
ORIGINAL RESEARCH

A systematic review of transformation approaches between
user requirements and analysis models

Tao Yue • Lionel C. Briand • Yvan Labiche

Received: 27 April 2009 / Accepted: 9 August 2010 / Published online: 26 August 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Model transformation is one of the basic prin-

ciples of Model Driven Architecture. To build a software

system, a sequence of transformations is performed, start-

ing from requirements and ending with implementation.

However, requirements are mostly in the form of text, but

not a model that can be easily understood by computers;

therefore, automated transformations from requirements to

analysis models are not easy to achieve. The overall

objective of this systematic review is to examine existing

literature works that transform textual requirements into

analysis models, highlight open issues, and provide sug-

gestions on potential directions of future research. The

systematic review led to the analysis of 20 primary studies

(16 approaches) obtained after a carefully designed pro-

cedure for selecting papers published in journals and con-

ferences from 1996 to 2008 and Software Engineering

textbooks. A conceptual framework is designed to provide

common concepts and terminology and to define a unified

transformation process. This facilitates the comparison and

evaluation of the reviewed papers.

Keywords Systematic review � Requirements �
Analysis model � Transformation � Traceability �
Natural language

1 Problem definition

One of the basic principles of Model Driven Architecture

(MDA) [29] is model transformation. To build a software

system, a series of transformations is performed: transfor-

mation from requirements to Platform Independent Model

(PIM) (the analysis model), transformation from PIM to

Platform Specific Model (PSM) (the design model), and

transformation from PSM to code. However, the transfor-

mation from requirements to an analysis model is not part

of the MDA lifecycle, which starts from an analysis model

and ends with deployed code [29]. The reason of this

exclusion is perhaps that requirements are mostly in a

textual form, which is not a model formal enough to be

understood by computers. As a result, requirements are not

suitable for automated transformations, and only manual

heuristics, such as Abbott’s heuristics [4], are in general

followed [9, 32]. However, if a (semi-) automated trans-

formation technology from requirements to an analysis

model were devised, it would help fill an important gap in

the MDA software development lifecycle.

If these transformations can be automated, full trace-

ability from requirements (through PIM and PSM) to the

ultimate software code can be obtained at the same time.

Traceability is the ability to link requirements to corre-

sponding analysis and design models, code, test cases, and

other software artifacts. Traceability is important during

software development because it enables engineers to

understand the connections between various artifacts of a

software system, and it is also used to determine whether

T. Yue � L. C. Briand

Simula Research Laboratory, University of Oslo,

P.O. Box 134, Lysaker, Norway

L. C. Briand

e-mail: briand@simula.no

T. Yue (&) � Y. Labiche

Software Quality Engineering Lab, Carleton University,

1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

e-mail: tao@simula.no

Y. Labiche

e-mail: labiche@sce.carleton.ca

123

Requirements Eng (2011) 16:75–99

DOI 10.1007/s00766-010-0111-y

developers have refined requirements into high-level

design components, then lower-level design components,

and eventually built them into executable code. Trace-

ability is also mandated by numerous standards (e.g., IEEE

Std. 830-1998 [3]).

Though the importance of traceability has been well

recognized, traceability is still not widespread in practice

because of the reasons identified in [43], including: dif-

ferent languages used in different software development

phases and insufficient tool support for traceability creation

and maintenance which is critical in practice since models

tend to be large, and we can therefore expect to have to

create and maintain large numbers of traceability links.

MDA provides new opportunities for establishing trace-

ability links through transformations. With the support of

MDA strategies, transformation-based techniques generate

traceability links along with the generation of the artifacts

(e.g., analysis models), which may be represented in dif-

ferent languages and at different levels of abstractions.

However, the integration of transformations with trace-

ability is still not well developed, and more research on

automated traceability creation is needed [5]. One of the

promising methods conforming to MDA is the utilization

of use-case-centric methods (e.g., IBM Rational Unified

Process [30]). As explained in [5], a use-case-centric

method requires that software requirements be specified as

use cases (requirements), which are further transformed

into use case realizations (analysis model). These use case

realizations are then transformed into low-level artifacts

(code). Traceability links can be easily created when these

transformations are performed.

The IBM Rational Software Architect (RSA) [22] is a

tool that has taken an initial step to realize a use-case-

centric method. IBM RSA currently supports transformation

from a use case template to an analysis model template,

though it is currently coarse-grained. For example, actors

are transformed into boundary classes; each use case is

transformed into a boundary class, a controller class, and a

use case realization with a default, empty Interaction (a

Unified Modeling Language (UML) [38] model element).

The textual description of each use case is not analyzed and

transformed though; therefore, fine-grained transformation

is not supported.

This paper reports on a systematic review that focuses on

approaches for transforming requirements into analysis

models. The intent is to determine whether these approa-

ches have the capability to transform requirements into an

analysis model and at the same time establish traceability

links between them, and how automated, efficient, and

complete the transformation process is. This review sys-

tematically selected, investigated, and compared 20 primary

studies (16 approaches) for transforming requirements into

an analysis model. In order to facilitate the synthesis and

comparison of these approaches, we designed a conceptual

framework providing common concepts, terminology, and a

unified transformation process for the comparison and

evaluation of transformation approaches. A set of evalua-

tion criteria, derived from the conceptual framework, is

proposed to evaluate approach in a precise and structured

manner. These criteria can be adapted to evaluate future

research works on the same topic.

We observed from the systematic review results that

existing approach cannot easily and realistically be applied

on real systems for documenting requirements or that they

are not able to (semi-) automatically generate a complete,

consistent analysis model, which is expected to model both

the structure and behavior of the system at a logical level of

abstraction. Based on a careful analysis and evaluation of

each aspect of the reviewed approaches, we identify open

issues and make recommendations for future work. We also

conclude that future promising approaches will likely match

the following pattern: automatically and efficiently trans-

form a use case model using reasonable restrictions to natural

language, with or without domain-specific information

provided in a glossary, into a complete, correct and consis-

tent UML model comprising both structural and behavioral

aspects using one intermediate model and fully automatable

requirements pre-processing techniques.

