, 2007.

[66] M. Shafique and Y. Labiche, " A Systematic Review of Model Based Testing
Tools," Carleton University, Department of Systems and Computer Engineering,
Technical Report (SCE-10-04)2010.

[67] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic Concepts and
Taxonomy of Dependable and Secure Computing," IEEE Trans. Dependable
Secur. Comput., vol. 1, pp. 11-33, 2004.

[68] A. Kleppe, Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels: Addison-Wesley Professional, 2008.

[69] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. C. Briand, "Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies," Simula Research Laboratory, Technical Report (2010-
01)2010.

[70] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, "A Search-based OCL Constraint
Solver for Model-based Test Data Generation," in Proceedings of the 11th
International Conference On Quality Software (QSIC 2011), 2011.

[71] "netem," 2011.
[72] R. Lefticaru and F. Ipate, "Functional Search-based Testing from State Machines,"

in Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation: IEEE Computer Society, 2008.

[73] M. Benattou, J. Bruel, and N. Hameurlain, "Generating test data from OCL
specification," Citeseer, 2002.

[74] H. Hemmati, A. Arcuri, and L. Briand, "Reducing the Cost of Model-Based Testing
through Test Case Diversity," in 22nd IFIP International Conference on Testing
Software and Systems (ICTSS), 2010.

[75] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test Case Selection
Approach for Model-Based Testing: An Industrial Case Study," in 18th ACM
SIGSOFT international symposium on Foundations of Software Engineering (FSE):
ACM, 2010.

40

[76] S. Ali, L. Briand, A. Arcuri, and S. Walawege, "An Industrial Application of
Robustness Testing using Aspect-Oriented Modeling, UML/MARTE, and Search
Algorithms," in ACM/IEEE 14th International Conference on Model Driven
Engineering Languages and Systems (Models 2011), 2011.

[77] L. v. Aertryck and T. Jensen, "UML-Casting: Test synthesis from UML models
using constraint resolution," in Approches Formelles dans l'Assistance au
Développement de Logiciels (AFADL'2003), 2003.

[78] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, "Test case automate generation
from uml sequence diagram and ocl expression," in International Conference on
cimputational Intelligence and Security, 2007, pp. 1048-1052.

41

A Systematic Review of the Application and

Empirical Investigation of Search-based Test-

Case Generation

Shaukat Ali, Lionel Briand, Hadi Hemmati, and Rajwinder K. Panesar-Walawege

Published in the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp. 742-

762, 2010

Abstract— Metaheuristic search techniques have been extensively used to automate the

process of generating test cases and thus providing solutions for a more cost-effective

testing process. This approach to test automation, often coined as “Search-based Software

Testing” (SBST), has been used for a wide variety of test case generation purposes. Since

SBST techniques are heuristic by nature, they must be empirically investigated in terms of

how costly and effective they are at reaching their test objectives and whether they scale up

to realistic development artifacts. However, approaches to empirically study SBST

techniques have shown wide variation in the literature. This paper presents the results of a

systematic, comprehensive review that aims at characterizing how empirical studies have

been designed to investigate SBST cost-effectiveness and what empirical evidence is

available in the literature regarding SBST cost-effectiveness and scalability. We also

provide a framework that drives the data collection process of this systematic review and

can be the starting point of guidelines on how SBST techniques can be empirically

assessed. The intent is to aid future researchers doing empirical studies in SBST by

providing an unbiased view of the body of empirical evidence and by guiding them in

performing well designed and executed empirical studies references.

1 Introduction

Software is being incorporated into an ever increasing number of systems and hence it is

becoming increasingly important to thoroughly test these systems. One challenge to testing

software systems is the effort involved in creating test cases that will systematically test the

system and reveal faults in an effective manner. The overall testing cost has been estimated

at being almost fifty percent of the entire development cost [6], if not more. Thus, a logical

response is to automate the testing process as much as possible, and test case generation is

naturally a key part of this automation. A possible strategy which has drawn great interest

42

in the automation of test case generation is the application and tailoring of metaheuristic

search (MHS) algorithms [41]. The main reason for such an interest is that test case

generation problems can often be re-expressed as optimization or search problems.

There has been a tremendous amount of research in applying MHS algorithms to test

case generation and a large body of research exists: a search of the most relevant databases

(as detailed in Section 4.2.1) found 450 articles which after reading abstracts resulted in

122 relevant articles published over the years 1996-2007 on this specific topic, often

referred to as search-based software testing (SBST) [4].

Seeing the amount of research activity in this field, it is at this point in time, highly

important to characterize what type of research has been performed and how it has been

conducted. Among other things, it is crucial to appraise how much empirical evidence

there is regarding the cost-effectiveness of SBST and to determine whether there is room

for improvement in the way studies are performed and reported. The ultimate goal is to

improve the quality of future research in this important, emerging field of research. In

order to assess the current state of the art in SBST, we decided to conduct a comprehensive

systematic review of the current literature, as this is commonly done in other scientific

fields of research such as medicine [25] and social science [29]. The purpose of this

systematic review is to collect, classify, and assess the empirical studies on SBST in order

to assess the current body of evidence regarding the cost and effectiveness of SBST. By

identifying the strengths and weaknesses of the current literature we hope to suggest

improved research practices and relevant future research directions.

This paper is organized as follows: In Section 2, we provide the background relevant to

the material presented in this paper. Section 3 suggests a framework used to assess the

empirical studies in SBST and Section 4 presents the method used to conduct this

systematic review. In Section 5, we present the results of our review whilst Section 6

outlines its validity threats. The final conclusions that we can draw from this systematic

review are presented in Section 7.

2 Background

Detailed In this systematic review, we are analyzing which MHS algorithms have been

used to address test case generation and what body of evidence exists regarding their cost-

effectiveness. As a preliminary to the review itself, we introduce here the three main

43

components involved in this paper: search-based software testing, systematic reviews, and

empirical studies.

2.1 Search-based software testing

The main aim of software testing is to detect as many faults as possible, especially the

most critical ones, in the system under test (SUT). To gain sufficient confidence that most

faults are detected, testing should ideally be exhaustive. Since in practice this is not

possible, testers resort to test models and coverage/adequacy criteria to define systematic

and effective test strategies that are fault revealing. A test case normally consists of test

data and the expected output [36]. The test data can take various forms such as values for

input parameters of a function, values of input parameters for a sequence of method calls,

or seeding times to trigger task executions. In the context of this review, we are not dealing

with the expected outputs, but focus exclusively on the generation of test data as this has

been the objective of papers making use of SBST. In order to perform test case generation,

systematically and efficiently, automated test case generation strategies are employed.

Bertolino [7] addresses the need for 100% automatic testing as a means to improve the

quality of complex software systems that are becoming the norm of modern society. A

comprehensive testing strategy must address many activities that should ideally be

automated: the generation of test requirements, test case generation, test oracle generation,

test case selection, or test case prioritization. In our current review, we are only dealing

with test case generation. A promising strategy for tackling this challenge comes from the

field of search-based software engineering [23].

Search-based software engineering attempts to solve a variety of software engineering

problems by reformulating them as search problems [15]. A major research area in this

domain is the application of MHS algorithms to test case generation. MHS algorithms are

a set of generic algorithms that are used to find optimal or near optimal solutions to

problems that have large complex search spaces [15]. There is a natural match between

MHS algorithms and software test case generation. The process of generating test cases

can be seen as a search or optimization process: there are possibly hundreds of thousands

of test cases that could be generated for a particular SUT and from this pool we need to

select, systematically and at a reasonable cost, those that comply to certain coverage

criteria and are expected to be fault revealing, at least for certain types of faults. Hence, we

can reformulate the generation of test cases as a search that aims at finding the required or

optimal set of test cases from the space of all possible test cases. When software testing

44

problems are reformulated into search problems, the resulting search spaces are usually

very complex, especially for realistic or real-world SUTs. For example, in the case of

white-box testing, this is due to the non-linear nature of software resulting from control

structures such as if-statements and loops [17]. In such cases, simple search strategies may

not be sufficient and global MHS algorithms1 may, as a result, become a necessity as they

implement global search and are less likely to be trapped into local optima [16]. The use of

MHS algorithms for test case generation is referred to as search-based software testing [4].

Mantere and Alander [35] discuss the use of MHS algorithms for software testing in

general and McMinn [37] provides a survey of some of the MHS algorithms that have been

used for test data generation. The most common MHS algorithms that have been employed

for search-based software testing are evolutionary algorithms, simulated annealing, hill

climbing, ant colony optimization, and particle swarm optimization [12]. Among these

algorithms, hill climbing (HC) [12] is a simpler, local search algorithm. The SBST

techniques using more complex, global MHS algorithms are often compared with test case

generation based on HC and random search to determine whether their complexity is

warranted to address a specific test case generation problem. The use of the more complex

MHS algorithm may only be justified if it performs significantly better than HC.

2.2 Systematic reviews

Systematic reviews are a means of synthesizing existing research regarding a specific

research question [29]. They are usually performed to summarize the existing evidence for

a particular topic and aid in the identification of gaps in the current research and thus can

form the basis of new research activity. A review protocol is created at the beginning of the

review, which lays out the research questions being answered and the methodology that

will be used to answer these questions. The protocol specifies a specific search strategy

that is used to select as much of the relevant literature as possible and provides justification

for why studies are included or excluded from the systematic review. The data to be

collected to answer the research questions is also presented in the protocol. All this

information is published so that readers can judge the completeness of the systematic

review, and if necessary replicate it. These features distinguish the systematic review from

the usual literature review or survey that is usually conducted at the beginning of a

1
 Global MHS algorithms are often contrasted with local MHS algorithms. The former are based on

strategies for the search to avoid being stuck in local minima, thus being more effective in situations with

complex search landscapes [12].

45

research activity. A systematic review synthesizes the existing work in a systematic,

comprehensive, and unbiased manner.

2.3 Empirical studies for search-based software testing

Kitchenham et al. [19, 31] make the case for evidence-based software engineering that

seeks to help practitioners make informed decisions related to software development and

maintenance by integrating current best evidence from research with practical experience.

Thus, to determine if SBST techniques can be applied in practice, we need to conduct

empirical studies to assess their cost-effectiveness and scalability. The cost-effectiveness

of a SBST technique is normally measured in terms of the ability of the technique to

generate test cases that achieve a certain testing objective at a reasonable cost. The testing

objective, as is the case with any test case generation technique, is to detect faults of a type

that is explicitly defined or implicitly determined by the test model (e.g., state transition

faults for a state machine model). In this review, we have focused on empirical studies of

SBST techniques in order to assess whether convincing evidence exists to show their cost-

effectiveness and scalability. For this purpose, it was necessary to define what we mean by

an empirical study in this context and what constitutes a well designed and reported

empirical study. Empirical studies are usually divided into three different types: surveys,

case studies or experiments [52]. For this review, we have used a broad definition of

empirical study, to include any kind of empirical evaluation that has been done in the field

of SBST in order to be comprehensive in our investigation.

In order to determine what constitutes a proper empirical study in SBST, we looked at

existing guidelines [27, 32, 52] for conducting empirical studies in software engineering,

and those for evaluating SBST techniques in other fields. Wohlin et al. [52] and

Kitchenham [32] present guidelines on how to conduct experimentation and empirical

research in the specific context of software engineering whereas Johnson [27] presents a

general guide for experimental analysis of algorithms. We have tailored and augmented

some of these guidelines to create a specific framework for conducting and reporting

empirical studies in the domain of SBST. This was necessary as SBST studies involve the

analysis of automation techniques in which no human subjects are involved and presents

many specific challenges. In addition, the fact that SBST techniques are based on MHS

algorithms makes it important to account for the inherent random variation that exists in

their results. Furthermore, there should also be some means to show that a SBST technique

is really necessary for the context that it is being applied in. This can be done, for example,

46

by showing that other simpler search techniques do not perform as well. The reason for

doing this is that we want to ensure that the problems being tackled by the SBST

techniques do warrant their use.

The framework was created for a dual purpose. First, it was used in this systematic

review to direct the collection of data that was used to assess the current state of empirical

research in SBST. Second, it can also be used as a set of guidelines for conducting and

reporting future research in the field or at least as a starting point in the development of

such guidelines. The next section will present the framework.

3 Framework

As presented here, this framework is not intended to provide complete operational

guidelines, but rather to justify the data collection that took place to perform the systematic

review presented in the next sections and to highlight some of the most important concepts

and issues.

The framework is divided into four parts. First, the test problem addressed must be

clearly specified. Second, the MHS algorithms adopted must be clearly defined. Third,

since any SBST research should always include empirical studies aiming at assessing the

cost and effectiveness of the proposed approaches, the design of such studies must be

carefully described so that its validity can be assessed. Last, results must be carefully

reported so as to be clearly interpretable and reproducible. Whenever relevant, we will

refer to Johnson’s general guidelines on the experimental analysis of algorithms [27],

either to point the reader to further, more general considerations, or to show that our more

specific guidelines are a specialization of these more general ones.

3.1 Test problem specification

The test problem specification includes two main parts, the purpose of testing and the test

strategy that will be employed. Each of these parts directly affects the form that the search-

based software testing strategy will take. Figure 1 outlines the constituent parts of a test

problem specification. The general purpose of software testing is to gain sufficient

confidence in the dependability of a software artifact. Explicitly, this is usually done by

targeting specific types of faults at different levels (such as unit, integration, and system

testing). The targeted faults can be categorized in many ways depending on the view one

takes of a system. At the highest level, one differentiates functional from non-functional

faults, e.g., faults related to performance, security, robustness, and safety requirements.

47

Figure 1 Concept diagram of test problem specification

A testing strategy is defined by a model of the SUT and some specific coverage criteria

defined on that model. Such a model is typically referred to as a test model and the

coverage criteria aim at systematically exercising the SUT based on the test model. This

test model may be characterized by its source and representation (i.e., notation and

semantics). Coverage criteria definitions depend on the test model representation. The

source of the model implies constraints on the application of the test strategy as it depends

on the availability and reliability of precise information in a specific form. As discussed in

[5], possible sources for a test model can be the SUT specification, design artifacts or the

source code itself. Based on the model source (specification, design or source code),

different types of test models can be constructed. Typical examples of models derived from

source code include control and data flow graphs, whereas test models based on SUT

design include state machines or Markov usage models. To be systematic, a test strategy

generates test cases to cover certain features of the test model. For instance, in the case of

state machines, typical coverage criteria include the coverage of all states or all transitions,

the latter being a stronger requirement, while, in the case of control flow graphs, a typical

coverage criterion is branch coverage. It is important to clearly specify the coverage

criteria as it is often used to measure the effectiveness of SBST techniques regarding test

case generation.

3.2 Metaheuristic search algorithm specification

MHS algorithms are general strategies that need to be adapted to the problem at hand.

When reporting a study, this implies describing and justifying the customizations and

48

parameter settings for each specific algorithm. This will be required for replicating the

study and also for comparisons with other SBST techniques and future studies. Each type

of MHS algorithm has specific parameter settings to be reported, but the general idea is to

report all settings and adjustments that may have an effect on the performance of the

algorithm or are needed for replicating the study. In Figure 2 we show how a typical

genetic algorithm can be used for test case generation. The important parameters to report

for a genetic algorithm would be the encoding of the chromosomes, the fitness function

created to guide the search, the strategy for creating the initial population, the selection

strategy for selecting parents for the next generation, the various recombination operators

such as crossover and mutation operators and their values, the reinsertion strategy and the

stopping criteria. We discuss in [5] how these parameters affect the results of empirical

studies involving the use of genetic algorithms for test case generation.

3.3 Empirical study design

This section will define the most important items that should be reported about the study

definition (through its objectives and hypotheses), design, and results.

3.3.1 Objectives and experimental hypotheses

One must define what is going to be empirically assessed and compared. The objective is

usually to compare various SBST techniques and alternatives in terms of code coverage,

fault detection, test suite size, or test case generation time. The empirical study can be an

assessment of a single SBST technique, a comparison of two or more SBST techniques, or

a comparison of SBST techniques versus non-SBST techniques (i.e., not relying on meta-

heuristic search algorithms). The latter includes, for example, random search, static

analysis, greedy algorithms or some other specific technique for the test problem under

consideration, e.g., schedulability analysis in the case of real-time systems. In any case,

what is going to be compared should be precisely specified through formal test hypotheses,

thus leading to appropriate statistical significance testing. One notion important here is to

Formulate Test Objectives

as Search Problem
Define Fitness Function Define GA Operators and Settings

Generate Initial Population

of Test Cases
Evaluate Fitness

Select Parents of

Next Generation

Recombine Parents to

Generate New Test Cases

Mutate Some Test Cases
Create New Generation

of Test Cases

Define Encoding of

Chromosomes (Test Cases)

[Stopping Criteria Met]
No

Yes

Figure 2 Test case generation using genetic algorithms

49

state the kind of hypothesis that will be used: either a one-tailed hypothesis or a two-tailed

hypothesis [14]. This has an impact on how we interpret the results in terms of p-values

(probability of type I errors). In the context of SBST, a one-tailed hypothesis would be

used in the case when, based on the properties of the fitness function, we have a theoretical

basis to assert the direction of the expected outcome. For example, when comparing a

guided search algorithm such as genetic algorithm with random search, we may, based on

an analysis of the fitness function, expect the genetic algorithm to be equally or more

effective at hitting the search target – but not worse – and as such we would use a one-

tailed hypothesis. However, as an example, when comparing two genetic algorithms with

different fitness functions, where we cannot state upfront which one would fare better in

terms of cost or effectiveness, we would use a two-tailed hypothesis. In other words, when

the theory regarding the search algorithms under study allows us to be a priori confident

regarding the possible direction of differences in cost or effectiveness, then we should use

a one-tailed test as this will increase our chances to uncover a statistically significant

difference.

3.3.2 Target application domain

Empirical studies should specify a target application domain in which their results are

intended to be generalized. Example application domains are: real-time, concurrent,

distributed, embedded, and safety-critical. Testing techniques typically target specific

faults that are more relevant in certain application domains, e.g., slow response time in

real-time systems. Moreover, assumptions are typically made regarding the availability of

information required to build the test model. Such assumptions tend to be more or less

realistic depending on the application domain. For example, if one assumes the use of the

MARTE UML profile [3] to design a system and then derive a test model, this is of course

more realistic in the context of embedded, real-time applications. Further, the selection of

subject systems for empirical studies will then be partly determined by the target

application domain.

3.3.3 Subject systems (Software Under Test or SUT) specification

After identifying the target application domain, specific SUTs fitting that domain are

selected. It is important to carefully select SUTs and precisely justify why the selected

SUTs are adequate matches for the target application domain as this will help the reader

determine the extent to which the experimental results will generalize to this domain. This

discussion should be in terms of the inherent properties of the SUT such as its size,

50

complexity, or structure. This is particularly important when one is creating artificial SUTs

specifically for the experiment, a common situation when one is trying to account for

SUTs of varying size and complexity. For each SUT in the empirical study, the function of

the SUT together with relevant properties affecting its representativeness of the domain

should be carefully reported in order to ensure the reproducibility of the experiment and

help future comparisons of cost-effectiveness results. Johnson [27] discusses the general

problem of instance selection (i.e., SUTs here) in experiments (Principle 3: Use instance

testbeds that can support general conclusions) and defines reproducibility (Principle 6:

Ensure Reproducibility) when experimenting with algorithms as the capacity to “perform

similar experiments that would lead to the same basic conclusions”. The goal is to make it

possible to confirm the results of an original experiment independently from the precise

settings and details of the experiment. In addition to SUT properties, the hardware platform

that the SUT executes on is also important to specify. Johnson [27] provides an in-depth

discussion of the latter issue (Principle 7: Ensuring Comparability), which is not specific to

SBST, and suggestions to address it. In its Principle 9, about well-justified conclusions,

Johnson [27] also discusses the danger of drawing conclusions from small instances that

are then generalized to much larger instances, as the former do not always predict well the

latter, and recommends to use instances that are as large as possible.

3.3.4 Measures of cost and effectiveness for SBST techniques

Measuring effectiveness and more particularly cost in our context is inherently difficult

and the validity of measures is very often context-dependent. As discussed by Johnson in

[27] (Principle 6: Ensure Reproducibility), just reporting effectiveness and cost values is

not very informative as it does not provide direct insights into what these values actually

imply. It is nevertheless crucial, in order to draw useful conclusions from studies involving

SBST techniques, to be able to use appropriate comparison baselines. In our context, one

usually resorts to comparing the investigated technique to simpler, existing techniques (see

Section 5 on baselines of comparisons) in order to assess the relative goodness of a search.

The measures should be relevant for the particular study and comparable across the

different techniques being investigated. Studies may use slight variations of an existing

measure or introduce new ones, hence, it is important to explain the reasoning behind the

effectiveness and cost measures and justify why they are applicable in the context they are

being used. Along with the measure, the method used to collect the data related to the

measures should be thoroughly explained. In the context of SBST, the effectiveness of a

51

test case generation technique is closely related to the “quality” of the test suite generated

by the technique. A good test suite can be characterized by its ability to uncover faults or to

give confidence in the SUT by fulfilling a certain coverage criterion. Thus we can say that,

in practice, there are two main categories of measures of effectiveness, which can be

referred to as coverage-based measures and fault-based measures. In the former category,

there may be many different types of measures depending on the adequacy criteria being

used, for example, control-flow coverage criteria such as branch or path coverage may be

used. The fault-based measures are typically fault detection scores. They can be computed

based on real, known faults or are estimated through mutation analysis [48]. In the latter

case, the program is seeded with faults based on mutation operators and depending on the

number of faults caught, a so-called mutation score is calculated. The techniques are

assessed upon how successful they are at detecting the seeded faults.

Cost measures are generally related to the speed of the technique to converge towards

the test objective (in some cases it is referred to as the search technique’s “efficiency”).

Some common cost measures used in the SBST domain are: (a) the number of iterations,

which shows how many times a SBST technique needed to iterate in order to find its best

solution, e.g., the number of generations in genetic algorithms, or cycles in ant colony

optimization algorithms, (b) the cumulative number of individuals in all iterations (usually

each individual represents a test case in SBST), (c) the number of fitness evaluations an

algorithm needs, to find the final solution, which depends on the number of newly

generated individuals (usually each new population is made up of some individuals from

the previous iteration and some newly generated ones), (d) the time spent by a MHS

algorithm to find test cases meeting the targeted test objective, which is sometimes referred

to as “test case generation time”. This time can be either measured using clock time or

CPU cycles. Clock time is the time from the “wall” clock and not easily comparable across

different hardware architectures. However it is a practical measure that can be used to

assess if a technique can be used in practice. CPU cycles on the other hand is a measure

that can be used across techniques for comparison on other hardware architectures as well,

and (e) the size of the resulting test suite, which is a surrogate measure for the cost of the

time it would take to execute the resulting test suite since a larger test suite would require

more resources to execute.

Among the first three cost measures, the number of iterations is a very coarse grained

measure and is not as precise as the number of individuals, which in turn is not as precise

as the number of fitness evaluations. The number of fitness evaluations is more precise

52

than the number of individuals because in each iteration there are some individuals that are

kept from the previous population and there is no cost for generating them. Therefore, the

number of evaluations can more precisely estimate the real cost of a SBST technique. All

these three measures are surrogate measures for the time used to generate the final test

suite but none is perfect, because different search techniques may require a different

amount of time per iteration, per creation of an individual (test case), or per fitness

evaluation. For instance, it would not be a good idea to compare simulated annealing (SA)

and genetic algorithms (GA) based on the number of iterations because the amount of time

required for each iteration in GA and SA is likely to differ significantly.

The cost of a technique is generally measured for one of two purposes: either to

compare two techniques to assess which one will cost less for the same effectiveness or to

assess whether a technique can be used in practice given expected time constraints. From

the measures discussed above, “test case generation time”, if it has been measured under

similar conditions, is the only measure that can give users an intuitive idea of whether they

can apply a particular technique to their situation within the time constraints that they have.

When comparing the cost of different techniques, it is also necessary to make sure that any

other required resources are kept equal amongst the techniques. The fact that two

techniques require the same amount of time does not mean that they have the same cost if

one technique consumes much more memory than the other. Therefore all relevant types of

resources must be accounted for when comparing the cost of SBST techniques.

3.3.5 Measures for scalability assessment

Scalability assessment is the process of assessing how the cost-effectiveness of a SBST

technique evolves as a function of the size of the test case generation problem to be

addressed. This involves one or more measures of SUT size and the analysis of their

relationships with the cost or effectiveness of the SBST techniques under investigation.

Some examples of measures that can be scaled up include the size of the SUT in terms of

lines of code or the size of search space in terms of number and range of input data

parameters. The effect of this scaling is then observed on different cost and effectiveness

measures to see if the SBST technique is still cost-effective as the SUT gets larger and

more complex.

3.3.6 Baselines for comparison

A SBST technique can only be assessed if it is compared with a carefully selected,

meaningful baseline since the optimal solution is normally not known. Since it is difficult

53

to assess SBST techniques in absolute terms, it is therefore important to show, as a

minimum, that the problem at hand could not be addressed by some simpler means. In

other words, every study should have one or more baselines of comparison when assessing

SBST techniques and the minimum to be expected is a comparison with random search.

The SUT investigated may, for example, be small and simple, and the fact that a SBST

technique performs well may not mean much. Random search can then serve as a basic

verification that the search problem cannot be addressed by a simple random search and

warrants the use of a SBST technique. It is also preferable to use other simple SBST

techniques, such as HC, as a comparison baseline for other more expensive SBST

techniques. This further demonstrates that the use of a SBST technique is justified given

the test case generation problem at hand. In addition—but this is context dependent—other

SBST techniques, previously published or considered plausible alternatives, can also be

used as baselines of comparisons for the proposed SBST techniques.

As discussed in [27], once baseline techniques are selected, one must ensure that

reasonably efficient implementations are used for all techniques in order for cost and

effectiveness to be comparable. Documentation, source code, URLs for downloadable

tools, or at the very least a careful description of the implementation, should be provided.

3.3.7 Parameter settings

Most SBST techniques require parameter settings which tend to have a significant impact

on their performance. In many studies, alternative parameter settings are investigated and

compared. It is therefore highly important, to make any study reproducible, to specify

these parameters in a precise manner. It is also interesting to justify their values based on

existing studies, when possible, as this provides insights into how cost and effectiveness

could be affected if they were changed or if a different SUT with different properties was

used. One particularly important parameter in our context is the stopping criterion of the

search (Principle 6: Ensure Reproducibility). It can be based on whether the search

objective has been reached (or one is sufficiently close), execution time or a surrogate

measure (due to practical constraints), or any significant progress is observed over a period

of time.

3.3.8 Accounting for random variation in SBST results

Since SBST techniques use MHS algorithms; their results can vary from one execution to

another. So, it is important to ensure that we run the algorithms a sufficient number of

times to capture the random variation of results and be able to perform statistical

54

comparisons with other search techniques. It is difficult to precisely specify the number of

runs required in general but, as a ballpark number, it should probably be above ten, so as to

allow the use of basic statistical hypothesis testing and obtain a reasonable statistical power

to detect large differences [52]. Based on the expected (minimum) difference between

techniques (if this can be estimated) and the statistical tests used to compare cost and

effectiveness across techniques, the minimum required number of runs can be estimated

using power analysis [18].

When dealing with multiple runs, in our context, we are often interested in the best run,

yielding the best test suite or test case according to some fitness function (e.g., bringing the

execution time of a task as close as possible to its deadline). Another frequent case is when

we are interested in the frequency with which a certain target was reached across runs (e.g.,

test input data satisfying certain constraints). In both cases, it is important to report the

execution time and other cost measures of all runs and, when relevant, information about

their fitness distribution. The basic principle is that it should be possible to estimate the

total cost of achieving the best solution or, depending on what is relevant, the expected

cost to achieve the search target. From a more general standpoint, Johnson (Principle 6:

Ensure Reproducibility) [27] warns against reporting only effectiveness and cost data for

the best run.

3.3.9 Data analysis

During the design of an empirical study, it is important to decide about the data analysis

methods that will be applied to cost-effectiveness and scalability results.

Data analysis methods for comparing cost-effectiveness. Performance in the case of

SBST usually relates to measuring the cost-effectiveness of the various search techniques.

The cost and effectiveness of a SBST technique are used together for assessing its

performance. For example, a technique that has higher coverage than another technique

may not be considered to have better performance, because it uses significantly more

fitness evaluations (higher cost) to achieve that effectiveness, thus making it impractical

for larger SUTs. Any claims of better performance should be backed by empirical evidence

demonstrating lower cost or higher effectiveness when compared to the baseline and

alternative techniques. In the ideal case, a study that is concentrating on measuring cost,

should keep the effectiveness measures constant. For example, the study may measure the

number of fitness evaluations needed to achieve 100% branch coverage. If, however, the

aim is to measure effectiveness, then this can be done by keeping the cost constant, for

55

example, by measuring how much branch coverage is achieved in some constant amount of

time or number of fitness evaluations. The reported performance results should include the

results of the comparison baselines. At a high level, reported results should follow the

structure below:

Reporting descriptive statistics. Both cost and effectiveness distributions should be

reported (e.g., as a table with descriptive statistics) and analyzed. Looking at their standard

deviation may indicate the level of uncertainty in terms of cost and effectiveness associated

with a SBST technique. This in turn may help determine how many runs would in practice

be necessary to guarantee that we obtain a satisfactory result, i.e., achieve the objective.

Results of hypothesis testing. The purpose of statistical testing is to determine whether

differences across SBST techniques in terms of central tendencies for cost and

effectiveness can be attributed to chance or whether they really capture a trend. Statistical

hypothesis testing is necessary as SBST techniques are always associated with a certain

level of random variation in terms of cost or effectiveness. Because statistical testing is a

standard practice, we will not detail it further here and interested readers may consult

reference [40] for more details.

Statistical hypothesis testing should be used to accept/reject research hypotheses related

to the cost-effectiveness analysis of SBST techniques and comparison baselines. The

choice of a specific statistical test depends on the specific objective of SBST. In our

context, hypothesis testing falls into three broad categories: (1) Comparing samples of runs

in terms of effectiveness and cost. For example, comparing average or maximum branch

coverage achieved across runs of alternative SBST techniques and baselines of

comparison. (2) Comparing samples of runs in terms of “successful” runs. For example,

comparing the proportion of runs that find a deadlock across alternative SBST techniques

and baselines of comparison. (3) Comparing samples of targets (e.g., control flow

branches) in terms of cost (e.g., iterations) or effectiveness (e.g., percentage of runs

reaching that branch). In this last case, the samples are not independent, because

observations in each sample are paired (identical targets). This leads to the application of

specific statistical tests for paired samples. Moreover, though this is a standard issue, there

can be two or more samples, and this will also affect the specific statistical test to be used.

Moreover, as usual in other contexts, specific statistical tests have to be selected and

justified based on the data distributions of the samples being compared to avoid drawing

incorrect conclusions from the analysis. Statistical tests are usually classified as parametric

and non-parametric [52]. When the sample follows a specific distribution (e.g., normal),

56

certain parametric tests are applicable (e.g., t-test). Alternatively, non-parametric statistical

tests are used when no appropriate assumptions can be made about the sample

distributions. The issues related to selecting appropriate tests are however discussed in

standard textbooks and will not be further addressed here. In Table 1, as a guideline, we

provide a mapping between the analysis situations we have encountered in SBST studies

and the type of statistical tests that are suitable (for the sake of simplicity, we are assuming

two samples, that is, the comparison of two techniques). This mapping is illustrated with

examples.

 Data analysis should both address statistical and practical significance of differences

among alternative search techniques. The former assesses whether differences among

search techniques can be due to chance. The latter assesses whether the difference can be

considered of practical significance, that is, whether they would make any difference in the

day-to-day practice of test case generation given the specific test objectives being

considered. For example, if statistical testing based on a large number of runs show that

there is a significant difference between the cost of two search techniques in terms of time

required for finding the best test suite, the actual difference may not be of practical

importance if it is in the range of a few minutes. On the other hand, a lack of statistical

significance despite a visible difference may be due to small samples, and therefore a lack

of statistical power, which in our context means that the number of runs for each compared

Table 1 Mapping of SBST problems to statistical tests

SBST Analysis
Type

Type of Statistical
Comparison

Example in the Context
of SBST

Type of Statistical Test
(assuming two samples)

Comparing
samples of runs in
terms of
effectiveness and
cost

Comparing central
tendencies of two or more
independent samples,
each corresponding to a
SBST technique

Comparing maximum
branch coverage achieved
across all runs between
two SBST techniques

Parametric t-tests or
Non-Parametric Mann-
Whitney U test

Comparing
samples of runs in
terms of
“successful” runs

Comparing proportions in
independent samples,
each corresponding to a
SBST technique

Comparing the proportion
of runs finding deadlocks
across different SBST
techniques

z-score test for
proportions

Comparing
samples of target
in terms of cost to
reach them or
frequency at which
runs reach them

Comparing central
tendencies of matched
pairs across samples

Comparing the frequency,
across samples of runs
matching each SBST
technique, according to
which a branch (target) is
covered. Note that the
observations across
samples are paired as they
correspond to identical
branches.

Parametric Paired t-tests
or Non-Parametric
Wilcoxon or Sign test

57

search technique may be too small. The larger the number of runs, the more likely one is to

obtain statistical significance when observing differences.

Data analysis methods for scalability. Scalability is used to assess whether a SBST

technique can be applied to either larger or more complex SUTs and still have satisfactory

effectiveness and cost. If the aim of the empirical study is to show the scalability of a

SBST technique then appropriate measures of size and complexity should be clearly

defined. There will be at least two measures involved – one size measure that will be

scaled up through successive SUTs and the other that will measure the corresponding

performance (cost and effectiveness). Then the effect of scaling up a particular measure

can be reported in terms of a statistical relationship (recall the unavoidable random

variation). For example, we may investigate several SUTs of variable sizes in terms of

lines of code and then assess whether a SBST technique can still reach a certain level of

coverage at acceptable cost (e.g., measured as the number of generations) for larger SUTs

and analyze how this cost evolves with the size of the SUT. A positive, exponential

relationship between size and cost might then be problematic, for example, as it would

undermine the applicability of the technique for large scale test models and systems.

Similarly, if effectiveness (e.g., in terms of achieved coverage) is strongly decreasing as a

function of SUT size, we also have a scalability problem.

As for scalability analysis, we need to characterize relationships between SUT size

variables and measures of the SBST technique’s cost and effectiveness. Such techniques

are typically analyzed through regression analysis, though in practice, because the number

of SUTs under study is likely to be small, such analysis is more likely to be qualitative,

that is simply based on observing scatter plots in the cost-effectiveness and size space.

3.3.10 Discussion on validity threats

Validity threats should be considered throughout any empirical study, right from the

study definition and design up to the analysis and interpretation of results [52]. The

following types of threats can be discussed:

Construct validity threats. Measures of cost, effectiveness, and SUT size should be

appropriate and justified given the context and objectives of investigation. No measure is

expected to be perfect as the above concepts are usually not readily measurable. But in

practice, by using several, complementary measures of cost, effectiveness, and SUT size,

one is in a position to compare the cost-effectiveness and scalability of alternative search

techniques.

58

Internal validity threats. If a SBST technique performs better than another one,

whether regarding effectiveness or cost, can it be due to something other than the SBST

technique? This could possibly be due to the following: 1) poor parameter settings of one

or more of the SBST techniques, 2) the biased selection of SUTs that have certain

characteristics that can favor a certain SBST technique.

Conclusion validity threats

� Has random variation been properly accounted for? Since SBST techniques use

MHS algorithms, randomness in results (inherent to metaheuristic approaches)

should be accounted for, as discussed above. Has it been done in such a way as

to enable statistical comparisons? It implies that a sufficient number of

independent runs be performed to obtain a sufficient number of observations.

� Was the right statistical test employed? Statistical test procedures should be

carefully selected given the hypothesis method (e.g. one-tailed vs. two tailed

hypothesis) and the data collected (distributions of cost and effectiveness).

Otherwise, certain required properties of a particular statistical test could be

inadvertently violated leading to incorrect conclusions. For example, many

statistical tests assume that data distributions be normal [52].

� Is there any practically significant difference? To answer this question, the

magnitude of the differences must be reported– this is known as the effect size

and determines the practical significance of the results.

External validity threats. This is a difficult issue, as whether results can be generalized

depends on whether the SUTs under investigation are representative of the targeted

application domain and whether the faults considered (if used to assess test effectiveness)

are representative of real faults. Ideally, SBST empirical studies should also be run on

many different SUTs of the target type, but every research endeavor faces limitations in

terms of time and resources. At the very least, the issue should be carefully discussed and a

good case should be made as to why one should be able to trust that the observed results

can be generalized.

4 Research Method

In this section, we will explain our review protocol. We define the research questions that

this review attempts to answer, along with how we selected papers for inclusion and the

data that we extracted.

59

4.1 Research questions

The most important stage of any systematic review is to precisely define the research

questions. Once the research questions have been specified, the systematic review can then

proceed with the search strategy to identify relevant studies and extract the data required to

answer the questions [13]. In this paper, we are interested in investigating empirical studies

in the domain of SBST. To proceed with our investigation, we defined the following three

research questions:

RQ1: What is the research space of search-based software testing?

The objective of this question is to characterize the research that has been undertaken so

far. Though the research space can be identified from different angles, because our

systematic review is about SBST, basic features of software testing (such as test level,

targeted faults, test model, type of test cases, and application domain) and the type of MHS

algorithms seem relevant characteristics to define the research space. Because of size

constraints, RQ1 will not be addressed in detail in this paper and the results will be simply

summarized to provide context information to the reader and facilitate the interpretation of

subsequent research results. Interested readers may consult the technical report [5]

corresponding to this paper for a detailed discussion of the results.

RQ2: How are the empirical studies in search-based software testing designed and

reported?

A study that has been properly designed and reported (as discussed in Section 3) is easy to

assess and replicate. The following sub-questions aim at characterizing some of the most

important aspects of the study design and how well studies are designed and reported:

� RQ2.1: How well is the random variation inherent in search-based software testing,

accounted for in the design of empirical studies?

� RQ2.2: What are the most common alternatives to which SBST techniques are

compared?

� RQ2.3: What are the measures used for assessing cost and effectiveness of search-

based software testing?

� RQ2.4: What are the main threats to the validity of empirical studies in the domain

of search-based software testing?

� RQ2.5: What are the most frequently omitted aspects in the reporting of empirical

studies in search-based software testing?

60

RQ3: How convincing are the reported results regarding the cost, effectiveness, and

scalability of search-based software testing techniques?

This research question attempts to synthesize the actual results reported in the studies in

order to assess how much empirical evidence we currently have. To answer this question,

we address the following sub-questions:

� RQ3.1: For which metaheuristic search algorithms, test levels, and fault types, is

there credible evidence for the study of cost-effectiveness?

� RQ3.2: How convincing is the evidence of cost and effectiveness of search-based

software testing techniques, based on empirical studies that report credible results?

� RQ3.3: Is there any evidence regarding the scalability of the metaheuristic search

algorithms for test case generation?

4.2 Study selection strategy

This is the step of a systematic review that aims at ensuring the completeness of the

selection of papers on which the review is based. Study selection involves two main steps:

(1) selection of the source repositories and identification of the search keywords (2)

inclusion or exclusion of studies based on certain inclusion and exclusion criteria.

4.2.1 Source selection and search keywords

The process of selecting papers is started by executing a search query on the source

repositories, which provides a set of papers. Since this set of papers is then subsequently

used for all manual inclusions and exclusions, the selection of appropriate repositories and

search strings is of utmost importance as it directly affects the completeness of the

systematic review. The repositories that we used are: IEEE Xplore, The ACM Digital

Library, Science Direct (including Elsevier Science), Wiley Interscience, Springer, and

MIT Press. The first two repositories covered almost all important conferences, workshops,

and journal papers, which are published either by IEEE or ACM. The next four repositories

were mostly used for finding papers that are published in leading software engineering

journals.

We selected the following journals based on [13]: IEEE Transactions on Software

Engineering (TSE), ACM Transactions on Software Engineering and Methodologies

(TOSEM), IEEE Software (SW), Springer: Software Testing Verification and Reliability

(STVR), Springer: Empirical Software Engineering, Elsevier Science: Information and

Software Technology (IST), and Elsevier Science: Journal of Systems and Software (JSS).

61

Since our review is about SBST, we also included journals relating to software quality

assurance and evolutionary computing: Springer: Software Quality Journal, Springer:

Genetic Programming and Evolvable Machines, IEEE: Transactions on Evolutionary

Computation, and MIT Press: Evolutionary Computation. Another important source of

publications that we included was the Genetic and Evolutionary Computation Conference

(GECCO). Based on the impact factor, GECCO is one of the top conferences in the fields

of artificial intelligence, machine learning, robotics, and human-computer interaction [1]

and is directly related to the field of genetic and evolutionary computation. GECCO’s

proceedings were published by Springer in 2003 and 2004 and afterwards by ACM.

A systematic way of formulating the search string includes (1) identifying the major

search keywords based on the research questions (2) finding alternative words and

synonyms for the major keywords and (3) creating a search string by joining major

keywords with Boolean AND operators, and the alternative words and synonyms with

Boolean OR operators.

Based on our main research focus, which is investigating empirical studies in the domain

of SBST, the following major search keywords are used in this paper: software testing and

metaheuristic search algorithm.

We did not use empirical study as a keyword because we realized that not all papers that

perform an empirical study, in the broad sense that we have defined it, use this keyword.

To formulate our search query we tried a number of search strings and came to the

conclusion that ‘software testing’ as an expression is not a good keyword because there are

many papers which don’t use these two words together but are nevertheless related to

software testing. These papers may use terms such as testing, test case, test data and so on.

On the other hand if we used the term testing alone, we would find too many unrelated

papers. So we decided to use the terms software and test linked together with a Boolean

AND instead of using ‘software testing’ as an expression. Using ‘software’ and ‘test’ will

find almost all related papers to software testing, but to make sure that we do not miss any

interesting papers in test case generation we used the expression of ‘test case generation’

as an alternative for software testing.

Metaheuristic search algorithm is the second major term and also has many alternatives.

We used general terms such as ‘evolutionary algorithm’, ‘meta-heuristic’, and ‘search

based’ to explore the domain. Also, names of different MHS algorithms were used to make

sure that no related papers were missed.

We also wanted to make sure that we do not miss any papers that have explicitly used

62

the widely used term ‘evolutionary testing’, and thus included the expression of

‘evolutionary testing’ as a separate search string joined with the main string by an OR

Boolean operator. The above decisions lead to the following search string shown in

Figure 3.

 The whole string is searched in each repository in all titles, keywords, and abstracts.

The expression ‘evolutionary testing’ is searched in the entire contents of all papers in the

repositories as well.

One problem that we realized after some manual checking of the results of the search

query was the fact that some search engines, such as IEEE Xplore, differentiate between

the singular and plural form of words. To deal with this, we had to add some more

alternative words and expressions to the search string by adding a ‘s’ to the end of all the

words we already had. For example, we added ‘evolutionary algorithms’, ‘meta-

heuristics’, ‘genetic algorithms’ and so on.

After finalizing the search string, the search query was run on the search engines of

different repositories.

4.2.2 Study selection based on inclusion and exclusion criteria

Metaheuristic search algorithms have been used to automate a variety of software testing

activities such as test case generation, test case selection, test case prioritization, and

optimum allocation of testing resources. Since the focus of this systematic review is on test

case generation, it is therefore necessary to define suitable inclusion and exclusion criteria

for selecting relevant papers. In this section, we will discuss and justify the inclusion and

exclusion criteria that were used.

We executed our search query on all selected databases and found 450 (after removing

duplicates from different repositories) research papers in total. We only included papers up

to the year 2007. In order to select the relevant papers to answer our research questions, we

applied a two-stage selection process. At the first stage, we excluded papers based on

abstracts and titles. All the papers were divided into three sets and each set was read by a

researcher. We applied the following exclusion criteria:

� Abstracts or titles that do not discuss test case generation or any of the alternate

terms that we used were excluded.

� Abstracts or titles that do not discuss the application of any MHS algorithm to

automate test case generation were excluded.

63

If a researcher was unsure about a paper after reading its title and abstract, then the paper

was included for the second phase of selection. After applying the inclusion criteria for the

first phase, we were left with 122 papers.

At the second stage, we again divided the papers into three equal sets and divided them

among three researchers to check the contents of each paper. We excluded papers based on

the following exclusion criteria:

� Posters, extended abstracts, technical reports, PhD dissertations, and papers with

less than three pages were excluded. Our goal was to account only for peer-

reviewed, published papers that presented sufficient technical details.

� The papers that do not automate test case generation were excluded because this is

the scope of our review.

� The papers that do not report any empirical study (see Section 2.3 for details on

what we mean by empirical studies) were excluded.

In the cases where a researcher could not decide whether to keep or exclude a paper,

then the paper was discussed with other researchers and a decision was made, by

consensus. It is important to mention that we didn’t exclude papers based on the realism of

SUTs used in their case studies. The reason is that exclusion would then be subjective as no

precise criterion can be defined and would probably lead to a very small number of

selected papers. After applying the second phase of selection, we remained with 68 papers

that contained empirical studies about test case generation using MHS algorithms.

However, four of these 68 papers, presented empirical studies that had already been

reported in some other paper. This occurred, for example, when the journal version of a

conference paper was found. In these cases we extracted data about the study from both the

conference and journal versions of the paper and reported them as one study. Thus in the

rest of the review we mention only 64 papers in total, even though we did analyze 68

papers. Details on the number of papers found in each database and number of papers

included after applying inclusion and exclusion criteria are listed in Table 2.

Figure 3 The search string used for selecting the papers from repositories

{(((software AND test) OR ‘test case generation’) AND (‘evolutionary algorithm’ OR

‘hill climbing’ OR ‘metaheuristic’ OR ‘meta-heuristic’ OR ‘genetic algorithm’ OR

‘optimization algorithm’ OR ‘search-based’ OR ‘search based’ OR ‘simulated

annealing’ OR ‘ant colony’)) <in abstract, keywords, and title>} OR ‘evolutionary

testing’ <in abstract, keywords, title, and whole content>

64

Table 2 Distribution of papers after applying inclusion and exclusion criteria

Repository
Number of Included

Papers After Applying
Search Query

Number of Papers
After Stage 1 Exclusion

Criteria

Number of Papers
After Stage 2 Exclusion

Criteria
IEEE Xplore 297 77 33
ACM Digital Library 117 27 22
Wiley Interscience 8 2 2
Science Direct 8 3 2
Springer 19 12 8
MIT Press 1 1 1
Total 450 122 68

4.2.3 Data extraction

We designed a data extraction form in Microsoft Excel to gather data from the research

papers. We collected two sets of information from each paper. The first set included

standard information [30] such as name of the paper, authors’ names, a brief summary,

researcher’s name, and additional comments by the researcher. The second set included the

information directly related to answering the research questions (see Table 3 for a summary

list and [5] and Section 3 for details on each data item). To assess and improve consistency

of data extraction among the researchers, a sample of papers were selected and read by all

researchers and the relevant data extracted. The extracted data was then discussed by the

researchers to ensure a common understanding of all data items being extracted and where

necessary, the data collection procedure was refined. The final set of selected papers from

each repository was then divided amongst three researchers. Each researcher read the

allocated papers and extracted the data from the papers. In order to mitigate data collection

errors, the data extraction forms of each researcher were read and discussed by two others.

All ambiguities were clarified by discussion among the researchers.

Table 3 Research questions and type of data collected

Research Questions Type of Data Collected

RQ 1
Type of MHS algorithms, test levels, targeted faults, test model, type of test
cases, and application domain

RQ 2

RQ 2.1 Number of runs, analysis method
RQ 2.2 Comparison baseline
RQ 2.3 Measures of cost, measures of effectiveness
RQ 2.4 Conclusion, external, internal, and construct validity threats

RQ 2.5
All of the information from RQ2.1 to RQ2.4 is used, formal hypothesis, object
selection strategy, data collection method

RQ 3

RQ 3.1 Test level, fault type, MHS algorithm
RQ 3.2 Test purpose, comparison baseline, cost and effectiveness results
RQ 3.3 Scalability results

65

5 Results

The following section outlines the results related to the research questions. No formal

meta-analysis of the results of the empirical studies could be performed because of the

variations in the way empirical studies are conducted and reported, and as such, results are

compiled in structured, tabular form.

5.1 RQ1: What is the research space of search-based software testing?

As previously mentioned, we provide here only the most salient results to the research

question. The reader is invited to read the technical report [5] corresponding to this paper

to obtain detailed results. The results show that in the majority of the papers, SBST

techniques have been applied at the unit testing level (75%). Moreover, most papers (78%)

do not target any specific faults but rather focus on structural coverage of different test

models. The most commonly used algorithm is the GA and its extensions (73%), followed

by a more limited use of simulated annealing and its extensions (14%). There could be

several reasons for this frequent use of genetic algorithms. First, there are numerous

publications on the application of GA to various problems [21]. Furthermore, substantial

empirical data is available for the different parameter settings required by GAs and this

greatly helps the choice of appropriate parameters for a specific problem to be solved [46].

This, together with the many books [16, 26] that exist on genetic algorithms, makes it

easier for researchers to learn how to adapt genetic algorithms to their context. Second,

being a global search algorithm, GAs have been shown to usually perform better than local

search algorithms [53], though there is no evidence showing that GA is better than other

global search algorithm [21]. Last, GAs have many well known implementations in the

form of commercial tools [42] and frameworks [2, 34], which greatly facilitate their

practical application.

5.2 RQ2: How are the empirical studies in search-based software testing designed
and reported?

The purpose of this research question is to investigate and assess the design and reporting

of empirical studies in the domain of search-based software testing. To answer this

question, we further divided this question into five sub-questions. By answering each sub-

question individually, we will answer the main research question. Though the results are

presented in tables that summarize the main findings, the reader can obtain a break-down

of which papers led to these findings in the technical report [5] corresponding to this paper.

66

5.2.1 RQ2.1: How well is the random variation inherent in search-based software

testing, accounted for in the design of empirical studies?

We discussed the necessity and importance of accounting for random variation and using

appropriate data analysis methods in Section 3.3. To assess whether random variation has

been accounted for, we classified the papers into two main categories: (1) papers which

accounted for random variation in their design and reported this information and (2) papers

which either did not account for random variation or did not report it well. To be classified

in the first category, the study in the paper had to report the number of times the MHS

algorithm was executed, sufficient information to determine whether the runs were

independent, and report the data analysis methods used to compare alternative algorithms

and baseline solutions. The independence of different runs can be determined in different

ways in different MHS algorithms. For instance, in the case of the HC algorithm, if it is

started from the same starting point in each run using the same strategy to select neighbors,

then all the runs will not be independent and hence every time the algorithm will find the

same solution. Different runs in HC are normally made independent by choosing different

starting points in each run or by using a random strategy to select neighbors. Additionally,

the number of runs for each MHS algorithm had to be at least ten, a ballpark figure to

enable the application of statistical hypothesis testing with minimal statistical power.

Papers that did not report the number of runs or were executed less than ten times were

placed in the second category (Random Variation Not Accounted).

Within the first category, we further divided the papers according to the type of data

analysis that had been performed. If only the average of the results or the percentage of

successful runs over all runs was reported, then these papers were classified as having

“poor” descriptive statistics (the definition of successful run varies across papers, but

generally speaking, if the test target to be covered is found, then the run is considered

successful. A test target, for example, could be a branch to cover). This is because the

average does not convey any information about the dispersion of the results being

examined. Papers which report the level of variation as well as the measures of central

tendency are counted in the sub-category “good” descriptive statistics. The final category is

the set of papers that in addition to reporting “good” descriptive statistics also reported the

results of statistical hypothesis tests comparing MHS algorithms and baselines and

establishing the statistical significance of differences. However, most of the papers did not

have detailed information on sample distributions and the validity of statistical test

assumptions. It was therefore usually not possible to determine if a paper used the correct

67

statistical procedure for a particular problem and data set.

The results in Table 4 show that 25 papers did not account for random variation. Most of

these, 20 papers, either did not provide any information about the number of runs or just

reported the result of one unknown run (the best or the only run). In five papers, the study

was repeated less than ten times.

Amongst 39 papers which accounted for random variation, 24 papers reported only the

average of the cost or effectiveness results across all runs, for example, the average number

of killed mutants as an effectiveness result or the average number of iterations as a cost

result. In some cases, the percentage of successful runs amongst all runs is reported instead

of, or along with the average of the effectiveness results (e.g., average coverage or average

mutation score). At least one measure of dispersion like standard deviation, variance, or the

variation interval ([Min, Max]) was reported for eight papers. These papers are categorized

as having “good” descriptive statistics. There were seven papers that reported statistical

tests as well as good descriptive statistics. One or more of the following statistical tests

were used: t-test, paired t-test, Mann-Whitney test, F-test, ANOVA, and Tukey test [40,

44]. There was one paper in this sub-category, which reported the use of statistical tests,

but did not specify the specific test being used and did not provide any descriptive

statistics. From the results, we can see that 39% of the papers did not account for random

variation at all, and 38% of the papers only had “poor” descriptive statistics, so in total

77% of papers either did not account for random variation or reported it poorly. The

remaining 23% of papers are divided between 12% providing only good descriptive

statistics and just 11% performing some kind of statistical hypothesis testing to assess the

statistical significance of differences that is whether they can be due to chance. To answer

RQ2.1, this review suggests that SBST would greatly benefit from paying more attention

to accounting for random variation in search heuristics and applying more rigor in

analyzing and reporting cost and effectiveness results.

Table 4 Results of how random variation is accounted for in empirical studies

Random Variation Accounted Random Variation Not Accounted
Poor

Descriptive
Statistics

Good
Descriptive
Statistics

Statistical Data
Analysis

Random
variation not discussed

or accounted for

Insufficient
number of runs

24 8 7 20 5
38% 12% 11% 31% 8%

68

5.2.2 RQ2.2: What are the most common alternatives to which SBST techniques are

compared?

In assessing the cost-effectiveness of any technique, the comparison baseline is an

important factor. In order to classify the papers we defined four categories of comparison

baselines: (1) ‘Global SBST’, where the baseline of comparison is a SBST technique using

a global MHS algorithm, (2) ‘Local SBST’ includes the techniques that use a local MHS

algorithm such as HC, (3) ‘Non-SBST’ baselines do not use a SBST technique and feature

baselines such as random search, and (4) ‘Not discussed’ addresses papers that do not

report any comparison baseline.

The comparison to non-SBST techniques or local SBST techniques serves a dual

purpose: it helps determine if the problem at hand is simple enough to be satisfactorily

solved by a simple search algorithm; otherwise it provides justification for why a more

complex SBST technique is necessary. In addition, a simple baseline of comparison is

necessary to assess the benefits of using complex SBST techniques.

As shown in Table 5, 16 studies did not discuss the comparison baseline at all. These

studies did not include any kind of comparison; they usually introduced the use of a MHS

algorithm for test case generation and performed an empirical study to show that the

technique does indeed generate satisfactory test cases. These papers are missing the

justification for why the SBST technique was necessary to address the test case generation

problem at hand and how much better it actually is compared to other existing, simpler

techniques that are available to solve the problem at hand.

There were 34 studies that reported ‘Non-SBST’ baselines within which random search

is used in 24 studies, static analysis in three, greedy algorithm in three, constraint solving

in one study and three studies used some other technique specific to their context. We see

that random search is the most commonly used comparison baseline amongst Non-SBST

techniques. There is limited use of ‘Local SBST’ baselines with only three studies using

HC. There are many studies (33) that used Global SBST techniques as comparison

Table 5 Comparison baselines used in SBST in terms of number of papers

Global SBST
baselines

Local
SBST

baselines
Non-SBST baselines

Not
Discussed GA

and
Ext.

SA
and
Ext.

Others
Hill

Climbing
Random
Search

Static
Analysis

Greedy
Algorithm

Constraint
Solving

Others

22 6 5 3 24 3 3 1 3 16

69

baselines. This is usually done when investigating the effects of different parameter

settings of MHS algorithms. This is most evident within GA and SA where 22 studies used

either GA or its extensions as baselines and six studies used SA and its extensions.

5.2.3 RQ2.3: What are the measures used for assessing cost and effectiveness of search-

based software testing?

Assessing the cost-effectiveness of SBST techniques for test case generation is the main

objective of empirical studies in our context. Therefore, measuring cost and effectiveness

in a valid manner is a basic requirement for all empirical studies.