The scope of the systematic review is further defined in

Sect. 1.1, followed by a description of the structure of the

paper (Sect. 1.2).

1.1 Scope

This paper reports on a systematic review of approaches for

transformation between requirements and analysis models.

In this section, we refine the scope of the systematic review

by defining, more precisely, the relevant, fundamental

concepts.

A requirement is defined in [55] as ‘‘a statement that

identifies a necessary attribute, capability, characteristic, or

quality of a system in order for it to have value and utility to a

user’’. Requirements should be easy to understand since they

are usually written as a means for communication between

different stakeholders (e.g., users, developers). There are

many different ways to document requirements. One com-

mon way is to use textual descriptions only. Other ways to

document requirements include use cases and customized

document templates. For some systems (e.g., safety critical

systems), requirements may even be documented as formal

specifications. In our systematic review, we limit our scope

to requirements documented using pure textual descriptions,

use cases, or customized document templates. We exclude

formal methods (mathematical descriptions) from our sys-

tematic review since they are less often used to formalize

requirements in practice and present very different problems

76 Requirements Eng (2011) 16:75–99

123

than textual requirements (i.e., mapping between formal

languages).

An analysis model is a description of what a system is

required to do functionally and aims to be less ambiguous

and more correct and consistent than textual requirements

[9]. In a typical object-oriented software development pro-

cess, the analysis model is usually derived from require-

ments. It is typically represented as a UML model containing

various diagrams and possibly constraints. Our systematic

review is, however, not limited to UML models. Other rep-

resentations are also taken into account, as they often share

similar object-oriented concepts. Other well-known nota-

tions include, for example, message sequence charts (MSC)

or entity relationship models (ERM).

1.2 Structure

The objective of this systematic review, its research ques-

tions, search strategy, and data extraction, synthesis, and

comparison strategy are described in Sect. 2. The conceptual

framework being used to synthesize and compare the

reviewed papers and to derive comparison criteria is

described in Sect. 3. The evaluation criteria used to evaluate

related works is presented in Sect. 4. Section 5 presents the

detailed analysis and comparison of the selected related

works. The open issues and suggestions are discussed in

Sect. 6, followed by the conclusion given in Sect. 7.

2 Systematic review method

A systematic review follows a well-defined method to

identify, analyze, synthesize, evaluate, and compare all

available literature works relevant to a specific research topic

[28]. A systematic review is an important piece of work since

it summarizes existing techniques concerning a research

interest, it identifies further research directions, and it pro-

vides a framework to position new research activities [28].

Several discrete activities (i.e., guidelines) are recom-

mended for all systematic reviews in software engineering

[28], among which are four recommended essential steps that

we adopted: first, we clearly define research questions that

the systematic review is expecting to answer (Sect. 2.1);

second, we develop a search strategy (Sect. 2.2), which

includes a paper selection procedure, resources to be sear-

ched, and inclusion and exclusion criteria; third, we use the

search strategy to identify the relevant research works; Last,

we analyze, synthesize, and compare the related works to

answer the research questions.

The main objective of this systematic review is to develop

a conceptual framework to synthesize and compare the

related works proposing approaches of transformation

between requirements and analysis models. Based on the

synthesis and comparison results, we summarize and analyze

the reviewed works, identify open issues, and provide sug-

gestions for future research.

2.1 Research questions

In order to examine the evidence of transforming require-

ments into analysis models using different transformation

approaches, this systematic review aims to answer the

following research questions: (1) What are the different

approaches used for transforming requirements into anal-

ysis models? (2) What are the current limitations of these

approaches? (3) What are the open issues to be further

investigated?

The first research question is further divided into the

following sub-questions: (i) What are the different

requirement representations (e.g., use cases, pure textual

specifications, and customer-specified templates) required

by these approaches? Is it difficult for users to document

such requirements? Is there any tool support? (ii) What

kinds of analysis models (e.g., UML diagrams and message

sequence charts) can be generated by these approaches?

Does a generated analysis model contain both the structural

and behavioral aspects of a system? (iii) Are there any

intermediate models used during transformation from

requirements to analysis models? How do they affect the

efficiency of the transformation? (iv) Are these approaches

automated, automatable, semi-automated, or manual? Are

there algorithms presented in the approaches? (v) What

steps are taken by each approach to transform user

requirements into analysis models? (vi) Do approaches

include traceability management support? (vii) Have any

case studies been performed to evaluate the approaches? If

yes, what results have been obtained? What other evalua-

tion methods (besides case studies) have been applied to

evaluate these approaches?

2.2 Search strategy

In this section, we present the search strategy that we

applied to select papers to be reviewed. We initiated our

search by identifying a query string being used to perform

electronic searches, based on our research questions (Sect.

2.2.1). Then, we searched five electronic databases using

this query string (Sect. 2.2.2). In addition, as a complement

to the electronic search, we performed manual search in

specific journals and conference proceedings and also

manually checked Software Engineering textbooks (Sect.

2.2.2). We then scanned all the sources resulting from this

two-stage search to select the works to be included in the

review. During this step, we applied inclusion/exclusion

criteria (Sect. 2.2.3) to select primary studies. For each

paper, we read the paper’s title and abstract to see whether

Requirements Eng (2011) 16:75–99 77

123

it was relevant to our research topic. If the title and abstract

of the paper could not help us make a decision, we further

checked the paper’s full text. In order to augment our

collection of primary studies, we scanned the reference lists

of all the identified primary studies to identify additional

papers. Furthermore, we also went through publication lists

of primary studies’ authors to make sure that the most

recent publications on the same or similar topics were

included. The statistic data of included primary studies are

presented in Sect. 2.2.4.