Effectiveness measures. As it is discussed in Section 3, effectiveness measures are

categorized into two main classes: coverage-based and fault-based measures. Under the

coverage-based category, we found three main sub-categories: (1) control flow based

coverage criteria such as branch, statement, path, condition, and condition-decision

coverage (2) data flow based coverage criteria such as all-DU coverage, and (3) N-wise

coverage criteria, when SBST techniques are used for testing combinatorial designs [36].

In the category of fault-based measures, mutation analysis is the core strategy and mutation

score and the number of mutants killed are measures that were found in this review.

We found some other measures for effectiveness, which are still related to the quality of

the generated test cases, but do not fit into any of the above categories. In this review, these

measures are labeled “Others”. Based on the papers included in this review, we identified

two sub-classes among them and labeled the rest as miscellaneous. Papers in the first sub-

category use different kinds of measures related to the execution time of test cases and we

called these time-based measures. The second sub-category addresses the distribution of

fitness values of individuals (solutions) as the measure of effectiveness (e.g., average,

maximum fitness). Such a measure is usually used when the goal of a search algorithm is

not finding a targeted solution, but the goal is to be as close as possible to the targeted

solution. An example of such papers is in [8, 9], where the goal was stressing the real-time

systems by scheduling input sequences to maximize delays in the execution of targeted

aperiodic tasks. In this study, the cost is measured by fitness values, which shows how

close the completion time of a specific task is to its deadline. Table 6 presents the number

of papers in our review per the category of effectiveness measures.

70

The data we collected revealed 61 papers using one or more effectiveness measures in a

total of 72 different effectiveness measurements across reported studies. There were three

papers that did not discuss the effectiveness of the SBST technique at all. There were 47

instances (65%) that used some type of coverage criterion as the measure of effectiveness.

The most often used criteria were control flow based criteria with 43 instances (60%).

Among them, 23 instances (32%) used branch coverage, which is the most frequently used

effectiveness measure. All-DU coverage, which is based on data flow analysis, was used in

two instances and two instances used N-wise coverage as the coverage criterion.

There were 11 instances (15%) that used fault detection rate as the measure of

effectiveness, where mutation analysis is used so as to report the mutation score or the

number of killed mutants. In some cases, the fault-based measures are reported along with

other effectiveness measures. Among the 14 instances (19%), which used the other

measures for the quality of test cases, five papers used the fitness value of individuals and

six papers used different kinds of execution-time based measures. Most of the time-based

measures were related to CPU cycles spent for test case execution. They are used in studies

which try to use SBST techniques to generate test cases that will find the best/worst case

execution time of a program.

Looking at the results in Table 6, we can see that control flow based coverage criteria

targeted at white-box testing are the most often used effectiveness measures and as we

mentioned in the above discussion, branch coverage is the criterion that has received the

most attention. As a result, this problem is now pretty well understood and there is a widely

accepted, standard way of calculating fitness values based on approximation level and

branch distance [37] on control flow graphs. Fault-based effectiveness measures received

relatively little attention in the literature reporting SBST studies as compared to coverage-

based measures. Similarly, the applications of SBST techniques to artifacts other than code

are rare as white-box testing seems to have been by far the main focus.

Cost Measures. Based on the definition of cost measures in Section 3 and what we

found in this review, we categorized cost measures into two main classes (1) ‘cost of

finding the target’, which is related to the cost of automating test case generation and (2)

Table 6 Distribution of effectiveness measures across empirical studies

Coverage-based measures
Fault -
based

measures

Others
No

effectiveness
measure

Control
flow

Data
flow

N-
wise

Time-
based

measures

Fitness
value of

individuals
Miscellaneous

43 2 2 11 6 5 3 3

71

‘cost of executing the generated test suite’, which is related to the cost of test case

execution. These are both relevant and complementary. Based on the measures found in the

studies, the first category is classified into four sub-categories:

(a) the number of iterations

(b) the cumulative number of individuals in all iterations

(c) the number of fitness evaluations an algorithm needs to find the final solution

(d) test case generation time.

The only measure for the category of ‘the cost of executing generated test suite’ that we

found in the papers was the size of the test suite, which is a surrogate measure for test

execution time.

Table 7 shows that among 64 papers, seven papers did not perform any cost analysis and

in the remaining 57 papers most empirical studies reported at least one cost measure in 70

different cost measurements reported across studies.

Based on the abovementioned classification, 62 instances (86%) used measures in the

category “Cost of finding the target”. The most often used measure among them was the

number of iterations, which is used in 27 instances (39%). A total of six instances (4%)

used the number of individuals (test cases) and the number of fitness evaluations is used by

14 instances (20%) as the measure of cost. Finally, there were 15 instances (21%) that used

the ‘test case generation time’ measure.

In the second main category, ‘cost of executing the final test suite’, the size of test suite

was the only measure that we found and it was used in eight instances. Some of these

instances, which report the number of test cases in the final solution, reported the cost of

finding the target as well. In some of these instances, the target of the SBST technique was

actually creating test suites with minimum size for covering a specific criterion such as a

minimal test suite that exhibits pair-wise coverage [20].

Summarizing the results of cost measures, we can see that the most commonly used

measure is the number of iterations. This measure is, however, the least precise measure

based on the discussion in the framework in Section 3. Another conclusion is that most

studies use cost measures only for comparison purposes with other alternative techniques.

There are just 15 instances (21%) that used measures such as test case generation time,

which conveys whether a particular technique is likely to be practical and scale up.

72

Table 7 Distribution of cost measures across empirical studies

Cost of finding the target
Cost of executing

the final test suite
No cost

Measure
Number of
iterations

Number of
individuals

Number
of fitness

evaluations

Test case
generation time Size of test suite

27 6 14 15 8 7

5.2.4 RQ2.4: What are the main threats to the validity of empirical studies in the domain

of search-based software testing?

In order to answer this question, we carefully assessed the studies using the proposed

framework in Section 3. For the construct validity threats, we looked at the validity of the

cost and effectiveness measures. The most frequently observed threat was using some

measures of cost that have severe limitations as they are not precise. As discussed in the

framework, the imprecision of cost measures such as ‘the number of iterations’ makes the

comparison between different SBST techniques very coarse grained. In addition, measures

such as the number of iterations, the number of individuals, and the number of fitness

evaluations can only be used for comparison across SBST techniques and cannot

demonstrate the practicality of SBST techniques. On the other hand, cost measures such as

‘test case generation time’, if measured as clock time, are suitable for showing the

practicality of a technique under time constraints. Such measures are, however, platform

dependent and therefore not easy to use for comparisons across techniques and studies.

The most frequently encountered conclusion validity threat is related to accounting for

the random variation that exists in the results obtained from SBST techniques. As

discussed in RQ2.1, 39% of the papers did not take the random variation of results into

account and 38% did not analyze or report it properly. This leads to a frequent threat

regarding the statistical significance of the results. Therefore, not accounting for

randomness and not applying proper data analysis (Section 3.3 and RQ 2.1) makes it very

difficult to confidently draw practical conclusions from the results reported in most studies.

Moreover, among the 11% of papers that discussed statistical hypothesis tests, just one

paper has discussed the practical significance of differences that is whether differences

among techniques justify the use of more complex techniques.

Regarding internal validity threats, the most important concern is the instrumentation of

code and the use of different tools for data collection without reporting sufficient

information about them. If the data collection and code instrumentation is not done through

73

a well-identified and available tool, then detailed information about the process of data

collection should be reported. An example of this would be the use of a tool that

instruments the code to collect, for instance, branch coverage information. If the tool is

developed for experimentation purposes only and has not been thoroughly tested, then the

coverage information generated by the tool might not be reliable and hence lead to an

internal validity threat. A possible way to deal with this validity threat is to use readily

available (open source, downloadable, or commercial) tools for this purpose.

The lack of clearly defining the target SUTs and having a clear object selection strategy

are the most common threats to external validity. Usually the algorithms are executed on

very small programs and no clear justification is provided for their choice and why they

may be representative of the target domain, if specified. This can result in invalid

generalization of the results.

5.2.5 RQ2.5: What are the most frequently omitted aspects in the reporting of empirical

studies in search-based software testing?

In the previous sections, we have discussed the lack of properly reported descriptive

statistics and statistical hypothesis testing (statistical significance) as the most commonly

missing aspects in many empirical studies. Only 23% of the reviewed papers reported

proper descriptive statistics or statistical significance results. In addition to this aspect, as

discussed in the framework, there are other aspects that are also important and should be

reported. These aspects are: discussion of validity threats, specification of formal test

hypotheses, object selection strategy, parameter settings, and data collection method. For

validity threats, 10% discussed conclusion validity, 6% discussed external validity, 3%

discussed construct validity, and only 3% of the papers discussed internal validity threats.

We found that only two papers out of 64 specified formal hypotheses, 44% of the papers

discussed object selection strategies, and 39% of the papers described their data collection

methods. Parameter settings (see [5]) were discussed by most, but not all of the papers

(88%). However, all papers did not discuss all parameters required for their study; usually

there is only a partial discussion. In some cases the authors provide justification of why

they chose particular values for the parameters but this was rare.

Summarizing the above information, Table 8 depicts the most frequently omitted aspects

in the reporting of empirical studies. Not reporting this information makes the full

interpretation of the results very difficult. For example, poor reporting may make it

difficult to determine whether differences are statistically significant, and whether

74

differences are expected to matter in practice. It is also usually difficult to determine if

results can be generalized and to what domain.

5.2.6 Conclusion

In our context, defining good and relevant cost and effectiveness measures is a prerequisite

for a useful empirical study. Almost all of the papers use appropriate (though not perfect)

cost and effectiveness measures to perform empirical studies. However, there were two

major problems in the majority of the papers. First, most of the papers do not account for

the random variation in cost and effectiveness of SBST techniques. Even the majority of

the papers that did account for the random variation didn’t use proper data analysis and

reporting methods (descriptive statistics and statistical hypothesis testing). Thus, there is a

general lack of rigor in the statistical analysis and reporting of results in most empirical

studies assessing the use of MHS algorithms for test case generation. Second, most of the

papers didn’t demonstrate the benefits of SBST by comparing it with simpler, techniques

such as random search or HC. These two factors are highly important for yielding

interpretable empirical studies in the context of test case generation using SBST

techniques. Furthermore, many other relevant aspects of empirical studies such as the

reporting of validity threats, the definition of formal hypotheses, the object selection

strategy, and data collection methods are not reported by most of the papers. We can

therefore conclude that most empirical studies in the context of test case generation using

SBST techniques are still not properly conducted and reported and that improving this

situation should be an important objective of the research community for future studies.

Table 8 The most omitted aspects of empirical studies

The most omitted aspects in the reporting of
empirical studies

Number of papers Percentage

Good Descriptive statistics and statistical test 15 23%

Validity threats

Construct 2 3%

Internal 2 3%

Conclusion 7 10%

External 4 6%

Formal Hypothesis 2 3%

Object selection strategy 28 44%

Data collection method 25 39%

75

5.3 How convincing are the reported results regarding the cost, effectiveness, and
scalability of search-based software testing techniques?

There is a lot of research being conducted on test case generation based on MHS

algorithms. In order to draw general conclusions from the current body of work, we need

to assess how convincing is the evidence regarding the cost, effectiveness, and scalability

of SBST techniques. The first step is to clearly identify studies that provide complete and

credible evidence from an empirical standpoint. Credible results are the consequence of a

well designed and conducted empirical study. Based on the discussions in Section 3, a well

designed study in the context of SBST should account for the random variation present in

the results and have a meaningful comparison baseline to show that the targeted test

problem benefits from a MHS approach. Therefore, in order to answer this research

question, we first selected papers that at a minimum account for the random variation of

results and compare their technique with the results of a simpler, non-SBST technique

(such as random search, static source code analysis, or some other technique applicable to

the test problem under consideration) or with HC. The first sub question, RQ3.1, will

provide an overview of these papers. The second step to answer RQ3 is to select those

papers that performed and reported proper data analysis. To satisfy this criterion, we expect

papers to report descriptive statistics on the variation in the results (cost, effectiveness),

where relevant or results of statistical hypothesis testing comparing alternative test case

generation algorithms, and in particular MHS algorithms with simpler baseline

alternatives. We deemed this set of papers as having credible evidence regarding the cost,

effectiveness, and scalability of SBST. In sub question RQ3.2, we provide detailed

information about the cost and effectiveness results presented in these papers along with a

short description of the test problem that they tackled.

5.3.1 RQ3.1: For which metaheuristic search algorithms, test levels, and fault types is

there credible evidence for the study of cost-effectiveness?

This sub-question provides a summary of the research papers that met the minimum

criteria of accounting for random variation in results and performing comparisons with a

simpler non-SBST or local SBST techniques. Out of the 64 papers that we analyzed, we

found 39 that accounted for random variation of results. This number was reduced to 18,

after selection of only those papers that also had either a non-SBST or a simple, local MHS

comparison baseline. Thus, based on the criteria that we used, we had to exclude 46 papers

as not being applicable for answering our research question. It is worth mentioning that

there were 14 papers among those 46 discounted papers that had the minimum requirement

76

of accounting for random variation, but did not have a non-SBST or local MHS

comparison baseline. For example, they may have proposed an extension to a genetic

algorithm that would possibly enhance its capacity for test case generation and compared

their results to a genetic algorithm not having this extension. In this review, those studies

are not considered as credible evidence, since they do not show, in any way, that a simple

non-SBST technique such as random search or a local MHS such as HC could not, in this

particular context, equal or outperform their technique. This is an important consideration,

since there is no a priori reason to believe that a MHS algorithm is more cost-effective and

efficient than simpler algorithms in all test case generation contexts. The size of the search

space is only a weak indicator of the extent of the search challenge as the search difficulty

also depends on the search space landscape and distribution of satisfactory solutions across

this space. Table 9 summarizes this set of 18 papers in terms of the MHS algorithms used,

the testing levels, and the fault types targeted in the empirical studies. These papers are

referred to as ‘Minimum Criteria papers’ in Table 9.

As can be seen in Table 9, amongst the 18 papers that report credible evidence, most

papers (13 out of 18) applied a SBST technique at the unit testing level. The most

commonly investigated MHS algorithm is the genetic algorithm with 12 papers out of 18,

followed by simulated annealing with just four papers. This trend is the same as that

observed in the full set of 64 papers in Section 5.1 There are also only two papers that

target specific faults, one targeting functional faults and the other non-functional faults.

5.3.2 RQ3.2: How convincing is the evidence of cost and effectiveness of search-based

software testing techniques, based on empirical studies that report credible results?

Along with accounting for random variation in the results and having a non-SBST or local

MHS comparison baseline, studies must also report proper descriptive statistics or

statistical hypothesis testing results in order to present credible and interpretable evidence.

After the application of these criteria, there were just eight papers left and the results of

these papers, referred to as ‘Sufficient Criteria Papers’, are summarized in Table 10.

Based on the information presented in Table 10, it is apparent that there is a scarcity of

convincing evidence regarding the cost-effectiveness of SBST techniques. Nevertheless,

these papers are a representative sample from the different types of investigations that are

performed with MHS algorithms for test case generation. MHS algorithms have been

recently applied to increasingly diverse types of problems and this is seen in this sample of

papers by comparing the content of the “test purpose” column across papers. This ranges

77

from specialized purposes such as testing the performance of real time systems to more

general purposes such as testing non-public methods in object-oriented programs. Despite

the diversity of objectives, we can see that in most of these papers, MHS algorithms,

mostly GA, were compared with random search and the results show that GA

outperformed random search for the test case generation problems at hand. This suggests

that this type of problems indeed requires guided search algorithms. It would also be

interesting to see how the quality of the empirical studies that have been performed in this

field have improved over the years. In order to investigate this, we compare three series as

shown in Figure 4.

The ‘All papers’ series shows the number of papers per year expressed as a percentage

of the total number of papers (64 papers). The ‘Minimum Criteria papers’ series shows the

percentage per year of the papers satisfying our minimum criterion of accounting for

Table 9 Test levels, fault types, and the type of metaheuristic algorithms used by ‘minimum criteria

papers’

 Test Level Fault Type Type of Metaheuristic Search Algorithm

Paper Unit
Integrati

on
System

Non-
Functio

nal
Functional GA EGA SA ESA ACO GP PSO

Jones et. al. [28] √ – – – – √ – – – – – –
Puschnerand
Nossal [43] √ – – – – √ – – – – – –
Tracey et. al.
[47] √ – – – – - – √ – – – –
Bueno and Jino
[10] √ – – – – √ – – – – – –
Michael et. al.
[38] √ – – – – √ – – – – –
Wegener et. al.
[51] √ – – – – √ – – – – – –
Shiba et. al. [45] – – √ – – √ – – – √ – –
Briand et. al. [8,
9] – – √ √ – √ – – – – – –
Miller et. al.
[39] √ – – – – √ – – – – – –
Watkins and.
Hufnagel [50] √ – – – – √ – – – – –
Zhan and Clark
[54] – – √ – √ – – √ – – – –
Zhan and Clark
[55] – – √ – – – – √ √ – – –
Bueno et. al.
[11] – – √ – – – – – – – – √
Harman et. al.
[33] √ – – – – – √ – – – – –
Harman and
McMinn [24] √ – – – – √ – – – – – –
Harman et. al.
[22] √ – – – – √ – – – – – –
Wappler and
Schieferdecker
[49] √ – – – – √ – – – – – –
Xiao et. al. [53] √ – – – – √ – √ √ – – –

78

random variation (as reported in Table 9 and the ‘Sufficient Criteria papers’ series shows

the percentage per year of papers satisfying our secondary criteria of having an appropriate

baseline and proper descriptive statistics or results of statistical hypothesis testing (as

reported in Table 10). From Figure 4 we can see that 40% of all papers, 55% of all

minimum criteria papers and 88% of all sufficient criteria papers were published in recent

years (2006 and 2007). The trends that become apparent are that firstly, the number of

SBST publications has been steadily growing over the years, and secondly, that the quality

of empirical studies has increased dramatically in recent years.

5.3.3 RQ3.3: Is there any evidence regarding the scalability of metaheuristic search

algorithms for test case generation?

During our systematic review, we did not find any paper specifically targeting the

scalability of the MHS algorithm in the context of SBST. However, there was one paper

where the authors performed a small scale scalability analysis [53]. The study was

conducted on five small test objects written in C/C++. There were 36 to 87 test

requirements to achieve full condition-decision coverage for all test objects and the size of

the search space ranged from 26 to 232. The study was performed using different

algorithms including GA, SA, Genetic Simulating Annealing (GSA), SA with Advanced

Adaptive Neighbors (SA/AAN), and random search. In two of the SUTs used for the study,

two different search spaces (one small and one large) were used to measure the

performance (condition-decision coverage vs. the number of SUT iterations) of different

MHS algorithms and random search. Based on the empirical evaluation, it was concluded

Figure 4 Quality trends of SBST empirical studies based on the publication year

79

Table 10 Test purposes, comparison baselines, and result highlights for the ‘sufficient criteria papers’

Paper Test purpose
Comparison

baseline
Result highlights

Puschner
and Nossal,
1998

Creating an input data set
with the worst-case
program execution time

RS
BEDG

StA

In most cases, GA performed equal to or better than
RS in terms of effectiveness measured as execution
time of the SUT. For smaller size SUTs, GA had
results as good as BEDG and StA

Briand et.

al., 2005
and 2006

Stressing a real-time
system by creating input
sequences that maximize
delays in the execution of
target tasks and increase
chances of missing
deadlines.

ScA

The technique can schedule tasks to miss the
deadline(s) even though schedulability analysis
identified them as schedulable. The GA is successful in
bringing task completion times closer to their
deadlines, thus leading to stressing the system in that
respect.

Miller et.

al., 2006

Test case generation
using genetic algorithms
and program dependence
graphs.

RS, GA

1) The results showed that, for simple programs there
is little difference in the results (branch coverage)
between RS and their proposed GA approach
(TDGen).
2) The difference is seen in larger programs, where a
much smaller number of generations are required to
achieve 100% branch coverage.
3) It is also observed that for some SUTs, TDGen can
achieve 100% branch coverage, where RS and
GADGET cannot.

Watkins et.

al., 2005

Comparison of different
fitness functions for path
coverage

RS

Based on the study, it was concluded that there is no
single fitness function that works well in all cases. A
two-step method using two best fitness functions is
therefore suggested in the paper.

Harman
and
McMinn,
2007

Test data generation to
answer three research
questions formulated
based on royal road
theory (see [24]) for GA

RS, HC

1) GA was able to find inputs to exercise the branches
that have royal road features and HC and RT were not
successful at all.
2) GA was unable to find the inputs to exercise the
branches that have royal road features if crossover
operators were removed.
3) HC performed better or no worse than GA for the
branches that do not have royal road features.

Harman et.

al., 2007

Investigation of the
relationship between the
size of the search space
(consisting of test inputs)
and the performance of
search algorithms
measured as the number
of fitness evaluations to
cover a branch

RS, HC

1) There is no relationship between search space
reduction and reduction in cost for random search.
2) There is significant improvement in cost reduction
for both hill climbing and the genetic algorithm.
3) The reduction in cost is more for the genetic
algorithm than for hill climbing.
4) There is no relationship between search space
reduction and search effectiveness in terms of coverage
for any of the search algorithms.

Wappler
and
Schieferde
cker, 2007

An approach for testing
non-public methods
without breaking the
encapsulation of the
class, using an objective
function specifically
designed to cover non-
public methods via public
methods.

RS, GP
The new GP technique achieved higher overall branch
coverage than RS and higher coverage of non-public
methods than their existing GP based approach.

Xiao et. al.,
2007

Empirical evaluation of
different MHS algorithms
and RS for test data
generation.

GA, SA, two
extensions of

SA (SA/AAN,
GSA), RS

GA performed better than all other algorithms
including random search. After GA, SA/AAN
performed better in terms of both cost (number of SUT
executions) and effectiveness (condition decision
coverage).

HC: Hill Climbing, RS: Random Search, GA: Genetic Algorithm, SA: Simulated Annealing, GP: Genetic Programming,
SA/AAN: SA with Advanced Adaptive Neighbors, GSA: Genetic SA, ScA: Schedulability Analysis, BEDG: Best Effort
Data Generation, StA: Static Analysis

80

that GA performed well for both the small and the large search space. SA/ANN was the

second best. SA and GSA performed well only for the small search space. All MHS

algorithms performed better than random search. As a result, we can say that scalability

analyses of SBST techniques in the domain of test case generation are very rare and there

is a need to focus more on scalability analysis in future studies.

5.3.4 Conclusion

Based on the discussions in the three sub-questions above, the number of papers which

contain well-designed and reported empirical studies in the domain of test case generation

using SBST is very small. As a result, there is a limited body of credible evidence that

demonstrates the usefulness of SBST techniques for test case generation. This evidence is,

in addition, very partial as it mostly focuses on the use of genetic algorithms at the unit

testing level. This evidence, however, consistently shows that the genetic algorithms

outperform random search in terms of structural coverage. However, this evidence is just

based on eight papers and cannot be generalized to state that genetic algorithms at the unit

testing level will always outperform random search regardless of the test objectives. More

empirical studies must be conducted to provide strong and generalizable evidence about

the suitability and applicability of different MHS algorithms for test case generation at

different testing levels and for test objectives other than structural coverage.

6 Threats to the Validity of this Review

The main validity threats to our review are related to the possible incomplete selection of

publications, inaccuracy of data extraction, and bias in quality assessment of studies.

6.1 Incomplete selection of publications

In Section 4.2, we have discussed and justified the systematic and unbiased selection

strategy of publications. However, it is still possible to miss some relevant literature. One

such instance is the existence of grey literature such as technical reports and PhD theses. In

our case, this literature can be important if the authors report the complete study which is

briefly reported in the corresponding published paper. In this review, we did not include

such information.

Another instance that may lead to an incomplete selection of publications is the

difficulty of finding an appropriate search string. In Section 4.2 we provide justification for

the repositories that we selected and the search string that we used. However, there may

81

still be some papers, which have used some other related terms other than our keywords.

We refined our search string several times because we found a paper missing from our

selected papers, which was in the reference list of another paper. In order to deal with this

problem, we refined our search string until it included all such papers and we were sure

that our set of selected papers did not miss any paper that is referred to and relevant for this

review.

6.2 Inaccuracy in data extraction

Inaccurate data can be the result of subjective and unsystematic data extraction or invalid

classification of data items. In our review, we tried to deal with this problem by two means.

First, we defined a framework, which clearly identified the data items that should be

extracted. Second, all the data extracted was reviewed by three researchers and all

discrepancies were settled by discussion to make sure that the extraction was as objective

as possible. Therefore, the remaining problem is the validity of the framework itself. We

have defined the framework based on the current guidelines for empirical studies in

software engineering and adapted them to our domain of interest based on experience.

Hence, we believe that it is a good starting point, but it can be further improved by

feedback and discussion from other researchers in the domain.

6.3 Unbiased quality assessment

Assessing the quality of the papers for answering RQ3 was a challenging issue. Even

though the data extracted from the papers to judge their quality was detailed and based on a

well thought framework, the criteria used to select the papers themselves could be thought

of as subjective. Our justification for the validity of this criterion is discussed in the

Section 5.3 and we re-emphasize the fact that this is the minimum requirement for having a

valid empirical study in the domain of SBST.

7 Conclusion

The automation of test case generation has been a long-standing problem in software

engineering. Search-based software testing, or in other words the application of

metaheuristic search (MHS) algorithms for test case generation, has shown to be a very

promising approach for solving this problem by re-expressing test case generation

problems as search problems. As a result, a great deal of research has been conducted and

published. The time was therefore ripe to perform a systematic review of the state of the art

82

and appraise the evidence regarding the cost-effectiveness of such an approach. A

systematic review is very different from more informal, traditional surveys, in the sense

that it aims at being comprehensive in its coverage and repeatability by relying on well-

defined paper selection and analysis procedures. This systematic review focuses, due to

space constraints, on one specific but crucial aspect: the way SBST techniques have been

empirically assessed. This aspect is highly important as all MHS algorithms are heuristics

and therefore cannot guarantee their success in solving a test case generation problem or

any other problem for that matter. Only an empirical investigation can provide the

necessary confidence that a specific MHS algorithm is appropriate for a given test case

generation problem.

In addition to a large-scale, systematic review, our contribution also includes guidelines,

in the form of a framework, on how to conduct empirical studies in search-based software

testing. Results of our review have shown that the research reported so far has mostly

focused on structural coverage and unit testing. However, the research is increasingly more

diversified in the types of topics being tackled. Results also show that empirical studies in

this field would benefit from more standardized and rigorous ways to perform and report

studies. More specifically, three important empirical issues stand out from our analysis.

Studies need to, more systematically and rigorously, account for the random variation in

the results generated by any MHS algorithm. Such random variation implies that

alternative techniques can only be compared by statistical means, that is, statistical

hypothesis testing. This, unfortunately, is not performed well in most published papers and

our framework provides guidelines about which statistical test to perform in which

circumstance. Last, another important issue is that it is impossible to assess how a MHS

technique performs in absolute terms: to be able to conclude on its usefulness to tackle a

specific test case generation problem, a proposed technique needs to be compared with

simpler and existing alternatives to determine whether it brings any advantage. This is

again missing in an important number of papers and needs to be carefully addressed by all

studies in the future.

Despite the above limitations, credible results are available and existing results confirm

that MHS algorithms are indeed promising for solving a wide variety of test case

generation problems. Future research work will have to better establish their limitations

and the types of problems for which they are applicable and required.

83

Acknowledgment

The authors wish to thank Simula School of Research and Innovation (SSRI) for funding

this work.

References

[1] "Computer Science Conference Ranking," 2008, http://www.cs-conference-
ranking.org/conferencerankings/topicsii.html.

[2] "Genetic Algorithms Framework," Rubicite Interactive, 2004,
http://sourceforge.net/projects/ga-fwork.

[3] "UML Profile for Modeling and Analysis of Real-time and Embedded Systems
(MARTE)," Object Management Group (OMG), 2008, http://www.omg.org/cgi-
bin/doc?ptc/2008-06-08.

[4] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of search-based testing for
non-functional system properties," Information and Software Technology, vol. 51,
pp. 957-976, 2009.

[5] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Evolutionary Testing," in
Technical Report Simula.SE.293: Simula Research Laboratory, 2008.

[6] B. Beizer, Software testing techniques Van Nostrand Reinhold Co., 1990.
[7] A. Bertolino, "Software testing research: achievements, challenges, dreams," in

2007 Future of Software Engineering: IEEE Computer Society, 2007.
[8] L. C. Briand, Y. Labiche, and M. Shousha, "Stress testing real-time systems with

genetic algorithms," in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO '05) Washington DC, USA: ACM, 2005.

[9] L. C. Briand, Y. Labiche, and M. Shousha, "Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems," Genetic
Programming and Evolvable Machines, vol. 7, pp. 145-170, 2006.

[10] P. M. S. Bueno and M. Jino, "Identification of potentially infeasible program paths
by monitoring the search for test data," in Proceedings of the fifteenth IEEE
international conference on Automated Software Engineering (ASE '00) 2000, pp.
209-218.

[11] P. M. S. Bueno, W. E. Wong, and M. Jino, "Improving random test sets using the
diversity oriented test data generation," in Proceedings of the 2nd international
workshop on Random testing: co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE '07) Atlanta, Georgia: ACM,
2007.

[12] E. K. Burke and G. Kendall, Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques: Springer 2006.

[13] K. Y. Cai and D. Card, "An analysis of research topics in software engineering -
2006," Journal of Systems and Software, vol. 81, p. 8, 2008.

[14] J. A. Capon, Elementary Statistics for the Social Sciences: Wadsworth Publishing
Co Inc, 1988.

[15] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd, "Reformulating software
engineering as a search problem," IEE Software vol. 150, pp. 161-175, 2003.

[16] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers:
World Scientific Publishing Company, 1997.

84

[17] R. Drechsler and N. Drechsler, Evolutionary Algorithms for Embedded System
Design: Kluwer Academic Publishers, 2002.

[18] T. Dyba, V. B. Kampenes, and D. I. K. Sjoberg, "A systematic review of statistical
power in software engineering experiments," Information and Software
Technology, vol. 48, pp. 745-755, 2006.

[19] T. Dyba, B. A. Kitchenham, and M. Jorgensen, "Evidence-based software
engineering for practitioners " IEEE software, vol. 22, p. 8, January/February 2005
2005.

[20] S. A. Ghazi and M. A. Ahmed, "Pair-wise test coverage using genetic algorithms,"
in The 2003 Congress on Evolutionary Computation (CEC '03) 2003, pp. 1420-
1424.

[21] M. Harman, "The Current State and Future of Search Based Software Engineering,"
in 2007 Future of Software Engineering: IEEE Computer Society, 2007.

[22] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener, "The impact of
input domain reduction on search-based test data generation," in Proceedings of the
the 6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering Dubrovnik,
Croatia: ACM, 2007.

[23] M. Harman and B. F. Jones, "Search-based software engineering," Information and
Software Technology, vol. 43, pp. 833-839, 2001.

[24] M. Harman and P. McMinn, "A theoretical empirical analysis of evolutionary
testing and hill climbing for structural test data generation," in Proceedings of the
2007 International Symposium on Software Testing and Analysis (ISSTA '07)
London, United Kingdom: ACM, 2007.

[25] C. Hart, Doing a Literature Review: Releasing the Social Science Research
Imagination: Sage Publications Ltd, 1999.

[26] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-Interscience,
1997.

[27] D. Johnson, "A theoretician's guide to the experimental analysis of algorithms," in
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth
DIMACS Implementation Challenges, 2002, pp. 215-250.

[28] B. F. Jones, H. H. Sthamer, and D. E. Eyres, "Automatic structural testing using
genetic algorithms," Software Engineering Journal, vol. 11, pp. 299-306, 1996.

[29] K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, Systematic Reviews to Support
Evidence-Based Medicine: How to Review and Apply Findings of Healthcare
Research: Royal Society of Medicine Press Ltd, 2003.

[30] B. A. Kitchenham, "Guidelines for performing Systematic Literature Reviews in
Software Engineering," 2007.

[31] B. A. Kitchenham, T. Dyba, and M. Jorgensen, "Evidence-based software
engineering," in Proceedings of the 26th International Conference on Software
Engineering (ICSE '04): IEEE Computer Society, 2004.

[32] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg, "Preliminary Guidelines for Empirical Research in
Software Engineering," IEEE Transactions on Software Engineering, vol. 28, p. 14,
August 2002.

[33] K. Lakhotia, M. Harman, and P. McMinn, "A multi-objective approach to search-
based test data generation," in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO '07) London, England: ACM, 2007.

[34] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, E. Popovici, K. Sullivan, J.
Harrison, J. Bassett, R. Hubley, and A. Chircop, "A Java-based Evolutionary

85

Computation Research System," George Mason University's ECLab Evolutionary
Computation Laboratory, 2007, http://www.cs.gmu.edu/~eclab/projects/ecj/.

[35] T. Mantere and J. T. Alander, "Evolutionary software engineering, a review,"
Applied Soft Computing, vol. 5, pp. 315-331, 2005.

[36] A. P. Mathur, Foundations of Software Testing: Pearson Education, 2008.
[37] P. McMinn, "Search-based software test data generation: A survey," Software

Testing, Verification and Reliability, vol. 14, p. 52, 2004.
[38] C. C. Michael, G. McGraw, and M. A. Schatz, "Generating software test data by

evolution," IEEE Transactions on Software Engineering, vol. 27, pp. 1085-1110,
2001.

[39] J. Miller, M. Reformat, and H. Zhang, "Automatic test data generation using
genetic algorithm and program dependence graphs," Information and Software
Technology, vol. 48, pp. 586-605, 2006.

[40] D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics, Fourth
ed.: W. H. Freeman, 2002.

[41] I. H. Osman and J. P. Kelly, Metaheuristics: Theory and Applications: Kluwer
Academic Publishers, 1996.

[42] H. Pohlheim, "GEATbx - The Genetic and Evolutionary Algorithm Toolbox for
Matlab," 2007.

[43] P. Puschner and R. Nossal, "Testing the results of static worst-case execution-time
analysis," in Proceedings of the 19th IEEE Real-Time Systems Symposium, 1998,
pp. 134-143.

[44] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures,
Third ed.: Chapman & Hall/CRC, 2003.

[45] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using artificial life techniques to generate
test cases for combinatorial testing," in Proceedings of the 28th Annual
International Computer Software and Applications Conference (COMPSAC '04)
2004, pp. 72-77.

[46] M. Srinivas and L. M. Patnaik, "Genetic algorithms: a survey," Computer, vol. 27,
pp. 17-26, 1994.

[47] N. Tracey, J. Clark, and K. Mander, "Automated program flaw finding using
simulated annealing," in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA '98) Clearwater Beach,
Florida, United States: ACM, 1998.

[48] R. H. Untch, A. J. Offutt, and M. J. Harrold, "Mutation analysis using mutant
schemata," in Proceedings of the 1993 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA '93) Cambridge, Massachusetts, United
States: ACM, 1993.

[49] S. Wappler and I. Schieferdecker, "Improving evolutionary class testing in the
presence of non-public methods," in Proceedings of the twenty-second IEEE/ACM
international conference on Automated Software Engineering (ASE '07) Atlanta,
Georgia, USA: ACM, 2007.

[50] A. Watkins and E. M. Hufnagel, "Evolutionary test data generation: a comparison
of fitness functions," Software: Practice and Experience, vol. 36, pp. 95-116, 2006.

[51] J. Wegener, A. Baresel, and H. Sthamer, "Evolutionary test environment for
automatic structural testing," Information and Software Technology, vol. 43, pp.
841-854, 2001.

[52] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen,
Experimentation in Software Engineering: An Introduction: Kluwer Academic
Publishers, 2000.

86

[53] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, "Empirical evaluation of
optimization algorithms when used in goal-oriented automated test data generation
techniques," Empirical Software Engineering, vol. 12, pp. 183-239, 2007.

[54] Y. Zhan and J. A. Clark, "Search-based mutation testing for Simulink models," in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
'05) Washington DC, USA: ACM, 2005.

[55] Y. Zhan and J. A. Clark, "The state problem for test generation in Simulink," in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
'06) Seattle, Washington, USA: ACM, 2006.

87

Modeling Robustness Behavior Using Aspect-

Oriented Modeling to Support Robustness

Testing of Industrial Systems

Shaukat Ali, Lionel C. Briand, Hadi Hemmati

Published in the Systems and Software Modeling Journal (SOSYM), Springer, 2011

Abstract—Model-based robustness testing requires, precise and complete behavioral,

robustness modeling. For example state machines can be used to model software behavior

when hardware (e.g., sensors) breaks down and be fed to a tool to automate test case

generation. But robustness behavior is a crosscutting behavior and, if modeled directly,

often results in large, complex state machines. These in practice tend to be error-prone and

difficult to read and understand. As a result, modeling robustness behavior in this way is

not scalable for complex industrial systems. To overcome these problems, Aspect Oriented

Modeling (AOM) can be employed to model robustness behavior as aspects in the form of

state machines specifically designed to model robustness behavior. In this paper, we

present a RobUstness Modeling Methodology (RUMM) that allows modeling robustness

behavior as aspects. Our goal is to have a complete and practical methodology that covers

all features of state machines and aspect concepts necessary for model-based robustness

testing. At the core of RUMM is a UML profile (AspectSM) that allows modeling UML

state machine aspects as UML state machines (aspect state machines). Such an approach,

relying on a standard and using the target notation as the basis to model the aspects

themselves, is expected to make the practical adoption of aspect modeling easier in

industrial contexts. We have used AspectSM to model the crosscutting robustness behavior

of a videoconferencing system and discuss the benefits of doing so in terms of reduced

modeling effort and improved readability.

1. Introduction
Modeling software functional behavior has always been an important focus of the modeling

community to support many development activities such as model-based testing (MBT)

and automated code generation. Regarding model-based testing, which is the specific focus

88

on this paper, much less attention has been given to modeling non-functional behavior such

that the testing of non-functional properties (e.g., safety and robustness) can be automated.

Though several UML profiles have been proposed to address the modeling of non-

functional properties (including the UML profile for QoS and Fault Tolerance [5], the

MARTE profile [7], and UMLSec [8]), it is not yet clear whether they can fully support test

automation.

Our motivation here is to support model-based robustness testing. An IEEE Standard [10]

defines robustness as “the degree to which a system or component can function correctly in

the presence of invalid inputs or stressful environment conditions”. A system should be

robust enough to handle the possible abnormal situations that can occur in its operating

environment and invalid inputs. For example, using our industrial case study as an

example, modeling such robustness behavior of a videoconferencing system (VCS) is to

model its behavior in the presence of hostile environment conditions (regarding the

network and other communicating VCSs), such as high percentage of packet loss and high

percentage of corrupt packets. The VCS should not crash, halt, or restart in the presence of,

for instance, a high percentage of packet loss. Furthermore, the VCS should continue to

work in a degraded mode, such as continuing the videoconference with low audio and

video quality. In the worst case, the VCS should return to the most recent safe state instead

of bluntly stopping execution. Such behavior is very important for a commercial VCS and

must be tested systematically and automatically to be scalable.

To automate such systematic testing, one can model the system robustness behavior to

such events and resort to model-based testing (MBT). However, robustness behavior is

typically crosscutting many parts of the system functional model and, as a result, modeling

such behavior directly within the functional models is not practical since it leads to many

redundancies and hence results in large, cluttered models. To cope with this issue, we

decided to adopt Aspect-Oriented Modeling (AOM) [11], which provides Separation of

Concerns (SoC) during design modeling. Crosscutting concerns are modeled as aspect

models and are woven into a primary model (base model), modeling non-crosscutting

concerns. AOM can potentially offer several benefits such as: 1) enhanced modularization,

2) easier evolution of models, 3) increased reusability, 4) reduced modeling effort, and 5)

improved readability [11, 12].

89

Our goal in this paper is to provide a complete solution in terms of both aspect and state

machine features necessary for model-based robustness testing. Furthermore, we want to

minimize the effort involved in learning a new language over standard UML and enable

automated, model-based testing. To achieve this, we present a RobUstness Modeling

Methodology (RUMM) to model robustness behavior using AOM and assess it on an

industrial case study involving a commercial videoconferencing system. Such studies are

very few in the research literature and are rarely run and reported in a satisfactory manner

[13]. To the knowledge of the authors, only a few industrial applications of AOM have

been reported to date [14-17] and had very different objectives than RUMM. An overview

of RUMM is shown in Figure 1. The core of RUMM is the definition of a UML state

machine profile for AOM: AspectSM (shown as a white artifact in Figure 1 in

RobustnessModeling). We limited our profile to UML state machines as: 1) They are the

main notation currently used for model-based test case generation [18] and are particularly

useful in control and communication systems, 2) Like it is often the case, our industrial

case study exhibits state-based behavior so that it is natural to initially provide support for

UML state machines. The profile can, however, be extended to other UML diagrams in the

future, following similar principles. We rely on developing a profile instead of developing

a domain specific language since, in our case study context as in many others, minimizing

extensions to UML is expected to ease practical adoption. More thorough discussions on

Figure 1 . An overview of RUMM

90

this issue are presented in Section 7. Modelers of functional aspects of the system can be

different from the ones specifying its robustness behavior. The latter make use of

AspectSM to model aspect state machines.

Another important part of the RUMM is another UML profile (RobustProfile) shown as

a white artifact in Figure 1, based on the fault taxonomy defined by [20] and the IEEE

standard classification for anomalies [21]. The profile is used by a robustness modeler to

develop aspect state machines and is defined specifically to assist in defining test strategies

for robustness testing. In addition, the profile helps generating test scripts based on classes

of faults modeled using the profile. Once again, the profile is defined on UML state

machines, as they are the main focus of this paper. We follow the widely accepted and used

definitions in [20] for faults and failures. A fault is an incorrect state of a system or its

environment in the presence of which the system cannot provide a correct service. Such

deviation from the correct service is called a failure. A fault type is identified based on a

fault taxonomy (white artifact in Figure 1) and the UML profile MARTE is used to model

it in a UML class diagram (Aspect Class Diagram, dark grey artifact in Figure 1). In a

subsequent step, aspect class diagrams are used to model actual faulty behavior as aspect

state machines (AspectStatemachines) using both AspectSM and RobustProfile. Finally,

robustness models comprising of aspect class diagrams and aspect state machines are

woven into functional models once again composed of UML class diagrams and state

machines. This is performed using our weaver implemented in Kermeta [22] and the

woven state machines produced by the weaver can be used in turn by a model-based testing

tool, for instance the TRUST tool [23] or QTronics [24], to generate executable test cases.

In our case, test cases are generated in Python, which is used as a test script language by

our industry partner (Cisco, Norway). Note that this paper addresses only robustness

modeling and details on test case generation and execution are outside the scope of this

paper.

The contributions of the paper can be summarized as follows: 1) A RobUstness

Modeling Methodology (RUMM) that enables the systematic modeling of robustness

behavior in a practical and scalable way, 2) A UML 2.0 profile (RobustProfile), which is

based on a fault taxonomy in [20] and the IEEE standard classification for anomalies [21],

to model faults, recovery mechanisms, and failure states, 3) The application of the MARTE

91

profile in conjunction with RobustProfile to model faulty environment conditions, 4) A

UML 2.0 profile (AspectSM) to support comprehensive aspect modeling for UML 2.0 state

machines and enable automated robustness testing. AspectSM supports modeling

crosscutting on all features of UML 2.0 state machines and supports all basic features of

AOSD such as pointcuts, introduction, joinpoints, and advice; 5) An empirical evaluation

and discussion of the benefits of modeling robustness behavior of an industrial system

using RUMM and AspectSM; 6) Tool support, based on model transformations in Kermeta

[22], to automatically weave AspectSM aspects into base state machines (modeling the

core functional behavior of a system).

The rest of the paper is organized as follows: Section 2 provides a case study and a

running example that we use to explain various concepts in RUMM. Section 3 provides an

overview of the RUMM methodology. Section 4 describes the terminology, techniques,

and tools that are required to understand and apply RUMM, including a definition and

justification of the AspectSM profile (Section 4.2) and details on its corresponding weaver

(Section 4.7). Section 5 demonstrates the application of the profile using a very simplified

version of our industrial case study. Section 6 discusses the benefits achieved when

applying RUMM to one complete subsystem of our industrial case study. Section 7

discussed existing works that are directly related to the objectives of RUMM. Finally,

Section 8 reports on future work and conclusions.

2. Case Study and Running Example
Our case study is part of a project aiming at supporting automated, model-based robustness

testing of a core subsystem of a video conference system (VCS) called Saturn [23]. The

core functionality to be modeled manages the sending and receiving of multimedia streams.

Audio and video signals are sent through separate channels and there is also a possibility of

transmitting presentations in parallel with audio and video. Presentations can be sent by

only one conference participant at a time and all others receive it. In this paper, to

demonstrate the applicability of RUMM, we focused on this particularly important

subsystem (Saturn) and left out the other functionalities of the VCS. We selected this

subsystem because robustness testing is concerned with testing the behavior of VCS in the

presence of hostile environment situations, which can only be tested when the VCS is in a

92

conference call with other systems, which is what Saturn manages. Saturn is complex

enough to demonstrate the applicability and usefulness of RUMM while still remaining

manageable in the context of a case study. To provide simple running examples in the next

sections, we modeled a reduced version of Saturn where one can only establish calls and

cannot start or stop presentations. From now onwards, we will refer to this simplified

Saturn model as S-Saturn to differentiate it from the complete case study model used in

Section 6 to discuss the benefits of RUMM.

2.1 Functional models of S-Saturn

The functional model of S-Saturn consists of a class diagram and a state machine. The

class diagram of S-Saturn is shown in Figure 2 and is meant to capture information about

APIs and system (state) variables, which are required to generate executable test cases and

oracles in our application context. Saturn’s API is modeled as a set of methods in the

Saturn class such as dial() and callDisconnect(). In our case, the parameters of these

methods are either modeled as primitive data types (e.g., String) or as Enumeration types

(e.g., CallProtocol).The state variables of the system are modeled as instance variables of

classes in the conceptual model. For example, two system variables in the SystemUnit class

are NumberOfActiveCalls and MaximumNumberOfCalls. NumberOfActiveCalls is an

Integer which determines the number of VCS that are currently in a Saturn

videoconference, whereas MaximumNumberOfCalls determines the maximum number of

simultaneous calls supported by Saturn.

Figure 2. Conceptual model of the S-Saturn subsystem

93

The state machine modeling the nominal functionality of S-Saturn, referred to as a base

state machine, is shown in Figure 3. It consists of four simple states. From the Idle state,

invoking the dial() method of the Saturn class leads to the Connected_1 state, which

represents the behavior of the system when there is a conference without any presentation

with one endpoint. As long as there exists one endpoint in the conference and no

presentation is transmitting, S-Saturn stays in the Connected_1 state and when S-Saturn

dials to more endpoints, it transitions to the NotFull state until it connects to the maximum

number of endpoints it supports and transitions to the Full state. Each simple state has an

associated state invariant based on the system variables modeled in the conceptual model.

For instance, the Idle state has the following state invariant:

self.systemUnit.NumberOfActiveCalls = 0 and self.conference.PresentationMode = 'off'

2.2 Robustness behavior

To explain various activities and concepts involved in defining the profiles, we will use a

crosscutting robustness behavior named ‘MediaQualityRecovery’. This behavior is related

to the robustness behavior of a VCS in the case when media quality falls below an

acceptable media quality level and tries to recover. The VCS should not crash when the

media quality falls below this acceptable level and should rather keep on operating at a

lower quality level and try to recover from this situation. In the worst case, the VCS should

Figure 3 . Base state machine for the Saturn subsystem

94

cleanup system resources and go back to the most recent safe state, in which the VCS was

exhibiting normal behavior. In our current case study, an example of a safe state is the Idle

state. Such a robust behavior is very important in a commercial VCS, as quality

expectations are high regarding robustness to media quality faults. Recall that the models

above are greatly simplified and that, in Section 6, we provide results from the complete

case study and other important robustness aspects that we modeled for Saturn.

3. Robustness Modeling Methodology

Our goal is to devise a solution to model robustness behavior, which (1) is complete in

terms of aspect and state machine features, (2) minimizes the learning curve over standard

modeling skills, and (3) enable automated, model-based testing. To achieve this, we

defined a RobUstness Modeling Methodology (RUMM) to model robustness behavior

using AOM. Recall from Section 1 that we follow the standard definition of robustness

provided in the IEEE 610.12 standard [10]. Such robustness is considered very critical in

many standards such as in the IEEE Standard Dictionary of Measures of the Software

Aspects of Dependability[10], the ISO’s Software Quality Characteristics standard [25],

Figure 4. Methodology for robustness modeling (RUMM)

95

and the Software Assurance Standard [26] by NASA. The RUMM methodology (Figure 4)

is suitable for systems, which implement substantial robustness behavior to deal with faulty

situations in the environment such as communication and control systems. A1 and A2

activities are related to functional modeling, whereas activities A3 to A6 are related to

modeling robustness behavior. Activity A7 is automated and merges functional (base state

machines) and robustness (aspects) models together into a complete model. Activities A1

to A6 are related to modeling functional and robustness behavior and are manual. In this

section, we will explain very briefly each activity. Additional, detailed information will be

provided in the next sections, followed by the application of RUMM in an industrial case

study.

The first activity (A1) involves developing a conceptual model [27] of a SUT using a

UML 2.0 class diagram based on the domain analysis of the SUT. In this activity, we

model different domain concepts of the SUT as classes and relationships between them,

which are determined as the result of domain analysis. In addition, we model state variables

of the SUT as attributes in the class diagram. We also model public operations of the SUT

(API) and external events in the SUT environment as signal receptions. The conceptual

model is then used in activity A2 for developing a behavioral model of the SUT as one or

more UML state machines. Attributes defined in the conceptual model are used for various

purposes such as defining state invariants and defining guards on transitions. The

operations and signal receptions defined in the conceptual model are used as triggers on

transitions of state machines. In model-based robustness testing, one of the most important

tasks is the identification and modeling of faults, in the presence of which we must test the

behavior of the SUT. To systematically identify these faults, the development of fault

taxonomy is required (A3) and is provided in Section 4.1. The application of the fault

taxonomy to an industrial system is reported in Section 5.3. Activity A4 requires modeling

different properties of the system’s environment, whose violations lead to the various types

of faults identified from the fault taxonomy (A3). The guidelines for this process are

defined in Section 5.4. Activity A5 requires modeling robustness behavior as aspect state

machines. As described in Section 4.4, this requires the use of the AspectSM profile. The

profile definition is provided in Section 4.2. The control flow arrow from activity A5 to

activity A4 depicts that multiple robustness aspects can be modeled one after another. Once

96

all robustness aspects have been modeled, we may need to define the order in which the

aspects should be woven into the base state machine developed in activity A2. Guidelines

for modeling the ordering of aspect state machines as a weaving-directive state machine are

presented in Section 4.6. Finally, activity A7 weaves aspect state machines with base state

machines. For this activity, we developed a tool using Kermeta [22], a well-known model

transformation environment. The details of the tool are presented in Section 4.7 and the

weaving algorithm is detailed in Appendix B.

4. Concepts, Techniques, and Tools Required for

RUMM
This section describes the concepts, techniques and tools that are needed to apply RUMM.

In addition, we provide further definitions of the terminology employed as needed.

Figure 5. High level fault taxonomy

97

4.1 Definitions

This section provides basic definitions required to understand the rest of the paper.

4.1.1 Faults and Failures in the context of UML state machines

While modeling robustness, we model faults in the behavior of the operating environment

of a SUT. Such behavior of the environment may lead the SUT into abnormal situations. In

UML state machines, we model faults in the environment as either signal events or change

events, on one or more transitions in the state machine of the SUT. Firing such transitions

may lead the SUT to a degraded state where the SUT tries to recover from the fault while

still providing some of the required service in a degraded mode. If the SUT is successful in

recovering from the fault, it then goes back to a normal mode of operation. Otherwise, it

may go to a failure state or the initial state.

4.1.2 Fault classification based on taxonomy

Many fault taxonomies are proposed in the literature, however most of them are either

specific to architectures, for instance Service-oriented Architecture (SOA) [28, 29] and

Component-based Systems [30], or to application domains such as aeronautics and space

[31]. We chose the widely-known and referenced fault taxonomy presented in [20] because

it is very comprehensive and generic, and thus can be extended for specific needs as it was

required in our case. For instance, we extended the taxonomy to accommodate for media

quality faults, which are very important for a commercial VCS. The fault taxonomy for

elementary fault classes provided in [20] is modeled in Figure 5 as a class diagram. Dark

gray colored classes in Figure 5 show the fault classes we extended for our specific needs.

The taxonomy states that a fault can be categorized based on different views/perspectives

such as based on SystemBoundary or Dimension. Using SystemBoundary faults can be

classified into either InternalFault or ExternalFault depending on where they occur.

Details on classes of faults are provided in [20]. Given our goal, we extended some fault

classes in the fault taxonomy to model faults which are specific to the VCS. For instance,

to provide a support for modeling media-related faults, which are important for an

industrial VCS, we introduced a view RequirementType (Figure 5) and defined two fault

classes: FunctionalFault and NonFunctionalFault. We further classified

98

NonFunctionalFault into MediaFault (Figure 5), with further subclasses Audio and Video.

In addition, we extended ExternalFault, which comprises faults in networks and external

systems, into NetworkFault and SystemFault subclasses. SystemFault corresponds to the

faults in one or more VCS communicating with the SUT. Since in robustness testing the

focus is always on modeling behavior of a SUT in the presence of faults in its environment,

all fault classes in the taxonomy are valid from the perspective of other VCSs

communicating with the SUT. For instance, a SoftwareFault in a VCS communicating with

the SUT can have an effect on the latter’s behavior. We provide an example use of the

taxonomy in Section 5.3 for our case study.

4.2 The AspectSM profile

Using the AspectSM profile, we model each aspect as a UML state machine with

stereotypes (aspect state machine). The modeling of aspect state machines is systematically

derived from a fault taxonomy (Figure 5) categorizing different types of faults (incorrect

states [20]) in a system and its environment (such as communication medium and other

systems). Such a modeling approach models each type of robustness behavior separately

from the state machines modeling nominal functionality (base state machine) and hence

results in enhanced separation of concerns. Furthermore, our modeling approach models

crosscutting behaviors as separate aspect state machines and hence reduce modeling effort

when compared to modeling robustness directly in combination with nominal behavior.

The readability of models is then improved as robustness behavior that tends to be

redundant when modeled directly is clearly separated out and expressed once. Following

the general ideas proposed in [32] [19], to model aspects using the same notations as the

base model, we used UML state machines to model both aspect and base models, which is

expected to facilitate practical adoption. In industrial applications of model-based testing, it

is always desirable to minimize the need to learn different notations to model different

testing concerns (such as security and robustness concerns). Though profiles already exist

in the literature that allow modeling aspects as UML state machines [1-3, 12, 33], we

decided to define our own profile to address the three following problems:

1. Crosscutting behavior can exist on any modeling element in UML 2.0 state machines,

but the existing profiles and approaches do not support all features, such as state

invariants and guards [1, 12, 33, 34]. These are however crucial in the context of model-

99

based testing, and in particular for automated test case generation [35].

2. Existing modeling approaches using profiles require, for modeling aspect features

(such as pointcut and advice), to develop new diagrams that are not part of the UML 2.0

standard [3, 4], thus making adoption in practical contexts more difficult. Indeed, such

profiles require developing specific tool support for new diagrams and entails training

users on how to build them. As a result, in practice, the use of non-standard modeling

languages is discouraged.

3. Some of the existing approaches do not support all basic features of aspect orientation

such as Introduction.

More details and discussions on related work are provided in Section 7.2

The AspectSM profile is the core component of RUMM because modeling robustness as

aspect state machines is achieved through standard UML extension mechanisms. This

profile was developed by augmenting many of the concepts in existing UML state machine

profiles for AOM (Section 7) in order to achieve the specific goal of supporting automated,

model-based robustness testing. Although the AspectSM profile is developed specifically

for robustness testing, its application to other purposes such as for security testing should

be investigated. In this section, we provide a detailed description of AspectSM.