2.2.1 Identification of query string

Based on the research questions (Sect. 2.1), we identified

three groups of search terms: population terms, interven-

tion terms, and outcome terms. The population terms are

the keywords that represent the domain of transforming

requirements into analysis models, such as requirements

analysis, requirements refinement, use cases realization,

and domain modeling. The intervention terms are the

keywords that represent the techniques applied in the

population to achieve an objective. In our case, the tech-

niques for transforming requirements into analysis models

could be very different; therefore, we decided to use gen-

eral terms like transformation, generation, and linguistic

analysis. The outcome terms represent different types of

analysis models, which could be generated.

To form the query string, we used a disjunction of the

keywords of each term group and then used the conjunction

of the three groups of terms. The following three groups of

terms were used to form the query string:

Population terms: requirements analysis; requirements

engineering; requirements refinement; requirements for-

malization; use cases analysis; use cases formalization; use

cases realization; object oriented analysis; object-oriented

analysis; object identification; domain modeling.

Intervention terms: automated transformation; auto-

matic transformation; transformation; transform; trans-

forming; translation; translate; translating; derive; deriving;

generation; generate; generating; linguistic analysis; lin-

guistic analyze; natural language processing.

Outcome terms: analysis model(s); object model(s);

static model(s); dynamic model(s); UML model(s); class

diagram(s); sequence diagrams(s); interaction diagram(s);

activity diagrams(s); state machine(s); statechart(s); class

model(s); interaction model(s); object oriented model(s);

object-oriented model(s); object(s); class(es); message

sequence chart(s).

2.2.2 Electronic and manual search

We performed electronic search within five electronic

databases: IEEE Xplore, ACM Digital Library,

Compendex, Inspec, and SpringerLink, using the query

string we described earlier. Each time, we modified the

query string to fit the format requirements of the elec-

tronic database before applying it. We also manually

searched all published papers from 1996 to 2008 in nine

potentially relevant, peer-reviewed journals: IEEE Trans-

actions on Software Engineering, Automated Software

Engineering, Requirements Engineering Journal, Journal

of Natural Language Engineering, ACM Transactions on

Software Engineering and Methodology, Journal of Sys-

tems and Software, Software and Systems Modeling,

Information and Software Technology, and Data &

Knowledge Engineering. We also manually searched all

published papers from 1996 to 2008 in five potentially

related conference proceedings: ACM/IEEE International

Conference on Software Engineering, IEEE International

Conference on Software Maintenance, IEEE/ACM Inter-

national Conference on Automated Software Engineering,

IEEE International Conference on Model Driven Engi-

neering Languages and Systems and the former UML

workshops, and IEEE International Requirements Engi-

neering Conference. We also manually searched Software

Engineering textbooks (e.g., [9, 32]) that describe trans-

formations from requirements to analysis models.

2.2.3 Inclusion/exclusion criteria

Approaches for transforming requirements into analysis

models vary a great deal as different requirement repre-

sentations are adopted as inputs, and/or different analysis

models are generated. Therefore, it is absolutely necessary

that we define thorough inclusion/exclusion criteria to

select the primary studies that can answer our research

questions (Sect. 2.1) and also conform to our research

scope (Sect. 1.1). We used the following inclusion/exclu-

sion criteria:

• Papers irrelevant to the transformation of requirements

are excluded. For example, the papers discussing

information retrieval techniques that are used to recover

traceability links (one of the capabilities of transfor-

mation approaches) between software artifacts are

excluded.

• Papers proposing transformation approaches between

software artifacts that are out of our review scope are

excluded. For example, transformations between

requirements given as formal specifications and design

models or code are excluded (e.g., [53]).

• When encountering more than one paper describing the

same or similar approaches, which were published in

different venues, we only included the most recent one

or the one with the most complete description of the

approach.

78 Requirements Eng (2011) 16:75–99

123

• When a single approach is presented in more than one

paper describing different parts of the approach, we

included all these papers, but still considered them as a

single approach.

• Papers with insufficient technical information regarding

their approaches were excluded. For example, the

papers that do not provide a detailed description on

requirements representations, intermediate models (if

any), and transformation techniques, are considered

incomplete and are excluded (e.g., [11]).

• Software Engineering textbooks (e.g., [9, 31–33, 42,

50]) share similarities with respect to the requirements

to analysis model transformation. They all describe an

intuitive set of heuristics to guide designers identify

objects, attributes, and associations from a requirement

specification, mapping parts of speech (e.g., nouns,

verbs and adjectives) to model elements (e.g., objects,

operations, and attributes). Some of these books refer to

Abbott’s heuristics [4] (e.g., [9, 32, 42, 50]), others

provide similar heuristics to Abbott’s (e.g., [33]), and a

third group extends Abbott’s heuristics (e.g., [9, 31]).

These textbooks suggest that these heuristics be applied

manually (no transformation approach is described) and

no requirements pre-processing technique is applied.

According to our taxonomy of approaches (Sect. 5), all

those approaches fall into the same category. Since

Abbott’s heuristics is the primary study that is mostly

used or referenced, we therefore only include Abbott’s

heuristics [4] as one of the primary studies. We only

mention individual textbooks when we discuss their

transformation rules (heuristics) that do not refer to

Abbott’s or extend Abbott’s.

2.2.4 Statistics from included primary studies

The electronic search results are summarized in Table 1. A

total of 451 papers were found. After eliminating dupli-

cates, 361 papers remained to be further investigated.

After filtering the results (361 papers) of the electronic

search by applying the inclusion/exclusion criteria, we

identified 11 papers [6, 14, 19, 21, 24, 25, 36, 40, 48, 51,

54] to include. The manual search of journals and confer-

ence proceedings yielded an additional six primary studies

(i.e., [10, 17, 18, 20, 47, 49]), and two of them (i.e., [18,

49]) are more recent discussions and therefore replaced two

of the 11 papers identified from the electronic search (i.e.,

[19, 48]). We scanned the references and the authors’

publication lists of all the 15 primary studies (11 ? 6-2).

Five new papers were identified (i.e., [34, 35, 44, 45, 52]),

and one of them (i.e., [52]) (with a more complete

description of the approach) replaced one of the already

identified 15 primary studies (i.e., [51]). Among all these

19 primary studies (15 ? 5-1), three groups of papers

(i.e., [34, 52], [18, 35, 44], and [45, 49]) describe three

individual approaches. The papers in each group together

describe a single approach. Therefore, eventually a total of

15 approaches (19 primary studies) were included in the

review (i.e., [6, 10, 14, 17, 18, 20, 21, 24, 25, 34–36, 40,

44, 45, 47, 49, 52, 54]). In addition to these 15 approaches

(19 primary studies), we also included Abbott’s heuristics

[4] as one of the primary studies, as discussed in Sect.

2.2.3. In total, we included 16 approaches (20 primary

studies).

3 Conceptual framework

We designed a conceptual framework to extract and syn-

thesize data from the primary studies in a systematic and

precise way. The conceptual framework is composed of a

static model describing common concepts and their rela-

tionships (Sect. 3.1), five taxonomies classifying and

specifying existing work according to five aspects, specif-

ically the kinds of requirements, the rules imposed on

requirements, the types of analysis models, requirements

pre-processing approaches, and requirements transforma-

tion approaches (Sect. 3.2), and a general transformation

process model (Sect. 3.3). This framework defines the

common concepts and terminology needed for analysis,

synthesis, and comparison of the primary studies. This is

paramount since, for instance, different approaches may

apply the same techniques but refer to them using dif-

ferent names. The framework therefore provides a way to

unify the description of related works. The comparison

and evaluation criteria are derived from this framework

(Sect. 4).

3.1 Static model

In this section, we formalize the notions of transformation,

traceability link, requirement, and analysis model by means

of a metamodel. The metamodel is presented using the

class diagram in Fig. 1. It illustrates the main concepts of

our review framework and their relationships.

Table 1 Summary of electronic search results

Electronic

databases

Query

results

After removing

duplicates

IEEE Xplore 179 179

ACM Digital Library 17 15

Compendex 86 66

Inspec 83 34

SpringerLink 86 67

Total 451 361

Requirements Eng (2011) 16:75–99 79

123

As shown in Fig. 1, Requirements can be trans-

formed into an Analysis model either directly or

indirectly. For direct transformation, there is no Inter-

mediate Model, so only one Transformation is

required: its source is the requirements and its target

is the analysis model. For indirect transformation, one or

more Intermediate Models1 are used to bridge the

gap between the requirements and the analysis model.

Intermediate models function as a temporary source or

target of the transformations, which are either from the

requirements (source) to the first intermediate models

(temp target), between two different intermediate

models (one is temp source and the other is temp

target), or from the last intermediate model (temp

source) to the analysis model (target).

Requirements are composed of one or more Con-

structs,2 while an Analysis Model is composed of

one or more Model Elements.3 Instances of Trace-

ability Link are established between the constructs of

the requirements and the model elements of the analysis

model. For transformation-based traceability establish-

ment, creating a traceability link is caused by a transfor-

mation. When traceability links can be established between

a series of models (in the case of intermediate model(s)),

we must derive traceability links between the constructs of

the requirements and the model elements of the analysis

model, these links being modeled as instances of class

Derived Traceability Link.

Since requirements are textual specifications, they usually

need to be pre-processed either manually or automatically

before they are inputted to the transformation. One or more

Requirement Pre-processing steps may be taken to

transform Requirements into a Pre-processed

Requirements, which is further transformed into either

an analysis model or an intermediate model if one exists.

During a series of transformations, traceability links should

be established for the source and target of each transforma-

tion, for example, between the requirements and the

pre-processed requirements, between the pre-processed

requirements and the first intermediate model, between

intermediate models if more than one exists, and/or between

the last intermediate model and the analysis model.

3.2 Taxonomies

In this section, we define taxonomies to classify and

specify the important techniques and terminology used in

the primary studies. In the later sections of this paper, these

taxonomies will be referred to in multiple places.

The taxonomy of requirements (Sect. 3.2.1) classifies

different requirements representations, domain-specific

information, and whether restricted natural language (NL)

is applied. A restricted NL is a subset of a natural language,

used to restrict its grammar and vocabulary, mostly for the

purpose of reducing or eliminating ambiguity and com-

plexity in its usage. The taxonomy of restriction rules

(Sect. 3.2.1.1) classifies different types of restriction rules

used for requirements written in restricted NL. The tax-

onomy of analysis models (Sect. 3.2.1.2) unifies different

analysis models. We also provide a taxonomy of require-

ment pre-processing approaches in Sect. 3.2.1.3 to distin-

guish them at a certain level of abstraction. Last, a

taxonomy of approaches for (pre-processed) requirements

transformation is presented in Sect. 3.2.5.

3.2.1 Taxonomy of requirements

In order to generate analysis models from requirements and

further establish traceability links between them, it is

Fig. 1 Static model (class

Traceability Link
appears four times for layout

purposes)

1 If multiple intermediate models are used, they are ordered.
2 A construct can be a sentence, or an actor, if requirements are

presented as use cases, for example. We do not distinguish different

constructs in this conceptual static model.
3 If the analysis model is presented as a UML model, then model

elements are UML model elements. Other representations can be used

equally.

80 Requirements Eng (2011) 16:75–99

123

important to understand requirements from the following

three aspects: which kinds of requirements supplements4

are required (sub-taxonomy Domain Specification Infor-

mation: DSI in Fig. 2), how requirements are represented

(sub-taxonomy Representation in Fig. 2), and whe-

ther restricted NL is used when specifying requirements

(sub-taxonomy Natural Language in Fig. 2). These

sub-taxonomies, discussed in the following sub-sections,

therefore represent what kinds of requirements are

encountered in the literature.

3.2.1.1 Requirements representation In many situations,

requirements are represented as Use cases. It is also

possible that a customized Document template is

applied to document requirements. Requirements can also

be represented using more than one such representation. If

no representation is used, then requirements are simply

expressed in unstructured natural language. A use case is

‘‘the specification of a set of actions performed by a sys-

tem, which yields an observable result that is, typically, of

value for one or more actors or other stakeholders of the

system. [55]’’ A use case represents an interaction between

a primary actor and other actors, and the system. This

interaction is presented as sequences of simple steps (also

called flow of events). Use cases are documented following

a use case template. There is no standard template, and

users typically choose the template that works for them, or

is required by a project or a CASE tool. Some companies

and organizations rather apply their own Document

Templates for requirements documentation. These doc-

ument templates are customized for special purposes such

as facilitating requirements elicitation.