A UML profile enables the extension of UML for different domains and platforms,

while avoiding any contradiction with UML semantics. In [36], two main approaches for

profile creation are discussed. The first approach directly implements a profile by defining

key concepts of a target domain, such as what was done to define SysML [37]. The second

approach first creates a conceptual model outlining the key concepts of a target domain

followed by creating a profile for the identified concepts. This latter approach has been

used for defining profiles such as the UML profile for Schedulability, Performance, and

Time specification (SPT) [38], the QoS and Fault Tolerance specifications [5], and the

UML Testing Profile (UTP) [39].

We used the second approach to define the AspectSM profile since it is more systematic

as it separates the profile creation process into two stages. In the first stage, we develop a

conceptual model which helps identify domain concepts and their relationships. In the

second stage, we identify the mapping between the main concepts and UML modeling

elements and define corresponding stereotypes on UML metaclasses. Finally, the

100

relationships between stereotypes are obtained from the relationships that were identified

between the domain concepts in the first stage.

4.2.1 Domain view of the profile

The conceptual domain model for AspectSM is shown in Figure 6 as a MOF-based [40]

metamodel. The conceptual domain model defines aspect-oriented modeling concepts.

An aspect describes a crosscutting behavior, which in our context is the robustness

behavior of a system, i.e., the behavior of the system in the presence of faults in its

environment, such as packet loss and jitter for a network. Since a network can experience

packet loss at any time, it is crosscutting the SUT functional behavior. Since in our case

study, like in many systems with state-driven behavior, the behavior of the system is

modeled as UML 2.0 state machines, we also model aspects as UML 2.0 state machines to

facilitate adoption in practice. Robustness behavior, for example the behavior of a SUT in

the presence of packet loss or corrupt packets, is modeled using one or more state

machines.

A joinpoint is a model element, which corresponds to a pointcut where an advice

(additional behavior) can be applied [41]. All modeling elements in UML are possible

joinpoints, where an advice can be applied [11]. For UML state machines, some examples

of joinpoints include a state or a transition.

A pointcut selects one or more joinpoints with similar properties, where advices can be

applied. A pointcut can have at most one before advice, one around advice or one after

Figure 6. Conceptual domain model of the profile

Context Pointcut inv:
 self.advice.oclIsKindOf(Before)->size()= 0 or self.advice.oclIsKindOf(Before)->size()=1
 and self.advice.oclIsKindOf(Around)->size()=0 or self.advice.oclIsKindOf(Around)->size()=1
 and self.advice.oclIsKindOf(After)->size()=0 or self.advice.oclIsKindOf(After)->size()=1

Figure 7. Constraint on Pointcut

101

advice (Figure 6). All pointcuts are expressed with the OCL on the UML 2.0 metamodel.

We decided to use the OCL to query joinpoints since it is the standard to write constraints

on UML models and is also commonly used to query jointpoints (modeling elements such

as states and transitions). Also, several OCL evaluators are currently available that can be

used to evaluate OCL expressions such as the IBM OCL evaluator [42], OCLE 2.0 [43],

and EyeOCL [44]. Furthermore, writing pointcuts as OCL expressions do not require a

modeler to learn a notation that is not part of the UML standard. In the literature, several

alternatives are proposed to write pointcuts [1-4, 12] but all of them either rely on

languages (mostly based on wildcard characters to select joinpoints, for instance, ‘*’ to

select all joinpoints) or diagrammatic notations which are not standard, thus forcing

modelers to learn and apply new notations or languages. Using the OCL, we can write

precise pointcuts to select jointpoints with similar properties. We do so by selecting

modeling elements (jointpoints) based on the properties of UML metaclasses. This further

gives us the flexibility to specify pointcuts of varying complexities. For instance, we can

specify a very complex pointcut based on all properties of a UML metaclass, e.g., a

pointcut on the Transition metaclass, selecting a subset of transitions in a base state

machine for which all properties of the Transition metaclass are the same. On the other

hand, we can also specify a simple pointcut based on a small subset of properties of a UML

metaclass. For example, a pointcut on the Transition metaclass selecting all those

transitions from a base state machine, which have the same guards, though other properties

such as triggers or effects can be different. In UML state machines, states and transitions

are the most important modeling elements and all other elements are contained within them

such as state invariants in states and guards and actions in transitions. Therefore, pointcuts

are defined in the context of the UML metaclass Vertex, to query states and apply advices

on states and its composing elements such as state invariants and do, entry, and exit

activities. Similarly, pointcuts are also defined in the context of the UML metaclass

Transition to query transitions and advices are applied on transitions and its containing

elements such as Guard and Actions. The attributes for the Vertex and Transition

metaclasses can be obtained from the UML specifications [45]. For example, a pointcut

may select all transitions of a state machine which have triggers with signal events. This

pointcut, defined in Figure 8, is written as an OCL expression on attributes of the UML

102

metaclass Transition and selects all transitions that have triggers with signal events on

them.

An advice is an additional behavior added at joinpoint(s) selected by a pointcut. This

behavior can be added as OCL constraints or in the form of state machine modeling

elements such as a guard or an effect. As most of the concepts in AOM are inspired from

aspect-oriented programming (AOP) languages such as AspectJ [46], in a similar way in

AOM, an advice can be of type before, after, or around. A before advice is applied before

joinpoint(s), an after advice is applied after joinpoint(s), whereas an around advice replaces

joinpoint(s). For example, introducing guards on all transitions of a state machine that have

signal events as triggers is an example of a before advice on transitions. Table 1

summarizes the semantics of each type of advice for each UML 2.0 state machine modeling

element. Examples for advice on all UML 2.0 state machine modeling elements are

provided in [47].

An introduction is similar to the inter-type declaration concept in AspectJ [46] and is

used in many AOM approaches [4, 48-50] to introduce new modeling elements in a base

Table 1. Definition of before, around, and after advice
State machine
modeling
element

Before advice Around advice After advice

State Adding an OCL constraint that will be
evaluated before entry to one or more
states selected by a pointcut

Replacing one or more states
selected by a pointcut with a new
state

Adding an OCL constraint that
will be evaluated on leaving one
or more states selected by a
pointcut

Transition Adding a guard to one or more
transitions selected by a pointcut. If a
guard already exists, the additional
constraint is conjuncted to the existing
guard

Replacing one or more
transitions selected by a pointcut
with a new transition

Adding an effect with one or
more actions to one or more
transitions selected by a pointcut

Trigger Not applicable Replacing one or more triggers
on transitions selected by a
pointcut with new triggers

Not applicable

Effect Adding a new behavior to the effect Replacing one or more effects on
transitions selected by a pointcut
with a new effect

Same as Before advice

Guard and state
invariant

Add an additional constraint (conjunct)
to the guards (or state invariants) selected
by a pointcut

Replacing one or more guards on
transitions (or state invariants)
selected by a pointcut with a new
guard (or a state invariant)

Same as Before advice

Do, entry, and
exit activities of
a state

Adding a behavior to the activities
selected by a pointcut

Replacing one or more activities
in states selected by a pointcut
with a new activity

Same as Before advice

Context uml::Transition

 self->select(trigger|trigger.event.oclIsKindOf(SignalEvent))

Figure 8. A pointcut in OCL selecting all transitions with

103

model. In a similar fashion, we use introduction in our context to introduce new modeling

elements in a UML state machine, e.g., a new state or a transition. In our context, we

mostly use introduction to introduce transitions in a base state machine, which correspond

to faults in the environment (Section 4.1.1). We also use introduction to introduce new

states in a base state machine, which are related to a robustness behavior such as the state

of a system which is operating with degraded performance (Section 4.1.1).

4.2.2 UML representation

In this section, we provide details on the AspectSM profile such as details on stereotypes

and their attributes.

Table 2. Extensions, generalizations, and associations of each stereotype
Stereotype Extensions Generalizations Associations

(association name[Cardinality]: Target
stereotype class)

Aspect uml::StateMachine None None
Pointcut uml::State, uml::Transition, uml::Trigger,

uml::Constraint, uml::Behavior
None beforeAdvice[0..1]:Before, afterAdvice[0..1]:After,

aroundAdvice[0..1]:Around,
introduction[0..*]:Introduction

Advice Same as for Pointcut None pointcut[1]:Pointcut

Before Same as for Advice Advice Same as for Advice
After Same as for Advice Advice Same as for Advice
Around Same as for Advice Advice Same as for Advice
Introduction Same as for Advice None pointcut[1]:Pointcut

Table 3. Attributes defined for the <<Pointcut>> stereotype
Name Type Description
name[1] String Name of the pointcut
type[1] SelectionType SelectionType is an enumeration which has All, Subset, and One enumeration literals. The All literal

means that all modeling elements of a particular type will be selected. For instance, if a pointcut of the
type All is specified on a state in an aspect, this means that the pointcut will select all states of the
base state machine. When the type of a pointcut is specified as All, there is no need to specify
selectionConstraint. When the type of a pointcut is specified as One, the name of the modeling
element is specified as selectionConstraint. In the case of a pointcut of type Subset, an OCL constraint
is specified at the UML metamodel level to select a subset of modeling elements.

selectionConstraint String An OCL constraint on the UML 2.0 metamodel level to select model elements. For instance, a
pointcut may select all transitions of a state machine which have triggers with signal events. (See for
Figure 8 an example)

beforeAdvice[0..1] String A before advice associated with the pointcut.
afterAdvice[0..1] String An after advice associated with the pointcut.
aroundAdvice[0..1] String An around advice associated with the pointcut.

Table 4. Attributes defined for the <<Aspect>> stereotype

Name Type Description
name[1] String Name of the aspect
baseStateMachine[1..*] uml::StateMachine Base state machines on which an aspect is applied.

Table 5. Attributes defined for the stereotypes related to advice
Name Type Description
name[1] String Name of the advice
constraint[0..1] String A constraint in OCL at the model level as a before, after, or around advice.

104

Profile diagrams: Profile diagrams for AspectSM are presented in Figure 9, Figure 10, and

Figure 11. Profile diagrams show extension relationships between stereotype classes

(denoted <<stereotype>>) and UML metaclasses (denoted <<metaclass>>), i.e.,

relationships showing which stereotypes are applied to which UML metaclasses (extension

relationship). For example, Figure 10 shows the Introduction stereotype applied to

Transition, Behavior, Trigger, Constraint and State metaclasses. These diagrams also show

relationships between stereotype classes such as associations and generalizations. For

instance, in Figure 11, Before, After, and Around metaclasses are inheriting from the

Advice metaclass. To decrease the complexity of profile diagrams, we have not shown

associations between stereotype classes. However, associations of stereotype classes are

listed in Table 2. In addition, Table 2 provides information about extensions and

generalizations. The extensions column in Table 2 shows which UML metaclasses a

particular stereotype is applied to. For example, the Aspect stereotype is applied to the

uml::StateMachine metaclass in row 2 of Table 2. The generalizations column illustrates

the inheritance relationship between stereotype classes. For example, in row 5 of Table 2,

the Before stereotype is inherited from the Advice stereotype.

Profile elements description: We now describe each profile element. Extensions,

generalizations, associations are shown in Table 3. The extension relationship tells on

which metaclasses of UML a stereotype is applied. For instance, in Table 2, the

<<Aspect>> stereotype has an extension relationship with the UML metaclass

StateMachine. This means that the <<Aspect>> stereotype can be applied to a UML state

machine. All stereotypes except <<Aspect>> are applied to all modeling elements related

to UML state machines, though in Table 3 we list only the key metaclasses of UML state

machines.

Attributes associated with the <<Aspect>> stereotype are shown in Table 4. Attributes

associated with the <<Pointcut>>, <<Before>>, <<After>>, and <<Around>>

stereotypes are shown in Table 3 and Table 5. When applying these stereotypes, attributes

must be supplied in accordance to the description in these tables. Examples are presented

in [47].

4.2.3 Example of an application of AspectSM

We present next a small example of the application of AspectSM. On the

105

MediaQualityRecovery aspect state machine in Figure 12, the <<Aspect>> stereotype is

described in a top-left note (labeled as “1”) in the upper left part of Figure 12. This aspect

consists of one pointcut on a state: SelectedStates, which attribute values are described in

the note labeled as “2”. The SelectStatesPointcut applied to the SelectedStates state selects

all states of the base state machine (Figure 3) except for the Idle state. Whenever media

quality (in this case, audioQuality) falls below the acceptable level in any of the states

selected by the SelectStatesPointcut pointcut, the system goes to the RecoveryMode state,

which is stereotyped as <<Introduction>> indicating that this state will be introduced in

the base state machine (Figure 3). This is shown as a transition―with the <<

Introduction>> stereotypes indicating this transition will be introduced in the base state

machine.

Figure 9. <<Aspect>> stereotype applied to StateMachine metaclass (left) and <<Pointcut>> stereotype

applied to various metaclasses (right)

106

Figure 10. The <<Introduction>> stereotype applied to various metaclasses

Figure 11. The <<Advice>> stereotype applied to various metaclasses

4.3 RobustProfile

To help with the definition of robustness test strategies, we defined a UML profile

RobustProfile to model faults and their properties. In addition, the profile supports the

Figure 12. An example for the application of AspectSM

107

modeling of recovery mechanisms when a fault has occurred and the modeling of states a

system can transition to when it has recovered. The profile has two sub-profiles: the first

sub profile, FMProfile, deals with modeling faults and their attributes. The second sub-

profile, FRProfile, deals with modeling recovery mechanisms and states of a system after

recovery from a failure. Below, we provide details on the definition of these sub-profiles.

We reused all the concepts presented in [20] and in addition added a few more concepts

presented in Section 4.1.2. In addition, we reused all the concepts from the IEEE standard

on the classification of software anomalies as defined in [21]. All these concepts from the

IEEE standard were captured in a UML profile so that the standard can be used in

combination with UML models. The newly introduced concepts are italicized in Table 7

and Table 6.

4.3.1 Fault Modeling Profile (FMProfile)

We used the same procedure to define FMProfile as that for AspectSM (Section 4.2). The

domain view for FMProfile is the same as the fault taxonomy shown in Figure 5 [20].

Below, we provide a UML representation of FMProfile, which includes profile diagrams

and details on stereotypes and their attributes.

Figure 13 shows a part of the profile diagram for FMProfile that is related to the abstract

<<Fault>> stereotype class, which corresponds to the Fault class in Figure 5. We show

different attributes of <<Fault>> and also show its extension relationships to UML

metaclasses. Additional information about FMProfile is summarized in Table 7. The

<<Fault>> stereotype is applied to the metaclasses Transition, Trigger, and Event because

each fault in our case occurs when an event associated to trigger on a transition is fired (see

Section 4.1). Furthermore, according to UML semantics [45], a transition can have

multiple triggers, and each trigger can model different faults belonging to the same super

class. For instance, a transition can model multiple external faults (ExternalFault in Figure

5) and one trigger on the transition can model one fault from NetworkFault while the other

trigger can model one fault from SystemFault. This is the reason that the <<Fault>>

stereotype class has an extension relationship with the Trigger metaclass. The attributes of

<<Fault>> are obtained from the IEEE Standard in [21] where more details can be found

on each attribute. Based on the values of these attributes, test strategies can be devised. For

instance, the transitions that are stereotyped with <<Fault>> or any of its sub-stereotype

108

classes with value High for the severity attribute, could be given priority over other

transitions modeling faults with lower severity. In addition, complex test strategies can be

defined to test the robustness of a SUT in the combined presence of faults that belong to

different fault classes. For example, a test strategy can be devised that can test the behavior

of a SUT in the presence of one media fault and one network fault at the same time. We

also defined stereotypes for all other classes shown in the taxonomy and provide detailed

information about these stereotypes in Table 7. All stereotypes inherit attributes from

<<Fault>>.

This profile also assists in test script generation. For instance, different stereotypes can

indicate for which entity (for instance, network or other systems) in the environment, test

scripts are to be generated. For example, the <<NetworkFault>> stereotype indicates that

test scripts will be generated for a network emulator and the test scripts will emulate a

particular fault in the emulator. The <<MediaFault>> stereotype indicates that test scripts

will be generated to introduce media faults in the VCS that is communicating with the

SUT. It is important to distinguish between faults for different entities in the environment

because different scripting languages are normally used to control these entities. In our case

study, a proprietary scripting language is used for the SUT and other VCS communicating

with it, whereas Python is used to control a proprietary network emulator used by our

industry partner.

4.3.2 Fault Recovery Profile (FRProfile)

FRProfile deals with modeling recovery mechanisms associated with the occurrence of a

fault. The domain view of FRProfile is shown in Figure 14. It consists of two main parts.

The first part describes recovery mechanisms such as Forward and Backward [20]. The

second part deals with the state of the system after a recovery mechanism is executed,

which could be Initial, Final, Failure, or a Degraded state [20].

A part of the profile diagram for FRProfile is shown in Figure 15. Both recovery

mechanisms and systems states refer to states in the SUT state machines and we therefore

applied stereotypes <<RecoveryMechanism>> and <<SystemState>> on metaclass

Vertex. In addition, we defined stereotypes for other classes shown in the domain view of

the profile such as <<Forward>> and <<Degraded>>. These stereotypes inherit

attributes from their corresponding super classes, e.g.,<<Degraded>> inherit attributes

109

from <<SystemState>>. Details on stereotypes are shown in Table 6.

Figure 13. Profile diagram for FMProfile

Figure 14. Domain view of FRProfile

Figure 15. Profile diagram for FRProfile

4.3.3 Example of an Application of RobustProfile

This section provides a small example of the application of RobustProfile in Figure 16.

110

A change event when (not self.audioQuality < audioQualityThreshold) is fired from

SelectedStates (stereotyped as <<Normal>> from RobustProfile indicating that it is a

normal state) when the audio quality in a videoconference becomes lower than the allowed

threshold of audio quality. This change event is stereotyped as <<AudioFault>> indicating

that it is an audio fault (see the comment labeled C1) and its attribute values are provided

in the note labeled as “1”. For instance, the effect attribute has value Effect::Performance

indicating that this fault affects the performance of the system. Recall that the effect

attribute is defined based on the IEEE standard defined in [21]. The RecoveryMode state in

Figure 16 is stereotyped as <<Degraded>> from RobustProfile indicating that in this state

the system in functioning with degraded performance.

Table 6. Extensions and generalizations of each stereotype for FRProfile

Stereotype Extensions Generalizations
RecoveryMechanism uml::Vertex None
Forward No Direct Extensions RecoveryMechanism
Backward No Direct Extensions RecoveryMechanism

SystemState uml::Vertex None
Initial No Direct Extensions SystemState
Final No Direct Extensions SystemState
Error No Direct Extensions SystemState
Degraded No Direct Extensions SystemState
Normal No Direct Extensions SystemState

Table 7.Extensions and generalizations of each stereotype for FMProfile

Stereotype Extensions Generalizations
Fault uml::Transition, uml::Trigger, uml::Event None
DevelopmentFault No Direct Extensions Fault
OperationalFault No Direct Extensions Fault
InternalFault No Direct Extensions Fault
ExternalFault No Direct Extensions Fault
NaturalFault No Direct Extensions Fault
HumanMadeFault No Direct Extensions Fault
HardwareFault No Direct Extensions Fault
SoftwareFault No Direct Extensions Fault
MaliciousFault No Direct Extensions Fault
Non-MaliciousFault No Direct Extensions Fault
DeliberateFault No Direct Extensions Fault
NonDeliberateFault No Direct Extensions Fault
AccidentalFault No Direct Extensions Fault
IncompetenceFault No Direct Extensions Fault
PermanentFault No Direct Extensions Fault
TransientFault No Direct Extensions Fault
FunctionalFault No Direct Extensions Fault
NonFunctionalFault No Direct Extensions Fault
NetworkFault No Direct Extensions ExternalFault
SystemFault No Direct Extensions ExternalFault
MediaFault No Direct Extensions NonFunctionalFault
AudioFault No Direct Extensions MediaFault
VideoFault No Direct Extensions MediaFault

111

Figure 16. Application of RobustProfile

4.4 Guidelines to model properties of an environment based on the fault taxonomy

Figure 17 shows a set of guidelines to model properties of the operating environment of a

SUT in a UML class diagram, violations of which lead to faults in the environment. These

properties are modeled based on a fault taxonomy such as the one presented in Section

4.1.2. Faults related to the environment are mostly violations of non-functional properties

(NFP) such as media properties and network properties. UML doesn’t directly support

modeling NFP, therefore we used part of the MARTE profile for modeling such properties

[7]. The MARTE profile is an extension for UML 2.0 that allows modeling real time and

embedded systems. MARTE provides a generic framework to model NFP on UML models.

Moreover, MARTE provides a model library that provides NFP data types for defining

various NFP properties and specific applications. MARTE also provides mechanisms to

extend the model library to either extend the existing NFP data types or define entirely new

NFP types.

Now we present an example to use the above guidelines (Figure 17) to model a class

diagram, which captures the properties of the environment. Figure 18 shows a partial class

diagram of the MediaQualityRecovery robustness behavior (Section 2.2). For this

robustness behavior, we identify that the Video fault class from the fault taxonomy (Figure

5) is relevant. For this fault class, video frame loss in incoming video streams to a VCS is

important for robustness testing of the VCS. To model video frame loss, we model a

1. For each fault class indentified in the taxonomy, model one or more faults belonging to the class.
2. For each fault of a fault class, define an attribute in the aspect class representing the property whose violation leads

to the particular fault. The type of the property can be defined as:
a. Using UML standard primitive data types such as Integer, Boolean, etc.
b. Using the NFP_Types defined by MARTE such as NFP_Percentage
c. Defining a new NFP_Type using the MARTE’s extensibility mechanism to define new NFPs.

Figure 17. Guidelines to model faults in aspect class diagram

112

property named videoFrameLoss in the MediaQualityRecovery class shown in Figure 18.

The videoFrameLoss property is modeled as NFP_Percentage defined in MARTE. The

property holds the percentage of video frame loss in incoming video streams to the VCS.

4.5 Aspect state machine

An aspect state machine is a standard UML state machine with stereotypes from the

AspectSM profile. The complete definition of an aspect state machine follows the template

shown in Figure 19.

4.6 Template for Modeling Weaving-Directive state machine

In this paper, a robustness behavior, such as the behavior of a SUT in the presence of

network faults or faults in incoming media streams to the SUT, is modeled using one or

more related aspects. Each of these aspects is modeled as a separate aspect state machine.

Aspect state machines should be woven into a base state machine in a specific order to

ensure that the woven state machine is complete and correct. To achieve this, an ordering

must be defined by a modeler/tester who instructs the weaver about the ordering of aspect

state machines. This is modeled as a state machine (denoted weaving-directive state

machine), containing all aspect state machines as submachine states ordered using UML

state machine’s control structure features such as decision, join, and fork. If the ordering

doesn’t matter, then a modeler/tester is free to specify any order. The template for the

complete definition of a weaving-directive state machine is shown in Figure 20.

4.7 Weaver

The aspect state machines are woven into the base state machine by a weaver, which reads

the base state machine, aspect state machines, and a weaving-directive state machine and

produces a woven state machine. The weaving algorithm is shown in Figure 31 in

Appendix B and is based on the same weaving approach advocated in [32]. We developed

a weaver for AspectSM by using Kermeta [22], which is a metamodeling language [22]

Figure 18. An Example of Modeing a Property of Environment

113

that allows manipulating models by defining transformation rules at the metamodel level.

We do not implement any explicit model validation, but we rely on Kermeta’s model

validation, which partially prevents violations of UML semantics. Kermeta conforms to

OMG’s metamodeling language Essential Meta Object Facility (EMOF) and Ecore [40].

Figure 21 shows the architecture of the weaver by using transformations in Kermeta to

weave one or more aspect state machines into a base state machine. The AspectSM profile

is defined on the UML 2.0 metamodel. An aspect state machine is defined as a UML 2.0

state machine by applying the AspectSM profile. A base state machine is a standard UML

2.0 state machine. Transformations rules in Kermeta are defined on the UML 2.0

metamodel and the AspectSM profile. Finally, the Kermeta engine uses the transformation

rules that read an aspect state machine and the base state machine and weaves the aspect

state machine into the base state machine. The Kermeta engine then produces a woven state

machine, which is again an instance of the UML 2.0 metamodel, since the woven state

machine is a standard UML 2.0 state machine. The woven state machines can then be used

as input for automated model-based testing tools such as Conformiq Qtronic [24] and

Smartesting Test Designer [51]. The weaver is fully automated and does not require any

additional inputs from the user apart from aspect state machines and a base state machine.

The weaver is developed to support automated, model-based robustness testing, and thus

aspect state machines are woven into the base state machine, which can be used for test

case generation. Currently, our approach and its weaver do not support modeling and

weaving interactions [12] that may occur between different aspects and may lead to

conflicts between aspects during weaving. On the other hand, our weaver does support to a

limited extent the handling of aspect conflicts. In [52], four classes of aspect conflicts are

discussed: conflicts due to crosscutting specification, aspect-aspect conflicts, aspect-base

conflicts, and concern-concern conflicts. In our application context, i.e., robustness

modeling and testing, the most relevant conflicts are aspect-aspect conflicts, which are

related to handling conflicts between aspects. One of the most important aspect-aspect

conflicts is the ordering conflict, which is related to the order in which aspect state

machines should be woven into a base state machine. Ordering conflict is most relevant in

our context since, for testing purposes, we focus on modeling, weaving, and testing one or

more related aspects at a time. We specify the ordering between aspect state machines in a

114

UML state machine containing all aspect state machines as submachine states, ordered

using state machine control structure features: decision, join, and fork.

The algorithm implemented in the weaver is presented in Appendix B. For the current

application, we don’t foresee the need to define other interactions/conflicts, however, in the

future we plan to apply RUMM to other case studies and as required we will further

improve the process. For testing purposes, one first has to focus on testing one concern at a

time, and may eventually at a later stage test several concerns together. For robustness

testing, at this stage of the work, we weave faulty behavior of the environment (e.g.,

network) one concern at a time, as the goal is to test robustness behavior one concern at a

time in order to facilitate debugging.

Figure 19. Definition of an aspect state machine

An aspect state machine A is a UML 2.0 state machine stereotyped as <<Aspect>> consisting of the following UML 2.0

state machine elements:

1. I: An initial state
2. F: A set of one or more final states
3. S: A set of states, each of one of the following types

a. A state s in S can be a new state to be introduced in the base model (stereotyped as
<<Introduction>>)

b. A state s in S can be a pointcut selecting one, a subset, or all states of a base state machine
(stereotyped as <<Pointcut>>)

c. A state s in S without any stereotype can be a state that has one or more new elements introduced
(stereotyped <<Introduction>>) or as pointcuts (stereotyped as <<Pointcut>>) of the type state
invariant, do, entry, or exit activity

4. T: A set of transitions connecting states in the set S, each transition of one of the following types
a. A transition from an initial state to any type of state described in item 3, which doesn’t have any

trigger, guard, or effect
b. A set of transitions from any state (except from the initial state) to the final state
c. A transition t in T can be a new transition to be introduced in the base model (stereotyped as

<<Introduction>>). This type of transition can exist on the following pairs of stereotyped states:
i. Between a state stereotyped as <<Introduction>> and a state stereotyped as

<<Pointcut>>
ii. Between two states stereotyped as <<Introduction>>

iii. Between two states stereotyped as <<Pointcut>>
d. A transition t in T is a pointcut selecting one, a subset, or all transitions of a base state machine

(stereotyped as <<Pointcut>>). This transition can exist on the following pairs of states:
i. Between a state stereotyped as <<Introduction>> and a state stereotyped as

<<Pointcut>>
ii. Between two states stereotyped as <<Introduction>>

iii. Between two states stereotyped as <<Pointcut>>
e. A transition t in T can be the transition without any stereotype that has any contained element such as

a guard, a set of triggers, and an effect as a new element introduced (stereotyped as
<<Introduction>>) or as a pointcut stereotyped as <<Pointcut>>. This transition can only exist
between a pair of states stereotyped as <<Pointcut>>

115

5 Application of RUMM to Our Simplified Industrial

Case Study
In this section, we illustrate the different activities in RUMM using the simplified version

of our industrial case study (S-Saturn).

5.1 Activity A1: Develop a conceptual model of a system

This activity involves developing a conceptual model [27] of a system using UML 2.0 class

diagram based on the domain analysis of the system. As we discussed in Section 2, the

Saturn subsystem deals with establishing video conferencing calls, disconnecting calls, and

starting/stopping presentation. In Section 2, Figure 2 shows what we refer to as a

‘conceptual model’ for the system being modeled, which is here S-Saturn.

A weaving directive state machine W is a UML 2.0 state machine having the following modeling elements:

1. An initial state I
2. A set of final states F
3. A set of submachine states S, where each submachine state refers to an aspect state machine
4. A set of transitions T that can be of any of the following types:

a. A transition from an initial state to a submachine state, which doesn’t have any trigger, guard, or
effect, but can have a name.

b. A set of transitions from submachine states (except from the initial state) to the final state.
c. A set of transitions T connecting submachine states S using UML 2.0 state machine’s features such as

decision, join, and fork to show the order in which the submachine states (aspects) will be woven into
the base state machine. For instance, in a very simple scenario, if there is an outgoing transition from
submachine state S to S’, then S will be woven before S’.

Figure 20. Definition of a weaving directive state machine

Figure 21. Aspect weaver implemented in Kermeta

116

5.2 Activity A2: Develop a behavioral model of the system as UML state machines

This activity models the nominal system behavior using UML 2.0 state machines, as

illustrated for S-Saturn in Figure 3, Section 2. This behavioral model is referred to as the

‘base state machine’ since all aspect state machines are woven into this state machine.

5.3 Activity A3: Identify relevant faults from fault taxonomy

A VCS should be robust against possible faults arising in its environment, which includes

users, the network, and other video conferencing systems. A user interacts with the VCS

and sends different commands such as starting a video conferencing, stopping a video

conference and starting a presentation. All the interactions of the VCS with other VCSs

take place through the network. Therefore the VCS should be robust against faults in the

network and other VCSs communicating with it.

In our case study, we modeled Media faults in the VCSs communicating with the SUT,

which are the ones that are related to quality of media such as audio, video, and their

synchronization. From Figure 5, we see sub-classes of Media faults which are Audio Faults

and Video Faults. Table 8 provides description of Media faults that are relevant for our case

study.

In addition, network faults (NetworkFault, see Figure 5) are important for a VCS.

Table 8. Media faults and their description

Fault Class Fault Instance Fault Description
Audio Fault No audio This fault removes audio from a videoconference

Loss of audio frames This fault introduces loss in audio frames
Low audio quality This fault reduces audio quality in a videoconference
Noise in audio This fault introduces noise in audio during a

videoconference
Echo in audio This fault introduces echo in audio
Mixing of multiple audio This fault mixes multiple audio during a videoconference

Video Fault No video This fault removes video from a videoconference
Loss in video frames This fault introduces loss in video frames
Low video quality This fault reduces video quality in a videoconference

Media Fault Synchronization mismatch between
audio and video

This fault loses synchronization between audio and video in
a videoconference

Table 9. Network faults and their description
Fault Description of the fault
Packet Loss This fault introduces network packet loss during a videoconference
Jitter This fault introduces delays in the packet during a videoconference
Illegal H323 packet This fault introduces illegal/malformed H323 packets in a H323 videoconference
Illegal SIP packet This fault introduces illegal/malformed SIP packets in a SIP videoconference
No network connection This fault shut downs the network
Low bandwidth This fault reduces the bandwidth of the network to less than the bandwidth required by a

videoconference

117

Several types of faulty situations can happen in the network that must be dealt by the VCS.

We show network faults that are relevant to our case study in Table 8.

5.4 Activity A4: Develop a class diagram for a robustness aspect

As advocated by the aspect-oriented paradigm, crosscutting concerns (functional or non-

functional) [3] must be modeled as aspects. Activities A3 and A4 model aspects of the

robustness behavior of the system using aspect state machines and aspect class diagrams.

To do so, we use the AspectSM profile using the existing UML state machine notation, as

presented in Section 4.2.

As an example, we demonstrate how to model two representative crosscutting behaviors

on S-Saturn. The first one models the behavior that checks the quality of media (audio and

video) during a videoconference and in case the quality falls below a threshold value,

specific procedures try to recover an acceptable quality. This is achieved by modeling three

aspects: 1) First aspect updates state invariants of all states with audio quality attributes, 2)

The second aspect updates state invariants of all states with video quality attributes, 3) The

third aspect models the behavior that checks the quality of media (audio and video) during

a videoconference and in case the quality falls below the threshold value, triggers the

above-mentioned recovery procedures (MediaRecoveryAspect). Such behavior is redundant

in various states and hence is a crosscutting behavior. The second crosscutting behavior

example factors out constraints on input parameters of a call event as an aspect, which are

Figure 22. Class diagram for media quality attributes

118

also scattered across many transitions in the base state machine. Details about the modeling

of these two aspects are presented in Appendix A.

Each aspect state machine has an associated class diagram (aspect class diagram), which

is an augmentation of the conceptual model of the Saturn subsystem shown in Figure 2.

This class diagram models the information about different kinds of faults in the fault

taxonomy, such as audio and video related faults. Guidelines for such modeling based on a

fault taxonomy (Section 4.1.2) are presented in Section 4.4. The Audio class defines audio

quality attributes based on which different audio faults can be introduced, as shown in

Figure 22. For instance, the on attribute is a Boolean attribute that determines if the audio

is present in a videoconference. The Perceptual Evaluation of Speech Quality (PESQ) [53]

is a metric for measuring audio quality. The audioFrameLoss is an attribute that determines

the current percentage of audio frames loss during a videoconference and is defined as the

MARTE type NFP_Percentage. The noiseLevel attribute is defined as the Nfp type

NoiseLevel (modeled with <<NfpType>> from MARTE), which has two attributes: value

that holds current noise value and unit contains a unit to measure audio noise such as

“decibel”.

Similarly, the following video quality properties are defined in the class diagram: The

on attribute determines if the video is present in a videoconference. The videoQuality

attribute is a metric for measuring video quality and videoFrameLoss determines the

current video frame loss during a videoconference modeled as MARTE’s

NFP_Percentage.

5.5 Activity A5: Develop a state machine for the robustness aspect

5.5.1 Modeling recovery from media faults

Recall that each robustness aspect is modeled as a UML state machine with stereotypes

from AspectSM (aspect state machine). Figure 23 shows the details of the

MediaQualityRecovery aspect state machine. Attribute values of the various stereotypes are

presented in Figure 23 in notes. The aspect state machine models the robust behavior of a

VCS in the case when media quality falls below the acceptable level and tries to return to

an acceptable media quality level. In the worst case, the VCS cleans up system resources

and goes back to the most recent safe state (e.g., Idle in our industrial case study), in which

119

the VCS was exhibiting normal behavior. Such a robust behavior is very important in a

commercial VCS, as quality expectations are high regarding robustness to media quality

faults.

On the MediaQualityRecovery aspect state machine, the <<Aspect>> stereotype is

described in a top-left note (labeled “1”) in the upper left part of Figure 23. This aspect

state machine consists of two pointcuts on states: SelectedStates and Idle, whose attribute

values are described in notes explicitly linked to each <<Pointcut>> note. Representing

pointcuts as modeling elements of UML statemachines (for instance, state in this case)

enables the modeling of aspect state machines using standard UML notation, while keeping

in line with UML semantics. The SelectStatesPointcut (see note 3 for attribute values)

applied to the SelectedStates state selects all states of the base state machine (Figure 3)

except for the Idle state. The SelectIdleState pointcut (see note 5 for attribute values) on the

Idle state selects the Idle state of the base state machine (Figure 3). Whenever media

quality (defined based on the quality attributes in Figure 22) falls below the acceptable

level in any of the states selected by the SelectStatesPointcut pointcut, the system goes to

the RecoveryMode state. This is shown as a transition―with the <<Introduction>>,

<<MediaFault>>, and <<ExternalFault>> stereotypes (indicating this transition will be

introduced in the base state machine and is modeling media faults which are external to S-

Saturn) from the SelectedStates state to the RecoveryMode state with nine change events.

Each change event is defined based on one media quality attribute and determines if this

attribute falls below the acceptable level and is stereotyped as either <<AudioFault>>,

<<VideoFault>>, or both . For example, the change event when(not self.audio.on) is fired

from SelectedStates when the audio is turned off in a videoconference and is stereotyped as

<<AudioFault>> indicating that it is an audio fault (see the comment labeled C1 and note

“2” for attribute values—recall that these attributes are defined based on IEEE standard

classification for anomalies [21]). If the system manages to return to acceptable media

quality, it goes back to the normal state shown as a transition introduced from the

RecoveryMode state to the SelectedStates state stereotyped as <<Normal>> (indicating

that these states are normal states of S-Saturn) with again nine change events. For example,

the change event when(self.audio.on) is fired from the RecoveryMode state when the audio

is back in the videoconference. The state invariant of the RecoveryMode state ensures that

120

S-Saturn remains in RecoveryMode as long as any of the faults in the environment exists.

This state invariant is simply the logical disjunction of all change events modeling the

faults (Figure 24). In the other case, if the system cannot recover within time time, it

disconnects all connected VCS and goes to the Idle state. This is modeled as a transition

introduced between the RecoveryMode state and the Idle state with a time event and an

effect DisconnectAll with an opaque behavior, which is a type of behavior defined in UML

to specify implementation specific semantics. In addition, the Idle state is stereotyped as

<<Initial>>, which indicates the state of S-Saturn if it is not successful in recovering to an

acceptable level of media quality. In our context DisconnectAll is a call to Saturn’s API in

a python-based proprietary test script language. This call disconnects all connected systems

to a VCS.

Figure 23. The MediaQualityRecovery aspect

121

Figure 24. RecoveryMode’s State invariant

5.5.2 Constraining input parameter values

The second crosscutting behavior example we present is constraining parameters of events

on transitions. Since many transitions in a state machine can have the same trigger and

constraints on the associated event of the trigger may be the same, redundant constraints

can exist in the model and hence can be factored out as an aspect. Such constraints can be

used to generate test cases exercising the system robustness with illegal inputs [54]. The

aspect state machine AddGuard shown in Figure 25 models this crosscutting behavior. The

associated class diagram for the aspect state machine is identical to Figure 2 as we do not

need to model additional properties. This aspect state machine defines two pointcuts

(SelectSourceStatesOfTransition, SelectTargetStatesOfTransition) on two states and one

pointcut SelectTransitionsPointcut on the transition between the two states stereotyped as

<<Pointcut>>. This aspect state machine selects all transitions which have a dial call

event and applies a before advice AddGuardBeforeAdvice that adds an additional constraint

“number.size()=4” to the existing guards on the selected transitions. This constraint

ensures that the number parameter of the dial call event has exactly four digits.

5.6 Activity A6: Define ordering of aspects using a state machine

We begin with testing a related set of aspects modeling one robustness behavior. The

related set of aspects is woven into a base model in a specific order to ensure that the

woven model is complete and correct. To achieve this, an ordering must be defined

between the aspect state machines (activity A5). This ordering is also modeled as a state

machine (denoted as weaving-directive state machine), containing all aspect state machines

as submachine states ordered using UML state machine’s control structure features such as

decision, join, and fork. The complete template for the definition of a weaving directive

state machine is shown in Section 4.6.

Context Saturn::Media
 not self.video.on
 or self.video.videoFrameLoss.value > self.video.videoFrameLossThreshold.value
 or self.video.videoQuality > self.video.videoQualityThreshold
 or not self.audio.on
 or self.audio.audioFrameLoss.value > self.audio.audioFrameLossThreshold.value
 or self.audio.noiseLevel.value and self.audio.noiseLevel.value <= self.audio.noiseLevelThreshold.value
 or self.audio.PESQ > self.audio.pesqThreshold or self.audio.mixingAudio
 or self.synchronizationMismatch.value > self.synchronizationMismatchThreshold.value

122

The weaving directive state machine for MediaQualityRecovery is shown in Figure 26.

Using such state machine, we define the ordering of aspect state machines related to media

quality. By weaving the aspect state machines in this order, the woven state machine will

be correct for testing. The reason is that MediaQualityAspect introduces the

DegradedMode state in the base state machine and the first two aspect state machines

update audio and video quality constraints in state invariants of all states of the base state

machine. These constraints should not be updated in DegradedMode because in this state

the system is working with degraded performance and audio and video quality will not be

as expected. If MediaQualityAspect is woven before AudioQualityAspect and

VideoQualityAspect, the woven state machine will contain DegradedMode with wrong

state invariants. In this paper, we aim to weave and test a set of related aspects (e.g., related

Figure 25. State machine for the AddGuard aspect

Figure 26. A state machine describing ordering of aspects for

weaving

123

to media quality) but not all aspects altogether. In the future, we will investigate how to test

by weaving different aspects at the same time.

5.7 Activity A7: Weave aspects with behavioral models

Finally, the aspect state machines are woven into the base state machine by the weaver,

which reads the base state machine, aspect state machine(s), and a weaving-directive state

machine and produces a woven state machine.

5.7.1 Modeling recovery from media faults

The woven state machine resulting from applying MediaRecoveryAspect to the Saturn base

state machine is not easily comprehensible, but it is only meant to be processed by model-

based testing tools. An excerpt of the woven state machine is however shown in Figure 27

and details regarding the model complexity of woven state machines are summarized in

Table 11. From all states except Idle and PresentingWithoutCall, transitions to

RecoveryMode are added. Each of these transitions contains nine change events that can

lead to the RecoveryMode state, such as the woven state machine in Figure 27 which

contains a new state RecoveryMode. From NotFull, a transition is added that contains nine

change events that can lead to the RecoveryMode state such as change events

“self.video.videoFrameLoss.value > videoFrameLossThreshold.value” and “not

(self.audio.on)”. The first change event is triggered when, during a videoconference, video

frame loss becomes greater than the allowed frame loss (videoFrameThreshold), whereas

the second change event is triggered when audio disappears from a videoconference. These

change events are defined in the context of the conceptual class diagrams shown in Figure

2 and the class diagram modeling media quality attributes in Figure 22. Recall from

Section 5.4 that both class diagrams are defined in the same package: Saturn. After

weaving, the class diagram in Figure 22 is merged into the conceptual class diagram in

Figure 2. Therefore, after weaving, the attributes defined in Figure 23 have the same

context: the “Saturn” class in Figure 2. Similarly, six transitions from RecoveryMode to all

states except Idle and PresentingWithoutCall have been woven into the base state machine.

Each transition has nine change events that can lead the system back to the state it was in

before RecoveryMode, e.g., in Figure 27, a transition with six change events is added that

can lead the system back to the NotFull state. For instance, the VideoFrameLoss change

124

event in Figure 27 specifies that when video frame loss is within the allowed frame loss

and the system was in the NotFull state, a VCS transitions from RecoveryMode to NotFull.

The change event has two parts: the first part (self.video.videoFrameLoss.value >= 0 and

self.video.videoFrameLoss.value <= videoFrameLossThreshold.value) checks if

videoFrameLoss is within the allowed threshold. The second part is the state invariant of

the NotFull state, which checks that active calls in a videoconference is more than one

(self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls <

self.systemUnit.MaximumNumberOfCalls) and S-Saturn is not sending a presentation

(self.conference.PresentationMode = 'off'). In addition, it checks that S-Saturn is not

sending a presentation and is not receiving a presentation (self.conference.calls-

>select(c:Call| c.outgoingPresentationChannel->asSequence()->last().Protocol =

VideoProtocol::off)->size() = 0 and self.conference.calls->select(c:Call |

c.incomingPresentationChannel->asSequence()->last().Protocol <> VideoProtocol::off)-

>size() = 0).

5.7.2 Constraining input parameter values

An excerpt of the woven state machine is shown in Figure 28. On transitions with dial()

trigger, where there were no guards, “number.size()=4” has been added, such as on the

Figure 27. Excerpt of woven state machine after applying MediaQualityRecovery

VideoFrameLoss = when (self.video.videoFrameLoss.value >= 0 and self.video.videoFrameLoss.value <= videoFrameLossThreshold.value) and

(self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls < self.systemUnit.MaximumNumberOfCalls) and

self.conference.PresentationMode = 'off' and self.conference.calls->select(c:Call| c.outgoingPresentationChannel->asSequence()->last().Protocol =

VideoProtocol::off)->size() = 0 and self.conference.calls->select(c:Call | c.incomingPresentationChannel->asSequence()->last().Protocol <> VideoProtocol::off)-

>size() = 0)

125

transition with the dial() trigger from Connected_1 to NotFull in Figure 28. For the

transitions with the dial() trigger, where there were guards already present in the base state

machine, “number.size()=4” has been conjuncted to the existing guards, such as the self

transition on NotFull in Figure 28.

Figure 28. An excerpt of woven state machine obtained after applying AddGuard

Table 10. Complexity of Saturn state machines
Subsystem Number of states Number of transitions

States Submachine states
1 15 4 56
2 6 0 20
3 2 0 2
4 2 0 5
5 2 0 2
6 22 7 63
7 2 0 2
8 5 0 2
9 2 0 2

10 2 0 2
11 3 0 2
12 4 0 7
13 6 0 8
14 2 0 3
15 2 0 3
16 2 0 2
17 3 0 2
18 4 0 10
19 2 0 2
20 4 0 20

126

6 Results from the Complete Industrial Case Study
In this section, we present results and discussions from the entire industrial case study. This

is based on an augmented and complete version of the simplified case study presented in

Section 5. Our goal is to assess whether RUMM addresses practical needs when modeling

the robustness behavior of a realistic system and whether it has the potential to provide

significant benefits in terms of reducing modeling effort and error-proneness.

6.1 Behavioral models of Saturn

Saturn consists of 20 subsystems. Each subsystem can work in parallel to the S-Saturn

subsystem shown in Figure 3. For each subsystem, we modeled a class diagram to capture

APIs and state variables. In addition, we modeled one or more state machines to model the

behavior of each subsystem. Due to confidentiality restrictions, we do not provide names

and details of the subsystems. For one subsystem (subsystem no 1), which is described in

Section 2, we provided a conceptual model in Figure 2. The behavioral model of the

subsystem number 1 in Table 10 consists of 15 states; four of them are modeled as

submachine states to reduce model complexity. The state machines of this subsystem are

presented in [47]. For other subsystems, we do not provide class diagrams and state

machines, but their complexity is summarized in Table 10. It is important to note though

the complexity of an individual subsystem may not look high in terms of number of states

and transitions, all subsystems work in parallel to each other and therefore the overall

complexity is enormous after combining them. Saturn’s implementation consists of more

than three million lines of C code.

6.2 Modeling robustness behavior

We modeled three crosscutting behaviors on Saturn. The first two are the same as

presented in Section 5.4 and Section 5.5. In addition, we modeled the behavior of Saturn in

the presence of different network communication faults (NetworkCommunication) such as

packet loss, jitter, and illegal packets in videoconference protocols. The

NetworkCommunication aspect is presented in Appendix C.

127

6.3 Results and discussion

In this section, drawing lessons learned from our case study, we discuss the benefits

achieved by applying RUMM to model the robustness crosscutting behavior of Saturn.

6.3.1 Reduced modeling effort

Modeling effort can be measured in different ways. One way, which is part of our future

research plans, is to conduct a controlled experiment that can compare the modeling effort

of applying aspect state machines with standard UML state machines. An alternate, much

less expensive way is to estimate modeling effort through a surrogate measure, the number

of modeling elements required to be modeled. This number can then be compared in aspect

state machines and standard UML state machines when modeling the same crosscutting

behaviors. Table 11 summarizes the modeling tasks involved when using and not using

aspect state machines for modeling the abovementioned crosscutting behaviors. The first

two crosscutting concerns are related to updating audio and video constraints (Appendix A)

in 86 states of Saturn. Using our profile we need to model one state in the aspect state

machine, whereas 86 states of Saturn need to be changed if one is modeling this behavior

directly. This means a reduction of approximately 99% of the number of elements involved

in the change.

The third crosscutting behavior is for modeling media quality recovery. When using

AspectSM, we need to model three states and three transitions in the aspect state machine

(Figure 23). Two transitions have nine triggers, each with change events, and one transition

has one trigger with a time event. On the other hand, without aspect state machines we

need to model one new state and 178 new transitions with 1604 triggers (1603 with change

events and one with a time event) in the base state machines of Saturn. This means that,

assuming modeling effort is roughly proportional to the number of modeling elements,

there is a 99% effort reduction in modeling triggers and a 98% effort reduction in modeling

transitions. However, since using aspect state machines requires to model three extra states

with the <<Pointcut>> stereotype, there will only be a benefit if modeling 1604 triggers

on a state machine is more time-consuming than modeling three pointcuts. Though this

seems to be likely, it would need to be confirmed via controlled experiments involving

human designers to determine the actual percentage of modeling effort saved when using

128

aspect state machines. Similar results were obtained for the Network Communication

aspect. Results from the last crosscutting behavior in Table 11 (Add Guard) indicate that

when using aspect state machines we need to model two states and one transition, whereas

without aspect state machines we need to change 22 transitions in the base state machine of

one of subsystems of Saturn.

Overall, results on this industrial case study seem to suggest that the modeling effort can

be significantly reduced when using aspect state machines for modeling crosscutting

behavior using AspectSM. Such industrial case studies showing the practical advantage of

aspect modeling are unfortunately still too rare in the research literature and we are

therefore not in a position to make comparisons with previous works.

6.3.2 Enhanced separation of concerns

Modeling crosscutting behavior in UML state machines provides enhanced separation of

concerns. For instance, the AddGuard aspect state machine models constraints on input

parameters of the call event “dial” separately from the base state machine. In addition, the

MediaQualityRecovery aspect state machine (Figure 23) models a complex media quality

crosscutting behavior separately from the base state machines and other aspect state

machines. This means that a modeler, or several of them with possibly different expertise,

can focus on each crosscutting concern separately and therefore model them separately

from the core functionality and other crosscutting concerns. This is very important for our

industrial partner since they have separate groups for different kinds of testing activities

including functional testing, video testing, audio testing, and network testing. Using our

Table 11. Modeling tasks when using and not using AspectSM*

Crosscutting
behavior

Using aspects Without aspects Effort Saved (%)
S (A)

T (A) Tr (A) S(M/A) T(M/A) Tr(A) S T Tr

Updating audio
constraints

1 - - 86 (M) - - 99% - -

Updating video
constraints

1 - 86 (M) - - 99% - -

Media quality
recovery

3 3 19 20 (A) 178 1604 - 98% 99%

Network
communication

3 3 13 20 (A) 178 1082 - 98% 99%

Add Guard 2 1 - 0 22 (M) - - 95% -
*S:States, T: Transitions, Tr: Triggers, A: Added, M: Modified

129

methodology each group can model aspects which are related to their expertise and our tool

can then be used to automatically weave these aspects with the behavioral base models

(models developed by the functional testing group).

6.3.3 Improved readability

Modeling crosscutting behavior as aspect state machines keeps the base state machine less

cluttered and hence easier to read. For instance, the woven state machine after applying

MediaQualityRecovery on the Saturn base state machine results into a highly complex,

cluttered state machine, which is difficult to read: Twenty states and 178 new transitions

with 1604 triggers are added into the base state machines. Our experience is that modeling

such complex state machines without aspect state machines is difficult to understand for

practitioners and error-prone. Using aspect state machines, the base state machine and

aspect state machines are separate and are less complex in isolation. To confirm this, we

recently conducted a controlled experiment to measure the readability of aspect state

machines using AspectSM [55]. Readability was measured based on the identification of

defects seeded in state machines (modeled with and without AspectSM) and the score

obtained when answering a comprehension questionnaire about the system behavior. The

results of the experiment showed that readability with AspectSM is significantly better than

that with both flat and hierarchical state machines measured in terms of inspecting models

to identify seeded defect. In terms of the comprehension questionnaire, the AspectSM

scores were better than flat state machines, but worse than hierarchical state machines.

However, there were no significant differences between aspect and hierarchical state

machines. In addition, no significant differences were observed in terms of the effort

required to inspect models and detect defects.

6.3.4 Easier model evolution

Model evolution is also expected to be easier when using aspect state machines. For

instance, AudioQualityAspect and VideoQualityAspect presented in Appendix A change the

state invariants of 86 states in the base state machines. In the future, more media quality

measures will likely be introduced, and constraints specific to these measures will be

required. Using our profile, they will be added only in the aspect state machines we

130

defined. Otherwise, with regular state machine modeling, the new constraints would need

to be added to all nine states of the base model. In systems with hundreds of states,

changing the state invariants of all states is cumbersome and error prone, which makes

model evolution difficult. This will be further investigated with controlled experiments in

the future.

6.3.5 Systematic fault modeling

Using RUMM, we can systematically identify possible classes of faults for a specific SUT

based on the proposed fault taxonomy. Furthermore, we can then instantiate specific fault

types from the identified classes which are considered critical in the SUT environment. We

then model them using an aspect class diagram according to our guidelines (Section 5.4)

and aspect state machines based on RobustProfile (Section 4.3). The entire process follows

systematic steps to identify and model faults (Figure 4).

6.4 Limitations

RUMM is a modeling methodology specifically developed for modeling robustness

behavior to facilitate automated model-based testing. While developing the methodology,

we took into consideration only those issues which are relevant for modeling the behavior

of a system in the presence of faulty situations in the environment. We have not

investigated whether other non-functional crosscutting concerns such as security and

dependability can be successfully modeled using RUMM or an adapted version of it. The

reason is that RUMM starts with modeling faults based on fault taxonomy for the system

environment, which may not be necessary, for instance, when modeling security concerns

such as logging. In addition, since RUMM is developed for model-based testing, we only

considered issues which are important to support automated testing. For instance, we

focused on UML state machines, which are often used for the automated testing in control

and communication systems which typically exhibit state-driven behavior. We also focused

on modeling crosscutting behavior on those modeling elements of state machines that are

mandatory to support test automation such as states (including state invariants, entry, exit,

and do activities) and transitions (including guard, trigger, and effect). In AspectSM, we

write pointcuts as OCL queries, and we have not yet empirically evaluated and compared

their expressiveness when using other related languages and notations such as the one

131

presented in [12]. We used OCL to write pointcuts as it is the only standard for writing

constraints in UML models, an important advantage in industrial contexts. Last, our work

for defining interactions and ordering between different aspect state machines still requires

further investigation.

7 Related Work

This section discusses existing works that are directly but often partially related to the

objectives of RUMM. We analyze and compare published work on robustness modeling

methodologies and AOM profiles for UML state machines, generic AOM weavers, and

testing based on AOM.

7.1 Robustness modeling methodologies

Most of the work related to robustness modeling does not make use of AOM and focus

only on modeling the behavior of a system when invalid inputs are given to the system, or

on modeling exceptions in the SUT in a similar fashion to programming languages. For

instance, Pintér [56] reports on the modeling of exceptions in statecharts in a similar

fashion to Java mechanisms for writing exceptions (try catch blocks). Exceptions are

modeled as events on transitions in statecharts. Such statecharts are subsequently used for

model checking. Jiang [57] proposed a generic framework to model self-healing software,

i.e., software which try to recover from faults during their execution. The framework

supports modeling faults (such as related to invalid inputs to a system), their detection, and

their resolution with the help of different patterns defined for these purposes. Self-healing

is modeled as a separate model which is then combined into the functional model. Lei [58]

provides a methodology to check the robustness of component-based systems in the case of

invalid inputs. Test cases are then generated for invalid inputs at various states and the

robustness of the system is checked. Nebut [59] provides an automatic test generation

approach based on use cases extended with contracts, after transforming them into a

transition system. Their approach supports both functional and robustness test generation.

Robustness test cases are generated by calling use cases when their preconditions are false.

Entwisle [60] proposed a framework for modeling various domain specific exception types

such as network exceptions, database exceptions, and web service exceptions using use

cases. This approach generates exception policy configurations from application models

132

using model transformation and finally generates code in Java for exceptions management,

such as how to catch a particular exception.

The work (RUMM) presented in this paper is different from the existing work in

robustness modeling in one or more of the following ways: 1) It provides a robustness

modeling methodology to model system robustness in the presence of faults in its

environment; this aspect has received little attention in the literature. In contrast, most of

the existing work focus only on modeling the behavior of a system when invalid inputs are

given to them [56] [57] [58] [59]; 2) It is aimed at performing automated model-based

robustness testing based on the robustness models for industrial systems. In contrast to the

work presented in [59], our work is based on UML state machines, which are the main

notation currently used for model-based test case generation [18]; 3) It relies on modeling

standards, in this case UML state machines and the MARTE profile [7], to model faulty

situations of the environment; 4) It uses AOM to model robustness behavior separately

from the core, functional behavior, hence decreasing modeling effort by avoiding clutter in

models, making them easier to read and decreasing chances of modeling errors; 5) We use

standard UML extension mechanism, i.e., profile, to support robustness modeling as

aspects using standard UML state machines, thus eliminating the need to adopt new

notations and consequently facilitating the practical adoption of RUMM in industry; and 6)

RUMM is driven by defining a fault taxonomy, thus leading to the more systematic

modeling of robustness behavior. The process of defining the taxonomy helps in

developing a clear and thorough understanding of the different kinds of faults that may

occur in the environment against which system robustness must be tested.