3.2.1.2 Requirements supplements (DSI) Domain-spe-

cific information is a necessary input for some of the

approaches used to transform requirements into analysis

models. It is either captured using a Glossary, Defini-

tion, and/or Domain model. A Glossary describes

and classifies all the domain-specific terms used in require-

ments. A Definition [6] defines the notational short hand

for expressing requirements in a succinct, practical, and

domain-specific way. A Domain model is created to doc-

ument the key concepts and the vocabulary of an application

domain. It describes the various concepts involved in the

application domain and their relationships. It is usually

represented as a class diagram with possibly constraints in

the object constraint language (OCL) [37].

3.2.1.3 Natural language (NL) Requirements can be

written using either an Unrestricted NL or a

Restricted NL. A restricted NL is also called a con-

trolled NL. It is a subset of natural language obtained by

restricting the grammar and vocabulary. It aims to reduce

ambiguity, redundancy, size and complexity of require-

ments, and to facilitate automated analysis.

3.2.2 Taxonomy of restriction rules

As shown in Fig. 3, we classify the Restriction Rules

of the Restricted NLs used in the literature into three

types: Sentence Restriction, Sentence Struc-

ture Restriction, and Wording Restriction. A

sentence is a group of words that are put together to mean

something [2], and it is expected to have a subject and a verb.

For example, the restrictions on allowed choices of tenses of

a verb, on choices of singular or plural forms of a noun, are

thought of as sentence restrictions. ‘‘Use active voice rather

than passive voice’’ is another example of such a restriction.

Sentence structure restrictions put restrictions on the struc-

ture of a compound sentence. A compound sentence has

many clauses. These clauses are joined together with con-

junctions, punctuation, or both [2]. For example, ‘‘only if–

then structure is allowed to describe conditional sentence’’ is

Fig. 2 Taxonomy of

requirements

Fig. 3 Taxonomy of restriction

rules

4 Requirements supplements refer to documents that clarify the

terminology used in requirements.

Requirements Eng (2011) 16:75–99 81

123

a restriction on sentence structure. Wording restrictions

restrict the choice of words and the way in which they are

used: e.g., ‘‘use only keywords be or become to express a

generalization relationship between the subject and the

object of a sentence’’.

3.2.3 Taxonomy of analysis models

An analysis model is typically presented as a UML model,

but not necessarily limited to it. A complete analysis model

should describe two aspects of a system: Structure and

Behavior. The structure (or static) aspect emphasizes the

static structure of the system using classes, objects, attri-

butes, operations, relationships, etc., while the behavior (or

dynamic) aspect emphasizes the dynamic behavior of the

system by showing interactions among objects, internal

state changes, etc. As shown in Fig. 4, we classify the

different presentations of the Structure aspect used in

the literature into four types: Class Diagram, Object

Diagram, Entity Relationship Model (ERM), and

Architecture Concept. As two types of UML dia-

grams, class diagrams are composed of classes, attributes,

operations, and relationships among the classes, and object

diagrams describe objects and links. ERM was proposed in

the early 70s to document the concepts of entity, rela-

tionship, types, and roles. Architecture Concept is

used in [20] to present the concepts of components, con-

nectors, and architectural patterns (e.g., client–server). The

Behavior aspect is classified into five types: Sequence

Diagram, State Machine Diagram, Activity

Diagram, Data Flow Graph (DFG), and Message

Sequence Chart (MSC). Sequence, state machine, and

activity diagrams are three commonly used UML diagrams

for describing the behavior of a system from three different

views; sequence diagrams describe object interactions as

messages, activity diagrams show the overall flow of

control, and state machine diagrams describe state-based

behavior. Message sequence charts are very similar to

sequence diagrams. Data flow graphs represent data

dependencies between operations.

3.2.4 Taxonomy of requirements pre-processing

approaches

Most requirements are textual and have to be pre-processed

(using NL processing techniques) before being used as the

input for the next step’s transformation. There are usually

five types of pre-processing techniques (Fig. 5) that can be

used in isolation or combined: Lexical Analysis,

Syntactic Analysis, Semantic Analysis,

Categorization, and Pragmatic Analysis.

Lexical Analysis, also called token generation, is

the process of converting a sequence of characters into a

sequence of tokens [55]. It is composed of the following

processing steps: tokenization, sentence splitting, part-of-

speech (POS) tagging, and morphological analysis. Toke-

nization is used to separate words and punctuation, and

identify numbers. Sentence splitting identifies sentence

boundaries within a given text. POS tagging identifies

words as nouns, verbs, adjectives, etc. Morphological

analysis returns the root and suffix of each word. Syn-

tactic analysis, also called syntactic parsing, is the

process of analyzing a sequence of tokens to determine

grammatical structure with respect to a given formal

grammar [1]. The output is usually a syntactic parse tree.

Semantic analysis is the process of adding semantic

information to a parse tree [1], typically by using domain-

specific information (i.e., DSI). Categorization is the

process of recognizing, differentiating, and classifying

requirements for some specific purpose and is usually

performed manually. Pragmatic analysis eliminates

ambiguities and inconsistencies in requirements. For

instance, pragmatic analysis can be used to check the

consistency of a new piece of information before it is

actually added to existing requirements [36].

3.2.5 Taxonomy of transformation approaches

Pre-processed requirements are further transformed into an

analysis model or an intermediate model. Three types of

transformations can be identified: Rule based, (the most

commonly used in the literature) Ontology based, and

Identity Transformation (Fig. 6). Rule based

Fig. 4 Taxonomy of analysis

models

Fig. 5 Taxonomy of requirements pre-processing approaches

82 Requirements Eng (2011) 16:75–99

123

transformation utilizes a set of predefined Transfor-

mation Rules. An ontology is a ‘‘shared vocabularies for

describing the relevant notions of a certain application

area, whose semantics is specified in a (reasonably)

unambiguous and machine-processable form’’ [8]. An

ontology model is built when NL sentences are processed.

This ontology model acts as an intermediate model that is

further transformed into an analysis model. Such transfor-

mations are called Ontology-based transformations.

An Identity Transformation transforms a model

(source) into another model (target) without change in

information content: the two models describe the same

concepts but with different representations. A Pattern-

based transformation transforms source patterns into

target patterns. A source pattern describes and organizes a

set of source elements; while a target pattern describes and

organizes a set of target elements.

3.3 Process model

We use an activity diagram (Fig. 7) to model the overall

process of transforming requirements into an analysis

model. First, requirements are pre-processed by applying

one or more pre-processing techniques (Sect. 3.2.1.3),

resulting into pre-processed requirements (step 1). If there

is no intermediate model, then the pre-processed require-

ments are transformed directly into an analysis model (step

6); otherwise, the pre-processed requirements are trans-

formed into an intermediate model (step 2). If there is more

than one intermediate model involved, then transforma-

tions between these intermediate models are performed

(step 3). Step 3 can be performed more than once,

depending on the number of intermediate models. For

example, if there are three intermediate models, step 3 is

performed twice. Then step 4 transforms the last interme-

Fig. 6 Taxonomy of

transformation approaches

Fig. 7 A generic transformation process

Requirements Eng (2011) 16:75–99 83

123

diate model into the analysis model. While steps 2, 3, and 4

(or 6 if no intermediate model is used) are performed,

traceability links are established between the source model

and the target model of transformations (step 5). The out-

put of this step is several sets of traceability links either

between the requirements and the first intermediate model,

between two intermediate models, or between the last

intermediate model and the analysis model. Finally, we

derive traceability links for the requirements and the gen-

erated analysis model (from step 4) from the sets of

traceability links involving intermediate models (step 7). If

there is no intermediate model (i.e., step 6 is taken), step 7

is obviously not needed. The output of the whole process is

an analysis model, and a set of traceability links between

the requirements and the generated analysis model.

4 Evaluation criteria

Our evaluation criteria are derived from the conceptual

framework discussed in Sect. 3. Before specifying them, we

first clarify their mapping to the conceptual framework

(Fig. 8). As we have discussed in Sect. 3, the conceptual

framework is composed of a Static model, five Taxo-

nomies and one Process model. The evaluation crite-

ria, being discussed in this section, are used to evaluate each

reviewed approach in terms of their inputs (i.e., Diffi-

culty of documenting requirements), their out-

puts (i.e., Completeness of analysis models), and

their transformation approach from the following six

aspects: Automation, Efficiency, Evaluation,

Traceability capability, Structuredness of

transformation rules, and Completeness of

transformation rules. As shown in Fig. 8, for

example, the evaluation criterion Difficulty of docu-

menting requirements (Sect. 4.1) is derived from the

Taxonomy of requirements (Sect. 3.2.1). Notice that

the Static model of the conceptual framework (Fig. 1)

formalizes a number of basic notions such as transformations

and requirements. The static model is not directly related to

any evaluation criteria; however, the taxonomies and the

process model are all dependent on it. Last, note that the

criterion Evaluation methods in primary stud-

ies reports, for example, on the number and size of the case

studies performed and it is not therefore traced back to the

conceptual framework.

The conceptual framework is used to extract and syn-

thesize data from the primary studies in a systematic and

precise way and then these data, presented as a table

(Table 2), is analyzed according to the evaluation criteria,

leading to the evaluation results reported in Sect. 5, in

which we also summarize the restriction and transforma-

tion rules used in the approaches. As shown in Fig. 8, these

two summaries are traced back to the taxonomy of

restriction rules and the taxonomy of transformation

approaches, respectively.

4.1 Evaluation criterion for requirements

We need to assess how difficult it is to document

requirements in the format required by a specific approach.

We do so by considering whether any DSI (i.e., Glos-

sary, Definition, and Domain Model) is required,

whether a restricted NL is enforced to write requirements,

and whether the requirements representation is commonly

used and well supported in practice. If an approach requires

DSI, a restricted NL is enforced, and the requirements are

represented using a specific template (e.g., not standard or

commonly used), documenting requirements is deemed

difficult. At the other end of the spectrum, if an approach

does not require DSI, applies unrestricted NL, and applies

commonly used requirements representations (e.g., use

cases descriptions), then requirements are deemed easy to

document.

Fig. 8 Mapping between the

conceptual framework and

evaluation criteria and

summaries

84 Requirements Eng (2011) 16:75–99

123

T
a

b
le

2
E

v
al

u
at

io
n

su
m

m
ar

y
o

f
th

e
ap

p
ro

ac
h

es
p

ro
p

o
se

d
in

th
e

p
ri

m
ar

y
st

u
d

ie
s

R
eq

u
ir

em
en

ts
co

n
fi

g
u

ra
ti

o
n

a
A

n
al

y
si

s
m

o
d

el
b

P
re

-p
ro

ce
ss

in
g

(S
te

p
1

)c
S

te
p

s
(F

ig
.

7
)

T
ra

n
sf

o
rm

at
io

n
d

A
u

to
m

at
io

n
E

ffi
ci

en
cy

P
ri

m
ar

y
st

u
d

ie
s

#
(D

S
I,

R
ep

re
se

n
ta

ti
o

n
,

R
es

tr
.

N
L

?)