7.2 AOM profiles for UML state machines

Several UML profiles for AOM have been proposed in the literature [61-64] for different

UML diagrams. Since we defined a profile to define aspects on state machines, we only

assess the existing AOM work focusing on state machines. We do so along three

dimensions: 1) Features of UML state machines supported by a profile such as state, state

invariant, do activity, entry activity, exit activity, transition, guard, trigger, and effect, 2)

Features of aspect-orientation supported by a profile or a modeling approach such as

pointcut, advice, and inter-type declaration (a programming construct in AspectJ [46] used

to introduce new variables in a base class), 3) Representation used for the aspect-

133

orientation features. Based on the above selection criterion, we found five related works in

the literature [1-4, 9]. Table 12 and Table 13 characterize these works with respect to their

coverage of important UML state machine modeling elements including state, transition

and their contained elements, e.g., state invariant in state and guard in transition. For

instance, in Table 12 and Table 13, the approach presented in [1] only supports modeling

crosscutting behavior in states and transitions (indicated by a + sign), but not in other

modeling elements (indicated by a - sign). Certain features of UML state machines which

are mandatory for performing automated, model-based testing are not supported by any of

the existing works. This includes state invariants and guards which, as discussed above, are

essential to generating automated oracles and generating automated test data, respectively.

Table 14 assesses existing works with respect to the features of aspect-orientation they

support such as types of advice. In light of these comparisons, one of our profile

(AspectSM) contributions is that it supports all UML state machines and aspect-orientation

features. Table 15 provides information on the notations used by each approach for

Table 12. Comparison of supported modeling elements related to a state

Reference State State Invariant Entry Activity Do Activity Exit Activity
[1] + - - - -
[2] + - - - -
[3] + - - - -

[4] [6] + - - - -
[9] + - - - -

Table 13. Comparison of supported modeling elements related to a transition

Reference Transition Guard Trigger Effect
[1] + - - -
[2] + - - -
[3] + + + -

[4] [6] + - - -
[9] + - + +

Table 14. Comparison of supported features of aspect-orientation

Reference Before Advice Around Advice After Advice Pointcut Introduction
[1] + - + + -
[2] + - + + -
[3] + - + + +
[4, 19] [6] + + + + +
[9] - + - + -

Table 15. Comparison of the representation of aspect-orientation features

Reference Aspect Advice Pointcut Introduction
[1] State machine State machine elements Non-Standard Not supported
[2] State machine Non-Standard Non-Standard Not supported

[3] State machine Non-Standard Non-Standard Non-Standard
[4] [6] State machine Non-Standard Non-Standard Non-Standard

[9] Class Activity diagram Non-Standard Not supported
AspectSM State machine State machine elements and OCL OCL State machine elements

134

modeling aspect-oriented features, whether UML diagrams or other non-standard notations.

Table 15 suggests that no existing profile is exclusively based on standard UML notation

and OCL, thus requiring the learning of additional, non-standard notations or languages,

and therefore making it difficult to reuse open source and commercial technology. This is,

as discussed earlier, highly important in most industrial contexts and strongly affects the

adoption of modeling technologies. In conclusion, based on the information provided in

Table 12, Table 13, Table 14, and Table 15, we conclude that our approach supports all

necessary features of UML state machines and aspect-orientation, which are all required for

model-based robustness testing, and do so based exclusively on standard modeling

notations. In addition, our profile is developed with minimum extensions to the UML

standard and hence eases adoption by our industrial partner.

7.3 Comparisons with Generic AOM weavers

A generic weaver, GeKo, is presented in [19], but the current implementation of the weaver

is not complete (e.g., it does not support state machines) and its use requires many manual

steps such as specifying mappings from pointcuts to the base model. Metamodels for

pointcut and advice are defined by relaxing the UML 2.0 metamodel and are generated

automatically from it using a transformation. However, there is no support for modeling

pointcuts and advice based on the generated metamodels. It therefore requires developing a

new diagrammatic support for these metamodels, which will not be standard, and

consequently will not be supported by UML modeling tools, making the practical adoption

of the weaver difficult. Another similar generic weaver, SmartAdapter, is presented in [65].

The only major difference between GeKo and SmartAdapter is that SmartAdapter requires

manually writing composition rules for aspect and base models, whereas this is not

required by GeKo.

An aspect composition language (SDMATA/MATA) is presented in [12, 66], which

allows modeling and composing aspects on UML state machines using patterns. The

selection of modeling elements of a UML state machine (concept similar to pointcuts) is

performed using state diagram patterns. Using state diagram patterns, modeling elements

are selected using regular expressions defined on diagrammatic notations that ‘resemble’

UML state machines (defined based on the extension of UML state machine metamodel).

In AspectSM, we write pointcuts as OCL expressions to query modeling elements of a base

135

state machine. To compare expressiveness of OCL expressions for writing pointcuts with

regular expressions, a controlled experiment is required, which will be conducted in the

future. The tool support for modeling patterns in SDMATA, however, is still under

development. SDMATA requires defining composition operators (concept similar to

advice) using a language based on graph transformations. As for other approaches in the

literature, applying SDMATA to industrial contexts, requires learning additional, non-

standard notations such as state diagram patterns.

Kermeta [22] is a model-to-model transformation language, which provides the facility

to write transformation code in aspect-oriented style. Using such facility, aspects can be

introduced at runtime on metaclasses (e.g., UML Statemachine metaclass) for introducing

new attributes and operations on metaclasses or for providing definitions of existing

operations in metaclasses. However, applying Kermeta for our purpose in the industrial

setting requires understanding not only details of the UML metamodel, but also requires

learning a new language for writing aspects. Using AspectSM, we only need simple

stereotypes with a few attributes, thus reducing the learning curve and improving

applicability. In other words, achieving a similar objective in Kermeta may require writing

hundreds of lines of complex transformation code.

These generic weavers, being applicable to a wide range of modeling languages, are of

course potentially usable in our context. On the other hand, such flexibility is possible only

at the expense of additional, significant cost to provide modeling support for the defined

AOM concepts. This mostly stems from the fact that no standard notation (e.g., UML) and

metamodel can be used, as described above. This is why, to facilitate adoption in practice,

we decided to rely on a dedicated UML profile (AspectSM) to define aspect state

machines, thus relying on standard modeling environments.

7.4 Testing based on Aspect-Orientation Modeling

There are also works in the literature that deal with testing aspect-oriented programs using

UML-based models such as state machines [6, 67, 68]. The focus of our work is different

since we do not focus on testing implementation, which is coded in an aspect-oriented

programming (AOP) language such as AspectJ [46]. For instance, in our industrial system,

we are targeting system level testing of an embedded software of a VCS developed by

Cisco, Norway, which is implemented in a subset of C language. In addition a few

136

approaches such as those presented in [69, 70] focus on testing components using AOM to

specify their behavior as state machines. The aspects are also specified as state machines to

be consistent with the notation of the core behaviors (components). The composition rules

are specified in their own developed language (not following any standard), which specify

how to weave aspects into the core behavior. These works focus on modeling and testing

components when wrong inputs are provided to them by their users. Our purpose is also

different from these approaches since we focus on modeling faulty environment (network

and other VCSs) conditions of the system under test using aspect state machines and test

the behavior of the VCS in the presence of these conditions.

8 Conclusion
Model-based testing, and in particular automated testing based on state machines, is a very

popular approach to testing which is supported by an increasing number of open source and

commercial tools. However, for such testing to be effective, one must not only model

nominal behavior but also robustness behavior. For example, in control systems, one must

model how the system should react to the breakdown of sensors or actuators. In

communication systems, in a similar way, one must model how the system reacts to

network problems. Modeling the robustness behavior of systems in state machines is often

a major source of complexity, thus leading to very large, error-prone models.

To systematically model robustness behavior for model-based testing and to alleviate its

complexity, this paper presents a RobUstness Modeling Methodology (RUMM) that uses a

UML 2.0 profile to support the modeling of robustness behavior as aspects in UML state

machines (aspect state machines). This profile was developed by augmenting many of the

concepts in existing UML state machine profiles for AOM in order to achieve the specific

goal of supporting automated, model-based robustness testing. Furthermore, in order to

make our approach more practical in industrial contexts, aspect state machines and their

features are modeled using the UML state machine notation and the Object Constraint

Language (OCL), and therefore does not require that modelers learn new diagrammatic

notations or languages.

Another very important contribution of the paper is that we performed and report on an

industrial case study that suggests that using our methodology and profile may result in

significantly reduced modeling effort. Such case studies are indeed very rare and, to the

137

knowledge of the authors, none is reported on aspect state machines. Results show that

modeling crosscutting behavior as a separate model (aspect state machine) leads to the

modeling of significantly less states, less transitions, and also less changes to constraints

such as state invariants. Modeling both standard and crosscutting behavior—in our case

robustness behavior—in one state machine would lead to many redundant modeling

elements and yield cluttered models that are difficult to understand. As an example, for one

of the aspect state machine in our case study, we avoided the modeling of 1586 extra

triggers on 178 transitions (98% reduction) by using our profile. However, this came at the

cost of modeling three pointcuts for that aspect state machine, which is clearly an

additional overhead, but which should be minimized by the fact that they are modeled as a

UML state machine. It is however expected that the modeling effort required to model

three pointcuts is significantly less than modeling 1586 triggers. In addition, the results of a

recent controlled experiment [55] showed that readability of aspect state machines is

significantly better than standard UML state machines, though there was no significant

difference in the effort to inspect both types of state machines. Readability was measured

based on the identification of defects seeded in state machines (modeled with and without

AspectSM) and the score obtained when answering a comprehension questionnaire about

the system behavior.

We also developed a weaver using the model transformation tool Kermeta [22] to

automatically produce woven state machines. These can in turn be used for different

applications, in our case model-based testing using state machines in input based on

technologies such as Conformiq QTronic [24] and SmartTesting Test Designer [51]. In the

future, we are planning to integrate the woven state machines produced by our weaver with

our model-based testing tool TRUST [23] to automatically generate robustness test cases.

TRUST [23] has already been used for generating executable functional test cases at Cisco,

Norway. In the future, we will investigate to which extent our profile is applicable for other

types of crosscutting behaviors to be modeled as state machines. In addition, we need to

investigate the effort required by developers and testers to learn and apply RUMM. A

series of controlled experiments and case studies are required for this purpose, which we

are planning to conduct in the future. Our work on modeling interactions and ordering

between various aspects still needs further investigation and evaluation.

138

ACKNOWLEDGEMENTS

We would like to thank Robert B. France and Jacques Klein for their insightful comments

and feedback on this paper.

9 References
[1] Zhang, G. Towards Aspect-Oriented State Machines. In Proceedings of the In
Proceedings of the 2nd Asian Workshop on Aspect-Oriented Software Development
(AOASIA'06) (Tokyo, 2006).
[2] Zhang, G. and Hölzl, M. HiLA: High-Level Aspects for UML-State Machines. In
Proceedings of the In Proceedings of the 14th Workshop on Aspect-Oriented Modeling
(AOM@MoDELS'09) (2009).
[3] Zhang, G., Hölzl, M. M. and Knapp, A. Enhancing UML State Machines with Aspects.
2007.
[4] Xu, D., Xu, W. and Nygard, K. A State-Based Approach to Testing Aspect-Oriented
Programs. In Proceedings of the In Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (Taiwan, 2005).
[5] UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms,
http://www.omg.org/spec/QFTP/1.1/, 2010
[6] Xu, D. and Xu, W. State-based incremental testing of aspect-oriented programs. In
Proceedings of the Proceedings of the 5th international conference on Aspect-oriented
software development (Bonn, Germany, 2006). ACM.
[7] Modeling and Analysis of Real-time and Embedded systems (MARTE),
http://www.omgmarte.org/, 2010
[8] Jürjens, J. UMLsec: Extending UML for Secure Systems Development. In Proceedings
of the Proceedings of the 5th International Conference on The Unified Modeling Language
(2002). Springer-Verlag.
[9] Zhang, J., Cottenier, T., Berg, A. V. D. and Gray, J. Aspect Composition in the
Motorola Aspect-Oriented Modeling Weaver. Journal of Object Technology, 6, 7I (2007).
[10] IEEE Standard Glossary of Software Engineering Terminology. IEEE, IEEE Std
610.12-1990, 1990.
[11] Yedduladoddi, R. Aspect Oriented Software Development: An Approach to
Composing UML Design Models. VDM Verlag Dr. Müller, 2009.
[12] Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A. and Rabbi, R. An
Expressive Aspect Composition Language for UML State Diagrams. 2007.
[13] Runeson, H. and Höst, M. Guidelines for Conducting and Reporting Case Study
Research in Software Engineering. Empirical Software Engineering, 14, 2I (2009), 131-
164.
[14] Aldini, A., Gorrieri, R., Martinelli, F. and Jürjens, J. Model-Based Security
Engineering with UML. Springer Berlin / Heidelberg, 2005.
[15] Péreza, J., Ali, N., Carsı´b, J. A., Ramosb, I., Álvarezc, B., Sanchezc, P. and Pastorc,
J. A. Integrating aspects in software architectures: PRISMA applied to robotic tele-
operated systems. Information and Software Technology, 50, 9-10I (2008), 969-990.
[16] Cottenier, T., Berg, A. v. d. and Elrad, T. The Motorola WEAVR: Model Weaving in
a Large Industrial Context. In Proceedings of the Aspect Oriented Software Development
(AOSD) (2007).

139

[17] Cottenier, T., Berg, A. v. d. and Elrad, T. Stateful Aspects: The Case for Aspect-
Oriented Modeling. In Proceedings of the Proceedings of the 10th international workshop
on Aspect-oriented modeling (Vancouver, Canada, 2007). ACM.
[18] Shafique, M. and Labiche, Y. A Systematic Review of Model Based Testing Tools.
Carleton University, Department of Systems and Computer Engineering, Technical Report
(SCE-10-04), 2010.
[19] Kienzle, J., Abed, W. A. and Klein, J. Aspect-Oriented Multi-View Modeling. In
Proceedings of the In Proceedings of the 8th ACM International Conference on Aspect-
Oriented Software Development (Charlottesville, Virginia, USA, 2009). ACM.
[20] Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Trans. Dependable Secur.
Comput., 1, 1I (2004), 11-33.
[21] IEEE Standard Classification for Software Anomalies. IEEE, IEEE Std 1044-2009,
2009.
[22] Kermeta - Breathe Life into Your Metamodels, IRISA and INRIA,
http://www.kermeta.org/, 2010
[23] Ali, S., Hemmati, H., Holt, N. E., Arisholm, E. and Briand, L. C. Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and Industrial
Case Studies. Simula Research Laboratory, Technical Report (2010-01), 2010.
[24] QTRONIC, CONFORMIQ, http://www.conformiq.com/qtronic.php, 2010
[25] Standard for Software Quality Characteristics. International Organization for
Standardization, ISO-9126-3, 2003.
[26] Software Assurance Standard. NASA Technical Standard, NASA-STD-8739.8, 2005.
[27] Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development Prentice Hall PTR, 2004.
[28] Bruning, S., Weissleder, S. and Malek, M. A Fault Taxonomy for Service-Oriented
Architecture. In Proceedings of the Proceedings of the 10th IEEE High Assurance Systems
Engineering Symposium (2007). IEEE Computer Society.
[29] Chan, K. S., Bishop, J., Steyn, J., Baresi, L. and Guinea, S. A Fault Taxonomy for Web
Service Composition. Springer-Verlag, 2009.
[30] Mariani, L. A Fault Taxonomy for Component-Based Software. Electronic Notes in
Theoretical Computer Science, 82, 6I (2003), 55-65.
[31] Hayes, J. H. Building a Requirement Fault Taxonomy: Experiences from a NASA
Verification and Validation Research Project. In Proceedings of the Proceedings of the
14th International Symposium on Software Reliability Engineering (2003). IEEE Computer
Society.
[32] Ho, W.-M., Jézéquel, J.-M., Pennaneac'h, F. and Plouzeau, N. A toolkit for weaving
aspect oriented UML designs. In Proceedings of the Proceedings of the 1st international
conference on Aspect-oriented software development (Enschede, The Netherlands, 2002).
ACM.
[33] Pazzi, L. Explicit Aspect Composition by Part-Whole State Charts. In Proceedings of
the In Proceedings of the Workshop on Object-Oriented Technology (1999). Springer-
Verlag.
[34] France, R., Ray, I., Georg, G. and Ghosh, S. Aspect-oriented Approach to Early
Design Modelling. IEEE Software, 151, 4I (2004).
[35] Binder, R. V. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Longman Publishing Co., Inc., 1999.

140

[36] Lagarde, F., Espinoza, H., Terrier, F., André, C. and Gérard, S. Leveraging Patterns
on Domain Models to Improve UML Profile Definition. 2008.
[37] Weilkiens, T. Systems Engineering with SysML/UML: Modeling, Analysis, Design.
Tim Weilkiens, 2008.
[38] UML Profile for Schedulability, Performance and Time,
http://www.omg.org/technology/documents/profile_catalog.htm, 2010
[39] Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø., Schieferdecker, I. and Williams, C.
Model-Driven Testing: Using the UML Testing Profile. Springer, 2007.
[40] Steinberg, D., Budinsky, F., Paternostro, M. and Merks, E. EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, 2008.
[41] Filman, R. E., Elrad, T., Clarke, S. and Aksit, M. Aspect-Oriented Software
Development. Addison-Wesley Professional, 2004.
[42] IBM OCL Parser, IBM, http://www-
01.ibm.com/software/awdtools/library/standards/ocl-download.html, 2010
[43] OCLE, http://lci.cs.ubbcluj.ro/ocle/, 2010
[44] EyeOCL Software, http://maude.sip.ucm.es/eos/, 2010
[45] Pender, T. UML Bible. Wiley, 2003.
[46] Laddad, R. AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications, 2003.
[47] Ali, S., Briand, L. C. and Hemmati, H. Modeling Robustness Behavior Using Aspect-
Oriented Modeling to Support Robustness Testing of Industrial Systems. Simula Research
Laboratory, Technical Report (2010-03), 2010.
[48] Stein, D., Hanenberg, S. and Unland, R. A UML-based aspect-oriented design
notation for AspectJ. In Proceedings of the Proceedings of the 1st international conference
on Aspect-oriented software development (Enschede, The Netherlands, 2002). ACM.
[49] Clarke, S. and Walker, R. J. Composition patterns: an approach to designing reusable
aspects. In Proceedings of the Proceedings of the 23rd International Conference on
Software Engineering (Toronto, Ontario, Canada, 2001). IEEE Computer Society.
[50] Stein, D., Hanenberg, S. and Unland, R. Designing Aspect-Oriented Crosscutting in
UML. In Proceedings of the In AOSD-UML Workshop at AOSD ’02 (2002).
[51] Utting, M. and Legeard, B. Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann, 2007.
[52] Tessier, F., Badri, L. and Badri, M. Towards a Formal Detection of Semantic Conflicts
Between Aspects: A Model-Based Approach. In Proceedings of the The 5th Aspect-
Oriented Modeling Workshop In Conjunction with UML 2004 (2004).
[53] Perceptual Evaluation of Speech Quality (PESQ), http://en.wikipedia.org/wiki/PESQ,
2010
[54] Ali, S., Iqbal, M. Z., Arcuri, A. and Briand, L. C. A Search-based OCL Constraint
Solver for Model-based Test Data Generation. In Proceedings of the Proceedings of the
11th International Conference On Quality Software (QSIC 2011) (2011).
[55] Ali, S., Yue, T., Briand, L. C. and Malik, Z. I. Does Aspect-Oriented Modeling Help
Improve the Readability of UML State Machines? Simula Reserach Laboratory, Technical
Report(2010-11), 2010.
[56] Pintér, G. and Majzik, I. Modeling and Analysis of Exception Handling by Using UML
Statecharts. 2005.
[57] Jiang, M., Zhang, J., Raymer, D. and Strassner, J. A Modeling Framework for Self-
Healing Software Systems. In Proceedings of the Models@run.time In conjunction with

141

MoDELS/UML (2007).
[58] Lei, B., Liu, Z., Morisset, C. and Li, X. State Based Robustness Testing for
Components. Electron. Notes Theor. Comput. Sci., 260, 173-188.
[59] Nebut, C., Fleurey, F., Traon, Y. L. and Jezequel, J.-M. Automatic Test Generation: A
Use Case Driven Approach. IEEE Trans. Softw. Eng., 32, 3I (2006), 140-155.
[60] Entwisle, S., Schmidt, H., Peake, I. and Kendall, E. A Model Driven Exception
Management Framework for Developing Reliable Software Systems. In Proceedings of the
Proceedings of the 10th IEEE International Enterprise Distributed Object Computing
Conference (2006). IEEE Computer Society.
[61] Jingjun, Z. Modeling Aspect-Oriented Programming with UML Profile. 2009.
[62] Júnior, J. U., Camargo, V. V. and Chavez, C. V. F. UML-AOF: a profile for modeling
aspect-oriented frameworks. In Proceedings of the Proceedings of the 13th workshop on
Aspect-oriented modeling (Charlottesville, Virginia, USA, 2009). ACM.
[63] Aldawud, O., Elrad, T. and Bader, A. UML Profile for Aspect-Oriented Software
Development. In Proceedings of the The Third International Workshop on Aspect Oriented
Modeling (2003).
[64] Evermann, J. A meta-level specification and profile for AspectJ in UML. In
Proceedings of the Proceedings of the 10th international workshop on Aspect-oriented
modeling (Vancouver, Canada, 2007). ACM.
[65] Petriu, D., Rouquette, N., Haugen, Ø., Morin, B., Klein, J., Kienzle, J. and Jézéquel,
J.-M. Flexible Model Element Introduction Policies for Aspect-Oriented Modeling.
Springer Berlin / Heidelberg.
[66] Whittle, J. and Jayaraman, P. MATA: A Tool for Aspect-Oriented Modeling Based on
Graph Transformation. Springer-Verlag, 2008.
[67] Xu, D., Xu, W. and Nygard, K. A State-Based Approach to Testing Aspect-Oriented
Programs. In Proceedings of the Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (2005).
[68] Xu, W. and Xu, D. A Model-Based Approach to Test Generation for Aspect-Oriented
Programs. In Proceedings of the First Workshop on Testing Aspect-Oriented Programs
(2005).
[69] Bruel, J.-m., Araújo, J., Moreira, A. and Royer, A. Using Aspects to Develop Built-In
Tests for Components. In Proceedings of the In AOSD Modeling with UML Workshop, 6th
International Conference on the Unified Modeling Language (2003).
[70] Bruel, J. M., Moreira, A. and Araújo, J. Adding Behavior Description Support to
COTS Components through the Use of Aspects. In Proceedings of the 2nd Workshop on
Models for Non-functional Aspects of Component-Based Software (2005).

142

10 Appendix A: Aspects for Updating State

Invariants
In this section, we present the details of AudioQualityAspect and VideoQualityAspect.

These aspects update state invariants in the base state machine (Figure 3) with audio and

video quality constraints.

10.1 Updating state invariants with audio quality attributes

The aspect in Figure 29 updates state invariants for all simple states where the system is in

a videoconference. In Figure 29, the <<Aspect>> stereotype is applied on the state

machine, whose attributes show that this aspect is applied to the base state machine

(Saturn::Saturn) in this case. A <<Pointcut>> stereotype is applied on the state invariant

of the state UpdateStateInvariantsWithAudioQuality. This pointcut applies a before advice

on all states selected by the pointcut and this results into adding an additional constraint

(see note 3). The woven state machine looks the same as the base state machines except

that the state invariants of the selected states are updated.

10.2 Updating state invariants with video quality attributes

The aspect in Figure 30 updates the state invariants of states selected in the base state

machine by the <<Pointcut>> stereotype applied on the state invariant of the state

UpdateStateInvariantsWithVideoQuality in Figure 30 according to the before advice

Figure 29. State machine for AudioQualityAspect

143

defined based on the video quality attributes modeled in Figure 26. The on attribute is a

Boolean attribute that determines if the video is present in a videoconference. The

videoQuality is a video quality metric for measuring video quality and is defined as an

Integer. The videoFrameLoss is an Integer attribute that determines the current video frame

loss during a videoconference.

The <<Before>> stereotype applied on the state invariant of the state

UpdateStateInvariantsWithVideoQuality in Figure 30 adds an additional conjunct to state

invariants of all selected states (see note 3 for attribute values). The woven state machines

looks exactly the same as the base state machines in as only state invariants changed in this

case.

Figure 30. State machine for the VideoQualityAspect

144

11 Appendix B: Weaver Algorithm

WeaveStateMahine (b: StateMachine, A: Set(StateMachine), w:StateMachine):StateMachine

/*

This algorithm takes in input a base state machine b, a set of aspect state machines, and a weaving-directive state

machine and outputs a woven state machine. All inputs and the output are instances of UML 2.0 State machine

metaclass.

*/

Inputs:

b: A base state machine, which is a UML 2.0 state machine.
A: A set of aspect state machines. Each aspect state machine is a UML 2.0 state machine.
w: A weaving directive state machine, which consists of a set of submachine states A’. Each submachine state a’
in A’ corresponds to the an aspect state machine in the set A. w is also a UML 2.0 state machine.

Output:

o: A woven state machine, which is a UML 2.0 state machine.
Algorithm:

1. Traverse sub machines states (aspects) according to the order specified in w
a. For each sub machine state a’ in A’ do

i. Start with the initial state and go to the first state s in a’
1. For each t in s.outgoing /* For every outgoing transition of s */

a. If (s.stereotype = ‘<<Pointcut>>’)
i. Call WeavePointcut(s)

b. Else If (s.stereotype = ‘<<Introduction>>’)
i. Call WeaveIntroduction(s)

c. Else
i. Call WeaveNoStereotype(s)

Figure 31. Weaving algorithm

145

Function WeavePointcut(s:State)
/*

This function takes input a state with the stereotype <<Pointcut>> and queries the base state machine with the pointcut
expression and calls other functions to apply advices on the base s

*/

1. For each t in s.outgoing
a. If t.target.stereotype = ‘<<Pointcut>>’

i. If t.stereotype = ‘’
1. Check which model elements (such as guard, trigger, or effect) related to the transition

that has a stereotype (<<Introduction>> or <<Pointcut>>)
2. If the model element has a stereotype <<Pointcut>>

a. Query the base model b with the selectionConstraint attribute of the pointcut
b. Apply before, after, or around advice /introduction on the modeling elements

selected by the pointcut
c. Call RepeatComposition(t.target)

ii. Else If t.stereotype = ‘<<Pointcut>>’
1. Call WeavePointcutOnState(s)
2. Call WeavePointcutOnTransition(t)
3. Call WeavePointcutOnState(t.target)
4. Call RepeatComposition(t.target)

iii. Else
1. Call WeavePointcutOnState(s)
2. Call WeavePointcutOnState(t.target)
3. Add the new transition t as specified in the aspect between the states selected by above

two steps
4. Call RepeatComposition(t.target)

b. Else If t.target.stereotype = ‘<<Introduction>>’
i. If t.stereotype = ‘’

1. Not allowed
ii. Else If t.stereotype=’<<Introduction>>’

1. Call WeavePointcutOnState(s)
2. Call WeavePointcutOnTransition(t)
3. Introduce the state t.target as specified in the aspect
4. Call RepeatComposition(t.target)

iii. Else
1. Call WeavePointcutOnState(s)
2. Introduce the state t.target as specified in the aspect
3. Add the new transition t as specified in the aspect between the states selected by above

two steps
4. Call RepeatComposition(t.target)

c. Else
i. Not allowed

Figure 32. The WeavePointcut() function

146

Function Introduction(s:State)

/*

This function takes input a state with the stereotype <<Introduction>> and introduces the new elements in the base model

as specified by the <<Introduction>> stereotype.

*/

1. For each t in s.outgoing
a. If t.target.stereotype = ‘<<Pointcut>>’

i. If t.stereotype = ‘’
1. Not allowed

ii. Else If t.stereotype = ‘<<Pointcut>>’
1. Introduce the state s as specified in the aspect
2. Call WeavePointcutOnState(t.target)
3. Call WeavePointcutOnTransition(t)
4. Call RepeatComposition(t.target)

iii. Else
1. Introduce the state s as specified in the aspect
2. Call WeavePointcutOnState(t.target)
3. Add the new transition t as specified in the aspect between the states selected by above

two steps
4. Call RepeatComposition(t.target)

b. Else If t.target.stereotype = ‘<<Introduction>>’
i. If t.stereotype = ‘’

1. Not allowed
ii. Else If t.stereotype=’<<Introduction>>’

1. Introduce the state s as specified in the aspect
2. Introduce the state t.target as specified in the aspect
3. Call WeavePointcutOnTransition(t)
4. Call RepeatComposition(t.target)

iii. Else
1. Introduce the state s as specified in the aspect
2. Introduce the state t.target as specified in the aspect
3. Add the new transition t as specified in the aspect between the states selected by above

two steps
4. Call RepeatComposition(t.target)

c. Else
i. Not allowed

Figure 33. The Introduction() function

147

 Function WeaveNoStereotype(s:State)

/*

This function takes input a state without any stereotype from an aspect state machine and applies advice/introduction on the

base state machine as specified in the modeling elements contained within the state.

*/

1. For each t in s.outgoing /* for each transition going out of s */
a. If t.target.stereotype = ‘<<Pointcut>>’

i. Not allowed
b. Else If t.target.stereotype =’<<Introduction>>’

i. Not allowed
c. Else

i. Check which model elements (such as state invariant, do, entry, or exit activity) related to the state s
that has a stereotype (<<Introduction>> or <<pointcut>>)

ii. If the model element has a stereotype <<pointcut>>
1. Query the base model b with the selectionConstraint attribute of the pointcut
2. Apply before, after, or around advice /introduction on the modeling elements selected by

the pointcut
iii. Repeat steps i and ii for the state t.target
iv. Call RepeatComposition(t.target)

Figure 34 (a). The WeaveNoStereotype() function

Function RepeatComposition(s:State)

/*

 This function traverses the aspect state machine and calls appropriate functions to evaluate pointcut and introduction

*/

1. If (s.isFinal !=true) /* checks if s is a final state */
a. If s.stereotype = ‘<<Pointcut>>’

i. Call WeavePointcut (s)
b. Else If s.stereotype = ‘<<Introduction>>’

i. Call WeaveIntroduction (s)
c. Else

i. Call WeaveNoStereotype (s)

Figure 34 (b). The RepeatCompostion() function

Function WeavePointcutOnState(s:State)

/*

This functions queries the base state machine according to the query expression specified in the pointcut and applies the

advice as specified by the pointcut

*/

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s.
2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the

model elements selected by the selectionConstraint in step 1.

Figure 34 (c). The PointCutOnState() function

148

Function WeavePointcutOnTransition(t)

/*

This function queries the base model according to the query expression specified in the pointcut and applies the advice as

specified by the pointcut

*/

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s.
2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the

model elements selected by the selectionConstraint in step 1.

Figure 35. The PointcutOnTransition() function

149

12 Appendix C: Network Communication Aspect

12.1 Description of the Aspect

The purpose of this aspect is to model the behavior of a system in the presence of various

network faults. A system is supposed to work even under the presence of faults and

unwanted conditions (degraded mode). By degraded mode, we mean that the system should

continue to behave as in the non-faulty situation, except that the quality (such as audio and

video) or the performance is degraded such as slow speed of running applications on a

videoconference system. The system must try to recover from the degraded mode and go

back to normal mode of operation. In the worst case, the system must return to the safe

state.

12.2 Network Robustness (NR) Aspect (Aspect Class Diagram)

Figure 36 shows a class diagram that models the robust behavior of the system in the

presence of different network faults defined based on the fault taxonomy (Figure 5) such as

jitter, packet loss, low bandwidth, illegal packets for videoconferencing protocols (SIP and

H323), and in the case of no network connection. Six network properties are modeled in

the class diagram that models different faulty situations. Five network properties are

modeled as non-functional (NF) types using the MARTE profile [7]: packet loss, jitter,

bandwidth, and percentage of illegal packets for H323 and SIP protocols. The network

connection is modeled as a Boolean attribute.

12.2.1 PacketLoss

This property is defined to introduce packets loss during communication and is measured

in terms of percentage. This property is defined to be of the MARTE type NFP_Percentage

because packet loss is always measured in percentage and the NFP_Percentage is defined

in the MARTE profile for this purpose.

12.2.2 Jitter

This property introduces delay between network packets. This delay is introduced in the

unit of millisecond (ms) and checks robustness of a videoconferencing system in the

presence of delayed network packets. This property has two attributes: value of type

150

Integer and unit of the MARTE type TimeUnitKind. The type TimeUnitKind of the

MARTE profile is used to define units for time values such as millisecond and

microsecond. We chose this data type so that a modeler can chose appropriate unit to

measure unit. We set the default value of the unit attribute to millisecond (ms).

Figure 36. Class diagram for the NR aspect

12.2.3 Bandwidth

This property is used to change the bandwidth of the network and is measured in terms of

Kilobytespersecond (Kbps) and checks robustness of a videoconferencing system in the

presence of low bandwidth than required by a videoconference. This property has two

attributes: value of type Integer and rate of the MARTE type DataTxRateUnitKind. The

type DataTxRateUnitKind is used to define units for data transmission such as

KiloBytesPerSecond (Kbps) and MegaBytesPerSecond (Mbps). We chose this data type

because it allows a modeler to change unit of data transmission as required. We set the

default value of the rate attribute to KiloBytesPerSecond (Kbps).

12.2.4 IllegalH323PacketPercent

This property is used to add illegal packets for the H323 videoconferencing protocol during

a videoconference to see how a VCS behaves. This property is of type NFP_Percentage.

12.2.5 IllegalSIPPacketPercent

This property is used to add illegal packets for the SIP videoconferencing protocol during a

videoconference to see how a VCS behaves. This property is of type NFP_Percentage.

151

12.3 Aspect State Machine for NR

The aspect state machine for the NR aspect is shown in Figure 37. The

‘NetworkCommunication’ state machine is stereotyped as ‘Aspect’ and the attributes

associated with the stereotype are shown in the note labeled 1. The first attribute name

specifies the name of the aspect, which is NetworkCommunication in this case. The second

attribute baseStateMachine specifies the base state machine on which the aspect will be

woven, which is Saturn (Figure 3) in this case.

Figure 37. State machine for the ‘NetworkCommunication’ aspect

A pointcut named ‘SelectStatesPointcut’ on the state ‘SelectedStates’ is shown in Figure

37 (see note 3), which selects all states of the base state machine except for the Idle and

PresentingWithoutCall states. New transitions modeling robust behavior of the system

from all states selected by the ‘SelectStatesPointcut’ pointcut to a new state

‘DegradedMode’ stereotyped with the <<Introduction>> and <<ExternalFault>>

stereotypes are introduced. These robustness transitions are modeled as UML change

events and stereotyped with the <<NetworkFault>> stereotype, which indicates that this

event is modeling a network fault. For instance, when ‘when (not self.networkConnection)’

in any of the states selected by the pointcut, the system goes to the state ‘DegradedMode’,

which is stereotyped as <<Introduction>> indicating that this state will be introduced in

the base state machine. In this state, the system tries to recover the network connection. If

the system is successful in recovering the network connection, the transition with the

change event ‘when(self.networkConnection)’ takes the system back to the original state,

152

which is one of the states selected by SelectedStates state stereotyped <<Normal>> to

indicate that this state is a normal state of the system. If the system cannot recover within

time t, then the system disconnects all the systems and goes to the ‘Idle’ state stereotyped

as <<Initial>> indicating that this is the initial state of the system. This is modeled as a

new transition from the ‘DegradedMode’ state to the ‘Idle’ state, with a time event after(t),

and a new effect ‘DisconnectAll’ with an opaque action ‘disconnect’, which disconnects all

the connected systems to the system.

153

Does Aspect-Oriented Modeling Help Improve

the Readability of UML State Machines?

Shaukat Ali, Tao Yue, Lionel C. Briand

Submitted to the Systems and Software Modeling (SoSyM) Journal

Abstract— Aspect-oriented Modeling (AOM) is a relatively recent and very active field

of research, whose application has however been limited in practice. AOM is assumed to

yield several potential benefits such as enhanced modularization, easier evolution,

increased reusability, and improved readability of models, as well as reduced modeling

effort. However, credible, solid empirical evidence of such benefits is lacking. We

evaluate the “readability” of state machines when modeling crosscutting behavior using

AOM and more specifically AspectSM, a recently published UML profile. This profile

extends the UML state machine notation with mechanisms to define aspects using state

machines. Readability is indirectly measured through defect identification and fixing rates

in state machines, and the scores obtained when answering a comprehension questionnaire

about the system behavior. With AspectSM, crosscutting behavior is modeled using so-

called “aspect state machines”. Their readability is compared with that of system state

machines directly modeling crosscutting and standard behavior together. An initial

controlled experiment and a much larger replication were conducted with trained graduate

students, in two different institutions and countries, to achieve the above objective. We use

two baselines of comparisons—standard UML state machines without hierarchical

features (flat state machines) and standard state machines with hierarchical/concurrent

features (hierarchical state machines). The results showed that defect identification and

fixing rates are significantly better with AspectSM than with both flat and hierarchical

state machines. However, in terms of comprehension scores and inspection effort, no

significant difference was observed between any of the approaches. Results of the

experiments suggest that one should use, when possible, aspect state machines along with

hierarchical and/or concurrent features of UML state machines to model crosscutting

behaviors.

154

1. Introduction

Aspect-orientation provides enhanced modularization by separating out crosscutting

concerns as separate entities called aspects. Aspect-orientation is a very active field [1, 2],

which has mainly focused on aspect-oriented programming (AOP), but also led to

significant progress in the realms of design and modeling, denoted as aspect-oriented

Modeling (AOM) [3, 4]. Crosscutting concerns, for example related to robustness or

security behavior, are modeled as aspect models and are subsequently woven into a

primary/base model capturing nominal functional behavior. AOM is expected to yield

benefits such as improved readability, enhanced modularization, easier evolution, and

increased reusability of models, as well as reduced modeling effort [4]. However, there is

very little empirical evidence of such benefits. Empirical investigations, such as controlled

experiments, are required to support the above claims about AOM and better understand its

limitations. For example, an initial search on the IEEE, ACM, Science Direct, Wiley

Interscience, and Springer digital libraries yielded 517 papers on AOM; however, none of

them reported any empirical study to evaluate its benefits. This paper is a first step in that

direction and reports on the first two controlled experiments assessing the benefits of

AOM.

In industrial models, such as state machines, one must not only capture nominal

behavior but also robustness behavior, for example describing how the system should react

to abnormal environmental conditions. Such robustness is considered very critical in many

standards such as in the IEEE Standard Dictionary of Measures of the Software Aspects of

Dependability [5], the ISO’s Software Quality Characteristics standard [6], and the

Software Assurance Standard by NASA [7]. This is for example needed to support the

automated robustness testing of embedded or communication systems [8] based on models.

Focusing on UML state machines, as it is the most widely used notation in practice for the

specification of control and communication systems [8, 9], crosscutting (e.g., robustness)

behavior can result in cluttered and redundant UML state machines. As a result, modeling

such crosscutting behavior directly on UML state machines can be error-prone and is

expected to require significant extra modeling effort.

In a recent paper we reported on AspectSM [10], a UML profile which was defined to

model crosscutting behavior on UML state machines using extended UML state machines,

in order to facilitate the use of AOM and limit its associated learning curve. The focus of

155

AspectSM was on model-based test case generation for control and communication

systems [8, 9], though it can potentially be applied for other purposes. Comparable

approaches in the literature do not use UML extension mechanisms to provide complete

AOM support: they make use of specific notations for aspect-related features that do not

follow any standard. With our industrial partners, and generally in most industrial settings,

AOM support should be based on the UML standard to facilitate adoption. Also, support

for modeling robustness behavior as a crosscutting behavior in state invariants and guards

is not supported by any existing AOM approach, though they are important features in

many applications, such as the generation of automated test oracles and data generation. A

detailed comparison of the AspectSM profile with other related profiles can be found in

[10]. AspectSM was successfully applied to model the robustness behavior of video

conferencing systems for the purpose of model-based robustness testing at Cisco Systems,

Norway [10]. Results suggested that more than 95% of the modeling effort could

potentially be saved. Consistent with AOM broader claims, using AspectSM to model

crosscutting behavior on UML state machines as aspects, should reduce cluttering and

redundancy in models.

In this paper, we report the first two controlled experiments that were conducted to

evaluate the “readability” of state machines modeling crosscutting behavior using AOM, in

our case AspectSM. By “readability” we denote the ease with which state machines can be

understood, analyzed, and changed by a human to perform various tasks. We evaluate

AspectSM models by comparing them with UML state machines modeling crosscutting

behavior directly. The first controlled experiment, which was smaller in scale than the

second, was conducted with 27 fully trained, graduate students taking a graduate course in

‘Advanced Software Architecture’ at the University Institute of Information Technology

(UIIT) at the Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan. The

second experiment, which can be seen as a differentiated replication of the first one, was

conducted at the Beijing University of Aeronautics and Astronautics (BUAA) Beijing,

China, with 47 graduate students. Half of the students were taking a graduate course titled

‘Software Engineering’, while the remaining half were taking a course titled “Software

Architecture”. Two case study systems were used for the controlled experiments. The first

one is an Elevator control system (ECS) provided in a well-known textbook [11]― but we

had to extend the case study system with two crosscutting behaviors: emergency stop and

emergency call. The second case study system is a reduced version of an industrial video

156

conferencing system developed by Cisco Systems, Norway. The readability of state

machines is evaluated using three measures. The first measure is based on the ability of

subjects to identify design defects seeded in state machines by checking their conformance

against their specifications given as English text. The second measure is based on the

ability of the subjects to fix the defects seeded in state machines. The third measure is

based on subjects’ scores to answer a carefully designed comprehension questionnaire.

Based on these three measures, we compare the readability and also the effort resulting

from using AspectSM, against both standard hierarchical and flat UML state machines.

Our motivation is to assess the impact of hierarchy and/or concurrency, which is supposed

to address some of the same issues as AOM in state machines (e.g., redundancy), on the

relative benefits of using AspectSM.

The results of the experiments show that AspectSM helps significantly increase the

identification and fixing of defects. It also leads to significantly better comprehension

scores than flat state machines but hierarchical state machines look better in terms of

comprehension scores, though these results were not statistically significant. In terms of

the inspection effort, no significant difference was observed. For the replication, we

observed similar results for defect identification and fixing but there was no significant

difference observed between any of the three approaches regarding comprehension scores.

The rest of the paper is organized as follows: Section 2 describes the necessary

background to understand the rest of the paper, Section 3 provides details on planning of

the initial experiment and its replication, and Section 4 reports on results of the initial

experiment and replication, respectively. Section 5 discusses the possible threats to validity

and Section 6 compares existing, related experiments in Aspect-oriented Programming

(AOP) to our experiments. Finally, we conclude our paper in Section 7.

2. Background

In this section, we provide a brief reminder of UML state machines and an overview of

aspect state machines in AspectSM, the technology being evaluated in our controlled

experiments.

2.1 UML State Machines

UML state machines enable modeling the dynamic behavior of a class, subsystem, or

system. State machines in general are extensively used to model a variety of systems such

157

as communication [12] and control systems [9]. Due to the ability of state machines to

capture rich and detailed information, they have been used for automatic code generation

[13] and the automated generation of test cases [8, 14, 15]. UML state machines provide

many advanced features such as concurrency and hierarchy, which aim at supporting large-

scale modeling. Concurrency enables the modeling of concurrent behavior whereas state

hierarchies capture commonalities among states. A submachine state in a state machine

functions like a simple state, but is referring to another state machine. A submachine can

be reused in more than one state machine and may refer to other submachines [16]. They

can therefore help reduce the structural complexity of state machines. State machines

developed using the hierarchical features of UML will be referred to as hierarchical state

machines in this paper and the ones developed without using submachine states, with only

basic features of UML state machines, will be referred as flat state machines.

2.2 Aspect State Machines

AspectSM is a UML profile described in [10], which supports the modeling of system

robustness behavior, which is very common type of crosscutting behavior in many types of

systems such as communication and control systems [4]. An example of a robustness

behavior for a communication system is related to how the system should react, in various

states, in the presence of high packet loss. The system should be able to recover lost

packets and continue to behave normally in a degraded mode. In the worst case, the system

should go back to the most recent state and not simply crash or show inappropriate

behavior. In a control system, one needs to model, for example, how the system should

react, in various states, when a sensor breaks down. AspectSM allows modeling UML state

machine aspects as UML state machines (aspect state machines). Such an approach,

relying on a standard and using the target notation as the basis to model the aspects

themselves, is expected to make the practical adoption of aspect modeling easier in

industrial contexts. In our previous work [10], we thoroughly compared AspectSM with

the similar existing AOM profiles. Our findings showed that only AspectSM is exclusively

based on standard UML notation and OCL, thus eliminates the need of learning additional

non-standard notations or languages, and therefore making it easy to reuse open source and

commercial technology. This is highly important in most industrial contexts and strongly

affects the adoption of modeling technologies. In addition, it is easy to train people in the

industry for standard languages such as UML and the OCL.

158

Though AspectSM was originally defined to support scalable, model-based, robustness

testing, including test case and oracle generation at Cisco Systems, Norway, a fundamental

question is whether it is easier to model crosscutting concerns such as robustness with

AOM in general, and AspectSM in particular, than simply relying on UML state machines

to do it all. In AspectSM, the core functionality of a system is modeled as one or more

standard UML state machines (called base state machines). Crosscutting behavior of the

system (e.g., robustness behavior) is modeled as aspect state machines using the AspectSM

profile. State machines developed using this profile will be referred as aspect state

machines. A weaver [10] then automatically weaves aspect state machines into base state

machine to obtain a complete model, that can for example be used for testing purposes.

The AspectSM profile specifies stereotypes for all features of AOM, in which the concepts

of Aspect, Joinpoint, Pointcut, Advice, and Introduction [4] are the most important ones.

Below, we briefly describe these concepts along with how are they represented in the

profile. Figure 1 shows the metamodel representing and relating these concepts. The

complete discussion of the AspectSM profile can be found in [10]. We can see from that

description that proper modeling requires the modeler to master AOM concepts and

mentally determine the end result of weaving; an exercise that cannot be taken for granted

and be a priori considered easier than directly modeling crosscutting concerns in a state

machine. Investigating the benefits of AspectSM, and more generally AOM, is the main

purpose of our experiments.

2.2.1 Main Concepts in AspectSM

Aspect. This concept describes a crosscutting concern, e.g., the robustness behavior of a

system in the presence of failures in its environment (e.g., network failures in

communication systems). Using the AspectSM profile, we model each aspect as a UML

2.0 state machine augmented with stereotypes and attributes.

Figure 1. Conceptual domain model of the AspectSM profile

159

Jointpoint. A Joinpoint is a model element selected by a Pointcut (defined next) where

an Advice or Introduction (additional behavior) can be applied [4]. In the context of UML,

all modeling elements in UML can be possibly joinpoints. In UML state machines,

joinpoints can be, for example, State, Activity, Constraint, Transition, Behavior,

Trigger, and Event.

Pointcut. A Pointcut selects one or more joinpoints, where Advice or Introduction can

be applied. A Pointcut can have at most one Before advice, one Around advice and one

After advice. In the AspectSM profile, all pointcuts are expressed with the Object

Constraint Language (OCL) [16] on the UML 2.0 metamodel [16]. We decided to use the

OCL to query joinpoints because the OCL is the standard way to write constraints and

queries on UML models and can therefore be used to query jointpoints in UML state

machines. Also, several OCL evaluators are currently available that can be used to

evaluate OCL expressions such as the IBM OCL evaluator [17], OCLE 2.0 [18], and

EyeOCL [19]. Furthermore, writing pointcuts as OCL expressions do not require the

modeler to learn a notation that is not part of the UML standard. In the literature, several

alternatives are proposed to write pointcuts [20-24] but all of them either rely on languages

(mostly based on wildcard characters to select joinpoints, for instance, ‘*’ to select all

joinpoints) or diagrammatic notations which are not standard, thus forcing modelers to

learn and apply new notations or languages. Using the OCL, we can write precise pointcuts

to select jointpoints with similar properties. We do so by selecting modeling elements

(jointpoints) based on the properties of UML metaclasses. This further gives us the

flexibility to specify precise pointcuts as any condition defined based on some or all of the

properties of a UML metaclass, e.g., a pointcut on the Transition metaclass, selecting a

subset of transitions in a base state machine, which have triggers of type CallEvent and do

not have any guard.

Advice. An Advice is one of the crosscutting behaviors of the Aspect. The Advice is

attached to Joinpoint(s) selected by the Pointcut. In correspondence to AspectJ [25]

concepts, an Advice can be of type Before, After, or Around. A Before advice is applied

before Joinpoint(s), an After advice is applied after Joinpoint(s), whereas an Around advice

replaces Joinpoint(s). For example, introducing guards on a set of transitions of a state

machine is an example of a Before advice on transitions (Joinpoint).

Introduction. An Introduction is similar to the inter-type declaration concept in

AspectJ [25]. Using Introduction in our context, new modeling elements (e.g., state or

160

transition) can be introduced into a UML state machine.

2.2.2 Example of applying AspectSM

In this section, we present an example of the application of AspectSM. An aspect state

machine modeling crosscutting behavior EmergencyStop is shown in Figure 2. This UML

state machine is stereotyped as <<Aspect>>, which means that it is an aspect state

machine. The <<Aspect>> stereotype has two attributes: name and baseStateMachine,

whose values are shown in the note labeled as ‘1’ in Figure 2. The name attribute contains

the name of the aspect (EmergencyStop in this example), whereas the baseStateMachine

attribute holds the name of the base state machine, on which this aspect will be woven,

which is ElevatorControl in this example.

Figure 2. An aspect state machine for crosscutting behavior EmergencyStop

The aspect state machine consists of two states: SelectedStates and ElevatorStopped.

SelectedStates is stereotyped as <<Pointcut>>, which means that this state selects a subset

of states from the base state machine. There are three attributes of <<Pointcut>>, whose

values are shown in the note labeled as ‘2’ in Figure 2. The name attribute indicates the

name of the pointcut and type denotes the type of the pointcut, which is Subset in this case.

In AspectSM, different types of pointcuts can defined, a complete list of other types of

pointcuts is presented in [10]. The third attribute selectionConstraint contains a query in

OCL on the UML state machine metamodel, which selects all states of the base state

machine except ElevatorAtFloor and Idle. All the model elements stereotyped as

<<Introduction>> (one state, two transitions) will be newly introduced elements in the

base state machine during weaving. This aspect introduces the ElevatorStopped state in the

base state machine, and selects all states of the base state machines except ElevatorAtFloor

161

and Idle (via SelectedStates) and introduces transitions from them to ElevatorStopped with

trigger EmergencyStopButtonPressed. In addition this aspect introduces transitions from

ElevatorStopped to all the states selected by SelectedStates with trigger

EmergencyStopButtonReleased.

3. Experiments Planning

This section discusses the planning of the experiments according to the definition and

reporting template defined by Wohlin et al. [26].

3.1 Goal, Research Questions and Hypotheses

The objective of our experiments is to assess the AspectSM profile with respect to the

readability of resulting UML state machines. Readability will be looked at from three

complementary points of view: model comprehensibility, the ease of detecting defects, and

the ease of fixing defects for designers inspecting the models. Note that in this paper, we

did not study the impact of possible interactions between aspects.

Based on the objective of our experiments, we defined the following four research

questions.

� RQ1: Does the use of AspectSM lead to better defect identification rate when

inspecting state machines as compared to hierarchical and flat state machines?

We wish to compare the readability of AspectSM with two different types of state

machines where crosscutting behavior is modeled directly: hierarchical and flat state

machines. None of the expected differences between them can a priori be certain to be in a

specific direction. This therefore leads to the definition of two-tailed hypotheses.

H1
0: The defect identification rate in aspect state machines is the same as that for

hierarchical state machines.

H2
0: The defect identification rate in aspect state machines is the same as that for flat state

machines.

� RQ2: Does the use of AspectSM lead to better defect fixing rate when inspecting

state machines as compared to hierarchical and flat state machines?

Similar to the previous question, we wish to compare the ease of defect fixing when

using AspectSM with two different types of state machines directly capturing crosscutting

behavior: hierarchical and flat state machines. Again, none of the expected differences

162

between them can a priori be certain to be in a specific direction, hence leading to the

definition of the following two-tailed hypotheses.

H3
0: The defect fixing rate in aspect state machines is the same as that for hierarchical state

machines.

H4
0: the defect fixing rate in aspect state machines is the same as that for flat state

machines.

� RQ3: Does the use of AspectSM improve the ease of comprehension when

compared to hierarchical and flat state machines?

Similar to the previous research questions, we wish to compare the comprehensibility of

AspectSM with the two different types of state machines directly capturing crosscutting

behavior (hierarchical and flat state machines) based on the scores to answer a

comprehension questionnaire. We defined the following two-tailed null hypotheses

accordingly.

H5
0: The comprehensibility of aspect state machines is the same as that for hierarchical

state machines.

H6
0: The comprehensibility of aspect state machines is the same as that for flat state

machines.

� RQ4: Does the use of AspectSM reduce the required inspection effort for defect

identification and answering the comprehension questionnaire?

While the two previous research questions looked at the effectiveness of using

alternative models, this research question is concerned with the effort required to inspect

crosscutting behavior for defect identification and answering the comprehension

questionnaire. This leads again to the following two-tailed null hypotheses:

H7
0: The effort to identify defects in aspect state machines is the same as that for

hierarchical state machines.

H8
0: The effort to identify defects in aspect state machines is the same as that for flat state

machines.

H9
0: The effort to answer the comprehension questionnaire for aspect state machines is the

same as that for hierarchical state machines.

H10
0: The effort to answer the comprehension questionnaire for aspect state machines is the

same as that for flat state machines.

163

3.2 Participants

The first controlled experiment was conducted at the Pir Mehr Ali Shah Arid Agriculture

University, Rawalpindi, Pakistan. The subjects in the experiment were 27 graduate

students taking a graduate course in ‘Advanced Software Architecture’ at the University

Institute of Information Technology (UIIT). The course is offered in the Master of Science

program. The students in this degree already hold a Bachelor in Computer Science or

Information Technology and have already been exposed to the UML notation and

extensions in the form of UML profiles. On average, each student went through five

development and two modeling courses. Eighteen students (out of twenty-five) have used

the UML notation for their final year projects before the experiment was conducted.

Twenty students gained development experience in IT companies or as teaching staff in

computer science.

The replication of the above experiment was conducted at the Beijing University of

Aeronautics and Astronautics (BUAA), Beijing, China. The subjects in the replication are

47 graduate students. Half of the students were taking a graduate course titled ‘Software

Engineering’, whereas the remaining half students were taking a graduate course titled

‘Software Architecture’. Both courses rely on similar teaching materials and methods and

therefore we therefore can assume that all students have a similar education background

regarding software engineering. These two courses are offered in the Master of Computer

Software and Theory program. The students in this degree already hold a Bachelor in

Computer Science and had all already been exposed to UML. On average, each student

went through two software development courses and one modeling course. All of the

students had at least one year of experience in development work in various industry

sectors such as maritime and aerospace. In conclusion, the subjects have roughly the same

background, although the subjects were in different years of their study. Their seniority

was taken into the consideration while forming experimental groups as we will discuss in

Section 3.4.

Our motivation in selecting these two groups of subjects was to find participants with

adequate background (e.g., UML modeling) that could be trained to use our AOM

approach over a short period of time. Our goal was to assess AspectSM with fully trained,

competent participants in order to assess the maximum potential benefits of the approach.

Most practitioners have very little knowledge of AOP and even less of AOM. Ensuring

they have the required background is also difficult. This is why we relied on a group of

164

mature and trained graduate students. The subjects were free to choose to participate or not

into the experiments and were told their choice would have no effect on their course

grades. All students underwent a specific, additional training for the experiments (Section

3.7). For the initial experiment, two students decided not to participate in the experiment.