1
(N

o
n

e,
N

o
n

e,
N

o
)

O
b

je
ct

d
ia

g
ra

m
s

L
A

,
S

y
n

P
,

S
em

P
,

P
A

(1
,

2
,

4
)

(R
,

R
)

A
u

to
m

at
ed

L
o

w
[3

6
]

C
la

ss
es

,
at

tr
ib

u
te

s,
an

d

as
so

ci
at

io
n

s

L
A

,
S

y
n

P
,

S
em

P
(1

,
2

,
4

)
(O

,
R

)
A

u
to

m
at

ed
L

o
w

[2
1

]

D
o

m
ai

n
m

o
d

el
s,

h
y

b
ri

d

ac
ti

v
it

y
d

ia
g

ra
m

s

L
A

,
S

y
n

P
(1

,
2

,
3

,
4

)
(R

,
R

,
R

)
A

u
to

m
at

ab
le

L
o

w
[2

4
]

C
la

ss
,

ac
ti

v
it

y
,

st
at

e
m

ac
h

in
e

d
ia

g
ra

m
s

L
A

,
S

y
n

P
,

S
em

P
(1

,
2

,
4

)
(R

,
R

)
S

em
i-

au
to

m
at

ed

L
o

w
[1

8
,

3
5
,

4
4
]

A
rc

h
it

ec
tu

re
co

n
ce

p
ts

(e
.g

.,

co
m

p
o

n
en

ts
an

d
co

n
n

ec
to

rs
).

C
at

g
(1

,
2

,
4

,
5

)
(R

,
R

)
M

an
u

al
N

/A
[2

0
]

C
la

ss
d

ia
g

ra
m

s
L

A
,

S
y

n
P

(1
,

6
)

(R
)

S
em

i-

au
to

m
at

ed

N
/A

[4
0

]

C
la

ss
d

ia
g

ra
m

,
co

ar
se

-g
ra

in
ed

b
eh

av
io

ra
l

co
n

ce
p

t

C
at

g
(1

,
2

,
4

)
(R

,
P

)
M

an
u

al
N

/A
[1

0
]

D
at

a
ty

p
es

,
v

ar
ia

b
le

s,

o
p

er
at

io
n

s,
co

n
tr

o
l

co
n

st
ru

ct
s

(e
.g

.,
if

–
th

en
-e

ls
e

an
d

fo
r

lo
o

p
)e

N
o

n
e

(6
)

N
o

n
e

M
an

u
al

N
/A

[4
]

2
((

G
lo

ss
ar

y
,

D
efi

n
it

io
n

),
N

o
n

e,
N

o
)

E
R

M
,

D
F

G
,

U
M

L
m

o
d

el
s

(n
o

t

d
es

cr
ib

ed
)

L
A

,
S

y
n

P
,

S
em

P
(1

,
2

,
3

,
4

)
(I

,
R

,
R

)
A

u
to

m
at

ed
L

o
w

[6
]

3
(N

o
n

e,
O

B
F

S
,

Y
es

)
C

la
ss

d
ia

g
ra

m
s

L
A

,
S

y
n

P
,

C
at

g
(1

,
6

)
(R

)
A

u
to

m
at

ab
le

L
o

w
[5

4
]

4
(N

o
n

e,
U

se
ca

se
s,

N
o

)
S

eq
u

en
ce

d
ia

g
ra

m
s

U
n

k
n

o
w

n
(?

,
?,

4
)

(?
,

P
)

A
u

to
m

at
ed

U
n

k
n

o
w

n
[1

4
]

M
es

sa
g

e
se

q
u

en
ce

ch
ar

ts
C

at
g

,
L

A
,

S
y

n
P

(1
,

6
)

(R
)

A
u

to
m

at
ed

L
o

w
[1

7
]

C
la

ss
an

d
se

q
u

en
ce

d
ia

g
ra

m
s

N
o

n
e

(5
,

6
)

N
/A

M
an

u
al

N
/A

[2
5

]

5
(N

o
n

e,
U

se
ca

se
s,

Y
es

)
E

x
te

n
d

ed
se

q
u

en
ce

an
d

ex
te

n
d

ed
ac

ti
v

it
y

d
ia

g
ra

m
sf

N
o

n
e

(6
)

(P
)

N
/A

N
/A

[4
7

]

6
(G

lo
ss

ar
y

,
U

se
ca

se
s,

Y
es

)
C

la
ss

d
ia

g
ra

m
s

L
A

(1
,

2
,

3
,

4
)

(R
,

R
,

R
)

A
u

to
m

at
ed

L
o

w
[3

4
,

5
2
]

7
(D

o
m

ai
n

m
o

d
el

,
U

se
ca

se
s,

Y
es

)
S

ta
te

m
ac

h
in

es
N

o
n

e
(6

)
(R

)
A

u
to

m
at

ed
H

ig
h

[4
5

,
4

9
]

a
T

h
e

re
q

u
ir

em
en

ts
co

n
fi

g
u

ra
ti

o
n

s
re

q
u

ir
in

g
m

o
re

si
g

n
ifi

ca
n

t
ef

fo
rt

to
d

o
cu

m
en

t
re

q
u

ir
em

en
ts

ar
e

h
ig

h
li

g
h

te
d

w
it

h
a

d
ar

k
er

co
lo

r
b

T
h

e
ap

p
ro

ac
h

es
th

at
ar

e
ca

p
ab

le
o

f
g

en
er

at
in

g
an

al
y

si
s

m
o

d
el

s,
i.

e.
,

in
cl

u
d

in
g

b
o

th
st

ru
ct

u
ra

l
an

d
b

eh
av

io
ra

l
as

p
ec

ts
o

f
a

sy
st

em
,

ar
e

h
ig

h
li

g
h

te
d

c
L

A
le

x
ic

al
an

al
y

si
s,

S
yn

P
sy

n
ta

ct
ic

p
ar

si
n

g
,
S

em
P

se
m

an
ti

c
p

ar
si

n
g

,
C

a
tg

ca
te

g
o

ri
za

ti
o

n
,
P

A
p

ra
g

m
at

ic
an

al
y

si
s,

N
o

n
e

m
ea

n
s

th
at

th
e

co
rr

es
p

o
n

d
in

g
ap

p
ro

ac
h

d
o

es
n

o
t

n
ee

d
re

q
u

ir
em

en
ts

p
re

-

p
ro

ce
ss

in
g

d
R

ru
le

b
as

ed
tr

an
sf

o
rm

at
io

n
,

O
o

n
to

lo
g

y
b

as
ed

tr
an

sf
o

rm
at

io
n

,
P

,
p

at
te

rn
b

as
ed

tr
an

sf
o

rm
at

io
n

,
I

id
en

ti
ty

tr
an

sf
o

rm
at

io
n

e
T

h
e

h
eu

ri
st

ic
s

o
f

[4
]