3.3 Material

In this section, we provide details on the material we used for the experiments.

3.3.1 Case Study System

For the initial experiment, we only used an Elevator Control System (ECS), whereas for

the replication of the experiment we used a second system as well: Video Conferencing

System (VCS). Differences between the initial experiment and replication are summarized

in Section 3.8. The complexity of both case study systems is summarized in Table 1 based

on the number of modeling elements. For instance, in our context, the complexity is

measured based on the number of states and transition in a state machine. In Appendix A,

we provide partial models of VCS to illustrate various models specified using different

modeling approaches.

Elevator Control System. It controls movements of an elevator in a building. For our

experiments, we extended the specification of the elevator given in [11] with two

additional crosscutting behaviors so that the AspectSM profile could be used to model

them. These two crosscutting behaviors are: 1) Emergency call behavior (Call): the

behavior of an elevator, when an emergency call is made, and 2) Emergency stop behavior

(Stop): the behavior of an elevator, when the emergency stop button is pressed. Note that in

Table 1 for ECS, in the replication, we improved the design of Hierarchical such that there

are fewer states and transitions when compared to the design in the initial experiment.

Table 1. Complexity of the state machines modeling the crosscutting behaviors of the case study system

System Experiment Crosscutting
behavior

Base state
machine

Flat
Approach

Hierarchical
Approach

Aspect
Approach

S # T # S # T # S # T # S # T #
P

ECS Experiment Call 12 15 15 27 14 18 16 18 1
Stop 12 15 15 27 12 15 14 17 1

ECS Replication Call 12 15 15 27 17 21 16 18 1
Stop 12 15 13 23 14 17 14 17 1

VCS Replication AQ 5 9 8 17 10 19 8 13 1
DnD 5 9 6 15 8 20 7 13 1

Standby 5 9 5 11 5 14 7 13 1
*S: States, T: Transitions, P: Pointcuts

165

Video Conferencing System: It is a core subsystem of a video conference system

called Saturn developed by Cisco Systems, Norway. The core functionality to be modeled

manages the sending and receiving of multimedia streams. Audio and video signals are

sent through separate channels. For the replication, we used a reduced model of Saturn that

is related to establishing and disconnecting videoconferences. In addition to the core

functionality, we used the following three crosscutting behaviors:

1) Audio Quality Loss (AQ): An important robustness behavior of Saturn is to

recover from audio quality loss. Whenever Saturn is in a video conference, it checks

audio quality after every certain time. If the quality is within threshold it continues

the normal operation, otherwise it tries to recover audio quality. If it successfully

recovered the audio quality it continues its normal operation, otherwise it restarts the

VCS.

2) Do Not Disturb (DnD): Whenever the Do Not Disturb feature is on, Saturn

ignores all incoming calls. If Saturn is already in a call, it will remain in the call, but

ignores any new incoming calls.

3) Standby: The Standby behavior of Saturn becomes active when it is idle for m

minutes. When any activity is performed on Saturn while it is in Standby mode, it

becomes active.

The crosscutting behaviors for both systems can be modeled in three different ways: 1)

by applying AspectSM to derive an aspect state machine (Aspect Approach), 2) by directly

adding states and transitions on the base state machine (Flat Approach), 2) by using

hierarchical/orthogonal states (Hierarchical approach) in order to avoid redundant

modeling and reduce complexity to the maximum extent. It is, however, not always

possible to use the hierarchical approach successfully. For instance, separating out

constraints modeling non-functional properties (e.g., video or audio quality) from state

invariants is not possible using hierarchical state machines without introducing accidental

complexity and redundancy as we demonstrated in [10]. Information regarding the

complexity of the three resulting state machines is provided in Table 1, measured using

number of states and transitions for each system. For aspect state machines, we also

provide the number of Pointcuts, which also contribute to modeling complexity.

3.3.2 Design Defect Classification

Given that the correctness and completeness of defect identification through inspections

are part of our evaluation criteria to compare state machines, experiment participants were

166

asked to identify defects seeded in state machines by checking their conformance against

their corresponding specifications (Section 3.4).

To help systematically inspect state machines for various types of defects, a

classification of different types of design defects is required. The classification we used in

the experiments is given below and was adapted from Binder’s book [8]. It was provided to

the participants of the experiments as part of the answer sheet (Section 3.3.5) to

systematically collect their answers.

Incorrect Transition (IT): A transition that comes from or leads to a wrong state or has an

incorrect guard, trigger, and/or event.

Missing Transition (MT): According to the specification, there is a transition missing from

the state machine.

Extra Transition (ET): A transition is subsumed by another transition in a state machine.

Such a transition is redundant in the sense that removing it still keeps the state machine in

conformance to its specification.

Missing State (MS): According to its specification, a state that should be modeled in a state

machine but is missing.

Incorrect State (IS): A state is incorrect if it has an incorrect state invariant, do, entry

and/or exit activity.

Extra State (ES): A state is subsumed by another state. This state is considered as an extra

state in the sense that removing it still keeps the state machine in conformance to its

specification.

3.3.3 Seeded Defects

It is important to note that in our experiments, we were interested in studying the

readability of crosscutting behaviors since AspectSM is specifically designed for that

purpose. Moreover, the readability of other types of behaviors is expected to be the same

with or without AspectSM. For these reasons we only seeded defects in the crosscutting

behaviors. Different types of defects were selected after we carefully examined the base

and aspect state machines and identified possible independent defects. Table 2 shows the

distribution of these defects that were seeded in the compared state machines. Note that

seeded defects in ECS are different for the initial experiment and its replication since we

improved the models in the latter.

167

Table 2. Distribution of seeded defects in state machines

Experimen
t

Syste
m

Crosscuttin
g Behavior

Aspect Hierarchical Flat
M
T

I
T

M
S

I
S

M
T

I
T

M
S

I
S

M
T

I
T

M
S

I
S

Experiment ECS Stop 1 - - - 1 - - - 10 - - -
Call 1 1 - 1 4 2 - 1 11 9 - -

Replication ECS Stop 1 - - - 1 - - - 10 - - -

 Call 1 1 - 1 1 1 - 1 10 10 - 1
VCS AQ 1 1 1 - 1 1 1 - 1 4 1 -

DnD - 2 1 1 - 2 1 1 - 8 1 1
Standby 2 1 1 - - - - 2 1 - 1

Because aspects model crosscutting behavior, it is expected that one defect in an aspect

often corresponds to several defects in the corresponding hierarchical state machine.

Similarly, because hierarchical states factor out common behavior, one defect in a

hierarchical state machine often leads to several defects in its corresponding flat state

machine. As a result, different numbers of defects were seeded in the three state machines

in order to conceptually correspond to equivalent defects and have semantically equivalent

models. Note that in Table 2, a ‘-’ indicates that we didn’t seed defects from a particular

defect class (e.g., MT, IT).

3.3.4 Comprehension Questionnaire

As we discussed above, we also want to compare how easy it is to comprehend the various

types of state machines. To this effect, a comprehension questionnaire (Appendix B) was

designed to evaluate, in a repeatable and objective way, the extent to which a subject can

understand the state machines. For example, some questions concern what scenario is

triggered when an event happens in a certain state. The subjects were asked the same ten

questions on crosscutting behaviors together for all three state machines. Participants had

to answer each question by inspecting the state machine assigned to them and correctness

scores were computed by accounting for partially correct answers. For example, if the

answer to a question entailed to list four transitions, then pointing out each correct

transition contributed 0.25 to the full mark of the question.

3.3.5 Answer Sheets

Three answer sheets were developed to collect answers for three readability measures

(defect identification, defect fixing, and comprehension). The first answer sheet was

developed to collect information about classes of defects that were identified by each

subject, the number of defects in each class, and the location of identified defects. A table

168

was provided to the subjects for each crosscutting behavior. The rows of the table were

labeled with each defect class, whereas the columns featured two pieces of information

about defects: number of defects identified in each class and location of each identified

defect. The second answer sheet was developed to collect the state machine corrected by

the subjects. The third answer sheet was designed to collect answers to the comprehension

questionnaire.

3.3.6 Pre- and Post-Lab Questionnaire

In addition to the answer sheets, we designed pre- and post-lab questionnaires to obtain

subjective opinions of the subjects on various issues. Each question in each questionnaire

is a four-point Likert scale [27] question with the following meaning: one (completely

agree), two (generally agree), three (generally disagree), and four (completely disagree).

The pre-lab questionnaire asked questions about training, experience, and confidence of a

subject about a particular modeling approach he/she was assigned. In the post-lab

questionnaire, we asked questions about the applicability of the approach and level of

confidence of the subjects about their solutions.

3.4 Design

In this section, we present the design of the initial experiment and its replication. In the

initial experiment, we used a between-subjects design for reasons discussed in Section

3.4.1, whereas in the replication, we used both between-subjects and within-subjects

designs for each of the two rounds, respectively (Section 3.4.2).

3.4.1 Design of the Initial Experiment

The design of our experiment is summarized in Table 3. Our experiment design consists of

two rounds and there were three groups denoted Group 1, Group 2, and Group 3. Given the

number of the subjects, this led respectively to 8, 8, and 9 subjects in each group. In each

round, one group was given a different type of state machines (Aspect, Hierarchical, or

Flat). During the training sessions (Section 3.7), each subject was equally trained to

understand the three different types of state machines: Aspect, Flat, and Hierarchical. The

subjects were also given a modeling assignment, after the training sessions, for them to

practice before the actual experiment tasks. This assignment was marked by the first author

of this paper and grades were used to form blocks (i.e., groups of students of equivalent

skills). The experiment groups were then formed through randomization and blocking to

obtain three comparable groups with similar proportions of students from each skill block.

169

The two rounds of the experiments were conducted in sequence on the same day.

This initial experiment used a between-subjects design, where different groups of

subjects are compared when using different state machine modeling techniques. As shown

in Table 3, in the first round, each group was asked to identify defects in two separate tasks

corresponding to the Call and Stop crosscutting behaviors. Group 1 was given state

machines modeled using the Aspect approach. The subjects in Group 1 were given one

base state machine and one aspect state machine modeling Call in Task 1, whereas in Task

2, Group 1 was given the same base state machine and one aspect state machine for the

Stop crosscutting behavior. Group 2 was given one hierarchical state machine for Call and

one hierarchical state machine for Stop for Task 1 and Task 2, respectively. Similarly,

Group 3 was given one flat state machine for Call and one flat state machine for Stop for

Task 1 and Task 2, respectively. Seeded defects for each type of state machines (Aspect,

Hierarchical, and Flat) are presented in Table 2. For each task, the subjects were allowed

to take as much time as they needed, but when they finished the first task, their answer

sheets for this task were collected and then they were handed the description of the second

task and a new answer sheet. The starting and completion times were noted on each answer

sheet by the subjects and were checked for correctness by the instructors while collecting

the solutions.

For the second round, the three groups were rotated: Group 1 was asked to answer

comprehension questionnaire for flat state machine, Group 2 for aspect state machines, and

Group 3 for hierarchical state machines. This rotation was performed only for pedagogical

reasons such that each group can be exposed to a different type of state machines than the

previous round. However, since we had only two tasks due to time constraints, it was not

possible for all of the groups to experience all three approaches. The starting and

completion times for this task were collected following the same procedure as for Round 1.

Table 3. Design of the Initial Experiment

Round Case study Crosscutting behavior Task Group 1 Group 2 Group 3

1 ECS Stop DI A H F

Call A H F

2 Stop and Call AC F A H

* DI: Defect Identification, AC: Answer Comprehension Questionnaire, A: Aspect, H: Hierarchical, and F:
Flat

3.4.2 Design of the Replication

The design of the replication is summarized in Table 4. Our replication design consists

170

once again of two rounds (Round 1 and Round 2) and each round was conducted on a

separate day. During the training session (Section 3.7), each subject was equally trained to

understand the three different types of state machines: Aspect, Flat, and Hierarchical. The

subjects were divided to form blocks (i.e., groups of students of equivalent skills) based on

their seniority in their graduate programs. The groups were then formed through

randomization and blocking to obtain three comparable groups with similar proportions of

students from each skill block. We divided the subjects into three groups: Group 1, Group

2, and Group 3. For Round 1, there were 17, 15, and 15 subjects, respectively. For Round

2, due to practical reasons such as time clash with courses and exams, fewer students

participated than in Round 1. In Round 2, we had 14, 10, and 15 in Group 1, 2 and 3,

respectively.

In Round 1, the ECS system and a between-subjects [26] design were used. We did not

have a third crosscutting behavior to opt for a balanced, within-subjects design, as for the

second round that is described next. Every participant was exposed to only one modeling

approach. Group 1 was given state machines modeled using the Aspect (A) approach,

Group 2 with the Hierarchical (H) approach and Group 3 with the Flat approach (F).

In Round 2, regarding detecting and fixing defects, we used a within-subjects design

[26] since we have three crosscutting behaviors and three treatments (Aspect, Hierarchical,

or Flat). A within-subjects design offers two main advantages. First, with this type of

design, we can reduce the error variance due individual differences in human performance,

which is quite common in software engineering tasks. This is due to the fact that the same

group of students is exposed to all modeling approaches across the different crosscutting

behaviors (e.g., Call and Stop). Second, within-subjects designs provide more statistical

power as compared to a between-subjects design [26] as it leads to more observations for

each treatment. Potential threats from within-subjects designs are “carryover” effects. To

address this, for each of the three crosscutting behaviors, each group was given a different

treatment in such a way that ordering effects were counterbalanced: each of the three

modeling approaches occurred once in a different order across the three groups. For

example, as shown in Table 4, for aspect DnD, each group was asked to detect and fix

defects and Group 1, Group 2 and Group 3 were given treatment Aspect, Hierarchical, and

Flat, respectively. For Standby, the three groups were rotated: Group 1 was asked to

identify and fix defects for flat state machines, Group 2 used aspect state machines, and

Group 3 used hierarchical state machines. Similarly, the groups were rotated again for AQ.

171

With a within-subjects design, a matched pair analysis can be applied by comparing the

performance of subjects with themselves across treatments.

In both rounds, the subjects were presented with all three crosscutting behaviors

together and were asked to answer questions from a comprehension questionnaire for one

type of state machine. For each crosscutting behavior, the subjects were given a fixed time

as shown in Table 4. Fixing the time for task execution tends to yield more differences in

task effectiveness, but then results cannot be used to study time differences across

treatments [26]. Note that in the replication, we ordered the crosscutting behaviors based

on their complexity (Table 1) from simple to complex, in order to enable the subjects to

tackle increasingly more complex models and thus smooth the learning curve.

Table 4. Design of the Replication
*

Round Case

study

Aspect Task Group

1

Group

2

Group

3

Time

(min)

1 ECS Stop DI A H F 15

DF 15

Call DI A H F 15

DF 15

Stop and Call AC A H F 30

2 VCS DnD DI A H F 15

DF 15

Standby DI F A N/A 15

DF 15

AQ DI H F A 15

DF 15

DnD, Standby,

AQ

AC A H F 30

* DI: Defect Identification, DF: Defect Fixing, AC: Answer Comprehension Questionnaire, A: Aspect, H:
Hierarchical: and F: Flat

3.5 Dependent Variables

Defect Identification Rate (DIR) and Defect Fixing Rate (DFR). These variables

capture whether a subject accurately identifies/fixes seeded defects. Based on the

information collected in the answer sheet described in Section 3.3.5, there are several

different ways to measure DIR and DFR, which we discuss below.

1) Average DIR/DFR

For each type of defects, Average DIR/DFR (DIR_Average/DFR_Average) is

measured as the percentage of identified/fixed defects over the total number of seeded

defects:

172

number of identified or fixed defects / total number of seeded defects

2) DIR and DFR on binary scale with minimum defect identification and fixing

As discussed in Section 3.3.1, one defect seeded in aspect state machines may

correspond to more than one defect in hierarchical or flat state machines. Therefore, to

allow for a meaningful combination of observations across tasks and state machines,

we use a binary measure indicating whether at least one defect was found

(DIR_Binary) or fixed (DFR_Binary). As long as at least one defect is identified/ fixed

in a given task by a subject in hierarchical and flat state machines, value 1 is assigned

to DIR_Binary/DFR_Binary. For example, as shown in Table 2, the flat state machine

modeling the Call crosscutting behavior contains 10 MT defects, 10 IT defects, and

one IS defect. If at least any one of these defects is identified by a subject, then

DIR_Binary = 1; otherwise DIR_Binary = 0. It is important to note that we developed

this measure such that comparisons across the three approaches are made possible.

This is due to the reason that different numbers of defects are introduced in three types

of state machines corresponding to a single defect in a crosscutting behavior.

3) DIR and DFR on binary scale with maximum defect identification and fixing

This measure (DIR_Binary_Max/DFR_Binary_Max) is a variation of

DIR_Binary/DFR_Binary−which is also comparable across state machines−and is

assigned value 1 when all defects seeded in a crosscutting behavior are identified/fixed

by a subject in a task. For instance, in Table 2, the hierarchical state machine modeling

the Call crosscutting behavior has 10 MT defects. DIR_Binary_Max = 1, if all these

defects are identified by a subject, otherwise it is assigned 0. In comparison with the

measure DIR_Binary, this measure is stricter in the sense that it requires all the seeded

defects in each of the three types of state machines to be identified to obtain a value 1.

None of these measures are perfect but such binary measures are necessary to combine

all observations in one data set. We will interpret differences in results of binary

measures if they arise. The purpose of defining this measure is the same as for the

previous measure: render possible comparisons across the three approaches, but in a

different way.

Score of the responses to the comprehension questionnaire (SCQ). Correctness of

the responses to the comprehensive questionnaire is calculated as follows:

Sum of scores of all questions / 10

173

In the formula above, the score for each question is calculated based on the marking

procedure discussed in Section 3.3.4 and 10 is the total number of questions in the

questionnaire.

Required effort (Effort). Required effort is measured in minutes taken by a subject to

identify defects in each crosscutting behavior. Similarly, we also measure effort in minutes

taken by a student to answer comprehension questionnaire. It is simply measured as

Completion time – Starting time.

Table 5 summarizes which dependent variables are used to answer research questions

presented in Section 3.1.

3.6 Data Collection

For the initial experiment, the solutions were collected from the subjects and were marked

by the first author of this paper. In the replication, the solutions were marked by the second

author of this paper. The data was encoded into a JMP [28] data file to perform the

statistical analysis.

Table 5. Dependent variables corresponding to each research question

Research Question Dependent Variables

RQ1 DIR_Average, DIR_Binary,

DIR_Binary_Max

RQ2 DFR_Average, DFR_Binary,

DFR_Binary_Max

RQ3 SCQ

RQ4 Effort

For the experiment, data integrity was checked using the following rule: for the same

subjects and for each step, the starting time should precede the completion time, and the

completion time of the current task must precede the starting time of the next task. For the

replication, since the time for each task was fixed (Section 3.4.2), the answer sheets for a

task were collected before handing over the next task to the subjects to ensure that the each

subject used exactly the same time. In addition, to avoid mistakes in marking the solutions,

the first two authors double-checked the solutions marked by the other. Moreover, for a

sample of randomly selected solutions, the first two authors also checked the consistency

of the entries in the JMP file with the marks on the answer sheets and no inconsistencies

were detected.

3.7 Training

In the initial experiment, the subjects were trained by the first author of this paper. Two

174

three-hour sessions were given on the following topics: 1) Recap of UML state machines

since the subjects were already familiar with this topic preceding the training (Section 3.2),

2) Introduction to the Object Constraint Language (OCL), 3) Introduction to aspect-

oriented software development (AOSD), and 4) Aspect-oriented modeling (AOM) using

the AspectSM profile. Each topic was accompanied with several examples and interactive

class assignments. As previously discussed, the subjects were given a home assignment

after the training sessions to practice the three state machine modeling approaches and

groups were later formed based on the grades of this assignment.

For the replication, the subjects were trained by the second author of this paper. One

three-hour session was given on the same topics as the ones used in the initial experiment.

However, in this case, there were no class assignments given to the students due to

practical constraints.

3.8 Replication

There are several potential reasons why replications of experiments are necessary in

software engineering [29]. Our replication was motivated by the following reasons: 1) to

reduce the validity threats that were observed in the intitial experiment, 2) to increase the

sample sizes and improve the statistical power of results, 3) to address the problems

identified in the design and material. The differences between the initial experiment and its

replication are summarized below:

3.8.1 Reduced External Validity Threats

In the replication, we reduced external validity threats by doing the following. 1) We added

an additional case study, which is a reduced version of an industrial videoconferencing

system developed by Cisco, Norway. In addition, we included three real crosscutting

behaviors of the videoconferencing system. 2) We replicated the experiment in a different

geographical area with graduate students from a different education system.

3.8.2 Improved hierarchical modeling of ECS

The ECS system was used in both the initial experiment and its replication. For the

replication, we improved the design for Hierarchical. The Stop crosscutting behavior of

ECS in the replication is modeled with a reduced number of modeling elements as

compared to its design in the initial experiment.

175

3.8.3 Improved Assignments of Subjects to Treatments

In the initial experiment (Section 3.4.1), we rotated the groups for two tasks (defect

identification and answering comprehension questionnaire) such that each group can

inspect the state machines modeled with a different approach. Though this rotation was

done for pedagogical reasons, since we had only two tasks for ECS (Section 3.3.1), not all

of the groups could experience state machines modeled with all three approaches. In the

replication, in contrast, we used a within-subjects design for the VCS system, where each

group was exposed to all treatments exactly once. As discussed above, this also led to

higher statistical power and a reduction in variance associated with individual differences

by enabling the use of matched pair analysis.

3.8.4 Coverage of UML Features

In the initial experiment, we covered most of the advanced features of UML state machines

such as composite states and submachine states, but we didn’t cover orthogonal states. In

the replication, we included a crosscutting behavior with orthogonal states (Call in ECS).

3.8.5 Other Differences

In the initial experiment, we measured readability from two perspectives: defect

identification and answering a comprehension questionnaire. In the replication, we added

another perspective: defect fixing. In the initial experiment, we gave subjects as much time

as they wanted to perform each task. The results did not, however, reveal any significant

differences between various approaches in terms of time (Section 4.4). In the replication,

we fixed the time for each task and this expectedly led to most subjects using most of the

allocated time. As expected, the differences across treatments, if any, are in such a context

only visible in terms of effectiveness (e.g., defect identification/fixing rates) [26].

3.9 Overview of Statistical Tests

In this section, we provide justifications for the statistical tests run for our data analysis.

3.9.1 Statistical Tests

Using statistical testing, we check whether the differences between modeling

approaches are statistically significant to determine if we can reject the null hypotheses

stated in Section 3.1. For all statistical tests reported in this section, we used a significance

level of �=0.05, though exact p-values are also reported. To check if, overall, there exist

significant differences among the three approaches under investigation, we performed the

176

one-way ANOVA test [30] on each dependent variable defined on an interval scale, i.e.,

DIR_Average, DFR_Average, SCQ, and Effort. Our samples for all dependent variables

meet all assumptions of the ANOVA test, which are as follows: 1) the samples should be

approximately normal, 2) the samples must be independent, and 3) variances of

populations must be equal. To check for normality, we performed the Shapiro–Wilk W test

[30] for each dependent variable. The results showed that their distributions do not strongly

depart from normality. The second assumption also holds since our samples are collected

on different groups of the subjects, working independently. To check the equivalence of

variances, we performed the Bartlett's test [30] which showed that the variances across

samples are equal for all dependent variables. In addition to the one-way ANOVA test, we

also performed the Kruskal–Wallis one-way analysis of variance test [30], which is a non-

parametric equivalent of the one-way ANOVA test. The results of both tests turned out to

be consistent.

For those dependent variables for which one-way ANOVA results were significant, we

performed a pair-wise comparison of the distributions obtained for the three state machines

using Tukey_Kramer HSD [30], which is the ANOVA post-hoc test. As an adaptation of t-

test, the Tukey_Kramer HSD test is designed to handle the increase in Type-I error

resulting from multiple comparisons. It assumes normally distributed samples and requires

samples of equal or comparable size, or otherwise yield conservative results [30]. We have

(nearly) equal sample sizes (see Section 3.4) and our dependent variable distributions do

not strongly depart from normality as the results of the Shapiro–Wilk W test [30] showed.

We also report the mean differences between pairs of approaches indicating the direction

in which the result is significant. We also performed the Wilcoxon Signed-Rank test [30],

which is a non-parametric equivalent of Tukey_Kramer HSD. The results of both tests

were consistent.

For Round 2 in the replication, since our design is a within-subjects design, we

performed the matched pairs t-test, in addition to the one-way ANOVA and pair-wise

comparisons with Tukey-Kramer HSD since matched pairs analysis improves statistical

power over independent sample testing, as discussed in Section 3.4. In our context, a pair

is the same student performing the same type of task (e.g., defect identification) on

different crosscutting behaviors (e.g., DnD and Standby) on state machines designed with

different approaches (e.g., Aspect and Hierarchical). We double checked the results of the

matched pairs t-test with a Wilcoxon matched pairs test, which is an equivalent, non-

177

parametric test. The results of the tests turned out to be consistent. Since the results of both

parametric and non-parametric tests are consistent, we only report the results of the

parametric tests in this paper.

For DIR_Binary, DFR_Binary, DFR_Binary_Max, and DIR_Binary_Max, we

performed the Fisher’s exact test [30] to compare the defect identification/fixing

proportions for the various state machines. These four measures are binary and

observations can be therefore classified into two categories (either 0 or 1 showing ‘not

found’ or ‘found’, respectively), which is exactly what the Fisher’s exact test is designed

for. For these binary variables, for Round 2 in the replication, since our design is a within-

subjects design, we also performed the McNemar's Test [31] for matched pairs analysis.

This test is specifically designed for matched pairs analysis of binary data.

We performed all the tests mentioned in this section using JMP [28] except for the

McNemar’s Test [31], for which we used the web-based application [31].

3.9.2 Power Analysis

Power analysis can be used during the design stage of an experiment to determine how

many subjects are likely to be needed, or after the fact to help interpret non-significant

results. The latter may be due to small samples sizes and effect sizes that are smaller than

expected. Power analysis is particularly important for controlled experiments in software

engineering that involve human subjects, as they normally suffer from small sample sizes

because of the limited availability of trained subjects and the high cost of conducting

experiments. In our context, like in most software engineering experiments, the number of

subjects is imposed by external constraints and a retrospective power analysis, as

suggested in [32], helps interpret non-significant results in such conditions. For each

statistical test considered, such an analysis estimates the minimum effect size at which we

can observe an acceptable level of power (typically 80%). This means that above that

minimum, we can probably interpret a non-significant result as an absence of effect. Below

this threshold the effect might be present but remain undetected.

In our experiments, we are interested in comparing the Aspect approach to Hierarchical

and Flat approaches. We perform power analysis for the dependent variables that did not

yield significant results and followed the method of calculating power as reported in [32],

which requires a fixed sample size, a set significance level (0.05) and power level (80%),

and uses the observed variance to calculate the corresponding, minimum effect size. We

178

didn’t use standardized effect sizes as suggested by Cohen [33] since those cannot be

easily interpreted in a software engineering context.

4. Results and Discussion

We analyze and present our experiments results in this section. We present the results

for the four research questions in Section 4.1, Section 4.2, Section 4.3, and Section 4.4,

respectively. Within each section, we provide results for both the initial experiment and its

replication, and a plausible explanation of the results. In Section 4.5, we provide

concluding remarks on the results and discussions.

4.1 Results and Analysis for Defect Identification (RQ1)

In this section, we report results for RQ1 presented in Section 3.1. As shown in Table 5,

we will answer this research question based on the DIR_Average, DIR_Binary, and

DIR_Binary_Max dependent variables, for both the initial experiment (Section 4.1.1) and

its replication (Section 4.1.2). We provide individual discussions of the results for each

experiment in Section 4.1.3 followed by an overall discussion (Section 4.1.4).

4.1.1 Results for the Initial Experiment

Regarding DIR_Average, from Table 6 we can observe higher values for Aspect than for

Hierarchical and Flat. More specifically, the Aspect group performed 56% and 62% better

than the Hierarchical and Flat groups. These results show that it is easier to correctly

detect the defects seeded in aspect state machines than in the flat and hierarchical state

machines. The most plausible explanation is that the number of model elements (Section

3.3.1) for aspect state machines is lower than in the other two types of state machines

(Table 1) and complexity of pointcuts written as OCL queries does not override this effect.

In addition, we checked whether the differences observed for DIR_Average are statistically

significant to determine if we can reject the null hypotheses stated in Section 3.1. As

shown in Table 7, we observed significant differences for DIR_Average. Since the results

were statistical significant, we further performed Tukey_Kramer HSD for a pair-wise

comparison of modeling approaches. The results showed that Aspect significantly

outperformed both Flat and Hierarchical in terms of DIR_Average as p-values are lower

than � (Table 8).

179

Table 6. Descriptive statistics for various DIR measures

Experiment System Measure Crosscutting Behavior
Approach

Aspect Hierarchical Flat

Experiment ECS DIR_Average Call and Stop 0.81 0.25 0.19

DIR_Binary 0.94 0.56 0.67

DIR_Binary_Max 0.69 0.13 0.28

Replication ECS DIR_Average Stop 0.29 0.46 0.40

DIR_Binary 0.29 0.46 0.73

DIR_Binary_Max 0.29 0.46 0.06

DIR_Average Call 0.27 0.53 0.16

DIR_Binary 0.52 0.93 0.73

DIR_Binary_Max 0.05 0.06 0

DIR_Average Call and Stop 0.28 0.5 0.28

DIR_Binary 0.41 0.7 0.73

DIR_Binary_Max 0.17 0.26 0.03

VCS DIR_Average DnD 0.30 0.1 0.18

DIR_Binary 0.71 0.4 0.6

DIR_Binary_Max 0 0 0

DIR_Average Standby 0.6 - 0.33

DIR_Binary 0.6 - 0.64

DIR_Binary_Max 0.6 - 0

DIR_Average AQ 0.25 0.19 0.26

DIR_Binary 0.66 0.57 1

DIR_Binary_Max 0 0 0

DIR_Average DnD, Standby, and AQ 0.36 0.15 0.25

DIR_Binary 0.66 0.5 0.71

DIR_Binary_Max 0.15 0 0

For DIR_Binary as shown in Table 6, for Aspect, 93.7% of the subjects managed to

catch at least one defect from any of the defect types seeded in both tasks. This is 37.5%

and 27% higher than for Hierarchical and Flat, respectively. For DIR_Binary_Max, we

observed a pattern similar to DIR_Binary for both tasks, as shown in Table 6.

DIR_Binary_Max is higher for Aspect than that of Hierarchical and Flat, i.e., for the

Aspect group, 68.7% of the subjects managed to find all the defects seeded in both tasks,

which is 56.2% more than for the Hierarchical group and 40.9% more than for Flat (see

Table 6). As we discussed in Section 3.9, we performed the Fisher’s exact test to check

statistical significance of difference in binary variables and the results are provided in

Table 9. For DIR_Binary, Aspect significantly outperformed Hierarchical, but there were

no significant differences observed for Aspect vs Flat. In the case of DIR_Binary_Max,

Aspect significantly outperformed both Hierarchical and Flat.

180

Table 7. Results for one-way ANOVA for DIR_Average

Experiment System Crosscutting

behavior

p-

value

Experiment ECS Call and Stop 0.0001

Replication ECS Stop 0.55

Call 0.003

Stop and Call 0.04

VCS DnD 0.10

Standby 0.12

AQ 0.64

DnD, Standby, and

AQ

0.02

Table 8. Comparisons of all pairs for DIR_Average using Tukey_Kramer HSD

Experiment System
Crosscutting

Behavior

Aspect vs Hierarchical Aspect vs Flat

Mean Difference (Aspect

- Hierarchical)

p-

value

Mean Difference

(Aspect - Flat)

p-value

Experiment ECS Stop and Call 0.36 0.02 0.44 0.005

Replication ECS Call -0.25 0.04 0.11 0.48

Stop and Call -0.21 0.03 0.003 0.99

VCS DnD, Standby,

and AQ

0.20 0.01 0.10 0.27

Table 9. Two tailed Fisher’s exact test for DIR binary measures at α=0.05

Experiment System Measure Aspect vs. Hierarchical Aspect vs. Flat

Difference in proportion

(Aspect - Hierarchical)

p-

value

Difference in

proportion

(Aspect - Flat)

p-value

Experiment ECS DIR_Binary 0.375 0.03 0.27 0.09

DIR_Binary_Max 0.56 0.003 0.40 0.03

Replication ECS DIR_Binary (Stop) -0.17 0.46 -0.43 0.03

DIR_Binary_Max

(Stop)

-0.17 0.46 0.22 0.17

DIR_Binary (Call) -0.40 0.01 -0.20 0.29

DIR_Binary_Max

(Call)

-0.0007 1 0.05 1

DIR_Binary -0.28 0.02 -0.32 0.01

DIR_Binary_Max -0.09 0.54 0.14 0.10

VCS DIR_Binary (DnD) 0.31 0.21 0.11 0.69

DIR_Binary_Max

(DnD)

0 - 0 -

DIR_Binary

(Standby)

- - -0.04 1

DIR_Binary_Max

(StandBy)

- - 0.6 0.001

DIR_Binary (AQ) 0.09 0.71 -0.33 0.06

DIR_Binary_Max

(AQ)

0 - 0 -

DIR_Binary 0.16 0.28 -0.05 0.80

DIR_Binary_Max 0.15 0.07 0.15 0.02

181

4.1.2 Results for the Replication

In this section, we provide results for the replication for defect identification. First, we

provide the results for the ECS followed by the results for VCS.

Results for the ECS system. Table 6 shows descriptive statistics for various measures

of ECS. For Stop, DIR_Average for Hierarchical (0.46) and Flat (0.40) is better than

Aspect (0.29). For Call, again Hierarchical has higher DIR_Average (0.53) than Aspect

(0.27). However, in this case Aspect has higher DIR_Average than Flat (0.16). For Stop

and Call together Hierarchical has higher DIR_Average (0.53) than Aspect and Flat, and

DIR_Average is tied between Aspect and Flat. For Stop, DIR_Binary is higher (0.73) for

Flat than Hierarchical and Aspect, which are 0.46 and 0.29 respectively. DIR_Binary of

Call for Hierarchical (0.93) is higher than Aspect (0.52) and Flat (0.73), respectively. For

Call and Stop together, Flat (0.73) has higher DIR_Binary than Hierarchical (0.7) and Flat

(0.41). For DIR_Binary_Max in Stop, Hierarchical (0.46) outperformed Aspect (0.15) and

Flat (0.40), but for Call, Hierarchical and Aspect show values for DIR_Binary_Max of

0.06 and 0.5, respectively, whereas Flat has DIR_Binary_Max of 0. For Stop and Call

together, Hierarchical is better than both Aspect and Flat.

In addition, we checked the statistical significance of DIR_Average using one-way

ANOVA, as discussed in Section 3.9. Table 7 shows the ANOVA results for ECS, where

the p-values are made bold when below than our chosen significance level (0.05). For

ECS, we observed significant differences in DIR_Average for Call and Stop and Call

together. We then performed a pair-wise comparison of the distributions obtained for the

three state machines using Tukey_Kramer HSD [30]. The results are presented in Table 8.

For DIR_Binary and DIR_Binary_Max, we performed the two-tailed Fisher’s Exact test,

whose results are also summarized in Table 9.

Results for the VCS System. Table 6 shows the descriptive statistics for various measures

of VCS. For DnD, Aspect outperformed both Hierarchical and Flat for DIR_Average and

DIR_Binary; however, DIR_Binary_Max is 0 for all groups. Note that we could not model

the Standby crosscutting behavior with Hierarchical. Again, for Standby, Aspect

outperformed Flat for DIR_Average and DIR_Binary_Max, whereas we observed the

reverse for DIR_Binary (Table 6). In case of DIR_Average and DIR_Binary for AQ, Flat

outperformed Aspect, which in turn outperformed Hierarchical. For all three crosscutting

182

behaviors together, Aspect outperformed Hierarchical and Flat in terms of DIR_Average

and DIR_Binary_Max, whereas for DIR_Binary, Flat (1.0) outperformed Aspect (0.66),

which in turn outperformed Hierarchical (0.57).

In addition, the ANOVA results (Table 7) showed significant differences in

DIR_Average with Call and Stop and Call together. We therefore performed a pair-wise

comparison of the distributions obtained for the three state machines using Tukey_Kramer

HSD [30]. The results of the test are reported in Table 8. For VCS, in addition we

performed the matched pairs t-test (Section 3.9) as reported in Table 10. We observed that

Aspect significantly outperformed Hierarchical and Flat with p-values of 0.002 and 0.02

(Table 10), respectively. Hence, it shows that Aspect has a high likelihood of having higher

DIR_Average than both Flat and Hierarchical. For DIR_Binary and DIR_Binary_Max, we

performed the two-tailed Fisher’s Exact test, whose results are also summarized in Table 9.

The results of the McNemar’s test for matched pairs analysis of these binary measures are

reported in Table 10. For DIR_Binary_Max, Aspect significantly performed better than

both Hierarchical and Flat. For DIR_Binary, Aspect significantly outperformed

Hierarchical, but Flat significantly performed better than Aspect.

Table 10. Results of the matched pairs for VCS at α=0.05 for various DIR measures

Measure Test Pair of

approaches

Mean

Difference

p-value

DIR_Average t-test Aspect-

Hierarchical

0.27 0.002

DIR_Average Aspect-Flat 0.19 0.02

DIR_Binary McNemar’s test Aspect-

Hierarchical

0.16 0.03

DIR_Binary Aspect-Flat -0.05 0.02

DIR_Binary_Max Aspect-

Hierarchical

0.15 0.001

DIR_Binary_Max Aspect-Flat 0.15 5.42e-07

4.1.3 Discussion

In this section, we discuss the results reported in Section 4.1.1 and Section 4.1.2. First, we

provide discussion of the results for each experiment individually followed by an overall

discussion.

Analysis of Results for the Initial Experiment. Based on the experiment results

reported in Section 4.1.1, we conclude that overall, Aspect state machines are better than

Flat and Hierarchical ones in terms of the overall defect identification rate, even though

the difference between Aspect and Flat for one of the binary measures (DIR_Binary) is not

183

statistically significant given our selected � (0.05) and sample size. One reasonable

explanation is that, when compared with flat and hierarchical state machines, aspect state

machines are much less complex in terms of number of states and transitions (Table 1);

therefore it is expected to be much easier to identify defects in aspect state machines. It is

also interesting to note that the additional complexity introduced by pointcuts in Aspect

does not have any visible negative effect on defect identification.

We further analyzed non-significant results using the power analysis reported in Table

11. The table shows the estimated effects size thresholds corresponding to 80% power for

DIR_Binary (Aspect vs Flat) that yielded non-significant results in the previous section

(Minimum effect size). This means that for effect sizes less than these thresholds, power is

less than 80% thus entailing a significant risk of error (type II) in not rejecting the null

hypotheses. In other words, for effect sizes below these thresholds, we cannot draw

conclusions with confidence from the statistical test results in Table 11. The Average

column in Table 11 shows the average values for the dependent variables, when combining

all the observations being compared. The last column shows the percentage of Average that

corresponds to the minimum effect size. The result of power analysis for DIR_Binary

regarding Aspect vs Flat (Table 11) shows an estimated effect size of 0.20 (24% of

average) to achieve 80% power. The observed effect size is 0.14, which is lower than this

estimated effect size thus explaining the lack of significance. This suggests that we need to

collect more observations, if we want to draw conclusions with confidence for effect sizes

below 24% of the average, regarding which approach (Aspect or Flat) is better in terms of

DIR_Binary.

Table 11. Estimation of the effect size corresponding to 80% power for ECS
*

Experiment Measure p-

value

Observed

Effect

Size

Minimum

Effect Size

Average Minimum

Effect

Size/Average

Experiment DIR_Binary (A vs F) 0.09 0.14 0.20 0.80 0.24

Replication DIR_Average (A vs F) 0.99 0.001 0.13 0.29 0.46

DIR_Binary_Max (A

vs H)

0.54 0.04 0.15 0.22 0.69

* A: Aspect, H: Hierarchical, F: Flat

Analysis of Results for the Replication. In this section, we provide a discussion on

DIRs for each crosscutting behavior individually and all crosscutting behaviors together

for the replication. Recall that DIRs are measured with three dependent variables:

DIR_Average, DIR_Binary, and DIR_Binary_Max. Results for all those variables for

which the results were statistically significant are summarized in Table 12. The first

184

column lists the dependent variables which are used to answer RQ1 (Table 5). The second

column represents a pair of approaches being compared and each dependent variable has

two rows in this column: A>X and X>A denoting whether Aspect (A) is significantly better

than Hierarchical or Flat (X), and Hierarchical or Flat (X) are significantly better than

Aspect (A), respectively. The third column (labeled “Crosscutting Behavior (X)”) presents

two pieces of information: 1) name(s) of the crosscutting behavior(s) for which the results

were significant for ECS, 2) name of the approach in brackets against which the results

were significant, i.e., the approach is either significantly better than Aspect if it is in the

row X>A or vice-versa if it is in the row A>X. For example, in case of DIR_Average in the

row labeled “X>A”, Call (H) means that Hierarchical is significantly better than Aspect

for the Call crosscutting behavior. If results were significant for all crosscutting behaviors

together, for instance in the case of ECS, when the observations are combined for Call and

Stop for a dependent variable (e.g., DIR_Average), we denote it as All in the table. The

fourth column is similar to the third column except that it presents the results of VCS. The

sixth column is similar to the fourth column, but the only difference is that the sixth

column represents the results of the matched pairs tests, whereas the fourth column shows

the results of Tukey-Kramer HSD for VCS. The fifth column represents the type of the

matched pairs tests applied to each dependent variable. For instance, the McNemar’s test is

applied to the two binary dependent variables. Non-significant results are indicated by “-”

in Table 12.

Table 12. Summary of statistically significant results for DIR measures
*

Dependent

Variable

Approach

pair

Round 1 Round 2

ECS VCS (Tukey-

Kramer HSD)

VCS (Matched Pairs)

Crosscutting

Behavior (X)

Crosscutting

Behavior (X)

Test Crosscutting

Behavior (X)

DIR_Averag

e

A>X - All (H) t-test All (H), All (F)

X>A Call (H), All (H) - -

DIR_Binary A>X - - McNemar

’s test

All (H)

X>A Stop (F), Call (H), All

(F), All (H)

- All (F)

DIR_Binary

_Max

A>X - Standby (F), All (F) All (H), All (F)

X>A - - -

* X: Either H (Hierarchical) or F (Flat), A: Aspect, H: Hierarchical, F: Flat, ‘-’ indicates non-significant
results.

From Table 12, we can see that in the case of the ECS system, we observed a significance

difference across the three approaches for Call and for Stop and Call together in terms of

DIR_Average, where Hierarchical fared significantly better than Aspect. This could be due

185

to the reason that in this first round, students were more familiar with standard UML state

machines as compared to aspect state machines. For VCS, in case of DIR_Average, Aspect

has significantly higher DIR_Average than Hierarchical for all crosscutting behaviors

together (column 4, row 1, in Table 12). The results of the matched pairs t-test on VCS

shows consistent results with Tukey-Kramer HSD, since in both cases Aspect significantly

outperformed Hierarchical and Flat.

In case of DIR_Binary, for ECS, again Hierarchical and Flat significantly performed

better than Aspect, whereas for VCS we didn’t observe significant differences between

approaches using the Tukey-Kramer HSD test. However, based on the results of matched

pairs analysis with the McNemar’s test for DIR_Binary, we observed that Aspect

significantly outperformed Hierarchical, whereas Flat significantly outperformed Aspect.

Regarding the latter, it could be due to an inherent bias of DIR_Binary towards Flat as

finding just one defect out of all seeded defects will give Flat a maximum score (Section

3.5). For DIR_Binary_Max in ECS we didn’t observe any significant differences. With

VCS, Aspect significantly outperformed Flat for Standby and Aspect significantly

performed better than Flat for all crosscutting behaviors together. Similar results were

observed for the McNemar’s test for DIR_Binary_Max, where Aspect outperformed both

Flat and Hierarchical. In conclusion, a plausible explanation for the results presented

above is that, when compared with flat and hierarchical state machines, aspect state

machines are much less complex in terms of number of states and transitions (Table 1);

therefore it is expected to be easier to identify defects in aspect state machines. The fact

that the reader has to mentally weave the aspects with the base state machines to get the

full picture does not seem to be a severe hindrance for these defect identification tasks.

By looking at the above results, it is also interesting to note that the results of Round 2 are

different than those of Round 1 since all the results in Round 2, as opposed to Round 1, are

in favor of AspectSM, except the McNemar’s test results for DIR_Binary between Aspect

and Flat. This could be due to the following reasons: 1) AspectSM entails a steep learning

curve as the experience gained by the subjects of the Aspect group in Round 1 helped them

in performing significantly better than the subjects in other groups in Round 2, 2)

AspectSM may be more beneficial when modeling more complex crosscutting behaviors—

recall that VCS used in Round 2 is more complex than ECS used in Round 1 (Table 1).

To discuss non-significant results, we performed power analysis, which results are

summarized in Table 11 and Table 13. Note that we did so only for those cases where the

186

results were not significant when observations were combined for all crosscutting

behaviors. In Table 11, in case of DIR_Average (Stop and Call) regarding three approaches

shows an estimated minimum effect size of 0.13 (46% of average) to achieve 80% power

in Table 11. The observed effect size is 0.001, which is much lower than 0.13. Since this is

a quite large effect size threshold, to draw useful conclusions with confidence regarding

which approach (Aspect or Flat or Hierarchical) is better in terms of DIR_Average for

Stop and Call, we probably need more observations. Similar results are obtained for other

dependent variables for which the results were not significant, as shown in Table 11 and

Table 13.

Table 13. Estimation of the effect size corresponding to 80% power for VCS
*

Dependent Variable p-

value

Observed

Effect

Size

Minimum

Effect Size

Average Minimum

Effect

Size/Average

DIR_ Average (A vs F) 0.27 0.05 0.1 0.31 0.32

DIR_Binary (A vs H) 0.28 0.1 0.11 0.28 0.39

DIR_Binary (A vs F) 0.80 0.05 0.11 0.31 0.35

DIR_Binary_Max (A vs H) 0.0 0.08 0.18 0.6 0.30

* A: Aspect, H: Hierarchical, F: Flat

4.1.4 Overall Discussion

In this section, we discuss the RQ1 results of the initial experiment and the replication

together. Table 14 summarizes the statistically significant results of the initial experiment

and its replication. The first column represents dependent variables for defect

identification, i.e., DIR_Average, DIR_Binary, and DIR_Binary_Max. The second column

denotes the pair of approaches being compared, e.g., A>X reports on whether the Aspect

(A) approach is significantly better than Hierarchical and/or Flat (X). In our particular

case, we have three approaches Aspect, Hierarchical, and Flat denoted as A, H, and F

respectively in the table. In addition, each dependent variable has two corresponding rows:

A>X and X>A reporting on whether Aspect is significantly better than Hierarchical or

Flat, and Hierarchical or Flat are significantly better than Aspect, respectively. The third

column tells the name(s) of the approaches(s) for which the results were significant for

ECS in the experiment. For example, for RQ1, in the case of DIR_Average in the row

labeled “A>X”, H means that Aspect is significantly better than Hierarchical. The fourth

and fifth columns are similar to the third column, but the only difference is that these

columns represent the results for ECS and VCS for the replication using Tukey-Kramer

HSD. The seventh column presents the results of matched pairs for VCS, whereas the sixth

column lists tests being applied for matched pairs analysis for all the dependent variables.

187

In the table, “-” indicates non-significant results.

For DIR_Average, in the experiment, for ECS, Aspect performed significantly better

than both Flat and Hierarchical. In contrast, in the replication, we observed that

Hierarchical outperformed Aspect for DIR_Average. This can be explained from the fact

that the subjects in the initial experiment had more training and previous experience in

modeling as compared to the subjects in the replication (Section 3.7). This can be further

seen from the results of the VCS system in the replication, where Aspect significantly

performed better than Hierarchical and Flat using matched pairs analysis for

DIR_Average, consistent with those for the ECS system in the initial experiment.

Table 14. Summary of statistically significant results for both experiments
*

Dependent

Variable

Pair of

approaches

Experiment Replication

ECS ECS VCS (Tukey-

Kramer HSD)

VCS (Matched Pairs)

DIR_Average A>X H, F - H t-test H, F

X>A - H - -

DIR_Binary A>X H - - McNemar’s test H

X>A - H, F - F

DIR_Binary_Max A>X H, F - F H, F

X>A - - - -

* X: Either H (Hierarchical) or F (Flat), A: Aspect, H: Hierarchical, F: Flat, and ‘-’ indicates non-significant
results.

We observed similar results for DIR_Binary. In the initial experiment, Aspect

significantly outperformed Hierarchical for ECS but for the replication, we observed that

Flat and Hierarchical performed significantly better than Aspect. Again, this is probably

due to the differences in training that the subjects received in the initial experiment and

replication. For DIR_Binary_Max, we observed consistent results for the initial experiment

and the replication, in which Aspect outperformed Flat and Hierarchical.

4.2 Results and Analysis for Defect Fixing (RQ2)

In this section, we present results for defect fixing (RQ2) based on the DFR_Average,

DFR_Binary, and DFR_Binary_Max dependent variables (Section 3.5). Recall from

Section 3.8 that defect fixing was only conducted in the replication.

4.2.1 Results for the ECS system

For ECS, in case of the Stop crosscutting behavior (Table 15), Hierarchical scored 0.66 for

DFR_Average outperforming Aspect (0.64) and Flat (0.49). For DFR_Binary, Flat (0.93)

outperformed Hierarchical (0.66) and Aspect (0.64). For DFR_Binary_Max (Table 15),

Hierarchical (0.66) outperformed Aspect (0.64) and Flat (0). In Call, Aspect (0.64)

188

outperformed both Hierarchical (0.63) and Flat (0.31) and similar results were observed

for DFR_Binary and DFR_Binary_Max for Stop. For Call and Stop taken together,

Hierarchical scored 0.65 for DFR_Average, outperforming Aspect (0.64) and Flat (0.40).

For DFR_Binary, Flat (0.93) outperformed Aspect (0.79) and Hierarchical (0.76)

respectively, whereas Aspect (0.55) outperformed Hierarchical (0.53) and Flat (0.06) for

DFR_Binary_Max (Table 15).

Table 15. Descriptive statistics for various DFR measures

System

Measure Crosscutting Behavior

Approach

Aspect Hierarchical Flat

ECS DFR_Average Stop 0.64 0.66 0.49

DFR_Binary 0.64 0.66 0.93

DFR_Binary_Max 0.64 0.66 0

DFR_Average Call 0.64 0.63 0.31

DFR_Binary 0.94 0.86 0.93

DFR_Binary_Max 0.47 0.4 0.13

DFR_Average Call and Stop 0.64 0.65 0.40

DFR_Binary 0.79 0.76 0.93

DFR_Binary_Max 0.55 0.53 0.06

VCS DFR_Average DnD 0.5 0.125 0.16

DFR_Binary 0.71 0.4 0.26

DFR_Binary_Max 0.28 0 0

DFR_Average Standby 0.4 - 0.59

DIR_Binary 0.4 - 0.85

DFR_Binary_Max 0.4 - 0.07

DFR_Average AQ 0.62 0.16 0.43

DFR_Binary 1 0.5 0.7

DFR_Binary_Max 0.33 0 0

DFR_Average DnD, Standby, and AQ 0.52 0.14 0.38

DFR_Binary 0.74 0.45 0.58

DFR_Binary_Max 0.33 0 0.02

Table 16. Results of One-way ANOVA for DFR_Average at α=0.05

System Crosscutting

behavior

p-

value

ECS Stop 0.48

Call 0.03

Stop and Call 0.02

VCS DnD 0.008

Standby 0.23

AQ 0.0003

All 0.0003

The one-way ANOVA results presented in Table 16 show that there are significant

differences for DFR_Average (Call) and DFR_Average (Stop and Call). For these

variables, we performed a pair-wise comparison of the distributions obtained for the three

189

state machines using Tukey_Kramer HSD [30], reported in Table 17. The results of the

two-tailed Fisher exact test for binary variables (DFR_Binary and DFR_Binary_Max) are

shown in Table 18, where p-values are bold when below our selected level of significance.

Table 17. Comparisons of all pairs using Tukey_Kramer HSD for DFR_Average

System Measure Aspect vs Hierarchical Aspect vs Flat

Mean Difference

(Aspect - Hierarchical)

p-value Mean Difference

(Aspect - Flat)

p-value

ECS DFR_Average

(Call)

0.01 0.99 0.33 0.04

DFR_Average -0.0002 0.99 0.24 0.04

VCS DFR_Average

(DnD)

0.37 0.02 0.34 0.02

DFR_Average

(AQ)

0.46 0.0002 -0.26 0.06

DFR_Average 0.37 0.0002 0.13 0.18

Table 18. Two tailed Fisher’s exact test for DFR binary measures
System Measure Aspect vs. Hierarchical Aspect vs. Flat

Difference in proportion

(Aspect- Hierarchical)

p-value Difference in

proportion

(Aspect- Flat)

p-value

ECS DFR_Binary (Stop) -0.01 1 -0.28 0.08

DFR_Binary_Max (Stop) -0.01 1 0.64 0.0001

DFR_Binary (Call) 0.07 0.58 0.0007 1

DFR_Binary_Max (Call) 0.07 0.73 0.33 0.06

DFR_Binary 0.02 1 -0.13 0.15

DFR_Binary_Max 0.02 1 0.49 0.0001

VCS DFR_Binary (DnD) 0.31 0.21 0.44 0.02

DFR_Binary_Max (DnD) 0.28 0.11 0.28 0.04

DFR_Binary (Standby) - - -0.45 0.03

DFR_Binary_Max

(Standby)

- - 0.32 0.12

DFR_Binary (AQ) 0.50 0.002 0.3 0.05

DFR_Binary_Max (AQ) 0.33 0.04 0.33 0.06

DFR_Binary 0.28 0.03 0.15 0.22

DFR_Binary_Max 0.33 0.001 0.30 0.0005

4.2.2 Results for the VCS system

For VCS, in case of DnD, Aspect outperformed both Hierarchical and Flat for all three

defect fixing measures as it can be seen from the means reported in Table 15. For the

Standby crosscutting behavior, for DFR_Average and DFR_Binary, Flat outperformed

Aspect, whereas Aspect outperformed Flat for DFR_Binary_Max. Recall that for Standby,

we didn’t have a solution using the Hierarchical approach. For AQ, Aspect outperformed

Hierarchical and Flat for all three defect fixing measures. For all three crosscutting

behaviors together, Aspect outperformed Hierarchical and Flat for all three defect fixing

190

dependent variables.

The results of one-way ANOVA presented in Table 16 show that there are significant

differences for DFR_Average (DnD), DFR_Average (AQ), and DFR_Average (DnD,

Standby, and AQ). For these variables, since one-way ANOVA results were significant, we

performed a pair-wise comparison of the distributions obtained for the three state machines

using Tukey_Kramer HSD [30] and the results are given in Table 17. For binary variables

DFR_Binary and DFR_Binary_Max, we report the results of the Fisher exact test in Table

18. In all these tables, bold p-values highlight statistically significant results and the mean

differences between pairs of approaches indicate the direction of the effect.

The results for the matched pairs t-test for DFR_Average are shown in Table 19. For all

three crosscutting behaviors together, Aspect significantly outperformed Hierarchical;

however there is no significant difference between Aspect and Flat. For matched pairs

analysis of the binary dependent variables, the results of the McNemar’s test are shown in

Table 19, where Aspect significantly outperformed Hierarchical and Flat regarding

DFR_Binary_Max. For DFR_Binary, a significant difference is once again observed

between Aspect and Flat but not between Aspect and Hierarchical.

Table 19. Results of matched pairs for VCS for various DFR measures at α=0.05

Dependent

Variable

Pair of

approaches

Mean

Difference

Test p-value

DFR_Average Aspect-

Hierarchical

0.31 t-test 0.004

DFR_Average Aspect-Flat 0.14 0.11

DFR_Binary Aspect-

Hierarchical

0.33 McNemar’s

test

0.832

DFR_Binary Aspect-Flat 0.15 0.03

DFR_Binary_Max Aspect-

Hierarchical

0.33 2.98e-

08

DFR_Binary_Max Aspect-Flat 0.31 4.17e-

07

4.2.3 Discussion

In this section, we provide a discussion on DFRs for each crosscutting behavior

individually and all crosscutting behaviors together. DFRs are measured based on three

dependent variables: DFR_Average, DFR_Binary, and DFR_Binary_Max. Statistically

significant results are summarized in Table 20. The first column lists the dependent

variables which are used to answer RQ2 (Table 5). The second column denotes pairs of

approaches being compared and each dependent variable has two rows in this column:

A>X and X>A denoting whether Aspect (A) is significantly better than Hierarchical or Flat

191

(X), and Hierarchical or Flat (X) are significantly better than Aspect (A), respectively. The

third column (labeled “Crosscutting Behavior (X)”) presents two pieces of information: 1)

name(s) of the crosscutting behavior(s) for which the results were significant for ECS, 2)

name of the approach in brackets against which the results were significant, i.e., the

approach is either significantly better than Aspect if located in row X>A or vice versa if

located in row A>X. For example, in case of DIR_Average in the row labeled “X>A”, Call

(H) means that Hierarchical is significantly better than Aspect for the Call crosscutting

behavior. If results were significant for all crosscutting behaviors together, for instance in

the case of ECS, when the observations are combined for Call and Stop for a dependent

variable (e.g., DIR_Average), we denote it as All in the table. The fourth column is similar

to the third column except that it presents the results of VCS. The fifth column is similar to

the fourth column, but the only difference is that it reports the results of the matched pairs

t-test, whereas the fourth column shows the results of Tukey-Kramer HSD for VCS. In

Table 20, a “-” indicates non-significant results.

From Table 20, we can see that overall Aspect significantly performed better than Flat

in terms of DFR_Average and DFR_Binary_Max, but there are no significant differences

between Aspect and Hierarchical. When compared to the results of DIRs from Round 1,

the results are in favor of AspectSM because the students gained experience with

AspectSM while identifying defects. In addition, due to the lower complexity of aspect

state machines (Table 1), it was easier for the subjects to fix the defects. For Round 2, in

the case of VCS, Aspect is overall significantly better than Hierarchical and Flat as it can

be seen from the results of Tukey-Kramer HSD for all three DFR variables in Table 20.

The results of the matched pairs t-test for DFR_Average and the McNemar’s test for the

two binary dependent variables yielded consistent results. Similar to defect identification,

plausible explanation is that, when compared with flat and hierarchical state machines,

aspect state machines are much less complex in terms of number of states and transitions

(Table 1); therefore it is expected to be much easier to fix defects in aspect state machines.

To further investigate non-significant results, we performed power analysis, which

results are summarized in Table 21. Note that we did so only for those cases where the

results are not even significant when observations are combined for all crosscutting

behaviors. In case of DFR_Average (Call and Stop) regarding three approaches, the results

of the power analysis shows an estimated minimum effect size of 0.20 (60% of average) to

achieve 80% power in Table 21. The observed effect size is 0.07, which is much lower

192

than the estimated effect size (0.20) thus explaining lack of significance. Given that 60% is

a large threshold, this suggests that we need to collect more observations to draw

conclusions with confidence regarding which approach (Aspect or Flat or Hierarchical) is

better in terms of DFR_Average for Call and Stop. Similar results are obtained for other

dependent variables for which the results were not significant in Table 21.

Table 20. Summary of statistical significant results
*

Dependent

Variable

Approach

pair

Round 1 Round 2

ECS VCS (Tukey-Kramer

HSD)

VCS (Matched Pairs

t-test)

Crosscutting Behavior

(X)

Crosscutting Behavior

(X)

Crosscutting

Behavior (X)

DFR_Average A>X Call (F), All (F) DnD (H), DnD (F), AQ

(H), All (H)

All (H)

X>A - - -

DFR_Binary A>X - DnD (F), Standby (F),

AQ (H), All (H)

All (F)

X>A - - -

DFR_Binary_Max A>X Stop (F), All (F) DnD (F), AQ (H), All (H),

All (F)

All (H), All (F)

X>A - - -

* X: Either H (Hierarchical) or F (Flat), A: Aspect, H: Hierarchical, F: Flat, and ‘-’ indicates non-significant
results.

Table 21. Estimation of the effect size corresponding to 80% power
*

System Measure (Approaches) p-

value

Observed

Effect Size

Minimum

Effect

Size

Average Minimum

Effect

Size/Average

ECS DFR_ Average (A vs H vs F) 0.48 0.07 0.20 0.60 0.34

DFR_ Average (A vs H) 0.99 0.001 0.15 0.65 0.23

DFR_Binary(A vs H) 1 0.01 0.15 0.78 0.19

DFR_Binary (A vs F) 0.15 0.06 0.12 0.85 0.14

DFR_Binary_Max (A vs H) 1 0.01 0.18 0.54 0.33

VCS DFR_ Average (A vs H vs F) 0.18 0.06 0.12 0.45 0.27

DFR_Binary (A vs H vs F) 0.22 0.07 0.15 0.66 0.22

* A: Aspect, H: Hierarchical, F: Flat

4.3 Results and Analysis for Comprehensibility (RQ3)

In this section, we present results for answering comprehension questionnaire (RQ3) based

on the SCQ dependent variable (Section 3.5).

4.3.1 Results for the Initial Experiment

The descriptive statistics for SCQ are presented in Table 22. We observed that

Hierarchical yields higher correctness than Aspect and Flat. More specifically,

Hierarchical performed 21.8% and 40% better than Aspect and Flat, respectively. We

checked the significance of the results by applying one-way ANOVA to SCQ (Table 23),

193

which shows significant differences between the approaches as the p-value is 0.002. Since

one-way ANOVA results are significant, we performed a pair-wise comparison of the

distributions obtained for the three state machines using Tukey_Kramer HSD. The results

showed that differences are not significant between Aspect vs Hierarchical and Aspect vs

Flat. However, the results are significant between Hierarchical and Flat, but we do not

report them here since this is not the focus of our study.

4.3.2 Results for the Replication

For the replication with ECS, we observed that Hierarchical yields higher

comprehensibility (SCQ) than Aspect and Flat as it can be seen from the results reported in

Table 22. For VCS, we observed that Aspect scored on average 6.92, which is higher than

Hierarchical (6.6) and Flat (6.4) in Table 22. A one-way ANOVA with SCQ for ECS is

reported in Table 23 and shows a significant difference. However, the results of a pair-wise

comparison using Tukey-Kramer HSD shows, once again, significant differences only

between Hierarchical and Flat. For VCS, the result of one-way ANOVA on SCQ showed

no significant differences (Table 23).

Table 22. Descriptive statistics for SCQ

Experiment System
Crosscutting

Behavior

Approach

Aspect Hierarchical Flat

Experiment ECS Call and Stop 6.38 8.56 4.50

Replication ECS Call and Stop 5.52 7.06 5.33

VCS DnD, Standby, and

AQ

6.92 6.6 6.4

Table 23. Results of One-way ANOVA for SCQ at α=0.05

Experiment System Crosscutting

Behavior

p-value

Experiment ECS Stop and Call 0.002

Replication ECS Stop and Call 0.02

VCS DnD, Standby, and

AQ

0.79

4.3.3 Discussion

In overall, the differences between Aspect vs Hierarchical and Aspect vs Flat are not

significant. One plausible explanation is that for Aspect the subjects needed to carefully

read and understand Pointcut specifications in the Aspect state machines. With more

training and practice on AspectSM, subjects would be expected to gain better

comprehension of aspect state machines as compared with flat and hierarchical state

194

machines, for which they had more prior experience.

The power analysis results for SCQ for the initial experiment, when comparing Aspect

vs Hierarchical and Aspect vs Flat, revealed that we need minimum effect sizes of 1.27

(17% of average) and 1.65 (30% of average), respectively, to achieve 80% power (Table

24). These effect sizes are larger than the observed effect sizes, i.e., 1.08 and 0.94, thus

explaining lack of significance. For VCS, power analysis revealed similar results, where

we need minimum effect size of 1.10 (17% of the average) to achieve 80% of power as

reported in Table 24. The minimum effect size, i.e., 1.10 (score out of 10) is much larger

than the observed effect size (0.23). Thus, overall, if we want to investigate effects below

the minimum thresholds mentioned above, the results of power analysis suggest that we

need to collect more observations either by increasing the number of subjects and/or

adding more case studies with crosscutting behaviors.

Table 24. Estimation of the effect size corresponding to 80% power for SCQ

Experim

ent

Syste

m

Pair of

Approaches

p-

value

Observe

d Effect

Size

Minimum

Effect

Size

Average

(score out

of 10)

Minimum

Effect

Size/Average

Experime

nt

ECS Aspect vs

Hierarchical

0.09 1.08 1.27 7.41 0.17

Replicati

on

ECS Aspect vs Flat 0.15 0.94 1.65 5.5 0.3

VCS Aspect vs

Hierarchical vs

Flat

0.79 0.23 1.10 6.64 0.17

4.4 Results and Analysis for Effort (RQ4)

In this section, we present results for effort (RQ4) based on the Effort dependent variable

(Section 3.5). Recall from Section 3.8 that the effort was measured only for the initial

experiment and thus in this section we only present results and analysis for the initial

experiment.

4.4.1 Results

From Table 25, we can observe that in Task 1, the subjects took approximately 34 minutes

on average for Hierarchical to identify defects. However, both Aspect and Flat took the

same average time to complete the task: 32 minutes. Task 2 took three and six minutes less

for Aspect than for Hierarchical and Flat to identify defects. For answering the

comprehension questionnaire (Task 3), the subjects took nine and five minutes more for

Hierarchical than Aspect and Flat, respectively. In summary, there is no practically

195

significant time difference across the three state machines.

As discussed in Section 3.9.1, we applied the one-way ANOVA test to assess the

statistical significance of differences for Effort (for each task) distributions across the three

approaches. Table 26 shows the results of the test, where significant differences were

observed for the Effort of Task 3. Since one-way ANOVA results were significant, we

performed a pair-wise comparison of the distributions obtained for the three state machines

using Tukey_Kramer HSD [30]. The results are presented in Table 26, where Hierarchical

took significantly more time than Aspect (p-value=0.01), whereas Aspect took less time

than Flat, though the latter is not significant (p-value=0.39).

Table 25. Results for one-way ANOVA test for Effort using Tukey_Kramer HSD

Measure Effort

(Task1)

Effort

(Task2)

Effort

(Task3)

p-value 0.86 0.09 0.02

Table 26. Comparisons of all pairs for Effort (Task 3) using Tukey_Kramer HSD

Aspect vs Hierarchical Aspect vs Flat

Mean Difference (Aspect-

Hierarchical)

p-

value

Mean Difference (Aspect-

Flat)

p-

value

-9.31 0.01 -4.3 0.39

4.4.2 Discussion

There were no significant differences in effort between any pair of approaches for defect

identification (Task1 and Task2). This means that the effort spent for identifying defects

across the three state machines is roughly the same. Regarding Task 3 (i.e., answering the

comprehension questionnaire), we only observed significant differences for Effort between

the Aspect and Hierarchical groups, where the hierarchical group took significantly more

time than the Aspect group (Table 26). Between Aspect and Flat, for Task 3, we didn’t

observe significant differences in terms of Effort.

The power analysis in Table 27 shows that the minimum effect size corresponding to

80% power is 3.62 minutes (i.e., 16% of the average effort for the combined groups). The

observed effect size is 2.14 minutes, thus explaining lack of significance. Drawing reliable

conclusions for effect sizes below 3.62 minutes would require larger sample sizes.

However, note that the difference between the two averages, i.e., 2.14 minutes and 3.62

minutes, is small and therefore practically negligible.

196

Table 27. Estimation of the effect size corresponding to 80% power

Measure p-value Observed

Effect Size

Minimum

Effect Size

Average

(Minutes)

Minimum

Effect

Size/Average

Effort (Task 3 for

Aspect vs Flat)

0.39 2.13 3.62 22.43 16%

4.5 Concluding Remarks

Based on the above results and discussions, we suggest that aspect state machines should

be used to model crosscutting behavior, but one should always use, when applicable,

hierarchical state machines features within aspect state machines to further improve their

comprehensibility. There are cases in which hierarchical state machines (submachines) are

not applicable and aspect state machines are then the only option. For example, separating

out constraints modeling non-functional properties (e.g., video or audio quality) from state

invariants is not possible using hierarchical state machines without introducing accidental

complexity and redundancy as we demonstrated in [10]. Easier identification/fixing of

defects in aspect state machines also implies that it is easier to ensure their conformance to

specifications.

5. Threat to Validity

Below, we discuss the threats to validity of our controlled experiments based on the

guidelines presented in [26].

5.1 Conclusion Validity Threats

Conclusion validity threats are concerned with factors that can influence the conclusion

that can be drawn from the results of the experiments. As with most controlled experiments

in software engineering, our main conclusion validity threat is related to the sample size on

which we base our analysis. For the initial experiment, we performed a two-round

experiment to maximize the number of observations within time constraints. However, the

lack of significance of certain differences (e.g., the difference in SCQ for Aspect vs

Hierarchical and Aspect vs Flat, effort for answering the comprehension questionnaire

(Aspect vs Flat), and DIR_Binary for Aspect vs Flat) may be due to low statistical power if

actual effect sizes are below a certain threshold (Section 4.5). Studying the presence of

smaller effect sizes requires replicating the experiment and collecting additional data

points. Due to this reason, we replicated the experiment with an additional industrial case

study including three crosscutting behaviors (Section 3.3.1) and with more subjects

197

(Section 3.2) to increase the sample sizes and thereby the power of statistical tests.

Statistical conclusions were drawn by applying appropriate statistical tests based on a

careful analysis of their assumptions (Section 3.9).

5.2 Internal Validity Threats

Internal validity threats exist when the outcome of results are influenced by external

factors and are not necessarily due to the application of the treatment being studied.

Through our experiment design (between-subjects design) for the initial experiment and

Round 1 of the replication, we have tried to minimize the chances of other factors being

confounded with our primary independent variable: the use of aspect state machines. We

avoided any biased assignment of subjects to groups by using blocking based on

assignment marks.

In Round 2 of the replication, regarding identification and fixing defects, we used a

within-subjects design and matched pairs analysis. The strength of this design is that the

variation due to differences in subjects is eliminated as each subject acts as its own control.

A within-subjects design may however be subject to learning effects, for example due to

using the same material for various tasks (e.g., defect identification and defect correction)

that could result into improved performance from one task to the next. To counterbalance

such effects, we rotated our groups to each crosscutting behavior for each task (e.g., defect

identification) as we discussed in Section 3.4.2. In the initial experiment, we gave the

subjects as much time as they wished to use for each task, though there was a time limit by

which they had to finish all the tasks. No time differences were observed across modeling

approaches. In the replication, we gave the subjects a fixed amount of time for each

activity. Such an approach only enables, however, an investigation of the effect of the

modeling approaches in terms of effectiveness.

5.3 Construct Validity Threats

There are two possible construct validity threats in our experiments. Regarding readability

based on defect identification rates, due to time and resource constraints, we couldn’t seed

all types of defects in the defect classification (Section 3.3.2). It is also not practically

feasible to devise case studies containing all types of defects from the defect classification.

Anyhow, we tried to maximize the defect classification coverage based on the available

case studies and seeded defects of types MT, IT, MS, and IS to compute defect

identification rates. The second threat of construct validity is that we were not able to

198

investigate all features of aspect-orientation (such as all types of basic advice) due to the

nature of the crosscutting behaviors in our case studies.

5.4 External Validity Threats

This is typically the most common threat in controlled experiments. Due to time

constraints, case studies and tasks are usually small, and this often tends to minimize the

differences among treatments. As we see in Table 1 for ECS, for crosscutting behavior

Call, the flat state machine has 15 states and 27 transitions. Similarly, for the Stop

crosscutting behavior, we have 13 states and 25 transitions. Such numbers are at least

representatives of the state machines of classes and small components. In addition, we also

replicated the experiment on an industrial case study with three crosscutting behaviors and

more students to further reduce external validity threats. However, because crosscutting

concerns are expected to have an even higher impact on large models, we expect the use of

AspectSM to be even more beneficial in such cases. It is worth noting that we replicated

the experiment in a different geographical area and education system to reduce external

validity threats. One may also question the use of students as subjects for the experiment.

Note that many practitioners have very little knowledge of AOP or AOM in general, and

hence require significant training and cost to teach them AOM. Due to this reason, we

chose a group of experienced graduate students with a suitable educational background

(Section 3.2). In addition, some studies in [34-36] reported on the performance of trained

software engineering students for various tasks when compared with professional

developers. These differences turned out not to be statistically significant when compared

to junior and intermediate developers, thus suggesting that there is no evidence that

students trained for the tasks at hand may not be used as subjects in place of professionals.

6. Related Work

Most experimentation in Aspect-Oriented Software Development (AOSD) has been

conducted to evaluate aspect-oriented programming when compared to object-oriented

programming in terms of development time, errors in development, and performing

maintenance tasks. An initial search on the IEEE, ACM, Science Direct, Wiley

Interscience, and Springer digital libraries yielded 517 papers; however, none of them

reported any controlled experiment to evaluate AOM approaches. A controlled experiment

[37] was performed in industry settings to measure effort and errors using aspect-oriented

programming for applying different maintenance tasks related to the tracing crosscutting

199

concern, i.e., the use of logging to record execution of a program. The results showed that

aspect-orientation resulted in reducing both development effort and number of errors.

Another experiment is reported in [38], which compares aspect-orientation (AspectJ)

with a more traditional approach (Java) in terms of development time for crosscutting

concerns. A similar experiment is reported in [39] focusing on development time to

perform debugging and change activities on object-oriented programs using AspectJ. Both

of these experiments revealed mixed results, i.e., aspect-orientation has positive impact on

development time only for certain tasks. For instance, Aspect-oriented Programming

(AOP) seems to be more beneficial when the crosscutting concern is more separable from

the core behavior.

An exploratory study is reported in [40] to assess if AOP has any impact on software

maintenance tasks. Eleven software professionals were asked to perform different

maintenance tasks using Java and AspectJ. The results of the experiment revealed that

AOP performed slightly better than Object-oriented Programming (OOP), but there were

no statistically significant results observed. Another exploratory study is reported in [41] to

measure fault-proneness with AOP. Three evolving AOP programs were used and data

about different faults made during their development were collected. The experiment

revealed two major findings: 1) Most of the faults were due to lack of compatibility

between aspect and base code, 2) The presence of faults in AOP features such as Pointcuts,

Advice, and inter-type declarations was as likely as for normal programming features. The

results turned out to be statistically significant.

An experiment is reported in [42], where two software development processes based on

a same aspect modeling approach (i.e., the Theme approach [43]) are compared to

determine their impacts on maintenance tasks such as adding new functionality or

improving existing functionality. The first process (aspectual process) involves generating

AO code in AspectJ from Theme AO models, whereas the second process (hybrid process)

involves generating object-oriented code in Java from Theme models. Maintenance tasks

are measured based on metrics such as size, coupling, cohesion, and separation of

concerns. The results showed that on average the aspectual process took lesser time than

the hybrid process.

An exploratory study is reported in [44], which aims to assess if aspects can help

reducing effort on resolving conflicts that can occur during model compositions. To do so,

they compared AOM with non-AOM in terms of effort to resolve conflicts and number of

200

conflicts resolved on six releases of a software product line. The results of the study

showed that aspects improved modularization and hence helped better localize conflicts,

which in turn resulted in reducing the effort involved in resolving conflicts.

Our controlled experiments are different from the above experiments from several

perspectives. First, our controlled experiments focused on the design phase of the software

development life cycle and Aspect-Oriented Modeling. Most of the experiments in the

literature have focused on comparing AOP with OOP. We evaluated the “readability” (i.e.,

defect identification, defect fixing, and answering comprehension) of crosscutting

behaviors modeled as aspect state machines as compared to directly modeling them in

UML state machines. We further compared the effort for defect identification and

answering comprehension for the experiment. Apart from these differences, we observed

results in our experiments to be consistent to some of the results observed in the literature.

For instance, similar to the results on development time using AspectJ reported in [41], we

didn’t observe any reduced effort in inspecting state machines developed using our

AspectSM approach. Also, similar to results reported in [38] and [39], where they observed

inconsistent results for different measures corresponding to different program development

and maintenance activities, our results also differed for defect identification/fixing rates

and responses to the comprehension questionnaire.

7. Conclusion and Future Work

Aspect-oriented Modeling (AOM) is a very active field of research and can potentially

yield several benefits while modeling systems, including enhanced separation of concerns,

improved readability, easier model evolution, increased reusability, and reduced modeling

effort. However, to authors’ knowledge, there is no reported empirical evidence regarding

such benefits.

This paper reports the results of the first two controlled experiments in the literature to

report on the evaluation of AOM, and more precisely whether AOM can help improve the

“readability” of UML state machines in terms of design defect identification, defect fixing,

comprehension, and inspection effort. The specific AOM approach under evaluation is a

recently published UML profile (AspectSM), which was specifically designed to model

crosscutting behavior (e.g., robustness behavior) using standard UML 2 state machines

with a lightweight extension for aspect-oriented features. The AspectSM profile has been

previously applied to an industrial case study for automated, state-based robustness testing.

201

The readability of state machines modeling crosscutting behavior using AspectSM (aspect

state machines) is compared with standard UML 2 state machines using advanced features

such as hierarchy and concurrency (hierarchical state machines) and without hierarchical

features (flat state machines).

Results show that the defect identification and defect fixing rates of aspect state

machines are significantly higher than the ones for the hierarchical and flat state machines.

For instance, for the industrial case study in the replication, aspect state machines show, on

average, increases of 28% and 19% in defect identification rates when compared to

hierarchical and flat state machines, respectively. This is most likely due to the fact that

aspect state machines are less complex than hierarchical and flat state machines in terms of

modeling elements such as states and transitions. But on the other hand, aspect state

machines can be potentially difficult to comprehend in terms of mentally processing how

an aspect is woven into its base state machine. This may explain why, based on subjects’

responses to a comprehension questionnaire, results show that the subjects that were given

hierarchical state machines outperformed the ones that were assigned aspect state

machines, though that difference was not statistically significant. No significant difference

in effort was observed between any types of state machines in both defect identification

and comprehension. Based on the results above, our practical recommendation is to model

crosscutting behaviors using aspect state machines in combination with

hierarchical/concurrent features of UML state machines, where applicable, in order to

improve the overall readability of crosscutting behaviors.

In the future, we are planning to replicate the experiment to study the readability of

aspect state machines in the presence of interactions between aspects as well as compare

the understandability, modeling effort, and quality of aspect state machines with flat and

hierarchical state machines.

202

8. References
[1] M.S. Ali, M.A. Babar, L. Chen, K.-J. Stol, A Systematic Review of Comparative
Evidence of Aspect-oriented Programming, Information and Software Technology, 52(9),
871-887.
[2] R.Chitchyan, A.Rashid, P. Sawyer, J. Bakker, M.P. Alarcon, A. Garcia, B.
Tekinerdogan, S. Clarke, A. Jackson, Survey of Aspect-Oriented Analysis and Design, in,
2005.
[3] R.E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented Software Development,
Addison-Wesley Professional, 2004.
[4] R. Yedduladoddi, Aspect Oriented Software Development: An Approach to Composing
UML Design Models, VDM Verlag Dr. Müller, 2009.
[5] IEEE Standard Dictionary of Measures of the Software Aspects of Dependability, IEEE
Std 982.1-2005 (Revision of IEEE Std 982.1-1988), (2006), 1-34.
[6] Standard for Software Quality Characteristics, in, International Organization for
Standardization, ISO-9126-3, 2003.
[7] Software Assurance Standard, in, NASA Technical Standard, NASA-STD-8739.8,
2005.
[8] R.V. Binder, Testing object-oriented systems: models, patterns, and tools, Addison-
Wesley Longman Publishing Co., Inc., 1999.
[9] D. Drusinsky, Modeling and Verification using UML Statecharts: A Working Guide to
Reactive System Design, Runtime Monitoring and Execution-based Model Checking, 1st
ed., Newnes, 2006.
[10] S. Ali, L.C. Briand, H. Hemmati, Modeling Robustness Behavior Using Aspect-
Oriented Modeling to Support Robustness Testing of Industrial Systems, in, Accepted for
publication in the Systems and Software Modeling (SOSYM) Journal, 2011.
[11] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with
UML, Addison-Wesley Professional, 2000.
[12] T. Weigert, R. Reed, Specifying Telecommunications Systems with UML, in: UML
for Real: Design of Embedded Real-time Systems, Kluwer Academic Publishers, 2003, pp.
301-322.
[13] SmartState, http://www.smartstatestudio.com/, 2010
[14] M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach, Morgan-
Kaufmann, 2007.
[15] R. Cavarra, C. Crichton, J. Davies, A. Hartman, L. Mounier, Using UML for
automatic test generation in: International Symposium on Software Testing and Analysis
(ISSTA '02), 2002.
[16] T. Pender, UML Bible, Wiley, 2003.
[17] IBM OCL Parser, http://www-01.ibm.com/software/awdtools/library/standards/ocl-
download.html, 2010
[18] OCLE, http://lci.cs.ubbcluj.ro/ocle/, 2010
[19] EyeOCL Software, http://maude.sip.ucm.es/eos/, 2010
[20] G. Zhang, Towards Aspect-Oriented State Machines, in: 2nd Asian Workshop on
Aspect-Oriented Software Development (AOASIA'06), Tokyo, 2006.
[21] G. Zhang, M. Hölzl, HiLA: High-Level Aspects for UML-State Machines, in: In
Proceedings of the 14th Workshop on Aspect-Oriented Modeling (AOM@MoDELS'09),
2009.
[22] G. Zhang, M.M. Hölzl, A. Knapp, Enhancing UML State Machines with Aspects, in:

203

In Proceedings of the 10th International Conference on Model Driven Engineering
Languages and Systems (MoDELS), 2007.
[23] D. Xu, W. Xu, K. Nygard, A State-Based Approach to Testing Aspect-Oriented
Programs, in: 17th International Conference on Software Engineering and Knowledge
Engineering, Taiwan, 2005.
[24] J. Whittle, A. Moreira, J. Araújo, P. Jayaraman, A. Elkhodary, R. Rabbi, An
Expressive Aspect Composition Language for UML State Diagrams, in: Model Driven
Engineering Languages and Systems, 2007.
[25] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming, Manning
Publications, 2003.
[26] C. Wohlin, P. Runeson, M. Höst, Experimentation in Software Engineering: An
Introduction, Springer, 1999.
[27] A.N. Oppenheim, Questionnaire design, interviewing, and attitude measurement,
Pinter Pub Ltd, 1992.
[28] JMP, http://www.jmp.com/, 2010
[29] F. Shull, J. Singer, D. I. K. Sjøberg, Guide to Advanced Empirical Software
Engineering, Springer, 2008.
[30] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman and Hall/CRC, 2007.
[31] McNemar's Test, http://www.fon.hum.uva.nl/Service/Statistics/McNemars_test.html,
2011
[32] L. Thomas, Retrospective Power Analysis, Conservation Biology, 11(1), (1997), pp.
276-280.
[33] T. Dyba°, V.B. Kampenes, J.E. Hannay, D.I.K. Sjøberg, Systematic review: A
systematic review of effect size in software engineering experiments, Information and
Software Technology, 49(11-12), (2007), pp. 1073-1086.
[34] M. Höst, B. Regnell, C. Wohlin, Using Students as Subjects—A Comparative Study
of Students and Professionals in Lead-Time Impact Assessment, Empirical Software
Engineering, 5(3), (2000), pp. 201-214.
[35] E. Arisholm, D.I.K. Sjoberg, Evaluating the Effect of a Delegated versus Centralized
Control Style on the Maintainability of Object-Oriented Software, IEEE Transactions on
Software Engineering, 30(8), (2004), pp. 521-534.
[36] R.W. Holt, D.A. Boehm-Davis, A.C. Shultz, Mental Representations of Programs for
Student and Professional Programmers, in: M.O. Gary, S. Sylvia, S. Elliot (Eds.) Empirical
Studies of Programmers: Second Workshop, Ablex Publishing Corp., 1987, pp. 33-46.
[37] P. Durr, L. Bergmans, M. Aksit, A Controlled Experiment for the Assessment of
Aspects - Tracing in an Industrial Context, in, University of Twente, CTIT, Enschede,
2008.
[38] S. Hanenberg, S. Kleinschmager, M. Josupeit-Walter, Does aspect-oriented
programming increase the development speed for crosscutting code? An empirical study,
in: 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, IEEE Computer Society, 2009.
[39] R.J. Walker, E.L.A. Baniassad, G.C. Murphy, An initial assessment of aspect-oriented
programming, in: 21st international conference on Software engineering, ACM, Los
Angeles, California, United States, 1999.
[40] M. Bartsch, R. Harrison, An exploratory study of the effect of aspect-oriented
programming on maintainability, Software Quality Control, 16(1), (2008), pp. 23-44.
[41] F. Ferrari, R. Burrows, v. Lemos, A. Garcia, E. Figueiredo, N. Cacho, F. Lopes, N.
Temudo, L. Silva, S. Soares, A. Rashid, P. Masiero, T. Batista, J. Maldonado, An
exploratory study of fault-proneness in evolving aspect-oriented programs, in:

204

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ACM, Cape Town, South Africa, 2010.
[42] K. Farias, A. Garcia, J. Whittle, Assessing the impact of aspects on model
composition effort, in: Proceedings of the 9th International Conference on Aspect-
Oriented Software Development, ACM, Rennes and Saint-Malo, France.
[43] A. Carton, C. Driver, A. Jackson, S. Clarke, Model-Driven Theme/UML, in: K.
Shmuel, O. Harold, F. Robert, J. Jean-Marc, z, quel (Eds.) Transactions on Aspect-
Oriented Software Development VI, Springer-Verlag, 2009, pp. 238-266.
[44] A. Hovsepyan, R. Scandariato, S.V. Baelen, Y. Berbers, W. Joosen, From aspect-
oriented models to aspect-oriented code?: the maintenance perspective, in: Proceedings of
the 9th International Conference on Aspect-Oriented Software Development, ACM,
Rennes and Saint-Malo, France.

20
5

A
pp

en
di

x
A

:
M

od
el

s
fo

r
V

id
eo

 C
on

fe
re

nc
in

g
Sy

st
em

 (
V

C
S

)

In
 t

hi
s

A
pp

en
di

x,
 w

e
pr

ov
id

e
th

e
de

sc
ri

pt
io

n
an

d
m

od
el

s
of

 o
ne

 o
f

th
e

ca
se

 s
tu

di
es

 t
ha

t
w

e
us

ed
 i

n
th

e
re

pl
ic

at
io

n.
 N

ot
e

th
at

 w
e

pr
ov

id
e

th
is

 i
nf

or
m

at
io

n
on

ly
 f

or
 o

ne
 c

ro
ss

cu
tt

in
g

be
ha

vi
or

 A
ud

io
Q

ua
li

ty
 (

A
Q

)
ju

st
 t

o
pr

ov
id

e
an

 i
de

a
of

 h
ow

 m
od

el
s

de
ve

lo
pe

d

us
in

g
di

ff
er

en
t

m
od

el
in

g
ap

pr
oa

ch
es

 l
oo

ks
 l

ik
e.

 T
he

 V
C

S
 c

as
e

st
ud

y
is

 p
ar

t
of

 a
 p

ro
je

ct
 a

im
in

g
at

 s
up

po
rt

in
g

au
to

m
at

ed
,

m
od

el
-

ba
se

d
ro

bu
st

ne
ss

 t
es

ti
ng

 o
f

a
co

re
 s

ub
sy

st
em

 o
f

a
vi

de
o

co
nf

er
en

ce
 s

ys
te

m
 (

V
C

S
)

ca
ll

ed
 S

at
ur

n.
 T

he
 c

or
e

fu
nc

ti
on

al
it

y
to

 b
e

m
od

el
ed

 m
an

ag
es

 t
he

 s
en

di
ng

 a
nd

 r
ec

ei
vi

ng
 o

f
m

ul
ti

m
ed

ia
 s

tr
ea

m
s.

 A
ud

io
 a

nd
 v

id
eo

 s
ig

na
ls

 a
re

 s
en

t
th

ro
ug

h
se

pa
ra

te
 c

ha
nn

el
s.

T
he

 c
la

ss
 d

ia
gr

am
 o

f
S

at
ur

n
in

 s
ho

w
n

in
 F

ig
ur

e
3,

 w
he

re
as

 b
as

e
st

at
e

m
ac

hi
ne

 o
f

S
at

ur
n

is
 s

ho
w

n
in

 F
ig

ur
e

4.
 F

ro
m

 t
he

 I
dl

e
st

at
e,

ca
ll

in
g

th
e

di
al

Sa
tu

rn
()

 m
et

ho
d

of
 th

e
S

at
ur

n
cl

as
s,

 i
t g

oe
s

to
 C

on
ne

ct
ed

, w
hi

ch
 r

ep
re

se
nt

s
th

e
be

ha
vi

or
 o

f
th

e
sy

st
em

 w
he

n
th

er
e

is

a
co

nf
er

en
ce

 w
it

h
on

e
en

dp
oi

nt
.

A
s

lo
ng

 a
s

th
er

e
ex

is
ts

 o
ne

 e
nd

po
in

t
in

 t
he

 c
on

fe
re

nc
e,

 S
at

ur
n

st
ay

s
in

 t
he

 C
on

ne
ct

ed
 s

ta
te

 a
nd

w
he

n
S

at
ur

n
di

al
s

to
 m

or
e

en
dp

oi
nt

s,
 i

t
go

es
 t

o
th

e
N

ot
F

ul
l

st
at

e.
 W

he
n

it
 c

on
ne

ct
s

to
 t

he
 m

ax
im

um
 n

um
be

r
of

 e
nd

po
in

ts
 i

t

su
pp

or
ts

, i
t g

oe
s

to
 th

e
F

ul
l s

ta
te

. T
he

 m
ax

im
um

 n
um

be
r

of
 c

on
ne

ct
io

ns
 is

 s
ix

 in
 th

is
 V

C
S

.

20
6

F
ig

ur
e

3.
 C

on
ce

pt
ua

l m
od

el
 o

f
th

e
S

-S
at

ur
n

su
bs

ys
te

m

20
7

F

ig
ur

e
4.

 B
as

e
st

at
e

m
ac

hi
ne

 f
or

 V
C

S

20
8

 M
od

el
s

fo
r

A
Q

A

n
im

po
rt

an
t

ro
bu

st
ne

ss
 b

eh
av

io
r

of
 S

at
ur

n
is

 t
o

re
co

ve
r

fr
om

 a
ud

io
 q

ua
li

ty
 l

os
s.

 W
he

ne
ve

r
S

at
ur

n
is

 i
n

a
vi

de
oc

on
fe

re
nc

e,
 i

t

ch
ec

ks
 a

ud
io

 q
ua

li
ty

 a
ft

er
 e

ve
ry

 m
 s

ec
on

ds
. I

f
th

e
qu

al
it

y
is

 w
it

hi
n

th
re

sh
ol

d
it

 c
on

ti
nu

es
 t

he
 n

or
m

al
 o

pe
ra

ti
on

, o
th

er
w

is
e

it
 t

ri
es

 t
o

re
co

ve
r

au
di

o
qu

al
it

y.
 I

f
it

 is
 s

uc
ce

ss
fu

l i
n

le
ss

 th
an

 n
 s

ec
on

ds
 it

 c
on

ti
nu

es
 it

s
no

rm
al

 o
pe

ra
ti

on
, o

th
er

w
is

e
af

te
r

n
se

co
nd

s
it

 r
es

ta
rt

s

th
e

V
C

S
. T

he
 a

sp
ec

t
st

at
e

m
ac

hi
ne

 f
or

 A
Q

 is
 s

ho
w

n
in

 F
ig

ur
e

2.
 A

Q
 m

od
el

ed
 w

it
h

H
ie

ra
rc

hi
ca

l i
s

sh
ow

n
in

 F
ig

ur
e

6
an

d
F

ig
ur

e
7,

w
he

re
as

 w
it

h
th

e
F

la
t a

pp
ro

ac
h

is
 s

ho
w

n
in

 F
ig

ur
e

8.

20
9

F

ig
ur

e
5.

 A
sp

ec
t

st
at

e
m

ac
hi

ne
 f

or
 A

Q

21
0

F

ig
ur

e
6.

 A
Q

 m
od

el
ed

 w
it

h
th

e
H

ie
ra

rc
hi

ca
l a

pp
ro

ac
h

21
1

F

ig
ur

e
7.

 A
Q

 m
od

el
ed

 w
it

h
th

e
H

ie
ra

rc
hi

ca
l a

pp
ro

ac
h

21
2

F

ig
ur

e
8.

 A
Q

 m
od

el
ed

 w
it

h
th

e
F

la
t

ap
pr

oa
ch

213

Appendix B: Comprehension Questionnaire for
Replication

1. Explain the possible subsequent scenario when Saturn is in a videoconference with three
endpoints and audio quality is within the allowed threshold value?

2. Explain the possible subsequent scenario when Saturn is Idle and audio quality is greater

than the allowed threshold?

3. Explain the possible subsequent scenario when Saturn couldn’t recover audio quality and

is in a videoconference with one endpoint?

4. Explain the possible subsequent scenario when Saturn is connected to one endpoint and

Do Not Disturb mode is turned On?

5. Explain the possible subsequent scenario when Saturn is in Do Not Disturb mode and is

connected to two endpoints and two more endpoints are dialing to Saturn at the same
time?

6. Explain possible subsequent scenario when Saturn is in Connected state for m minutes?

7. Explain the possible subsequent scenario when Saturn is in StandbyOn and an endpoint

dials to it?

8. Explain the possible subsequent scenario when Saturn is Idle and an endpoint dials to it

with H254 videoconference protocol?

9. Explain the possible subsequent scenario when Saturn is in a videoconference with two
endpoints with SIP protocol and a third endpoint dials to Saturn with H323
videoconference protocol?

10. Explain the scenario when Saturn is in a videoconference with six endpoints with SIP

protocol and another endpoint dials to Saturn with H323 videoconference protocol?

214

Solving OCL Constraints for Test Data

Generation in Industrial Systems with Search

Techniques

Shaukat Ali, Muhammad Zohaib Iqbal, Andrea Arcuri, Lionel Briand

Submitted in the ACM Transactions on Software Engineering and Methodology.

Conference version appeared in : In: Proceedings of the 11th International Conference on

Quality Software (QSIC 2011), pp. 41-50, IEEE, 2011

Abstract—Model-based testing (MBT) aims at automated, scalable, and systematic testing

solutions for complex industrial software systems. To increase chances of adoption in

industrial contexts, software systems should be modeled using well-established standards

such as the Unified Modeling Language (UML) and Object Constraint Language (OCL).

Given that test data generation is one of the major challenges to automate MBT, this is the

topic of this paper with a specific focus on solving OCL constraints, which is a necessary

step to generate appropriate test data. Though search-based software testing has been

applied to test data generation for white-box testing (e.g., branch coverage), its application

to the MBT of industrial software systems has been limited. In this paper, we propose a set

of search heuristics targeted to OCL constraints to guide test data generation and automate

MBT in industrial applications. These heuristics are used to develop an efficient OCL

solver exclusively based on search. In this paper, we evaluate these heuristics for search

algorithms such as Genetic Algorithms, (1+1) Evolutionary Algorithm and Alternating

Variable Method. We empirically evaluate our heuristics using complex artificial problems

followed by empirical analyses to evaluate the feasibility of our approach on one industrial

system. Though the focus is on OCL constraints, many of the principles introduced here

could be adapted to other high level constraint languages based on first-order logic and set

theory.

1. Introduction

Model-based testing (MBT) has recently received increasing attention in both industry and

215

academia [1]. MBT leads to systematic, automated, and thorough system testing, which

would often not be possible without models. However, the full automation of MBT, which

is a requirement for scaling up to real-world systems, requires supporting many tasks,

including preparing models for testing (e.g., flattening state machines), defining

appropriate test strategies and coverage criteria, and generating test data to execute test

cases. Furthermore, in order to increase chances of adoption, using MBT for industrial

applications requires using well-established standards, such as the Unified Modeling

Language (UML) and its associated language to write constraints: the Object Constraint

Language (OCL) [2].

OCL is a standard language that is widely accepted for writing constraints on UML

models. OCL is based on first order logic and set theory. It is at a higher expressive level

than Boolean predicates written in programming languages such as C and Java. The

language allows modelers to write constraints at various levels of abstraction and for

various types of models. For example, it can be used to write class and state invariants,

guards in state machines, constraints in sequence diagrams, and pre and post conditions of

operations. A basic subset of the language has been defined that can be used with meta-

models defined in Meta Object Facility (MOF) [3] (which is a standard defined by Object

Management Group (OMG) for defining meta-models). This subset of OCL has been

largely used in the definition of UML for constraining various elements of the language.

Moreover, the language is also used in writing constraints while defining UML profiles,

which is a standard way of extending UML for various domains using pre-defined

extension mechanisms.

Due to the ability of OCL to specify constraints for various purposes during modeling,

for example when defining guard conditions or state invariants in state machines, such

constraints play a significant role when testing is driven by models. For example, in state-

based testing, if the aim of a test case is to execute a guarded transition (where the guard is

written in OCL based on input values of the trigger and/or state variables) to achieve full

transition coverage, then it is essential to provide input values to the event that triggers the

transition such that the values satisfy the guard. Another example can be to generate valid

parameter values based on the pre-condition of an operation.

Test data generation is an important component of MBT automation. For UML models,

with constraints in OCL, test data generation is a non-trivial problem. A few approaches in

216

the literature exist that address this issue. But most of them, as we will explain in more

details later in the paper, either target only a small subset of OCL [4, 5], are not scalable, or

lack proper tool support [6]. This is a major limitation when it comes to the industrial

application of MBT approaches that use OCL to specify constraints on models.

This paper provides and assesses novel heuristics for the application of search-based

techniques, such as Genetic Algorithms (GAs), (1+1) Evolutionary Algorithm (EA), and

Alternating Variable Method (AVM), to the solving of OCL constraints (covering the

entire OCL 2.2 semantics [2]) in order to generate test data. A search-based OCL

constraint solver is implemented and evaluated on the first reported, industrial case study

on this topic. Note that many of the principles introduced here could be easily adapted to

other high-level constraint languages based on first-order logic and set theory, in other

modeling languages, and this makes our contribution of general value for test data

generation based on models with constraints.

The rest of the paper is organized as follows: Section 2 discusses the background and

Section 3 discusses related work. In Section 4, we present the definition of distance

function for various OCL constructs. Section 5 discusses the case study and analysis of

results of the application of the approach on an industrial case study, whereas Section 6

provides an empirical evaluation of heuristics on a set of artificial problems, and Section 7

provides an overall discussion of the both empirical evaluations. Section 8 discusses the

tool support, Section 9 addresses the threats to validity of our empirical study, and finally

Section 10 concludes the paper.

2. Background

Several software engineering problems can be reformulated as a search problem, such as

test data generation [7]. An exhaustive evaluation of the entire search space (i.e., the

domain of all possible combinations of problem variables) is usually not feasible. There is

a need for techniques that are able to produce “good’’ solutions in reasonable time by

evaluating only a tiny fraction of the search space. Search algorithms can be used to

address this type of problem. Several successful results by using search algorithms are

reported in the literature for many types of software engineering problems [8-10].

To use a search algorithm, a fitness function needs to be defined. The fitness function

217

should be able to evaluate the quality of a candidate solution (i.e., an element in the search

space). The fitness function is problem dependent, and proper care needs to be taken for

developing adequate fitness functions. The fitness function will be used to guide the search

algorithms toward fitter solutions. Eventually, given enough time, a search algorithm will

find a satisfactory solution.

There are several types of search algorithms. Genetic Algorithms (GAs) are the most

well-known [8], and they are inspired by the Darwinian evolution theory. A population of

individuals (i.e., candidate solutions) is evolved through a series of generations, where

reproducing individuals evolve through crossover and mutation operators. (1+1)

Evolutionary Algorithm (EA) is simpler than GAs, in which only a single individual is

evolved with mutation. Alternating Variable Method (AVM) is a local search algorithm,

which is similar to the Hill Climbing algorithm, with the main difference that it can have

larger modifications. To verify that search algorithms are actually necessary because they

address a difficult problem, it is a common practice to use Random Search (RS) as

comparison baseline [8].

3. Related Work

There are a number of approaches that deal with the evaluation of OCL constraints. The

basic aim of most of these approaches is to verify whether the constraints can be satisfied.

Though most of the approaches do not generate test data, they are still related to our work

since they require the generation of values for validating the constraints. These approaches

can therefore be adapted for generating test data. In Section 3.1, we discuss the relationship

between OCL solvers and OCL evaluators. In Section 3.2, we discuss the OCL-based

constraint solving approaches in the literature, whereas Section 3.3 discusses the

approaches that use search-based heuristics for testing.

3.1 Comparison with OCL Constraints Evaluation

An OCL evaluator tells whether a constraint on a class diagram satisfies an instantiation of

the class diagram provided to it. Several OCL evaluators are currently available that can be

used to evaluate OCL constraints such as the IBM OCL evaluator [22], OCLE 2.0 [23],

EyeOCL [24], and the OCL evaluation in CertifyIt by Smartesting [25]. Our work is

218

different from these works since we automatically generate instances of a class diagram

with the aim of finding a particular instantiation that solves a provided constraint. Note that

for our purpose, i.e., solving OCL constraints to generate test data, an OCL evaluator is a

necessary component because of two reasons: 1) an evaluator tells if a constraint is solved,

2) an evaluator helps in calculating the fitness (e.g., using a branch distance [26]) of an

OCL expression that guides a search algorithm to find a solution. Note that any OCL

evaluator can be integrated with our tool.

Table 1: Summary of OCL Constraint Solving Approaches

Technique Translation to
Formalism

Intermediate
Representation

Complete
OCL

OCL Parts Missing or Additional
Requirements

Alloy Analyzer [11] Yes Alloy No Real, String, Enumerations, Limited
operations on collections, attributes

Aertryck & Jensen [4] Yes FSA No Collections, Real, String, Enumerations
Diestefano et al. [12] Yes BOTL No String, real, enumerations
Clavel et al. [13] Yes FOL No String, Real, collections other than Set,

Enumeration
Bao-Lin et al. [6] No DNF No Not discussed in the paper
Benattou et al. [5] No DNF No Class Inheritance, Generalization,

Association
Aichernig [14] Yes CSP No Handles a small subset, collections

iterators, Bag, Sequence,
UMLtoCSP [15] Yes CSP No Enumerations
Queralt et al [16] Yes FOL No Operations that cannot be converted to

select() or size() operations, e.g.,
collect.

Winkelman [17] Yes Graph
constraints

No Collection operations except size(),
isEmpty(). Enumerations

Kyas et al [18] Yes PVS No Not discussed in the paper
Kreiger [19] Yes SAT in CNF No Adds a non standard extension, String,

Real, Enumerations
Weißler [20] No Test Tree No Collections, Enumerations
Gogolla [21] Yes Formal Logic No Desired properties of snapshot to be

specified in a language ASSL

3.2 OCL-based Constraint Solvers

A number of approaches use constraint solvers for analyzing OCL constraints for various

purposes. These approaches usually translate constraints and models into a formalism (e.g.,

Alloy [11], temporal logic BOTL [12], FOL [13], Prototype Verification System (PVS)

[18], graph constraints [17]), which can then be analyzed by a constraint analyzer (e.g.,

Alloy constraint analyzer [27], model checker [12], Satisfiability Modulo Theories (SMT)

Solver [13], theorem prover [13], [18]). Satisfiability Problem (SAT) solvers have also

219

been used for evaluating OCL specifications ,e.g., for OCL operation contracts (e.g., [28],

[19]).

Table 2: Summary of OCL Constraint Solving Approaches

Technique Tool

Support

Application on

Case Study

Approach Type Test Data

Generation

Alloy Analyzer [11] Yes Simple example SAT Solver No

Aertryck & Jensen [4] Yes Simple example SAT Solver Yes

Diestefano et al. [12] Yes Simple example Model Checking No

Clavel et al. [13] Yes Simple example SMT Solver No

Bao-Lin et al. [6] No Simple example Partition Analysis Yes

Benattou et al. [5] No Simple example Partition Analysis Yes

Aichernig [14] Yes Simple example CSP Solving No

UMLtoCSP [15] Yes Simple example CSP Solving, Instance Generation No

Queralt et al [16] No No Reasoning No

Winkelman [17] No No Instance Generation No

Kyas et al [18] Yes Simple example Theorem Proving, Interactive No

Kreiger [19] Yes Simple example SAT Solver No

Weißler [20] Yes Simple example Partition Testing Yes

Gogolla [21] Yes Simple example Interactive No

Some approaches are reported in the literature to solve OCL constraints and generate

data that evaluates the constraints to true. The data generated can then be used as test data.

Most of these approaches only handle a small subset of OCL and UML, and are based on

formal constraint solving techniques, such as SAT solving (e.g., [4]), constraint satisfaction

problem (CSP) (e.g., [14], [15]), higher order logic (HOL) [29], and partition analysis

(e.g., [6], [5]). The work presented in [15] is one of the most sophisticated approaches

reported so far. However, its focus is on the verification of correctness properties, though it

generates an instantiation of the model as part of its process. The major limitation of the

approach is that the search space is bounded and, as the bounds are raised, CSP faces a

quickly increasing combinatorial explosion (as discussed in [15]). The task of determining

the optimal bounds for verification is left to the user, which is not simple and requires

repeated interactions with the user. Models of industrial applications can have hundreds of

attributes and manually finding bounds for individual attributes is often impractical. We

present the results of an experiment that we conducted to compare our novel approach with

220

this approach in Section 6. Existing approaches for OCL constraint solving do not fully fit

the needs we identified with our industrial partners. Almost all of the existing works only

support a small, insufficient subset of OCL (Table 1 and Table 2). Most of the approaches,

as shown in Table 1, are only limited to simple numerical expressions and do not handle

collections, which are used widely to specify expressions that navigate over associations.

These limitations are due to the high expressiveness of OCL that makes the definitions of

constraints easier, but their analysis more difficult. The conversion of OCL to a SAT

formula or a CSP instance can easily result in a combinatorial explosion as the complexity

of the model and constraints increases (as discussed in [15]) . For instance, one factor that

could easily lead to a combinatorial explosion, when converting an OCL constraint into an

instance of SAT formula, is when the number of variables and their ranges increase in a

constraint. Conversion to a SAT formula requires that a constraint must be encoded into

Boolean formulae at the bit-level and as the number of variables increases in the constraint,

chances of a combinatorial explosion increase. For industrial scale systems, as in our case,

this is a major limitation, since the models and constraints are generally quite complex.

Most of the discussed approaches either do not support the OCL constructs present in the

constraints that we have in our industrial case study or are not efficient to solve them (see

Section 6). Hence, existing techniques based on conversion to lower-level languages seem

impractical in the context of large scale, real-world systems.

Earlier we discussed approaches that convert OCL expressions to other constraint

languages. There are a number of other constraint solvers (such as in [30] [31]) that have

their own constraint solving languages. To the best of our knowledge, mappings from OCL

constraints to these constraint languages have not been reported. If such mappings were

provided, they might entail the same limitations as the existing approaches based on

mappings and translation, due to the gap in abstraction and level of expressiveness between

OCL and the target languages. For instance, in Gecode [30], only the Set data type is

supported, whereas the OCL supports many other collection data types, e.g., Bag, which

cannot be directly translated into a Set (bags allow duplicated elements, whereas sets do

not). As a consequence, it does not seem trivial (if possible at all) to translate the

constraints using bags. COMET [30] is another constraint solver that requires constraints

to be programmed in its own constraint programming language, which is a superset of

Java/C++. Similar to Gecode, full translation of OCL into this language is either complex

221

or not possible at all, e.g., COMET also only supports Set. Moreover, OCL supports OCL-

specific data types such as OCLAny, OCLVoid, and OCLInvalid and UML-specific data

types such as OCLState and OCLMessage, which may not be directly translated. In

addition, there are several OCL-specific operations such as oclIsValid() and

oclIsUndefined() and UML-specific operations such as oclIsInState() and isSignalSent(),

which are dependent on UML semantics.

Even when a translation of OCL to other constraint languages is feasible, such

translation would incur a significant computational overhead, particularly in cases where

there are significant differences in abstractions and no straightforward mappings.

Depending on the time that a constraint solver takes to solve a constraint, such extra

overhead might not be negligible when comparisons are made with solvers that work

directly on OCL. To complicate things even further, even if we wanted to use a constraint

solver that does not handle OCL directly, we would not only need to translate OCL

constraints, but we would also need to translate metamodels/models (e.g., state machines)

into the respective language of those constraint solvers. On the other hand, our constraint

solver fully supports UML and the UML profiling mechanism, thus enabling the solving of

constraints even on profiled models. This is one of the requirements in many of the case

studies of our industrial partners, where we have to solve constraints on profiled UML

models.

Most of the above approaches are different from our work, since we want to generate

test data based on OCL constraints provided by modelers on UML state and class

diagrams. These diagrams may be developed for environment models (for example, as in

[32]) or system models (for example [33]) and the modeler should be allowed to use the

entire standard (OCL 2.2). We want to provide inputs for which the constraints are

satisfied, and not just verify if inputs comply with them. We also want a tool that can be

easily integrated with different state-based testing approaches and is completely

automated.

3.3 Search-based Heuristics for Model Based Testing

The application of search-based heuristics for MBT has received significant attention

recently (e.g., [34], [35]). The idea of these techniques is to apply heuristics to guide the

search for test data that should satisfy different types of coverage criteria on state

222

machines, such as state coverage. Achieving such coverage criteria is far from trivial since

guards on transitions can be arbitrarily complex. Finding the right inputs to trigger these

transitions is not simple. Heuristics have been defined based on common practices in

white-box, search-based testing, such as the use of branch distance and approach level

[26]. Our goal is to tailor these heuristics to OCL constraint solving for test data

generation. Instead of using search algorithms, another possible approach to cope with the

combinatorial explosion faced in solving OCL constraints could be to use hybrid

approaches that combine formal techniques (e.g., constraint solvers) with random testing

(e.g. [36]). However, we are aware of no work on this topic for OCL and, even for

common white-box testing strategies, performance comparisons of hybrid techniques with

search algorithms are rare [37].

4. Definition of the Fitness Function for OCL

To guide the search for test data that satisfy OCL constraints, it is necessary to define a set

of heuristics. A heuristic tells ‘how far’ input data are from satisfying the constraint. For

example, let us say we want to satisfy the constraint x=0, and suppose we have two data

inputs: x1:=5 and x2:=1000. Both inputs x1 and x2 do not satisfy x=0, but x1 is

heuristically closer to satisfy x=0 than x2. A search algorithm would use such a heuristic as

a fitness function, to reward input data that are closer to satisfy the target constraint.

In this paper, to generate test data to solve OCL constraints, we use a fitness function

that is adapted from work done for code coverage (e.g., for branch coverage in C code

[26]). In particular, we use the so called branch distance (a function d()), as defined in [26].

The function d() returns 0 if the constraint is solved, otherwise a positive value that

heuristically estimates how far the constraint was from being evaluated to true. As for any

heuristic, there is no guarantee that an optimal solution (e.g., in our case, input data

satisfying the constraints) will be found in reasonable time, but nevertheless many

successful results based on such heuristics are reported in the literature for various

software engineering problems [7]. In cases where we want a constraint to evaluate to

false, we can simply negate the constraint and find data for which the negated constraint

evaluates to true. For example, if we want to prevent firing a guarded transition in a state

machine, we can simply negate the guard and find data for the negated guard.

223

In this section, we give examples of how to calculate the branch distance for various

kinds of OCL expressions including primitive data types (such as Real and Integer) and

collection-related types (such as Set and Bag). In OCL, all data types are subtypes of

OCLAny, which is categorized into two subtypes: primitive types and collection types.

Primitive types are Real, Integer, String, and Boolean, whereas collection types include

Collection as super type with subtypes Set, OrderedSet, Bag, and Sequence. A constraint

can be seen as an expression involving one or more Boolean clauses connected with logical

operators such as and and or. A constraint can be defined on variables of different types,

such as equalities of integers and comparisons of strings. As an example, consider the

UML class diagram in Figure 1 consisting of two classes: University and Student.

Constraints on the class University are shown in Figure 2.

Figure 1. Example class diagram

Figure 2. Example constraints

The first constraint states that the age of every Student should be greater than 15. Based

on the type of attribute age of the class Student, which is Integer, the comparison in the

clause is determined to involve integers. The second constraint states that the number of

students in the university should be greater than 0. In this case, the size() operation, which

is defined on collections in OCL and returns an Integer denoting the number of elements in

a collection, is called on collection student (containing elements of the class Student). Even

though an operation is called on a collection, the comparison is between two integers

(return value from operation size() and 0).

Following we will discuss branch distance functions for different types of clauses in

OCL.

context Student inv ageConstraint:
 self.age>15

context University inv numberOfStudents:
 self.student->size() > 0

224

4.1 Primitive types

A Boolean variable b is either true (when the branch distance is 0, i.e., d(b)=0), or false

(when d(b)=k, where k is an arbitrary positive constant, for example k=1). If a Boolean

variable is obtained from an operation call, then in general the branch distance would take

one of only two possible values (0 or k). For example, when the operation isEmpty() is

called on a collection, the branch distance would either take 0 or k, unless a more fine

grained specialized distance calculation is specified (e.g., returning the number of elements

in the collection). For some types of OCL operations (e.g., forAll()) we can provide more

fine grained heuristics. We will provide more details on these operations and their

corresponding branch distance calculations later in Section 4.2.

Table 3. Branch distance calculations for OCL’s operations for Boolean

Boolean operations Distance function

A if A is true then 0 otherwise k

not A if A is false then 0 otherwise k

A and B d(A)+d(B)

A or B min (d(A),d(B))

A implies B d(not A or B)

if A then B

else C

 d((A and B) or (not A and C))

A xor B d((A and not B) or (not A and B))

* A and B are Boolean expressions or variables.

Table 4. Branch distance calculations of OCL’s relational operations for numeric data

Relational operations Distance function

x=y if abs(x-y) = 0 then 0 otherwise abs(x-y)+k

x<>y if abs(x-y) <> 0 then 0 otherwise k

x<y if x-y < 0 then 0 otherwise (x-y)+k

x<=y if x-y <= 0 then 0 otherwise (x-y)+k

x>y if (y-x) < 0 then 0 otherwise (y-x)+k

x>=y if (y-x) <= 0 then 0 otherwise (y-x)+k

The operations defined in OCL to combine Boolean clauses are or, xor, and, not, if then

else, and implies. For these operations, branch distances are adopted from [26] since they

225

work in a similar way as in programming languages and are shown in Table 3. Operations

implies, and xor are syntax sugars that usually do not appear in programming languages

such as C and Java, and can be re-expressed using combinations of and and or operators.

The evaluation of d() on a predicate composed by two clauses is specified in Table 3 and

can simply be computed for more than two clauses recursively.

where, d(pairi) is the distance between elements in the ith

position in the two sorted collections, e.g.,

d(C1.at(i)=C2.at(i)) and nor is a normalizing function [38]

defined as nor(x)=x/(x+1). Suppose C1 and C2 are two OCL

collections.

Figure 3. Branch distance equality of collections

When a predicate or one of its parts is negated, then the predicate is transformed by

moving the negation inward to the basic clauses, e.g., not (A and B) would be transformed

into not A or not B.

For the numeric data types, i.e., Integer and Real, the relational operations that return

Booleans (and so can be used as clauses) are <, >, <=, >=, and <>. For these operations,

we adopted the branch distance calculation from [26] as shown in Table 4. In OCL, several

other operations are defined on Real and Integer such as +, -, *, /, abs(), div(), mod(),

max(), and min(). Since these operations are not used to compare two numerical values in

clauses, there is no need to define a branch distance for them. For example, considering a

and b of type Integer and a constraint a+b*3<4, then the operations + and * are used only

to define the constraint. The overall result of the expression a+b*3 will be an Integer and

the clause will be considered as a comparison of two values of Integer type. For the String

type, OCL defines several operations such as =, +, size(), concat(), substring(), and

toInteger(). There are only three operations that return a Boolean: equality operator =,

inequality <> and equalsIgnoreCase(). In these cases, instead of using k if the

comparisons are false, we can return the value from any string matching distance function

226

to evaluate how close any two strings are. In our approach, we implemented the edit

distance [9] function, but any other string matching distance function can easily be

incorporated.

4.2 Collection-Related Types

Collection types defined in OCL are Set, OrderedSet, Bag, and Sequence. Details of these

types can be found in the standard OCL specification [2]. OCL defines several operations

on collections. An important point to note is that, if the return type of an operation on a

collection is Real or Integer and that value is used in an expression, then the distance is

calculated in the same way as for primitive types as defined in Section 4.1. An example is

the size() operation, which returns an Integer. In this section, we discuss branch distances

for operations in OCL that are specific to collections, and that usually are not common in

programming languages for expressing constraints/predicates and hence are not discussed

in the literature.

4.2.1 Equality of collections (=)

In OCL constraints, we may need to compare the equality of two collections. We defined a

branch distance for comparing collections as shown in Figure 3. The main goal is to

improve the search process by providing a more fine grained heuristic than using a simple

heuristic which simply calculates 0 if the result of an evaluation is true and k otherwise. In

Figure 3, a branch distance for equality (=) of collections is calculated in one of the

following three ways.

First, if collections C1 and C2 are not of the same kind, i.e., not (C1.oclIsKindOf(C2))

evaluates to true, then the distance is simply 1. Note that any other constant could have

been used to represent the maximum distance. Whenever, the distance is 1, it means that

the collections are of different types, and the search algorithms must be guided to make the

two collections of the same types.

Once the first condition is satisfied, the search algorithms must be guided such that the

collections have equal number of elements. The second condition in the formula checks if

the collections, which are of the same type, have different sizes. In that case, the search is

guided to generate collections of equal size, i.e., C1 → size()=C2 → size(). We compute

227

d(C1 → size()=C2 → size()) and since size() returns an integer, this distance calculation is

simply performed using the equality operation on numerical data as shown in Table 4. The

maximum distance value that can be taken by d(C1=C2) in this case can be derived as

follows:

In the above equation, Y/(Y+1) always computes a value less than 1. Equation 0.5 +

0.5*(Y/ (Y+1)) therefore always takes a value between 0.5 to and 1. Whenever, d(C1,C2) is

greater than 0.5 and less than 1, this means that collections do not have the same number of

elements.

Table 5. Minimum and Maximum Distance Values For Distance Calculation for Equality Of

Collections

Condition Minimum Maximum

not (C1.oclIsKindOf(C2)) 1 1

C1 → size() <> C2 → size() >=0.5 <1

not (C1.oclIsKindOf(C2)) and C1 → size() = C2

→ size()

0 <0.5

For the third condition, i.e., if collections are of the same type and have equal numbers

of elements, the distance is calculated based on comparing elements in both collections.

First, we sort both collections based on their elements, regardless of type of the collection

(i.e., whether they are sets, bags or sequences). For sorting, a natural order among the

elements must be defined. For instance, if collections consist of integers, then we simply

sort based on the integer values. However, for other types of elements (e.g., enumerations),

there is no pre-defined natural order and, in these cases, we sort using the name of the

identifiers of elements (e.g., a sequence of enumerations {B, A, D, C} would be sorted into

{A, B, C, D}). If a collection consists of collections, we flatten the structure until we reach

the primitive types and sort them based on all primitive types. Notice that how the sorting

is done is not important. The important property that needs to be satisfied is that, if two

collections are equal (regardless of the type of collection), then the sorting algorithm

228

should produce the same paired alignment. For example, the set {B, A, C} is equal to {C, B,

A} (the order in the sets has no importance), and their alignment using the name of

enumeration elements produces the same sorted sequence {A, B, C}.

Once the element of both collections are sorted, we sum the distances between each pair

of elements in the same position in the collections (i.e., distance between the ith element of

C1 with the ith element of C2) and finally take the average by dividing the sum with the

number of elements in C1. When all elements of C1 are equal to C2, then d(pair) yields 0

and as a result d(C1=C2) = 0. The maximum value d(C1=C2) can take in this case can be

derived as follows:

d(pairi)/(d(pairi)+1) will always compute a value less than 1. Considering a simple

example, in which collections consists of Boolean values, using the formula from Table 3,

d(pairi) can take k as the maximum value. So the formula will be reduced to:

Since (k/(k+1)) computes a value below one, the above formula will always compute a

value below 0.5. To further explain the computation of branch distance, when condition

not (C1.oclIsKindOf(C2)) and C1 → size() = C2 → size() is true, we provide an example

below:

Example 1: Suppose C1= {2,1,3}, C2 = {5,4,9}, then the distance will be calculated

as follows:

229

Table 6. Branch distance calculation for operations checking objects in collections

Operation Distance function

includes (object:T): Boolean, where T is any OCL type

excludes (object:T): Boolean, where T is any OCL type

includesAll (c:Collection(T)): Boolean, where T is any OCL

type

excludesAll(c:Collection(T)): Boolean, where T is any OCL

type

isEmpty(): Boolean

notEmpty(): Boolean

As illustrated in Table 5 the three conditions in Figure 3 match three distinct value

ranges, thus ensuring that the distance is always superior in the first case and the lowest in

the third case, thus properly guiding the search.

4.2.2 Operations checking existence of one or more objects in a collection

OCL defines several operations to check the existence of one or more elements in a

collection such as includes() and excludes(), which check whether an object does or does

not exists in a collection, respectively. Whether a collection is empty is checked with

isEmpty() and notEmpty(). Such operations can be further processed for a more refined

calculation of branch distance than simply calculating a distance 0 when an expression is

true and k otherwise. The refined calculations of branch distances for these operations are

described in Table 6.

For includes (object:T), a branch distance is the minimum distance from all distances

(calculated using the heuristic for equality as listed in Table 4) between object and each

element of the collection (self) on which includes is invoked. When any element of self is

equal to object, the distance will be 0, and the overall distance will therefore be 0. When

none of the collection elements is equal to object, then we select the element in the

230

collection with minimum distance. The example below illustrates how branch distance is

calculated:

Example 2: Suppose C= {1,2,3} and we have an expression C includes(4), then the

branch distance will be calculated as:

For excludes (object:T), a branch distance is calculated in a similar way as includes,

except that we use the distance heuristic for inequality (<>) and sum up the distances of all

elements in the collection, which are equal to object. The example below illustrates how a

branch distance is computed using the formula.

Table 7. Branch distance for forAll and exists

Operation Distance function

forAll(v1,v2,

…vm|exp)

if (self→size()) = 0 then 0

otherwise

exists(v1,v2,

…vm|exp)

isUnique(v1|exp)

one(v1|exp)

Example 3: Suppose C= {1,2,2} and we have an expression C → excludes(2), then

231

In a similar fashion, we calculate branch distance of includesAll and excludesAll (Table

6), where we check if all elements of one collection are present/absent in another

collection. For includesAll, we sum, over all elements of a collection, their minimum

distance among all the elements of another collection as shown in the formula for

includesAll in Table 6. For excludesAll, we sum all distances between all possible pairs of

elements across the two collections, as shown in the formula for excludesAll in Table 6.

Branch distance calculations for isEmpty and notEmpty are also defined in Table 6.

4.2.3 Branch distance for iterators

OCL defines several operations to iterate over collections. Below, we will discuss branch

distances for these iterators.

The forAll() iterator operation is applied to an OCL collection and takes as input a

boolean-expression, then it determines whether the expression holds for all elements in the

collection. To obtain a fine grained branch distance, we calculate the distance of the

boolean-expression by computing the distance on all elements in the collection and

summing the results. The function for forAll presented in Table 7 is generic for any number

of iterators. For the sake of clarity in the paper, we assume that function expr(v1,v2, …vm)

in Table 7 evaluates an expression expr on a set of elements v1,v2, …vm. To explain expr,

suppose we have a collection C={1,2,3} and an expression C → forAll(x,y | x*y >0), then

expr(C.at(1),C.at(2)) entails calculating “d(x*y>0)”, where x=C.at(1), i.e., 1 and y=

C.at(2), i.e., 2. The keyword self in the table refers to the collection on which an operation

is applied, at(i) is a standard OCL operation that returns the ith element of a collection, and

size() is another OCL operation that returns the number of elements in a collection. The

denominator (self → size())m is used to compute the average distance over all element

combinations of size m since we have (self → size())m distance computations. Notice that

calculating the average distance is important to avoid bias towards decreasing the size of

the collection. For example, since it is a minimization problem (i.e., we want to minimize

232

the branch distance), there would be a bias against larger collections as they would tend to

have a higher branch distance (there is a number of branch distance additions that is

polynomial in the number of iterators and collection size). A search operator that removes

one element from the collection would always produce a better fitness function, so it would

have a clear gradient toward the empty collection. An empty collection would make the

constraint true, but it can have at least two kinds of side effects: first, if a clause is

conjuncted with other clauses that depend on the size (e.g., C → forAll(x|x>5) and C →

size()=10), then there would likely be plateaus in the search landscape (e.g., gradient to

increase the size towards 10 would be masked by the gradient towards the empty

collection); second, because in our context we solve constraints to generate test data, we

want to have useful test data to find faults, and not always empty collections. In general, to

avoid side effects such as unnecessary fitness plateaus, our branch distance functions are

designed in a way that, if there is no need to change the size of a collection to solve a

constraint on it, then the branch distances should not have bias toward changing its size in

one direction or another.

Below, we further illustrate the branch distance for forAll with the help of examples:

Example 4: Suppose we have a collection C= {1,2,3} and the expression is C →

forAll(x|x=0). In this example, we have just one iterator x, and therefore m=1. In this case,

the formula will be:

Example 5: Suppose we have a collection C= {1,2} and the expression is C →

forAll(x,y|x*y >0). In this case, we have two iterators x and y and thus the formula will

become:

233

In a similar fashion, the formula can be used for any number of iterators (m).

The exists() iterator operation determines whether a boolean-expression holds for at

least one element of the collection on which this operation is applied. The generic distance

form for exists() is shown in Table 7. The definition of exists() is very similar to forAll()

except for two differences. First, instead of summing distances across all element

combinations of size m, we compute the minimum of these distances, since any element

satisfying exp makes exists() true. Second, we do not have a denominator since no average

needs to be computed. The expr() function works in the same way as for forAll(). Below

we further illustrate branch distance calculation using two examples.

Example 6: Suppose we have a collection C= {1,2,3} and the expression is C →

exists(x|x=0). In this example, we have just one iterator, i.e., x. The formula will be:

Example 7: Suppose we have a collection C= {1,2} and the expression is C →

234

exists(x,y|x*y>1). In this case, we have two iterators x and y and thus the formula will

become:

In a similar fashion, as explained with Example 6 and Example 7, the formula can be

used for any number of iterators (m).

Table 8. Special Rules for Select() Followed By Size() when exp is false

Operation Distance function

>, >= d(exp)= if C → size() <= z() then (z()-C → size()) + k

 else nor((z()- C → select(P) → size())+k + nor(d(P)))

<,<= d(exp) = if C → size() >= z() then (C → size()-z())+k

 else nor((C → select(P)→size()-z())+k + nor(d(not P)))

<> d(exp) = if C → select(P) → size() = 0 then d(P)

 if C → select(P) → size() = C → size() then d(not P)

 if 0 < C → select(P) → size() < C → size() then min(d(P), d(not P))

= d(exp) = if C → select(P) → size() > z() then (C → select(P) → size()-z())+k + nor(d(not P))

 if C → select(P) → size() < z() then (z()- C → size())+k + nor(d(P))

* In the above table, k=1, nor(x)=x/(x+1) and d(P) is simply the sum of d() over the elements in A

In addition, we also provide branch distance for one() and isUnique() operations in

Table 7. The one operation returns true only if exp evaluates to true for exactly one

element of the collection. The isUnique() operation returns true if exp on each element of

the source collection evaluates to a different value. In this case, the distance is calculated

by computing and summing the distances between each element of the collection and every

other element in the collection. Since in this formula, we are computing (((self →

size())*(self → size()-1)))/(2) distances, we compute the average distance by using this

235

formula in the denominator. Again, calculating the average distance is important to avoid

bias in the search towards decreasing the size of the collection as we discussed for forAll.

Below we provide an example of how we calculate branch distance for isUnique().

Example 8: Suppose we have a collection C= {1,1,3} and the expression is C →

isUnique(x|x). In this example, we have just one iterator, i.e., x. Using the formula of

branch distance for isUnique(),

Select, reject, collect operations select a subset of elements in a collection. The select()

operation selects all elements of a collection for which a Boolean expression is true,

whereas reject() selects all elements of a collection for which a Boolean expression is

false. In contrast, the collect() iterator may return a subset of elements that does not belong

to the collection on which it is applied. Since all these iterators (like the generic iterator

operation) return a collection and not a Boolean value, we do not need to define branch

distance for them, as discussed in Section.4.1. However, an iterator operation (such as

select()) followed by another OCL operation, for instance size(), can be combined to make

a Boolean expression of the following form:

Where C is a collection, selectionOp is either select, reject, or collect, P is a boolean-

expression, RelOp is a relational operation from set {<,<=,=,<>,>,>=}, and z() is a function

that returns a constant. A simple way of calculating branch distance for the above example,

when RelOp is =, and selectionOp is select would be as follows:

236

An obvious problem of calculating branch distance in this way is that it does not give

any gradient at all to help search algorithms solve P, which can be arbitrarily complex. To

optimize branch distance calculation in this particular case, we need special rules that are

defined specifically for each RelOp.

For > and >=, when exp is false, this means that the size of resultant collection of the

expression C → select(P) is less than the size which will make the branch distance 0. In

this case, first we need a collection with size greater that z(), and then we need to obtain

those elements of A that increase the value of size() returned by C → select(P) → size().

This can be achieved by the rule shown in the first row of Table 8. The normalization

function nor() is necessary because the branch distance should first reward any increase in

C → size() until it is greater than z() regardless of the evaluation of P on its elements.

Then, once the collection C has enough elements, we need to account for the number of

elements for which P is true by using ((z() – C → select(P) → size())+k). The function

d(P) returns the sum of branch distance evaluations of a predicate P over all the elements

in C and provides additional gradient by quantifying how close are collection elements

from satisfying P. Below, we further illustrate this case with an example:

Example 9: Suppose we have a collection C= {1,1,3} and the expression is C →

select(x|x>1) → size()>=3. Using the formula of branch distance for the case when RelOp

is >, >=.

 C → select(P) →

237

For < and <=, when exp is false, this means that C → select(P) → size() is greater

than the size which will make the branch distance 0. Similar to the previous case, the

distance computation account for those elements of C that decrease the value of size()

returned by C → select(P) → size(), and uses nor(d(not P)) to provide additional gradient

to the search, as shown in second row of Table 8.

For the cases when the value of RelOp is inequality (<>), the rule is shown in the third

row of Table 8. Recall that our expression is in the following format: exp = C →

selectionOp (P) → size() RelOp z(). For this rule, there are three cases based on the value

of C → select(P) → size(). Recall that d(P) is simply the sum of all d() on all elements of

C. The first case is when C → select(P) → size() = 0, where P does not hold for any

element in C. To guide the search towards increasing the size of the collection, d(exp) will

be d(P) so as to minimize the sum of distances of all elements with P. The second case is

when P is true for all elements of C, which means that C → select(P) → size() = C →

size(). To guide the search in decreasing the size of the collection, for reasons that are

similar to the first case, we define d(exp) as d(not P). When 0 < C → select(P) → size() <

C → size(), we can guide the search to either increase or decrease the size of the collection

and thus define d(exp) as min(d(P), d(not P)).

For the cases when the value of RelOp is equality (=), the rule is shown in the fourth

row of Table 8. There are two important cases, which work in a similar way as the first and

second cases as reported in Table 8. The first case is when C → select(P) → size() > z(),

where we need to decrease C → select(P) → size(), which can be achieved by minimizing

(C → select(P) → size()-z())+k + nor(d(not P)). The second case is when C → select(P)

→ size() < z(). For this case, we need to increase the number of elements in C for which P

holds and must minimize (z()-C → select(P) → size())+k + nor(d(P)).

Note that we only presented formulae in Table 8 for the cases when the iterator

operation considered selectionOp is select, however, the formulae can simply be extended

for other iterator operations. The collect operation works in the same way as select, and

hence the formulae in Table 8 can simply be adapted by replacing select with collect in the

formulae. For instance, for the case when RelOp is > or >=, formula for collect would be:

238

 C → collect (P) →

The reject operation works in a different way than select since it rejects all those

elements for which a Boolean expression is true. But reject(P) can be simply transformed

into select(not P).

In addition to the rules for an iterator followed by size(), we defined two new rules

when a select() is followed by forAll() or exists() that are shown in Table 9. For example,

C → select(P1) → forAll(P2) (first row in Table 9) implies that for all elements of C for

which P1 holds, P2 should also hold. In other words, P1 implies P2. Therefore, C →

select(P1) → forAll(P2) can simply be transformed into C → forAll(P1 implies P2).

Similarly, a select(P1) followed by an exists(P2) can simply be transformed into exists(P1

and P2). This means that there should be at least one element in C for which P1 and P2

holds. Notice that a sequence of selects can be simply combined, e.g., C → select(P1) →

select (P2) is equivalent to C → select(P1and P2).

The effectiveness of all these rules for calculating branch distance is empirically

evaluated in Section 6.

4.3 Tuples in OCL

In OCL several different values can be grouped together using tuples. A tuple consists of

different parts separated by a comma and each part specifies a value. Each value has an

associated name and type. For example, consider the following example of a tuple in OCL:

This tuple defines a String firstName of value “John” and an Integer age of value 29.

Each value is accessed via its name. For example, Tuple{firstName = “John”,age=

29}.age returns 29. There are no operations allowed on tuples in OCL because they are not

subtypes of OCLAny. However, when a value in a tuple is accessed and compared, a

branch distance is calculated based on the type of the value and the comparison operation

used. For example, consider the following constraint:

In this case, since age is an Integer and comparison operation is >, we use the branch

distance calculation of numerical data for the case of > as defined in Table 4.

239

4.4 Special Cases

In this section, we will discuss branch distance calculations for some special cases

including enumerations and other special operations provided by OCL, such as for

example oclInState.

Table 9. Special Rules for Select() Followed by ForALL and Exists

Operation Distance function

C → select(P1) → forAll(P2) d(C → forAll(P1 implies P2))

C → select(P1) → exists(P2) d(C → exists (P1 and P2))

Figure 4. A dummy example to explain oclInState()

4.4.1 Enumerations

Enumerations are datatypes in OCL that have a name and a set of enumeration literals. An

enumeration can take any one of the enumeration literals as its value. Enumerations in

OCL are treated in the same way as enumerations in programming languages such as Java.

Because enumerations are objects with no specific order relation, equality comparisons are

treated as basic Boolean expressions, whose branch distance is either 0 or k.

4.4.2 oclInState

The oclInState(s:OclState) operation returns true if an object is in a state represented by s,

otherwise it returns false. This operation is valid in the context of UML state machines to

determine if an object is in a particular state of the state machine. OclState is a datatype

similar to enumeration. This datatype is only valid in the context of oclInState and is used

to hold the names of all possible states of an object as enumeration literals. In this

particular case, the states of an object are not precisely defined,i.e., each state of the object

is uniquely identified based on the names of the states. For example, a class Light having

two states: On and Off, is modeled as an enumeration with two lietrals On and Off. In this

example, s:OclState takes either On or Off value and the branch calculation is same as for

enumerations. However, if the states are defined as state invariants, which is a common

240

way of defining states in a UML state machine as an OCL constraint [2], then the branch

distance is calculated based on two special cases depending on whether we can directly set

the state of an object by manipulating the state variables or not. Below, we will discuss

each case separately.

The first case is when the state of an object can be manipulated by directly setting its

state defining attributes (or properties) to satisfy a state invariant. In this case, state

invariants― which are OCL constraints―can be satisfied by solving the constraints based

on heuristics defined in the previous sections. Note that each state in a state machine is

uniquely identified by a state invariant and there is no overlapping between state invariants

of any two states (strong state invariants [39]). For instance, in our industrial case study,

we needed to emulate faulty situations in the environment for the purpose of robustness

testing, which were modeled as OCL constraints defined on the properties of the

environment. In this case, it was possible to directly manipulate the properties of the

envrionment emulator based on which the state of the environment is defined and each

state was uniquely identified based on its state invariant. A simple example of such state

invariant for the environment is given below:

The above state invariant defines a faulty situation in the environment, when the value

of packet loss in the environment is greater than 5% and less or equal to 10%. This

constraint can easily be solved using the heuristics defined in the previous sections and the

value of packetLoss generated by our constraint solver can be directly set for the

environment.

In the second case, when it is not possible to directly set the state of an object, the

approach level heuristic [26] can be used in conjuction with branch distance to make the

object reach the desired state. We will explain this case using a dummy example of a UML

state machine shown in Figure 4. The approach level calculates the minimum number of

transitions in the state machine to reach the desired state from the closest executed state.

For instance, in Figure 4, if the desired state is S3 and currently we are in S1, then the

approch level is 1. By calculating the approach level for the states that the object has

reached, we can obtain a state that is closest to the desired state (i.e., it has the minimum

approach level). In our example, the closest state based on the approach level is S1. Now,

241

the goal is to transition in the direction of the desired state in order to reduce the approach

level to 0. This goal is achieved with the help of branch distance. The branch distance is

used to heuristically score the evaluation of the OCL constraints on the path from the

current state to the desired state (e.g., guards on transitions leading to the desired state).

The distance is calculated based on the heuristics defined in this paper. The branch

distance is used to guide the search to find test data that satisfy these OCL constraints. An

event corresponding to a transition can occur several times but the transition is only

triggered when the guard is true. The branch distance is calculated every time the guard is

evaluated to capture how close the values used are from solving the guard. In the example,

we need to solve guard ‘a>0’ so that whenever e4() is triggered we can reach S3. Since the

guards are written in OCL, they can be solved using the heuristics defined in the previous

sections. In the case of MBT, it is not always possible to calculate the branch distance

when the related transition has never been triggered. In these cases, we assign to the branch

distance its highest possible value. More details on this case can be found for example in

[40].

4.4.3 oclIsTypeOf(),oclIsKindOf(), and oclIsNew()

These three operations are special operations defined for all objects in the OCL. The

oclIsTypeOf (t:Classifier) returns true if t and the object on which this operation is called

have the same type. The oclIsKindOf(t:Classifier) operation returns true if t is either the

direct type or one of the supertypes of the object on which the operation is called. The

operation oclIsNew() returns true if the object on which the operation is called is just

created. These three operations are defined to check the properties of objects and hence are

not used for test data generation, therefore we do not explicitly define branch distance

calculation for these operations. However, whenever these operations are used in

constraints, the branch distance is calculated as follows: if the invocation of an operation

evaluates to true, then the branch distances is 0, else the branch distance is k, as for any

boolean function for which more fine grained heuristic is not provided.

4.4.4 User-defined Operations

Apart from the operations defined in the standard OCL library, OCL also provides a

facility for the users to define new operations. Body of these operations is written using

242

OCL expressions and may call the standard OCL library operations. As we discussed in

Section 4, we only provide specialized branch distance calculations for the operations

defined in the standard OCL library. For user-defined operations, we calculate a branch

distance according to the return types of these operations. If a user-defined operation

returns a Boolean,to provide more fine grained fitness functions, it is possible to use

testability transformations on those operations, as for example in search-based software

testing of Java software [41]. In our tool, we have not implemented and evaluated this type

of testability transformations, and further research would be needed to study their

applications in OCL. For any other return type but Boolean, we define a branch distance

using the rules defined in Section 4.4. For instance, consider a user-defined OCL operation

named operation1(), which is defined on a collection and returns a collection, and the

following constraint defined on it:

In this case, the branch distance is calculated based on the heuristic for isEmpty() as

defined in Section 4.2.

Table 10. Statistics of Complexity of Constraints

of Clauses Frequency
8 1
7 8
6 23
5 10
2 6
1 9

Table 11. OCL Data Types Used in Constraints

OCL Data Types Used Frequency
Integer 13
Boolean 2
Integer and Enumeration 31
Integer, Enumeration, and Boolean 11

Figure 5. A constraint checking synchronization of audio and video in a videoconference

context Saturn inv synchronozationConstraint:
self.media.synchronizationMismatch.value > self.media.synchronizationMismatchThreshold.value)

243

5. Case study: Robustness Testing of Video

Conference System

This case study is part of a project aiming to support automated, model-based robustness

testing of a core subsystem of a video conference system (VCS) called Saturn [42],

developed by Cisco Systems, Inc, Norway. Saturn is modeled as a UML class diagram

meant to capture information about APIs and system (state) variables, which are required

to generate executable test cases in our application context. The standard behavior of the

system is modeled as a UML 2.0 state machine. In addition, we used Aspect-oriented

Modeling (AOM) and more specifically the AspectSM profile [33] to model robustness

behavior separately as aspect state machines. The robustness behavior is modeled based on

different functional and non-functional properties, whose violations lead to erroneous

states. Such properties can be related to the SUT or its environment such as the network

and other systems interacting with the SUT. A weaver later on weaves robustness behavior

into the standard behavior and generates a standard UML 2.0 state machine. More details

and models of the case study, including a partial woven state machine, are provided in

[33]. The woven state machine produced by the weaver is used for test case generation. In

the current, simplified case study, the woven state machine has 12 states and 103

transitions. Out of these 103 transitions, only 83 transitions model robustness behavior as

change events and 57 transitions out of these 83 have identical change conditions,

including 42 constraints using select() and size() operations. A change event is defined

with a ‘when’ condition and it is triggered when this condition is met during the execution

of a system. An example of such a change event is shown in Figure 5. This change event is

fired during a videoconference when the synchronization between audio and video passes

the allowed threshold. synchronizationMismatch is a non-functional property defined using

the MARTE profile [43], which measures the synchronization between audio and video in

time. In order to traverse these transitions appropriate test data is required that satisfies the

constraints specified as guards and when conditions (in case of change events). The

complexity of these constraints, which are all in a conjunctive normal form, is reported in

Table 10 in terms of number of clauses. Most constraints contain between 6 and 8 clauses.

244

The different OCL data types used in these constraints are shown in Table 11 and we can

see that all primitive types are being used in our case study.

In our case study, we target test data generation for model-based robustness testing of

the VCS. Testing is performed at the system level and we specifically target robustness

faults, for example related to faulty situations in the network and other systems that

comprise the environment of the SUT. Test cases are generated from the system state

machines using our tool TRUST [42]. To execute test cases, we need appropriate data for

the state variables of the system, state variables of the environment (network properties and

in certain cases state variables of other VCS), and input parameters that may be used in the

following UML state machine elements: (1) guard conditions on transitions, (2) change

events as triggers on transitions, and (3) inputs to time events. We have successfully used

the TRUST tool to generate test cases using different coverage criteria on UML state

machines, such as all transitions, all round trip, modified round trip strategy [44].

5.1 Empirical Evaluation

This section discusses the experiment design, execution, and analysis of the evaluation of

the proposed OCL test data generator on the VCS case.

5.1.1 Experiment Design

We designed our experiment using the guidelines proposed in [8, 45]. The objective of our

experiment is to assess the efficiency of search algorithms such as GAs to generate test

data by solving OCL constraints. In our experiments, we compared four search techniques:

AVM, GA, (1+1) EA, and RS (Section 4). AVM was selected as a representative of local

search algorithms. GA was selected since it is the most commonly used global search

algorithm in search-based software engineering [8]. (1+1) EA is simpler than GAs, but in

previous software testing work we found that it can be more effective in some cases (e.g.,

see [38]). We used RS as the comparison baseline to assess the difficulty of the addressed

problem [8].

From this experiment, we want to answer the following research questions.

RQ1: Are search-based techniques effective and efficient at solving OCL constraints in

industrial system models?

245

RQ2: Among the considered search algorithms (AVM, GA, (1+1) EA), which one fares

best in solving OCL constraints and how do they compare to RS?

5.1.2 Experiment Execution

We ran experiments for 57 OCL predicates from the VCS industrial case study that we

discussed earlier. The number of clauses in each predicate varies from one to eight and the

median value is six. The complexity of the problems is summarized in Table 10, where we

provide details on the distribution of numbers of clauses. In Table 11, we summarized the

data types and OCL specific operations used in the problems.

Fitness evaluations are computationally expensive, as they require the instantiation of

models on which the constraints are evaluated on. Each algorithm was run 100 times to

account for the random variation inherent to randomized algorithms [46], which for our

case study was enough to gain enough statistical confidence on the validity of our results.

We ran each algorithm up to 2000 fitness evaluations on each problem and collected data

on whether an algorithm found a solution or not. On our machine (Intel Core Duo CPU

2.20 GHz with 4 GB of RAM, running Microsoft Windows 7 operating system), running

2000 fitness evaluations takes on average 3.8 minutes for all algorithms. The number of

fitness evaluations should not be too high to enable enough experimentations on different

constraints within feasible time, but should still represent a reasonable “budget” in an

industrial setting (i.e., the time the software testers are willing to wait when solving

constraints to generate system level test cases).

Instead of putting a limit to the number of fitness evaluations, in practice we can put a

limit on time depending on practical constraints. This mean we can run a search algorithm

with as many iterations as possible and stop once a predefined time threshold is reached

(e.g., 10 minutes) if the constraint has not been solved yet. The choice of this threshold

could be driven by the testing budget. However, though useful in practice, using a time

threshold would make it significantly more difficult and less reliable to compare different

search algorithms (e.g., accurately monitoring the passing of time, side effects of other

processes running at same time, inefficiencies in implementation details).

A solution is represented as an array of variables, the same variables that appear in the

OCL constraint we want to solve. For the used GA, we set the population size to 100 and

246

the crossover rate to 0.75, with a 1.5 bias for rank selection. We use a standard one-point

crossover, and mutation of a variable is done with the standard probability 1/n, where n is

the number of variables. Different settings would lead to different performance of a search

algorithm, but standard settings usually perform well [46]. As we will show, our constraint

solver is already very effective in solving OCL constraints, so we did not feel the need for

tuning to improve the performance even further.

To compare the algorithms, we calculated their success rates. The success rate of an

algorithm is defined in general as the number of times it was successful in finding a

solution out of the total number of runs. In our context, it is the success rate in solving

constraints.

Figure 6. Success rates for various algorithms

5.1.3 Results and Analysis

Figure 6 shows a box plot representing the success rates of the 57 problems for AVM,

(1+1) EA, GA, and RS. For each search technique, the box-plot is based on 57 success

rates, one for each constraint. The results show that AVM not only outperformed all the

other three algorithms, i.e., (1+1) EA, RS, and GA but in addition achieved a consistent

success rate of 100%. (1+1) EA outperformed GA and RS and achieved an average success

rate of 98%. Finally, GA outperformed RS, where GA achieved an average success rate of

65% and RS attained an average success rate of 49%. We can observe that, with an upper

limit of 2000 iterations, (1+1) EA achieves a median success rate of 98% and GA exceeds

a median of roughly 80%, whereas RS could not exceed a median of roughly 45%. We can

also see that all success rates for (1+1) EA are above 90% and most of them are close to

100%.

247

Table 12 . Success rates For Individual Problems
Problem Id Complexity AVM (1+1)EA GA RS
0 8 1 0,98 0,21 0,02
1 5 1 1 0,95 0,83
2 7 1 0,91 0,17 0,01
3 7 1 0,95 0,15 0,01
4 7 1 0,92 0,1 0,01
5 7 1 0,96 0,11 0
6 6 1 1 0,87 0,68
7 6 1 0,99 0,88 0,59
8 5 1 0,98 0,84 0,53
9 5 1 1 0,83 0,45
10 5 1 1 0,81 0,33
11 5 1 0,98 0,78 0,39
12 7 1 1 0,29 0,07
13 6 1 1 0,54 0,3
14 6 1 0,95 0,3 0,06
15 6 1 0,95 0,25 0,1
16 6 1 1 0,19 0,02
17 6 1 0,98 0,24 0,04
18 7 1 0,96 0,34 0,11
19 6 1 1 0,6 0,12
20 6 1 0,98 0,25 0,04
21 6 1 0,97 0,23 0,04
22 6 1 0,99 0,18 0,04
23 6 1 1 0,17 0,05
24 6 1 1 0,91 0,67
25 5 1 1 1 0,93
26 5 1 0,99 0,88 0,42
27 5 1 1 0,75 0,51
28 5 1 1 0,77 0,4
29 6 1 0,99 0,16 0,08
30 7 1 0,96 0,37 0,13
31 6 1 1 0,55 0,15
32 6 1 0,96 0,19 0,02
33 6 1 0,93 0,21 0,07
34 6 1 0,96 0,21 0,02
35 6 1 0,98 0,23 0,04
36 6 1 1 0,95 0,93
37 5 1 1 0,99 1
38 5 1 0,99 0,89 0,76
39 5 1 1 0,86 0,7
40 6 1 1 0,9 0,59
41 5 1 1 0,84 0,65
42 1 1 1 1 1
43 1 1 1 1 1
44 1 1 1 1 1
45 1 1 1 1 1
46 1 1 1 1 1
47 1 1 1 1 1
48 2 1 1 1 1
49 1 1 1 1 1
50 1 1 1 1 1
51 2 1 1 1 1
52 2 1 1 1 1
53 1 1 1 1 1
54 2 1 1 1 1
55 1 1 1 1 1
56 2 1 1 1 1

248

Table 13. Results for The Fisher’s Exact Test At Significance Level of 0.05

ID

AVM vs (1+1)
EA AVM vs GA AVM vs RS

 (1+1 EA) vs
GA (1+1) EA vs RS GA vs RS

p-
Value OR

p-
Value OR

p-
Value OR p-Value OR p-Value OR

p-
Value OR

29 1 3
3,84E-
40

102
9

7,78E-
48 2187 2,82E-38 339

6,70E-
46 721 0,12 2

30 0,12 9
8,62E-
26 340

8,48E-
43 1302 1,89E-20 36,

1,39E-
36 138 0,0001 3

31 1 1
8,93E-
17 164

5,29E-
41 1108 8,93E-17 164

5,29E-
41 1108

3,55E-
09 6

32 0,12 9
1,08E-
37 840

1,14E-
55 7919 1,09E-31 89

4,47E-
49 844 0,0001 9

33 0,01 16
3,75E-
36 743

5,76E-
49 2505 5,21E-27 46

5,69E-
39 155 0,007 3

34 0,12 9
3,75E-
36 743

1,14E-
55 7919 3,22E-30 79

4,47E-
49 844

2,50E-
05 10

35 0,49 5
1,11E-
34 662

1,02E-
52 4310 2,27E-31 129

4,47E-
49 84 0,0001 6,

36 1 1 0,059 11 0,01 16 0,05 11 0,01 16 0,76 1

37 1 1 1 3 1 1 1 3 1 1 1 0,3

38 1 3 0,0007 25
2,48E-
08 64 0,004 8

3,64E-
07 21 0,02 2

39 1 1
7,49E-
05 33

1,43E-
10 86 7,49E-05 33

1,43E-
10 86 0,009 3

40 1 1 0,001 23
5,03E-
15 140 0,001 23

5,03E-
15 140

6,14E-
07 6

41 1 1
1,59E-
05 39

1,56E-
12 108 1,59E-05 39

1,56E-
12 108 0,003 3

42 1 1 1 1 1 1 1 1 1 1 1 1

43 1 1 1 1 1 1 1 1 1 1 1 1

44 1 1 1 1 1 1 1 1 1 1 1 1

45 1 1 1 1 1 1 1 1 1 1 1 1

46 1 1 1 1 1 1 1 1 1 1 1 1

47 1 1 1 1 1 1 1 1 1 1 1 1

48 1 1 1 1 1 1 1 1 1 1 1 1

49 1 1 1 1 1 1 1 1 1 1 1 1

50 1 1 1 1 1 1 1 1 1 1 1 1

51 1 1 1 1 1 1 1 1 1 1 1 1

52 1 1 1 1 1 1 1 1 1 1 1 1

53 1 1 1 1 1 1 1 1 1 1 1 1

54 1 1 1 1 1 1 1 1 1 1 1 1

55 1 1 1 1 1 1 1 1 1 1 1 1

56 1 1 1 1 1 1 1 1 1 1 1 1

249

Table 14. Results for The Fisher’s Exact Test at Significance Level of 0.05

ID

AVM vs (1+1)
EA AVM vs GA AVM vs RS

 (1+1 EA) vs
GA (1+1) EA vs RS GA vs RS

p-
Value OR p-Value OR p-Value OR

p-
Value OR p-Value OR p-Value

O
R

0 0,49 5
3,75E-
36 743

1,14E-
55 7919

8,33E-
33 146

5,41E-
52

155
2

2,50E-
05 1

1 1 1 0,059 12
7,26E-
06 42 0,05 12

7,26E-
06 42 0,01 3

2 0,003 21
2,64E-
39 959

2,23E-
57

1333
3

5,39E-
28 46

7,96E-
45 639

7,48E-
05 13

3 0,059 12
5,29E-
41

110
8

2,23E-
57

1333
3

1,15E-
33 96

1,95E-
49

115
1 0,0003 12

4 0,006 18
1,04E-
45

173
2

2,23E-
57

1333
3

7,47E-
35 94

6,70E-
46 722 0,009 8

5 0,12 9
1,05E-
44

156
4

2,21E-
59

4040
1

2,01E-
38 167

1,02E-
52

431
0 0,0007 26

6 1 1 0,0001 31
2,41E-
11 95 0,0001 31

2,41E-
11 95 0,002 3

7 1 3 0,0003 28
5,03E-
15 140 0,002 9

1,35E-
13 46

4,85E-
06 5

8 0,49 5 1,59E-05 39 1,11E-17 178 0,0007 8 5,69E-15 35 3,59E-06 5

9 1 1 7,26E-06 42 1,59E-21 245
7,26E-
06 42 1,59E-21 245 2,91E-08 6

10 1 1 1,48E-06 48 4,05E-28 405
1,48E-
06 48 4,05E-28 405 6,86E-12 8

11 0,49 5 1,30E-07 57 1,12E-24 312
1,21E-
05 11 1,14E-21 61 3,17E-08 5

12 1 1 1,33E-30 487 5,76E-49 2505
1,33E-
30 487 5,76E-49 2506 7,42E-05 5

13 1 1 3,17E-17 171 5,77E-30 465
3,17E-
17 171 5,77E-30 465 0,0009 2

14 0,059 12 5,77E-30 465 3,77E-50 2922
2,68E-
23 40 2,01E-42 252 1,26E-05 6

15 0,059 12 2,87E-33 595 1,04E-45 1732
2,26E-
26 51 3,71E-38 150 0,008 3

16 1 1 1,08E-37 840 1,14E-55 7919
1,08E-
37 840 1,14E-55 7919 0,0001 9

17 0,49 5 5,75E-34 627 1,02E-52 4310
1,13E-
30 123 4,47E-49 844 5,87E-05 7

18 0,12 9 1,60E-27 387 1,05E-44 1564
4,57E-
22 41 2,01E-38 167 0,0001 4

19 1 1 1,34E-14 134 9,76E-44 1423
1,34E-
14 134 9,76E-44 1423 9,47E-13 11

20 0,49 5 2,87E-33 595 1,02E-52 4310
5,40E-
30 116 4,47E-49 845 2,99E-05 7

21 0,24 7 1,11E-34 663 1,02E-52 4310
4,93E-
30 92 1,42E-47 597 0,0001 7

22 1 3 1,73E-38 896 1,02E-52 4310
1,22E-
36 296 9,48E-51 1422 0,002 5

23 1 1 2,64E-39 959 2,13E-51 3490
2,64E-
39 959 2,13E-51 3490 0,01 4

24 1 1 0,003 20 9,76E-12 99 0,003 21 9,76E-12 100 4,55E-05 5

25 1 1 1 1 0,01 16 1 1 0,01 16 0,01 16

26 1 3 0,0003 28 4,54E-23 276 0,002 9 1,90E-21 91 6,44E-12 10

27 1 1 1,07E-08 68 1,32E-18 193
1,07E-
08 68 1,32E-18 193 0,0007 3

28 1 1 5,71E-08 61 3,90E-24 300
5,71E-
08 61 3,90E-24 300 1,67E-07 5

250

Table 12 shows success rates for individual problems to further analyze the results. We

observe that problems 42 to 56 were solved by all the algorithms. The reason is that these

problems are the simplest problems comprising of either one or two clauses, as it can be

seen from the complexity column in Table 12 and Table 15. The problems with higher

complexity (higher number of clauses) are the most difficult to solve for GA and RS, as

shown in Table 15. As the complexity is increasing, the success rates of GA and RS are

decreasing. However, in the case of AVM and (1+1) EA, we do not see a similar pattern.

AVM managed to maintain the average success rate of 100% even for the most complex

problems. In the case of (1+1) EA, the minimum average success rates are for the problems

with complexity of seven clauses, which is 95%. Based on these results, we can see that

our approach is effective and efficient, and therefore practical, even for difficult constraints

(RQ1).

Table 15 . Average Success Rates For Problems of Varying Complexity

Complexity AVM (1+1) EA GA RS

1 1 1 1 1

2 1 1 1 1

5 1 0,995 0,86 0,60

6 1 0,98 0,43 0,20

7 1 0,95 0,21 0,04

8 1 0,98 0,21 0,02

Table 16. Results for The paired Mann-Whitney U-test At Significance Level of 0.05

Pair of approaches p-Value

AVM vs (1+1) EA 2.653988e-05

AVM vs GA 2.507670e-08

AVM vs RS 2.485853e-08

(1+1) EA vs GA 2.506828e-08

(1+1) EA vs RS 2.480008e-08

GA vs RS 1.822280e-08

To check the statistical significance of the results, we carried out a paired Mann-

Whitney U-test (paired per constraint) at the significance level of 0.05 on the distributions

of the success rates for the four algorithms. In all the four distribution comparisons, p-

values were very close to 0, as shown in Table 16. This shows a strong statistical

difference among the four algorithms when applied on all 57 constraints of our case study.

251

In addition, we performed a Fisher’s exact test at the significance level of 0.05 between

each pair of algorithms based on their success rates for the 57 constraints. The results for

the Fisher’s exact test are shown in Table 13 and Table 14. In addition to statistical

significance, we also assessed the magnitude of the improvement by calculating the effect

size in a standardized way. We used odds ratio [45] for this purpose, as the results of our

experiments are dichotomous. Table 13 and Table 14 also show the odds ratio for various

pairs of approaches for all 57 problems. For AVM vs (1+1) EA, we did not observe

significant differences for most of the problems, except for Problem 2 and Problem 33,

where AVM significantly performed better than (1+1) EA. In addition, odds ratios between

AVM and (1+1) EA for 23 problems are greater than 1, implying that AVM has more

chances of success than (1+1) EA. For 35 problems out of 57, the odds ratio is 1

suggesting that there is no difference between these two algorithms. For AVM vs GA, for

38 problems AVM significantly performed better than GA as p-values are below 0.05 (our

chosen significance level). The odds ratios for most of the problems, except for the

problems with 1 or 2 clauses, are greater than one, thus suggesting that AVM has more

chances of success than GA. Similar results were observed for (1+1) EA, where for 38

problems it significantly outperformed GA. For AVM vs RS, for almost all of the problems

except the ones with one or two clauses, AVM performed significantly better than RS.

Similar results were observed for (1+1) EA vs RS and GA vs RS.

To check the complexity of the problems, we repeated the experiment on the negation

of each of the 57 problems. All algorithms managed to find solutions for all these problems

very quickly. Most of the time and for most of the problems, each algorithm managed to

find solutions in a single iteration. This result confirmed that the actual problems we

targeted with search were difficult to solve.

Figure 7. Condition for a change event

context Saturn inv synchronizationConstraint:
 self.systemUnit.NumberOfActiveCalls > 1 and
 self.systemUnit.NumberOfActiveCalls <= self.systemUnit.MaximumNumberOfActiveCalls and
 self.media.synchronizationMismatch.unit = TimeUnitKind::s and (self.media.synchronizationMismatch.value >= 0 and
 self.media.synchronizationMismatch.value <= self.media.synchronizationMismatchThreshold.value) and
 self.conference.PresentationMode = Mode::Off and
 self.conference.call→select(call | call.incomingPresentationChannel.Protocol <> VideoProtocol::Off)→size()=2 and
 self.conference.call→select(call | call.outgoingPresentationChannel.Protocol <> VideoProtocol::Off)→size()=2

252

Table 17. Average Time Took By Algorithms to Solve the Problems

Algorithm Average Time to Solve Constraints (Seconds)

AVM 2.96

(1+1) EA 99

GA 182

RS 423

Table 18. Statistics of Complexity of Constraints

Problem

of

Clauses

OCL Data Type

Used (Number of

variable is 1)

Search-based Solver

with (1+1)EA

(Seconds)

Search-based

Solver with

AVM (Seconds)

UML2CSP

(Seconds)

I43 1 Boolean 0.26 0.07 0.01

I44 1 Boolean 0.10 0.07 0.01

I45 1 Integer 0.07 0.03 0.01

I46 1 Integer 0.07 0.03 0.01

I47 1 Integer 0.07 0.03 0.01

I48 1 Integer 0.13 0.04 0.01

I49 2 Integer 1.41 0.26 0.01

I50 2 Integer 1.56 0.4 0.01

I51 1 Integer 0.12 0.04 0.01

I52 2 Integer 1.76 0.25 0.01

I53 2 Integer 1.72 0.26 0.01

I54 1 Integer 0.09 0.04 0.01

I55 2 Integer 1.25 0.24 0.01

I56 1 Integer 0.08 0.04 0.01

I57 2 Integer 1.48 0.23 0.01

Based on the above results, we recommend using AVM and (1+1) EA for as many

iterations as possible (RQ2). We can see from the results that, even when we set the

number of iterations to 2000, AVM managed to achieve a 100% success rate with 26

iterations on average. On the other hand, (1+1) EA managed to achieve a 98% success rate

with an average of 743 iterations. Note that in case studies with more complex problems, a

larger number of iterations may be required to eventually solve the problems.

253

5.2 Comparison with UMLtoCSP

UMLtoCSP [15] is the most widely used and referenced OCL constraint solver in the

literature. To assess the performance of UMLtoCSP to solve complex constraints such as

the ones in our current industrial case study, we conducted an experiment. We repeated the

experiment for 57 constraints from our industrial application, whose complexity is

summarized in Table 10. An example of such constraint, modeling a change event on a

transition of Saturn’s state machine, is shown in Figure 7. This change event is fired when

Saturn is successful in recovering the synchronization between audio and video. Since

UMLtoCSP does not support enumerations, we converted each enumeration into an Integer

and limited its bound to the number of literals in the enumeration. We also used the

MARTE profile to model different non-functional properties, and since UMLtoCSP does

not support UML profiles, we explicitly modeled the used subset of MARTE as part of our

models. In addition, UMLtoCSP does not allow writing constraints on inherited attributes

of a class, so we modified our models and modeled inherited attributes directly in the

classes. We set the range of Integer attributes from 1 to 100. Since the UML2CSP tool did

not support UML 2.x diagrams, we also needed to recreate our models in a UML 1.x

modeling tool.

We ran the experiment on the same machine as we used in the experiments reported in

the previous section. Though we let UMLtoCSP attempt to solve each of the selected

constraints for one hour each, it was not successful in finding any valid solution for the 42

problems comprising of 5-8 clauses. A plausible explanation is that UMLtoCSP is

hampered by a combinatorial explosion problem because of the complexity of the

constraints in the model. However, such constraints must be expected in real-world

industrial applications as our Cisco example is in no way particularly complex by

industrial standards. In contrast, our constraint solver managed to solve each constraint

within at most 2.96 seconds using AVM and 99 Seconds using (1+1) EA, as shown in

Table 17. For the remaining 15 problems, which are simple constraints comprising of

either one or two clauses, UMLtoCSP managed to find solutions. Each of these constraints

has one variable of either Integer or Boolean type. The results of the comparison of

UMLtoCSP with our tool for these simple clauses (problems 42-56) are shown in Table 18.

We provide the time taken by UML2CSP to solve each problem in seconds, which is

254

reported by the tool itself and 0.01 second (maximum precision) for all fifteen constraints.

For these same 15 problems, we ran our tool 100 times for each of them. In Table 18, we

report the average time taken by our tool to solve each problem over 100 runs. Since we

used the same machine to run experiments for both tools, it is clear from the results that for

all fifteen simple problems, UMLtoCSP took less time than our tool (which is on average

less than one second and in the worst case less than two seconds). But considering that

UMLtoCSP fails to solve the more complex problems and its issues regarding limited

support of OCL constructs (as already discussed), we conclude it is not practical to apply

UMLtoCSP in large systems having complex constraints.

6. Empirical Evaluation of Optimization Defined as

Fitness Functions

In this section, we empirically evaluate the fine grained fitness functions that we defined in

Section 4 for various OCL operations to see if they really improve performance of search

algorithms as compared to using simple branch distance functions, yielding 0 if an

expression is true and k otherwise.

6.1 Experiment Design

To empirically evaluate whether the functions defined in Section 4 really improve the

branch distance, we carefully defined artificial problems to evaluate each heuristic since

not all of the OCL constructs were used in the industrial case study. The model we used for

the experiment consists of a very simple class diagram with one class X. X has one

attribute y of type Integer. The range of y was set to -100 to 100. We populated 10 objects

of class X. The use of a single class with 10 objects was sufficient to create complex

constraints. For each heuristic, we created an artificial problem, which was sufficiently

complex to remain unsolved by random search. We checked this by running all the

artificial problems (100 times per problem) using random search for 20,000 iterations per

problem, and random search could not manage to solve most of the problems most of the

times, except for problems A9 and A10. Table 19 lists the artificial problems and the

corresponding heuristics that we used in the experiments. We prefixed each problem with

A to show that it is an artificial problem. For the evaluation, we used the best algorithms

255

among search algorithms used in the industrial case study (Section 5.1 and in other works

[38]: (1+1) EA and AVM. In this experiment, we address the following research question:

RQ3: Does optimized branch distance calculations improve the effectiveness of search

over simple branch distance calculations?

Table 19. Artifical Problems for Heuristics

Problem

Heuristic Example

A1 forAll() X.allInstances() → forAll(b|b.y=47)

A2 exists() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() →

select(b|b.y > 90) → exists(b|b.y=92)

A3 isUnique() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() →

select(b|b.y > 90) → isUnique(b|b.y)

A4 one() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() →

select(b|b.y > 90) → one(b|b.y=95)

A5 select()size() X.allInstances() → select(b|b.y=0) → size()>6

A6 select()size() X.allInstances() → select(b|b.y=0) → size()<=1

A7 select()size() X.allInstances() → select(b|b.y > 90) → size() > 4 and X.allInstances() →

select(b|b.y > 90) → select(b|b.y=92) → size() <> 0

A8 select()size() X.allInstances() → select(b|b.y=0) → size() = 5

A9 includes() X.allInstances() → collect(b|b.y) → includes(17)

A10 excludes() X.allInstances() → collect(b|b.y) → excludes(0)

A11 includesAll() let c = Set{-1,87,19,88} in X.allInstances() → collect(b|b.y) → includesAll(c)

A12 excludesAll() let c = Set{0,1,2,3} in X.allInstances() → select(b|b.y>0 and b.y<5) →

size()>=5 and X.allInstances() → select(b|b.y>0 and b.y<5) → collect(b|b.y)

→ excludesAll(c)

A13 select()forAll() X.allInstances() → select(b|b.y<>47) → forAll(b|b.y*b.y=-100)

To answer this research question, we compared branch distance calculations based on

heuristics defined in Section 4 and without heuristics (i.e., branch distance calculations

either return 0 when a constraint is solved or k otherwise). We will refer to them here as

Optimized (Op) and Non-Optimized (NOp) branch distance calculations, respectively.

6.2 Experiment Execution

We ran experiments 100 times for (1+1) EA and AVM, with Op and NOp, and for each

problem listed in Table 19 . We let (1+1) EA and AVM run up to 2000 fitness evaluations

256

on each problem and collected data on whether the algorithms found solutions for Op and

NOp. We used a PC with Intel Core Duo CPU 2.20 GHz with 4 GB of RAM, running

Microsoft Windows 7 operating system for the execution of experiment. To compare the

algorithms for Op and NOp, we calculated the success rate, which is defined as the number

of times a solution was found out of the total number of runs (100 in this case).

6.3 Results and Analysis

Table 20 shows the results of success rates for Op and NOp for each problem and both

algorithms ((1+1) EA and AVM). To compare if the differences of success rates among Op

and NOp are statistically significant, we performed the Fisher‘s exact test [47] at the

significance level of 0.05. We chose this test since for each run of algorithms the result is

binary, i.e., either the result is ‘found’ or ‘not found’ and this is exactly the situation for

which the Fisher’s exact test is defined. We performed the test only for the problems

having success rates greater than 0 and not equal to each other for both Op and NOp (i.e.,

for problems A2, A3, and A4 in the case of 1+1 (EA) and problem A9 for AVM)). For 1+1

(EA), the p-values for all the three problems (A2, A3, and A4) are 0.0001, thus indicating

that the success rate of Op is significantly higher than NOp. For problems A1, A5, A6, A7,

A8, A12, and A13, the results are even more extreme as Op shows a 100% success rate,

whereas NOp has 0% success rate. For the problems A9 and A10, the success rates are

100% for both Op and NOp and hence conclusions cannot simply be drawn based on these

rates. For these problems, we further compared the number of iterations taken by (1+1) EA

for Op and NOp to solve the problems. We used Mann-Whitney U-test [[47], at a

significance level of 0.05, to determine if significant differences exist between Op and

NOp. We chose this test based on the guidelines for performing statistical tests for

randomized algorithms [45]. Table 21 shows the results of the test. The p-values are bold-

faced when the results are significant. In Table 21, we also show the mean differences for

the number of iterations and execution time between Op and NOp to show the direction in

which the results are significant. In addition, we report effect size measurements using

Vargha and Delaney’s Â12 statistics, which is a non-parametric effect size measure. We

chose this effect size measure using again the guidelines reported in [45]. In our context,

the value of Â12 tells the probability for Op to find a solution in more iterations than NOp.

257

This means that the higher the value of Â12, the higher the chances that Op will take more

iterations to find a solution than NOp. If Op and NOp are equal then the value of Â12 is

0.5. With 1+1 (EA), for A9 and A10, Op took significantly less iterations to solve the

problems (Table 21) as both p-values are below 0.05. In addition, for A9 and A10, values

of Â12 are 0.19 and 0.46, respectively, thus showing that the only 19% and 46% of the

time Op took more iterations to solve the problem than NOp.

Table 20. Results of Fisher Exact Test for Success Rate of Optimized and Non-Optimized at

alpha=0.05

Problem

Success Rate
(1+1)EA
(NOp) in %

Success Rate
for (1+1)EA
(Op) in %

Fisher Exact
Test for
(1+1)EA (p-
value)

Success Rate
for AVM
(NOp) in %

Success
Rate for
AVM (Op)
in %

Fisher
Exact
Test for
AVM (p-
value)

A1 0 100 - 0 100 -

A2 2 100 0,0001 0 59 -

A3 1 95 0,0001 0 99 -

A4 3 100 0,0001 0 100 -

A5 0 100 - 0 100 -

A6 0 100 - 0 100 -

A7 0 100 - 0 100 -

A8 0 100 - 0 100 -

A9 100 100 - 16 100 0,0001

A10 100 100 - 100 100 -

A11 0 94 - 0 99 -

A12 0 100 - 0 34 -

A13 0 100 - 0 100 -

For AVM, the results of success rates for A10 were tied between Op and NOp (Table

20). Therefore, we further compared Op and NOp for these problems based on the number

of iterations AVM took to solve these problems. As discussed before, we applied Mann-

Whitney U-test [47] at significance level of 0.05 to determine if significant differences

exist between Op and NOp. Table 22 shows mean differences, p-values, and Â12 values.

We observed that for the problem Op took less iterations to solve the problems and

significant differences were observed for A10 as the p-value is 0.04, which is less than our

significance level of 0.05.

258

Based on the above results, we can answer our research question presented earlier: does

the optimized branch distance calculation improve the effectiveness of search? We can

clearly see from the results that (1+1) EA and AVM with optimized branch distance

calculations significantly improve the success rates. In worst cases, when there is no

differences in success rates between Op and NOp, (1+1) EA and AVM took significantly

less iterations to solve the problems.

Table 21. Results of t-test at alpha=0.05 ((1+1)EA)

Problem # Mean Difference (OP-NOP) Â12 p-value

A9 -654,38 0,19 0,0001

A10 -1,01 0,46 0,004

Table 22. Results of t-test at alpha=0.05 (AVM)

Problem # Mean Difference (OP-NOP) Â12 p-

value

A10 -0,23 0,52 0,04

7. Overall Discussion

In this section, we provide an overall discussion based on the results of the experiments on

the industrial case study and the artificial problems. Based on the results from the

industrial case study, we observe that AVM and (1+1) EA perform better as compared to

GA and RS since the algorithms achieve 100% and 98% success rates for all 57 constraints

on average, respectively (Section 5.1). For the experiments based on artificial problems

(Section 6.3), we observe that AVM and (1+1) EA with optimized branch distance

calculations outperform non-optimized branch distance calculations. However, we notice

that for certain artificial problems, the performance of (1+1) EA is significantly better than

AVM. For instance, in Table 20 for A2, (1+1) EA manages to find solutions for all 100

runs, whereas AVM could only manage to find solutions for 59 runs. We further perform a

Fisher’s exact test to determine if the differences are statistically significant at the

significance level of 0.05 between these two algorithms. We obtain a p-value of 0.001

suggesting that (1+1) EA is significantly better than AVM for A2. Since AVM is a local

search algorithm and A2 is a complex problem, AVM can be expected to be less efficient

than (1+1) EA. Similar results are obtained for A12. Conversely, for other problems, i.e.,

259

for A3 and A11, AVM seems more successful than (1+1) EA. For A3, AVM manages to

find solutions 99 times, whereas (1+1) EA manages to find solutions 95 times (Table 20).

In this case, we obtain a p-value of 0.21 when we applied the Fisher’s exact test, hence

suggesting that the differences are not statistically significant between the two algorithms.

Similarly, for A11, AVM found solutions 99 times, whereas (1+1) EA found solutions for

94 times (Table 20). In this case, we obtain again a p-value of 0.11, which is lower than

our chosen significance level (0.05); hence suggesting that the differences are not

significant between these two algorithms.

Based on the results of our empirical analysis, we provide the following

recommendations about using AVM and (1+1) EA: If the constraints need to be solved

quickly, we recommend using AVM, since it is quicker in finding solutions as we

discussed in Section 6, even though its performance was worse than (1+1) EA for two

artificial problems. If we are flexible with time budget (e.g., the constraints need to be

solved only once, and the cost of doing that is negligible compared to other costs in the

testing phase), we rather recommend running (1+1) EA for as many iterations as possible

as we notice that the success rate for (1+1) EA was 98% on average for the industrial case

study, whereas for the artificial problems, it either fares better or equal to AVM.

The difference in performance between AVM and (1+1) EA has a clear explanation.

AVM works like a sort of greedy local search. If the fitness function provides a clear

gradient towards the global optima, then AVM will quickly converge to one of them. On

the other hand, (1+1) EA puts more focus on the exploration of the search landscape.

When there is a clear gradient toward global optima, (1+1) EA is still able to reach those

optima in reasonable time, but will spend some time in exploring other areas of the search

space. This latter property becomes essential in difficult landscapes where there are many

local optima. In these cases, AVM gets stuck and has to re-start from other points in the

search landscape. On the other hand, (1+1) EA, thanks to its mutation operator, has always

a non-zero probability of escaping from local optima.

8. Tool Support

To efficiently solve OCL constraints, we developed a search-based OCL constraint solver,

260

since current OCL solvers were not able to handle the complexity of the constraints in our

models for the industrial case study within reasonable time (Section 6). Figure 8 shows the

architecture diagram for our Search-based Constraint solver. We developed a tool in Java

that interacts with an existing library, an OCL evaluator, called the EyeOCL Software

(EOS) [24]. EOS is a Java component that provides APIs to parse and evaluate an OCL

expression based on an object model. Our tool only requires interacting with EOS for the

evaluation of constraints. We selected to use EOS as it is one the most efficient evaluators

currently available. Any other OCL evaluator can also be easily integrated with our tool.

Our tool implements the calculation of branch distance (DistanceCalculator) for various

expressions in OCL as discussed in Section 4, which aims at calculating how far are the

test data values from satisfying constraints. The search algorithms employed are

implemented in Java as well and include Genetic Algorithms, (1+1) Evolutionary

Algorithm, and Alternating Variable Method (AVM).

9. Threats to Validity

To reduce construct validity threats, we chose as an effectiveness measure the search

success rate, which is comparable across all four search algorithms (AVM, (1+1) EA, GA

and RS). Furthermore, we used the same stopping criterion for all algorithms, i.e., number

of fitness evaluations. This criterion is a comparable measure of efficiency across all the

algorithms because each iteration requires updating the object diagram in EyeOCL and

evaluating a query on it.

The most probable conclusion validity threat in experiments involving randomized

algorithms is due to random variations. To address it, we repeated experiments 100 times

to reduce the possibility that the results were obtained by chance. Furthermore, we

performed Fisher exact tests to compare proportions and determine the statistical

significance of the results. We chose Fisher exact test because it is appropriate for

dichotomous data where proportions must be compared [45], thus matching our situation.

To determine the practical significance of the results obtained, we measured the effect size

using the odds ratio of success rates across search techniques.

A possible threat to internal validity is that we have experimented with only one

261

configuration setting for the GA parameters. However, these settings are in accordance

with the common guidelines in the literature and our previous experience on testing

problems. Parameter tuning can improve the performance of GAs, although default

parameters often provide reasonable results [46].

Figure 8. Architecture diagram for search-based constraint solver

We ran our experiments on an industrial case study to generate test data for 57 different

OCL constraints, ranging from simpler constraints having just one clause to complex

constraints having eight clauses. Although the empirical analysis is based on a real

industrial system our results might not generalize to other case studies. However, such

threat to external validity is common to all empirical studies. In addition to the industrial

case study, we also conducted an empirical evaluation of each proposed branch distance

calculation using small yet complex artificial problems to demonstrate that the

effectiveness of our heuristics holds even for more complex problems. In addition,

empirically evaluating all proposed branch distance calculations on artificial problems was

necessary since it was not possible to evaluate them for all features of OCL in the

industrial case study due to its inherent properties.

In the empirical comparisons with UMLtoCSP, we might also have wrongly configured

the tool. To reduce the probability of such an event, we contacted the authors of

UMLtoCSP who were very helpful in ensuring its proper use. From our analysis of

UMLtoCSP, we cannot generalize our results to traditional constraint solvers in general

when applied to solve OCL constraints. However, empirical comparisons with other

constraints solvers were not possible because, to the best of our knowledge, UMLtoCSP is

not only the most referenced OCL solver but also the only one that is publically available.

However, because the problems encountered with UMLtoCSP are due to the translation to

a lower-level constraint language, we expect similar issues with the other constraint

solvers.

262

10. Conclusion

In this paper, we presented a search-based constraint solver for constraints written in the

Object Constraint Language (OCL). The goal is to achieve a practical, scalable solution to

support test data generation for Model-based Testing (MBT). Existing OCL constraint

solvers have one or more of the following problems that make them difficult to use in

industrial applications: (1) they support only a subset of OCL; (2) they translate OCL into

formalisms such as first order logic, temporal logic, or Alloy, and thus result into

combinatorial explosion problems. These problems limit their practical adoption in

industrial settings.

To overcome the abovementioned problems, we defined a set of heuristics based on

OCL constraints to guide search-based algorithms (Genetic Algorithms (GAs), (1+1)

Evolutionary Algorithm (EA), Alternating Variable Method (AVM)) and implemented

them in our search-based OCL constraint solver. More specifically, we defined branch

distance functions for various types of expressions in OCL to guide search algorithms. We

demonstrated the effectiveness and efficiency of our search-based constraint solver to

generate test data in the context of the model-based, robustness testing of an industrial case

study of a video conferencing system. Even for the most difficult constraints, with research

prototypes and no parallel computations, we obtain test data within 2.96 seconds on

average.

As a comparison, we ran 57 constraints from the industrial case study on one well-

known, downloadable OCL solver (UMLtoCSP) and the results showed that, even after

running it for one hour, no solutions could be found for most of the constraints. Similar to

all existing OCL solvers, because it could not handle all OCL constructs and UML

features, we had to transform our constraints to satisfy UMLtoCSP requirements.

We also conducted an empirical evaluation in which we compared four search

algorithms using two statistical tests: Fisher’s exact test between each pair of algorithms to

test their differences in success rates for each constraints and a paired Mann-Whitney U-

test on the distributions of the success rates (paired per constraint). Results showed that

263

AVM was significantly better than the other three search algorithms, followed by (1+1)

EA, GA and RS respectively. We also empirically evaluated each proposed branch

distance calculation using small yet complex artificial problems. The results showed that

the proposed branch distance calculations significantly improve the performance of solving

OCL constraints for the purpose of test data generation when compared to simple branch

distance calculations. Based on the results of our empirical analyses, we recommend using

AVM if the constraints need to be solved quickly since it is quicker in finding solutions,

even though its performance was worse than (1+1) EA for two complex artificial problems

with difficult search landscapes. In other cases, if we are flexible with time budget (e.g.,

the constraints need to be solved only once), we rather recommend using (1+1) EA for as

many iterations as possible since (1+1) EA has 98% success rate on average for the

industrial case study, whereas for the artificial problems, it either fares better or equal to

AVM.

Though focused on OCL in this paper, the general search-based solution and heuristics

we propose here to make the search more efficient could be adapted to other high level

constraint languages based on first-order logic and set theory. In the future, we are also

planning to extend our solver to automatically instantiate models by solving constraints

defined on their metamodels for the purpose of model-transformation testing, which is an

increasingly important challenge.

ACKNOWLEDGEMENT

The work described in this paper was supported by the Norwegian Research Council.

This paper was produced as part of the ITEA-2 project called VERDE. We thank Marius

Christian Liaaen (Cisco Systems, Inc Norway) for providing us the case study. We are also

grateful to Jordi Cabot, an author of UML2CSP, for helping us to run UML2CSP on our

industrial case study.

REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach:
Morgan-Kaufmann, 2007.

[2] OCL, "Object Constraint Language Specification, Version 2.2," Object

264

Management Group (OMG), 2011.
[3] MOF, "Meta Object Facility (MOF)," 2006.
[4] L. v. Aertryck and T. Jensen, "UML-Casting: Test synthesis from UML models

using constraint resolution," in Approches Formelles dans l'Assistance au
Développement de Logiciels (AFADL'2003), 2003.

[5] M. Benattou, J. Bruel, and N. Hameurlain, "Generating test data from OCL
specification," Citeseer, 2002.

[6] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y. Hong, "Test case automate generation
from uml sequence diagram and ocl expression," in International Conference on
cimputational Intelligence and Security, 2007, pp. 1048-1052.

[7] M. Harman, S. A.Mansouri, and Y. Zhang, "Search based software engineering: A
comprehensive analysis and review of trends techniques and applications," King’s
College,Technical Report TR-09-032009.

[8] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-Based Test Case
Generation," IEEE Transactions on Software Engineering, vol. 99, 2009.

[9] M. Alshraideh and L. Bottaci, "Search-based software test data generation for
string data using program-specific search operators: Research Articles," Softw.
Test. Verif. Reliab., vol. 16, pp. 175-203, 2006.

[10] A. Andrea, "Longer is Better: On the Role of Test Sequence Length in Software
Testing," International Conference on Software Testing, Verification, and
Validation, 2010, pp. 469-478.

[11] B. Bordbar and K. Anastasakis, "UML2Alloy: A tool for lightweight modelling of
Discrete Event Systems," in IADIS International Conference in Applied
Computing, 2005.

[12] D. Distefano, J.-P. Katoen, and A. Rensink, "Towards model checking OCL," in
ECOOP-Workshop on Defining Precise Semantics for UML, 2000.

[13] M. Clavel and M. A. G. d. Dios, "Checking unsatisfiability for OCL constraints," in
In the proceedings of the 9th OCL 2009 Workshop at the UML/MoDELS
Conferences, 2009.

[14] B. K. Aichernig and P. A. P. Salas, "Test Case Generation by OCL Mutation and
Constraint Solving," in Proceedings of the Fifth International Conference on
Quality Software: IEEE Computer Society, 2005.

[15] J. Cabot, R. Claris, and D. Riera, "Verification of UML/OCL Class Diagrams using
Constraint Programming," in Proceedings of the 2008 IEEE International
Conference on Software Testing Verification and Validation Workshop: IEEE
Computer Society, 2008.

[16] D. Berardi, D. Calvanese, and G. D. Giacomo, "Reasoning on UML class
diagrams," Artif. Intell., vol. 168, pp. 70-118, 2005.

[17] J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. ster, "Translation of Restricted
OCL Constraints into Graph Constraints for Generating Meta Model Instances by
Graph Grammars," Electron. Notes Theor. Comput. Sci., vol. 211, pp. 159-170,
2008.

[18] M. Kyas, H. Fecher, F. S. d. Boer, J. Jacob, J. Hooman, M. v. d. Zwaag, T. Arons,
and H. Kugler, "Formalizing UML Models and OCL Constraints in PVS,"
Electron. Notes Theor. Comput. Sci., vol. 115, pp. 39-47, 2005.

[19] M. P. Krieger, A. Knapp, and B. Wolff, "Automatic and Efficient Simulation of

265

Operation Contracts," in 9th International Conference on Generative Programming
and Component Engineering, 2010.

[20] S. Weißleder and B.-H. Schlingloff, "Deriving Input Partitions from UML Models
for Automatic Test Generation," in Models in Software Engineering: Springer-
Verlag, 2008, pp. 151-163.

[21] M. Gogolla, F. Bttner, and M. Richters, "USE: A UML-based specification
environment for validating UML and OCL," Sci. Comput. Program., vol. 69, pp.
27-34, 2007.

[22] IBM, "IBM OCL Parser," IBM, 2011.
[23] D. Chiorean, M. Bortes, D. Corutiu, C. Botiza, and A. Cârcu, "OCLE," V2.0 ed,

2010.
[24] M. Egea, "EyeOCL Software," 2010.
[25] CertifyIt, "CertifyIt," Smarttesting, 2011.
[26] P. McMinn, "Search-based software test data generation: a survey: Research

Articles," Softw. Test. Verif. Reliab., vol. 14, pp. 105-156, 2004.
[27] D. Jackson, I. Schechter, and H. Shlyahter, "Alcoa: the alloy constraint analyzer,"

in Proceedings of the 22nd international conference on Software engineering
Limerick, Ireland: ACM, 2000.

[28] M. Krieger and A. Knapp, "Executing Underspecified OCL Operation Contracts
with a SAT Solver," in 8th International Workshop on OCL Concepts and Tools.
vol. 15: ECEASST, 2008.

[29] A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff, "A Specification-Based
Test Case Generation Method for UML/OCL," in Worksshop on OCL and Textual
Modelling, MoDELS: Lecture Notes in Computer Science, Springer, 2010.

[30] Gecode, "Gecode," 2011.
[31] COMET, "COMET," 2011.
[32] M. Iqbal, A. Arcuri, and L. Briand, "Environment Modeling with UML/MARTE to

Support Black-Box System Testing for Real-Time Embedded Systems:
Methodology and Industrial Case Studies," in International Conference on Model
Driven Engineering Languages and Systems (MODELS), 2010.

[33] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior Using
Aspect-Oriented Modeling to Support Robustness Testing of Industrial Systems,"
Simula Research Laboratory, Technical Report (2010-03)2010.

[34] C. Doungsa-ard, K. Dahal, A. Hossain, and T. Suwannasart, "GA-based Automatic
Test Data Generation for UML State Diagrams with Parallel Paths," Advanced
Design and Manufacture to Gain a Competitive Edge, pp. 147-156, 2008.

[35] R. Lefticaru and F. Ipate, "Functional Search-based Testing from State Machines,"
in Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation: IEEE Computer Society, 2008.

[36] K. Sen, D. Marinov, and G. Agha, "CUTE: a concolic unit testing engine for C,"
SIGSOFT Softw. Eng. Notes, vol. 30, pp. 263-272, 2005.

[37] K. Lakhotia, P. McMinn, and M. Harman, "An empirical investigation into branch
coverage for C programs using CUTE and AUSTIN," Journal of Systems and
Software, vol. 83, pp. 2379-2391.

[38] A. Arcuri, "It really does matter how you normalize the branch distance in search-
based software testing," Software Testing, Verification and Reliability, 2011.

[39] R. V. Binder, Testing object-oriented systems: models, patterns, and tools:

266

Addison-Wesley Longman Publishing Co., Inc., 1999.
[40] A. Arcuri, M. Z. Iqbal, and L. Briand, "Black-box System Testing of Real-Time

Embedded Systems Using Random and Search-based Testing," in IFIP
International Conference on Testing Software and Systems (ICTSS), 2010.

[41] H. Li and Gordon, "Bytecode Testability Transformation " in Symposium on Search
based Software Engineering Co-located with ESEC/FSE: ACM SIGSOFT, 2011.

[42] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. C. Briand, "Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies," Simula Research Laboratory, Technical Report (2010-
01)2010.

[43] MARTE, "Modeling and Analysis of Real-time and Embedded systems
(MARTE)," 2010.

[44] S. Ali, L. Briand, A. Arcuri, and S. Walawege, "An Industrial Application of
Robustness Testing using Aspect-Oriented Modeling, UML/MARTE, and Search
Algorithms," in ACM/IEEE 14th International Conference on Model Driven
Engineering Languages and Systems (Models 2011), 2011.

[45] A. Arcuri and L. Briand., "A Practical Guide for Using Statistical Tests to Assess
Randomized Algorithms in Software Engineering," in International Conference on
Software Engineering (ICSE), 2011.

[46] A. Arcuri and G. Fraser, "On Parameter Tuning in Search Based Software
Engineering," in International Symposium on Search Based Software Engineering
(SSBSE): Springer's Lecture Notes in Computer Science (LNCS) 2011.

[47] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures:
Chapman and Hall/CRC, 2007.

267

An Industrial Application of Robustness Testing

using Aspect-Oriented Modeling, UML/MARTE,

and Search Algorithms

Shaukat Ali, Lionel C. Briand, Andrea Arcuri, Suneth Walawege

In: ACM/IEEE 14th International Conference on Model Driven Engineering Languages

and Systems (Models 2011), ACM/IEEE, 2011.

Abstract— Systematic and rigorous robustness testing is very critical for embedded

systems, as for example communication and control systems. Robustness testing aims at

testing the behavior of a system in the presence of faulty situations in its operating

environment (e.g., sensors and actuators). In such situations, the system should gracefully

degrade its performance instead of abruptly stopping execution. To systematically perform

robustness testing, one option is to resort to model-based robustness testing (MBRT),

based for example on UML/MARTE models. However, to successfully apply MBRT in

industrial contexts, new technology needs to be developed to scale to the complexity of

real industrial systems. In this paper, we report on our experience of performing MBRT on

video conferencing systems developed by Cisco Systems, Norway. We discuss how we

developed and integrated various techniques and tools to achieve a fully automated MBRT

that is able to detect previously uncaught software faults in those systems. We provide an

overview of how we achieved scalable modeling of robustness behavior using aspect-

oriented modeling, test case generation using search algorithms, and environment

emulation for test case execution. Our experience and lessons learned identify challenges

and open research questions for the industrial application of MBRT.

1 Introduction

Model-based robustness testing (MBRT) is concerned with testing the behavior of a system

in the presence of faulty situations in its operating environment. An IEEE Standard [1]

268

defines robustness as “the degree to which a system or component can function correctly

in the presence of invalid inputs or stressful environment conditions”. A system should be

robust enough to handle the possible abnormal situations that can occur in its operating

environment and invalid inputs. For example, in our industrial application of MBRT for

Video Conferencing Systems (VCS) developed by Cisco Systems, Norway, we model the

robustness behavior of a VCS in the presence of hostile environment conditions (regarding

the network and other communicating VCSs), such as a high percentage of packet loss and

corrupt packets. The VCS should not crash, halt, or restart in the presence of such

problems. Furthermore, the VCS should continue to work in a degraded mode, such as

continuing the videoconference with low audio and video quality. In the worst case, the

VCS should return to the most recent safe state instead of bluntly stopping execution. Such

behavior is very important for a commercial VCS, and so it must be accurately tested.

MBRT is considered very critical for embedded systems, for example communication

and control systems as is the case of our industrial case study. Such robustness is also

considered very critical in many standards such as in the IEEE Standard Dictionary of

Measures of the Software Aspects of Dependability [2], the ISO’s Software Quality

Characteristics standard [3], and the Software Assurance Standard [4] by NASA.

Systematic and rigorous robustness testing however requires integration of many tools and

techniques in an efficient way.

In this paper, we report on our experience of applying MBRT for VCSs developed by

Cisco. Note that such industrial applications of MBRT and even more generally of model-

based testing (MBT) are very rare in the literature [5]. These applications are very much

needed to evaluate the applicability of MBT in realistic settings. The main contribution of

this paper is the integration of the following techniques and tools to achieve the ultimate

goal of systematic and rigorous MBRT: 1) Use UML and the MARTE profile to model

properties of the environment, whose violations lead to faulty situations the VCS must be

robust to; 2) Use aspect-oriented modeling (AOM) to achieve scalable robustness

modeling that improves readability of models, reduces modeling complexity, supports

enhanced separation of concerns (SOC), and helps in model evolution; 3) Use search

algorithms to solve complex OCL constraints on properties of the environment to introduce

faulty situations; 4) Integration of the tool support for all of the above with our extensible

269

model-based testing tool (TRUST) [6]. Robustness test case execution requires a special

setup to emulate the operating environment. We discuss how we emulate the environment

for the MBRT of Cisco’s VCS. A preliminary experiment of MBRT in Cisco revealed a

critical robustness fault in an already tested VCS. Finally, we discuss our experiences and

lessons learned while performing MBRT in Cisco.

The rest of the paper is organized as follows: Section 2 provides a brief description of

our case study, Section 3 provides an overview on scalable robustness modeling using

AOM and UML/MARTE, and Section 4 discusses test case generation using the TRUST

tool. In Section 5, we discuss about robustness test case execution and results from our

preliminary experiment with MBRT. Section 6 provides lessons learned and our

experiences regarding MBRT in Cisco. Section 7 compares our work with the existing

works in the literature. Finally, Section 8 concludes the paper.

2 Case Study

Our case study is part of a project aiming at supporting automated, model-based robustness

testing of a core subsystem of a video conference system (VCS) called Saturn. The core

functionality to be modeled manages the sending and receiving of multimedia streams.

Audio and video signals are sent through separate channels and there is also a possibility of

transmitting presentations in parallel with audio and video. Presentations can be sent by

only one conference participant at a time and all others receive it. In this paper, we focused

on this particularly important subsystem (Saturn) and left out the other functionalities of

Saturn. We selected this subsystem because robustness testing is concerned with testing the

behavior of Saturn in the presence of faulty environment situations, which can only be

tested when Saturn is in a conference call with other systems. Saturn is complex enough to

investigate the applicability and usefulness of MBRT in realistic conditions, while still

remaining manageable in the context of a case study.

To test the robustness of Saturn, we modeled its behavior in the presence of faulty

situations in the network. The behavior of the network can be very unpredictable due to

busy routers, high bandwidth demanding traffic (audio and video streaming) and low speed

connections. Hence, Saturn is supposed to work even under the presence of faulty

270

situations in a degraded mode. By degraded mode, we mean that the system should

continue to behave as in the non-faulty situation, except that the quality (such as audio and

video) or the performance is degraded by running applications at a lower speed. The

system must try to recover from the degraded mode and go back to a normal mode of

operation. In the worst case, the system must return to the most recent safe state. An

example of a safe state of a VCS is the idle state, in which the VCS is not in a

videoconference with any VCS.

3 Scalable Robustness Modeling

In this section, we discuss our scalable robustness modeling approach. In Section 3.1, we

provide and briefly present partial models for the functional behavior of Saturn. In Section

3.2 we discuss how we model robustness behavior with aspect state machines using our

proposed AspectSM profile.

3.1 Functional Behavior of Saturn

The functional behavior of Saturn consists of a set of class diagrams and a set of UML

state machines. An excerpt of class diagram for the Saturn subsystem described in Section

2 is shown in Figure 1.

Figure 1. Class diagram for Saturn

The UML class diagram is meant to capture information about APIs and system (state)

variables, which are required to generate executable test cases in our application context.

Saturn’s API is modeled as a set of methods in the Saturn class such as dial() and

callDisconnect(). The state variables of the system are modeled as instance variables of

classes. For example, two system variables in the SystemUnit class are

271

NumberOfActiveCalls and MaximumNumberOfCalls. NumberOfActiveCalls is an Integer,

which determines the number of VCS that are currently in a Saturn videoconference,

whereas MaximumNumberOfCalls determines the maximum number of simultaneous calls

supported by Saturn.

The functional behavior of Saturn is modeled as four submachine states. The first

submachine state contains three simple states, whereas the second contains two additional

submachine states, each having three simple states. This gives in total eleven simple states

and 41 transitions in three levels. The flattened state machine consists of 70 transitions and

11 states. The complete models are provided in [7].

3.2 Robustness Modeling using RUMM

Previously, we defined a RobUstness Modeling Methodology (RUMM) to model

robustness behavior using AOM [7]. Our goal was to devise a solution to model robustness

behavior, which (1) is complete in terms of aspect and state machine features, (2)

minimizes the learning curve over standard modeling skills, and (3) enable automated,

model-based testing. RUMM consists of a series of systematic activities to model

robustness behavior. We do not present here details of these activities, however, interested

readers may find them in [7]. In this paper, we on modeling robustness behavior using the

AspectSM profile. Using the AspectSM profile, we model each aspect as a UML state

machine with stereotypes (aspect state machine). The modeling of aspect state machines is

systematically derived from a fault taxonomy [7] categorizing different types of faults

(faults in the environment such as communication medium and media streams that lead to

faulty situations in the environment). Each aspect state machine has a corresponding aspect

class diagram modeling different properties of the environment using the MARTE profile,

whose violations lead to faulty situations in the environment.

3.2.1 Modeling aspect class diagram

For the robustness behavior presented in Section 2, we were interested in modeling the

behavior of Saturn in the presence of faulty situations in the network. For this purpose, we

decided to model the following network properties: packet loss, packet delay, duplicate

272

packet, corrupt packet, and reorder packet. These properties are modeled in a class diagram

as shown in Figure 2. All of these properties are modeled using the MARTE profile [8].

For instance, the packet loss property introduces packet loss during communication and is

measured in terms of percentage. This property is defined to be of the MARTE type

NFP_Percentage, which is defined in the MARTE profile for this purpose. Another

property we defined is packet delay. This property is defined as a new, non-functional

property (NFP) data type stereotyped as <<NfpType>> defined in MARTE (Figure 2).

The new NFP type includes other properties such as unit of type TimeUnitKind.

TimeUnitKind in MARTE defines units for time values such as millisecond and

microsecond. We chose this data type so that a modeler can choose an appropriate time

unit.

Figure 2 Aspect class diagram for network communication

3.2.2 Modeling aspect state machine.

The aspect state machine for NetworkCommunication is shown in Figure 3. The

‘NetworkCommunication’ state machine is stereotyped as ‘Aspect’ from the AspectSM

profile and the attributes associated with the stereotype are shown in the note labeled 1.

The first attribute name specifies the name of the aspect, which is

NetworkCommunicationAspect in this case. The second attribute baseStateMachine

specifies the base state machine on which the aspect will be woven, which is Saturn in this

case.

273

Figure 3 Aspect state machine for network communication

A pointcut named ‘SelectStatesPointcut’ on the state ‘SelectedStates’ is shown in Figure

3 (see note 2), which selects all states of the base state machine except for the Idle and

PresentingWithoutCall states. New transitions modeling robustness behavior of the system

from all states selected by the ‘SelectStatesPointcut’ pointcut to a new state

‘RecoveryMode’ stereotyped with the <<Introduction>> stereotype are introduced. These

transitions are modeled as UML change events. For instance, when self.corrupt.value>0

in any of the states selected by the pointcut, the system goes to ‘RecoveryMode’, which is

stereotyped as <<Introduction>> indicating that this state will be introduced in the base

state machine. In this state, the system tries to recover the corrupt packets. If the system is

successful, the transition with the change event ‘self.corrupt.value =0’ takes the system

back to the original state, which is one of the states selected by the SelectedStates state. If

the system cannot recover within time t, then the system disconnects all the systems and

goes to the ‘Idle’ state, stereotyped as <<Pointcut>> (see Figure 3). This is modeled as a

new transition from the ‘RecoveryMode’ state to the ‘Idle’ state, with a time event after(t),

and a new effect ‘DisconnectAll’ with opaque behavior disconnect, which disconnects all

the connected systems to the system.

4 Test Case Generation

In this section, we discuss how we extended our MBT tool, TRansformation-based tool for

Uml-baSed Testing (TRUST) [6] for robustness testing.

274

4.1 An Overview of TRUST

In our previous work [6], we developed TRUST, whose software architecture and

implementation strategy facilitate its customization to different contexts by supporting

extensible features such as input models, test models, coverage criteria, test data generation

strategies, and test script languages. For example, the tool is extensible with respect to

coverage criteria and it lets the user implement and integrate new coverage criteria with

minimum changes to the tool [9]. The tool takes as input a UML class diagram and one or

more UML state machines and outputs test scripts.

4.2 Integration of the AspectSM Weaver with TRUST

A weaver is a tool that takes as input a base model and one or more aspects and produces a

woven model [10]. We developed a weaver for AspectSM using a set of transformation

rules in Kermeta [11]. Figure 4 shows the architecture diagram for the weaver. The aspect

weaver works in two steps. First it weaves aspect class diagram into the UML class

diagram (e.g., Figure 1) corresponding to the base state machine using the transformation

rules written in Kermeta [11]. These rules take as input an aspect class diagram (e.g.,

Figure 2) corresponding to an aspect state machine to be woven, a class diagram (e.g.,

Figure 1) corresponding to the base state machine, and output a class diagram which is the

class diagram corresponding to the base state machine augmented with the aspect class

diagram. In the second step, one or more aspect state machines (e.g., Figure 3) are woven

into the base state machine. Since our queries (Pointcuts [7]) are in OCL, which need to be

evaluated during the weaving process, we need to convert OCL expressions into Kermeta

expressions. This is achieved through the OCLToKermeta component. Finally,

AspectStateMachineWeaver produces a woven state machine which is a standard UML

state machine. This state machine is then provided to the TRUST tool for test case

generation.

4.3 Integration of Search-based Constraint Solver with TRUST

Emulating faulty situations in the operating environment of a VCS requires solving

complex OCL constraints on the properties of the environment. These constraints must be

solved during test case generation to emulate the faulty situations (i.e., to set the

275

environment properties in a way for which such faulty situations occur). To efficiently

solve these constraints, we developed a search-based OCL constraint solver [12], since

current OCL solvers were not able to handle the complexity of our model’s constraints

within reasonable time. Figure 5 shows the architecture diagram for our Search-based

Constraint solver. We developed a tool in Java that interacts with an existing library, an

OCL evaluator called the EyeOCL Software (EOS) [13]. EOS is a Java component that

provides APIs to parse and evaluate an OCL expression based on an object model. Our tool

implements the calculation of branch distance (DistanceCalculator) [12] for various

expressions in OCL, which aims at calculating how far are environment properties from

satisfying constraints. The search algorithms employed are implemented in Java as well

and includes Genetic Algorithms and (1+1) Evolutionary Algorithm [12].

Figure 4 Architecture diagram for the weaver

Figure 5 Architecture diagram for search-based constraint solver

5 Test Case Execution

In this section, we provide details on robustness test case execution. Section 5.1 describes

our setup required for test case execution and Section 5.2 provides results of test case

execution corresponding to the case study provided in Section 2.

276

5.1 Setup for Test Case Execution

Figure 6 shows our test execution setup for executing robustness test cases generated by

TRUST. The current setup involves Saturn, which is the system under test (SUT) and three

video conferences systems (VCSs). Since the execution of test cases requires emulating

faulty situations in the environment, we needed a network emulator. For this purpose, we

relied on software-based emulation facility (netem [14]). The setup of network emulator

requires setting up a PC with three network interface cards (NICs). All communication

to/from Saturn (SUT in Figure 4) passes through NetworkEmulator. Saturn is connected to

NIC3 of NetworkEmulator and all incoming and outgoing traffic from Network comes

through NIC1. NIC1 is bridged to NIC3 and hence all the traffic goes to Saturn via NIC3.

Our test case execution system is directly connected to NIC2 of network emulator and

through this NIC all faulty situations in the network are introduced by test scripts. All other

communication from the test execution system to SUT and VCSs takes place through NIC2

of NetworkEmulator. We separated them because if the faulty situations are introduced via

the same NIC as other communication flows, we might end up affecting the commands

that introduce faulty situations. Thus, we may end up not introducing faulty situations at

all.

Figure 6 Setup for robustness test case execution

5.2 Preliminary Test Case Execution Results

For our current case study (Section 2), we used our weaver (Section 4.2) to produce a

woven state machine. The woven state machine was given as input to TRUST (Section

4.1), which was configured to generate test cases using All Transition Coverage

implemented by depth first search. In total 72 test cases were generated by TRUST. OCL

277

constraints (change events in Figure 3) were solved using our search-based constraint

solver (Section 4.3) to generate test data and introduce faulty situations in the environment.

We executed test cases using the setup presented in Section 5.1. The execution of test cases

found one robustness fault (halt and restart) in Saturn, when more than 10% duplicate

packets were introduced in network communication. Our approach had more chances to

catch this fault compared to existing practices in Cisco. MBT is more systematic and is in

our case specifically tailored to catch robustness faults. Our approach indeed focuses on

automatically testing the robustness of Saturn over various functional scenarios in the

presence of several faulty situations in the network. In contrast, current robustness testing

at Cisco is based on scripts written manually by testers to test a few network properties

over a few of functional scenarios.

6 Experience and Lessons Learned

This section reports our experience of performing model-based robustness testing (MBRT)

at Cisco. As often with many control and communication systems in industry, robustness

testing is very critical for Cisco’s Video Conferencing Systems (VCS). Currently,

robustness testing at Cisco is driven by manually written test scripts, which is a common

scenario in many industries. Due to time and resource constraints (e.g., system-level test

cases are run with hardware-in-the-loop), only a limited number of test scripts can be

written and only a limited number of faulty situations can be emulated. In these

constrained cases, it is hence essential to carry out robustness testing in an automated and

systematic way.

In order to support scalable modeling, aspect-oriented modeling (AOM) is adapted to

support robustness modeling in the context of embedded systems and UML state machines

(Section 3). Test cases are then generated based on system models including robustness

behavior, using coverage criteria such as all round trip paths and all transitions criteria [9]

(Section 4). Such an approach guarantees to cover important test scenarios that could be

missed by manual testing, and thus leading to more systematic and comprehensive testing.

Furthermore, the models can be used to generate effective, automated oracles (e.g., state

invariants). Test cases are then executed using environment emulators (Section 5).

278

In the section below, we report on our experience of performing MBRT in Cisco. Since

such reports are very rare in the literature (see Section 7), we believe that such section

would provide useful insights in terms of the challenges we faced and the effectiveness of

the solutions adopted in practice.

6.1 Robustness Modeling

In this section, we describe our experience and provide lessons learned obtained from

modeling robustness behavior of Saturn, a VCS developed by Cisco. Details on our

experience with functional modeling can be found in [6].

6.1.1 Experiences with AOM

Modeling the robustness behavior was performed by the authors with the help of testers in

Cisco, who are currently involved in robustness testing. The modeling was done as part of

a research project regarding the application of model-based testing technology in industry.

Before modeling, it was important to have meetings with software engineers at Cisco to

understand the specifications of the robustness behavior implemented in Saturn. When the

specifications were sufficiently understood, the modeling process started. The testers

themselves were involved in the modeling of the robustness and functional behavior. The

models were discussed and revised several times during the modeling, to ensure that the

behavior is modeled completely and correctly. The robustness modeling took around seven

hours. Understanding the specification took approximately four hours, whereas the actual

modeling took approximately three hours. All the modeling was done with IBM Rational

Software Architect (RSA) 7.5 as our UML profile (AspectSM) is also implemented in

RSA. Note that this time accounts only for modeling the robustness behavior of Saturn in

the presence of faulty situations in the network.

As we discussed in Section 3, robustness behavior crosscuts functional behavior. When

robustness behavior is modeled directly with the functional model, the complexity of the

resulting model increases enormously due to redundant modeling elements, which are

scattered across the model (e.g., repeated in each state of the functional model). Modeling

such redundant behavior requires substantial modeling effort if not modeled using an AOM

methodology as the same behavior has to be modeled in several places in the model. As we

279

discussed in Section 3, we employed AOM, and more specifically the AspectSM profile to

reduce this accidental modeling complexity. Based on our experience with the Saturn VCS,

we saved more than 95% of the modeling effort when measured by the number of modeled

elements involved in the VCS robustness behaviors [7]. Of course, this effort is saved at

the expense of learning and applying various stereotypes defined in AspectSM. We will

further investigate the effort required to learn and apply AspectSM with more industrial

case studies and controlled experiments in the future. However, the percentage of saving is

so large that we consider these results to be very promising. In addition, modeling

robustness behavior using AspectSM significantly improves the readability of the models

as suggested from the results of a controlled experiment reported in [15].

Modeling crosscutting behavior in UML state machines provides enhanced separation

of concerns. This means that a modeler/tester, or several of them with possibly different

expertise, can focus on each crosscutting concern separately. They can model these

crosscutting concerns separately from the core functionality and other crosscutting

concerns (aspects). Our tool [7] can then be used to automatically weave these aspects with

the behavioral models.

6.1.2 Experiences with MARTE

As we discussed in Section 3.2, we used a small subset of the MARTE profile to model

properties of environment, whose violations lead to the faulty situations in the

environment. The MARTE profile has a package dedicated to modeling non-functional

properties (NFP). It provides different data types such as NFP_Percentage and

NFP_DataTxRate, which are helpful to model properties of the environment, for instance

jitter and packet loss in networks. When the built-in data types of MARTE are not

sufficient, the open modeling framework of MARTE can be used to define new NFP types

by either extending the existing NFPs or by defining completely new NFPs. For instance,

we extended MARTE’s NFPs and define several properties of the environment when

modeling echo in audio streams and modeling miss-synchronization between audio and

video streams coming to a VCS [7]. From our experience in using MARTE, we can

conclude that the MARTE profile and its open modeling framework were sufficient to

model relevant properties of the Saturn operating environment. In addition, the fact that

280

MARTE is a standard UML profile by OMG and hence is supported by many modeling

tools [8] facilitates the adoption of modeling in industrial contexts since models are assets

to be reused and modified over many years.

6.2 Test Case Generation

In this section, we discuss our experiences regarding the generation of robustness test

cases.

6.2.1 Experiences with the TRUST tool

We have previously reported [6] the successful application of the TRUST tool in two

companies to support functional test case generation. In our current application, we

extended TRUST for robustness testing. For this purpose, we only needed to change the

transformation rules in MOFScript [14] that generate the concrete test scripts. The

modified transformation rules generate appropriate commands in the test scripts that

emulate faulty situations in the environment. Generally, the transformation rules written in,

e.g., Kermeta [11], MOFScript [14], or Query/View/Transformation (QVT) [16] are

relatively compact and easy to read, write, and change as opposed to manipulating models

using programming languages such as Java and C++. For the current implementation, we

used MOFScript as Model-to-Text (M2T) transformation language, because it was the only

M2T transformation language with good enough tool support (at the time of writing this

paper).

6.2.2 Experiences with environment fault emulation

The most challenging part for test case generation was emulating faulty situations in the

environment to test a system’s robustness against them. A faulty situation in the operating

environment is emulated when the properties of the environment are violated (Section 3.2).

These violations are specified as change events (OCL constraints) on aspect state machines

that lead to faulty states. To obtain a test suite that covers all the states in such UML

models, it is hence important to find environment configurations for which these OCL

constraints are evaluated to be true. Unfortunately, some of these constraints are complex,

comprising of up to eight conjuncted clauses and hence are very difficult to solve using

281

existing OCL solvers. For instance, we experimented with one well-known, downloadable

OCL solver (UMLtoCSP) [17]. The results showed that, even after running that tool for 10

hours, no solutions could be found for most of the constraints. The reason is that the

existing OCL solvers require the conversion of OCL to lower-level languages such as a

Satisfiability (SAT) formula [18] or a Constraint Solving Problem (CSP) [17] instance and

hence can easily result in combinatorial explosion as the complexity of the model and

constraints increase (as discussed in [17]). For industrial scale systems, as in our case, this

is a major limitation, since the models and constraints are generally quite complex. Hence,

existing techniques based on conversion to lower-level languages seem impractical in the

context of large scale, real-world systems. To solve this issue, we developed a new OCL

solver based on search algorithms and managed to solve the same constraints in 3.8

minutes on average [12] on a regular PC. This gives empirical evidence that it is possible

to quickly and directly solve complex industrial constraints written in a high-level

language such as OCL, and hence efficiently emulates faulty situations in the operating

environment for robustness testing purposes.

As we discuss in Section 6.2, we developed an OCL constraint solver in Java that

interacts with an existing library, an OCL evaluator called EyeOCL Software (EOS) [17].

Our tool implements a set of heuristics as discussed in [12] for various expressions in OCL

using EOS’s API, which are then used by search algorithms to guide the search for input

data that satisfy such constraints. We used EOS for both parsing and evaluating OCL

expressions. We experienced that EOS is one of the most efficient OCL evaluators and

provides a very simple API to evaluate and parse OCL expressions. In our experience, the

only major downside of EOS is that, to evaluate/parse OCL expressions, EOS requires

class and/or object diagrams to be loaded into its memory in a specific format. To facilitate

this, we wrote a MOFScript transformation that takes the UML class diagram (modeling

state variables, method calls, and signal receptions of the SUT) as input and generates a

Java wrapper class that includes a set of EOS method calls for making class and object

diagrams. During test case generation, we solve the constraints on the environment

properties to emulate faulty situations in the environment using EOS and search

algorithms. Another issue when solving an OCL constraint using a search algorithm is that

it requires evaluating the OCL expression many times, and hence the speed of constraint

282

solving is dependent on the efficiency of the selected OCL evaluator. Recall from Section

4.3 that we developed our TRUST testing tool with an open architecture such that any

other OCL evaluator and parser (more efficient) can be easily replaced with EOS if

required.

6.3 Test Case Execution

This section discusses our experience with test case execution at Cisco.

6.3.1 Experiences with setting up environment emulators

Executing robustness test cases is expensive because it requires setting up special

equipment (hardware and/or software-based emulators) to emulate faulty situations in the

environment. The emulators required in our current industrial case study are targeting

networks, media streams and VCS. In our case, we only experimented with the network

emulator because all communications between VCSs takes place via the network. It is

hence important to test a VCS’s behavior in the presence of faulty situations in the

network. In our current application, we setup network emulator (netem [14]) once and then

used it for testing without any additional settings for executing each test case.

6.3.2 Experiences with test case execution

Applying standard MBT criteria on UML state machines modeling the VCS results in test

suites that are often to expensive or time-consuming to fit available test resources. For

instance, in our current experiment, using a very simple coverage criterion on our (partial)

case study (Section 5.2) resulted in 72 test cases, which would a take a long time to run in

the test lab at Cisco Norway. This is expected to be a problem on most industrial systems,

especially when modeling robustness along with the functional behavior. Executing large

test suites is not practically feasible in many industrial contexts due to limited time and

resources. For instance, running one robustness test case requires booking a specialized

testing lab and takes on average 15 minutes on a Cisco’s VCS. To cope with this practical

problem, and in general to apply MBT in industry, there is the need of smart techniques to

automatically select smaller subsets of test cases that can be run within testing budgets

[19].

283

6.4 Current Limitations

As we discussed in Section 3, we need to model the faulty situations in the network, media

streams, and VCSs communicating with a VCS under test (VUT). To date, we

experimented only with emulating faulty situations in the network, which is just one aspect

of the environment. Although we have already modeled the faulty situations in media

streams (e.g., echo in audio and miss-synchronization between audio and video) [7], we do

not have an appropriate media stream emulator yet. In addition to the media streams

emulator, we also need to update our test script generator to generate test scripts that will

control the media streams emulator during test case execution. For emulating faulty

situations in other VCSs communicating with the VUT, we have not yet modeled the VCSs

from that perspective. But we do expect that the models of the VCSs should be quite

similar to the models of VUT, except for the need to select test paths from the models that

will trigger faulty situations. For this purpose, we do have software-based emulators for

VCSs, which can be utilized to emulate faulty situations during test case execution.

7 Related Work

Most of the work related to MBRT focuses on modeling and testing the behavior of a

system when invalid inputs are given to the system, or in cases when exceptions (similar to

exceptions in a programming language) are thrown in the SUT. For instance, Pintér and

Majzik [20] report on the modeling of exceptions in statecharts in a similar fashion to Java

mechanisms for writing exceptions (try/catch blocks). Exceptions are modeled as events on

transitions in statecharts. Such statecharts are subsequently used for model checking. Lei et

al. [21] provide a methodology to check the robustness of component-based systems in the

case of invalid inputs. Test cases are then generated for invalid inputs at various states and

the robustness of the system is checked. Nebut et al. [22] provide an automatic test

generation approach based on use cases extended with contracts, after transforming them

into a transition system. Their approach supports both functional and robustness test

generation. Robustness test cases are generated by calling use cases when their

preconditions are false.

284

The work presented in this paper is different from the existing work in MBRT in one or

more of the following ways: 1) It focuses on modeling and testing system robustness in the

presence of faults in its environment; this aspect has received little attention in the

literature. In contrast, most of the existing work focus only on the behavior of a system

when receiving invalid inputs [20] [21]. In contrast to the work presented in [22], our work

is based on UML state machines, which is the main notation currently used for model-

based test case generation [5]; 2) It uses AOM to model robustness behavior separately

from the core, functional behavior, hence decreasing modeling effort by avoiding clutter in

models, making them easier to read and decreasing chances of modeling errors; 3) It relies

on modeling standards, in this case UML state machines and the MARTE profile [8], to

model faulty situations of the environment. Using standards eliminate the need to adopt

new notations and consequently facilitates the technology transfer to industry, as there are

commercial modeling tools supporting UML and its extensions.

Other related works are the ones which employ search algorithms for non-functional

testing. A recent systematic review [23] on the application of search algorithms for non-

functional testing reveals that existing works focused on performance, quality of service,

security, usability, and safety testing. None targeted robustness testing using search

algorithms, as in our work.

8 Conclusion and Future Work

Model-based robustness testing (MBRT) is a solution for systematic and rigorous

robustness testing for industrial embedded systems, as for example communication and

control systems. MBRT involves testing the behavior of a system in the presence of faulty

situations in its operating environment.

In this paper, we reported our experience of applying MBRT to video conferencing

systems (VCSs) developed by Cisco Systems, Norway. Such industrial applications of

MBRT and even more generally of model-based testing (MBT) are very rare in the

literature. They are however very important to evaluate the scalability and applicability of

MBT in realistic settings. We discussed how we integrated different tools and techniques

to achieve the ultimate goal of automated and systematic MBRT. First, we discussed how

285

we achieved scalable modeling of robustness behavior using Aspect-oriented Modeling

(AOM) and more specifically using the AspectSM profile. AspectSM is a UML profile

specifically designed to model robustness behavior with minimum extensions to UML to

ease practical adoption. We also provided details on the weaver for AspectSM. Second, we

provided details on the use of search algorithms (e.g., Genetic Algorithms) to solve

complex constraints on environmental properties to emulate faulty situations. Third, we

described the integration of the abovementioned tools with our model-based testing tool

TRUST to achieve fully automated MBRT. Finally, we discussed the setup required to

execute the test cases generated by TRUST and preliminary results when running the case

studies on the VCS under test. The execution of test cases revealed a robustness fault in the

VCS that had remained undetected by previous testing, in the presence of duplicate packets

in the network during a videoconference. We then summarized our experiences and lessons

learned while applying MBRT at Cisco.

This paper reports on a successful application of modeling to support testing in a real

industrial setting. The results reported in this paper provide useful insights into the

challenges and benefits of applying MBRT in a typical embedded system environment.

One key success factor is to be able to address serious scalability issues (e.g., in constraint

solving), which usually are not faced when dealing with small/artificial problem instances.

However, there are still many research questions that need to be addressed. In the future,

we are planning to extend the TRUST tool with more sophisticated test strategies

specifically tailored to discovering robustness faults in a VCS. We also plan to perform

robustness testing in the presence of faulty situations in other aspects of the environment

such as in media streams and VCSs.

9 References

[1] "IEEE Standard Glossary of Software Engineering Terminology," IEEE, IEEE Std
610.12-19901990.

[2] "IEEE Standard Dictionary of Measures of the Software Aspects of Dependability,"
IEEE Std 982.1-2005 (Revision of IEEE Std 982.1-1988), pp. 1-34, 2006.

[3] "Standard for Software Quality Characteristics," International Organization for
Standardization, ISO-9126-32003.

286

[4] "Software Assurance Standard," NASA Technical Standard, NASA-STD-
8739.82005.

[5] M. Shafique and Y. Labiche, " A Systematic Review of Model Based Testing
Tools," Carleton University, Department of Systems and Computer Engineering,
Technical Report (SCE-10-04)2010.

[6] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. C. Briand, "Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies," Simula Research Laboratory, Technical Report (2010-
01)2010.

[7] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness Behavior Using
Aspect-Oriented Modeling to Support Robustness Testing of Industrial Systems,"
Simula Research Laboratory, Technical Report (2010-03)2010.

[8] "Modeling and Analysis of Real-time and Embedded systems (MARTE)," 2010.
[9] R. V. Binder, Testing object-oriented systems: models, patterns, and tools:

Addison-Wesley Longman Publishing Co., Inc., 1999.
[10] R. Yedduladoddi, Aspect Oriented Software Development: An Approach to

Composing UML Design Models: VDM Verlag Dr. Müller, 2009.
[11] "Kermeta - Breathe Life into Your Metamodels," Rennes and Britanny IRISA and

INRIA, 2010.
[12] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, "A Search-based OCL Constraint

Solver for Model-based Test Data Generation," in Proceedings of the 11th
International Conference On Quality Software (QSIC 2011), 2011.

[13] M. Egea, "EyeOCL Software," 2010.
[14] "netem," 2011.
[15] S. Ali, T. Yue, L. C. Briand, and Z. I. Malik, "Does Aspect-Oriented Modeling

Help Improve the Readability of UML State Machines?," Simula Reserach
Laboratory, Technical Report(2010-11), 2010.

[16] "Query/View/Transformation (QVT)," 2011.
[17] J. Cabot, R. Claris, and D. Riera, "Verification of UML/OCL Class Diagrams using

Constraint Programming," in Proceedings of the 2008 IEEE International
Conference on Software Testing Verification and Validation Workshop: IEEE
Computer Society, 2008.

[18] M. Krieger and A. Knapp, "Executing Underspecified OCL Operation Contracts
with a SAT Solver," in 8th International Workshop on OCL Concepts and Tools.
vol. 15: ECEASST, 2008.

[19] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test Case Selection
Approach for Model-Based Testing: An Industrial Case Study," in 18th ACM
SIGSOFT international symposium on Foundations of Software Engineering (FSE):
ACM, 2010.

[20] G. Pintér and I. Majzik, "Modeling and Analysis of Exception Handling by Using
UML Statecharts," in Scientific Engineering of Distributed Java Applications,
2005, pp. 58-67.

[21] B. Lei, Z. Liu, C. Morisset, and X. Li, "State Based Robustness Testing for
Components," Electronic Notes of Theoratical Computer Science, vol. 260, pp.
173-188.

287

[22] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jezequel, "Automatic Test Generation:
A Use Case Driven Approach," IEEE Transactions of Software Engineering, vol.
32, pp. 140-155, 2006.

[23] W. Afzal, R. Torkar, and R. Feldt, "A Systematic Review of Search-based Testing
for Non-functional System Properties," Information and Software Technology, vol.
51, pp. 957-976, 2009.