h
av

e
b

ee
n

ad
ap

te
d

in
S

o
ft

w
ar

e
E

n
g

in
ee

ri
n

g
te

x
tb

o
o

k
s

(e
.g

.,
[9

,
3

2
])

to
g

en
er

at
e

U
M

L
cl

as
s

d
ia

g
ra

m
s

as
an

al
y

si
s

m
o

d
el

s
f

T
h

e
ap

p
ro

ac
h

ex
te

n
d

s
U

M
L

se
q

u
en

ce
an

d
ac

ti
v

it
y

d
ia

g
ra

m
s

to
re

p
re

se
n

t
re

q
u

ir
em

en
ts

in
cl

u
d

in
g

so
m

e
co

n
ce

p
ts

o
f

u
se

ca
se

m
o

d
el

s
(e

.g
.,

p
re

co
n

d
it

io
n

)

Requirements Eng (2011) 16:75–99 85

123

4.2 Evaluation criterion for analysis models

We need to evaluate the generated analysis models with

respect to their completeness. From a user’s perspective,

a generated analysis model is expected to be as complete

as possible so that it can be a useful starting point of an

iterative analysis refinement process. Various types of

analysis models can be generated by the approaches

proposed in the primary studies, such as UML models

[54] and MSCs [17]. Though it is difficult to compare

different types of analysis models, their common mod-

eling capabilities can be extracted and used as the basis

for comparison. For example, MSCs can be considered

similar to UML sequence diagrams, because both model

the dynamic behavior of the system in terms of object

interactions through messages. If a generated analysis

model both describes the system structure (e.g., class

diagram) and behavior (e.g., sequence diagram, state

machines, or activity diagrams), then we label the gen-

erated analysis model as complete. If a generated anal-

ysis model describes only one of these two aspects of a

system (i.e., either the structure or behavior), then we

label it as incomplete.

4.3 Evaluation criteria for transformation

We evaluate the transformation approaches proposed in the

reviewed approaches with respect to their automation and

efficiency. The automation criterion evaluates whether a

transformation is automated, automatable, semi-automated,

or manual. A transformation approach is automated if it has

been fully implemented. If a transformation algorithm is

proposed in a paper, then we assess whether we deem the

description is sufficient to implement it, and if this is the

case, the transformation approach is deemed automatable.

In some cases, a transformation is semi-automated because

user interventions are required. Last, some approaches are

entirely manual.

The efficiency of an approach is evaluated by analyzing

how many transformation steps are necessary, and how

many requirements pre-processing techniques (Sect.

3.2.1.2) are applied. If it takes several transformation steps

for an approach to transform requirements into an analysis

model, we label this approach’s efficiency as low, as

opposed to an approach requiring only one single step. If an

approach needs three or more requirements pre-processing

techniques, we also label it as having a low efficiency.

Extensive case studies are a necessity since validating

transformation approaches cannot be performed in an

analytical way. Selecting case studies to run and how

results are analyzed are two important aspects of the

evaluation of an approach. We evaluate each approach and

examine: (1) the number and size of the case studies

performed, (2) the results of the case studies reported, and

(3) whether other evaluation approaches (besides case

studies) are described.

Traceability links between requirements and analysis

model elements are expected to be established when a

transformation is performed. Because only a few of the

reviewed approaches report on traceability, we only

examine whether traceability is reported in each approach

and do not analyze the details of the traceability link

generation strategies.

Transformation rules specify which requirements

constructs map to which analysis model elements. They

are expected to be complete and well-structured. If,

according to our understanding to the transformation

rules as they are described in primary study papers, the

transformation rules proposed in an approach can trans-

form most or all requirements constructs into analysis

models elements, then we say this set of transformation

rules is complete; otherwise, incomplete. We expect each

approach to evaluate the completeness of its transfor-

mation rules by for example, performing case studies.

However, some of the approaches do not evaluate the

completeness of transformation rules and some of them

do not even describe transformation rules. This simply

makes the evaluation impossible. If transformation rules

are presented in the primary studies and organized

according to the structure of the source language, the

target language, some other relevant organization (e.g.,

rule composition), or different transformation phases

[12], and each transformation rule is well specified (e.g.,

using a carefully defined language like OCL), then we

label the transformation rules as well structured.

4.4 Discussion

One may argue that it is possible to perform a finer-

grained, more objective analysis such as evaluating how

restrictive each restriction rule is if restricted NL is

applied, how complete is each aspect (or diagram) of

generated analysis models (e.g., amount of information

generated in the class diagram), how efficient is each

pre-processing technique and each transformation step.

However, it is difficult (if not impossible) to perform

such an analysis because: (1) No sufficient information is

provided in the primary studies (e.g., in many cases no

case study is presented and the completeness of their

transformation rules is not discussed, when they are

described in detail); (2) Empirical studies are needed to

perform a finer-grained analysis to evaluate the restric-

tiveness of each restriction rule and the overall com-

pleteness of each diagram, which is out of the scope of

this paper; (3) Some approaches are manual; therefore,

the completeness and correctness of generated analysis

86 Requirements Eng (2011) 16:75–99

123

models and their overall efficiency strongly depend on

the capability of users; (4) Different types of diagrams

are generated and therefore it is difficult to have com-

mon evaluation criteria for evaluating the completeness

of generated analysis models; (5) It is common for pri-

mary studies to use different case study systems and

therefore it is hard to have objective evaluation criteria

for the completeness of the generated analysis models.

Our evaluation criteria, though coarse-grained, are still

sufficient to differentiate each approach and are straight-

forward to apply, thanks to the well-specified conceptual

framework and the clear mapping between it and the

evaluation criteria. Furthermore, as illustrated by the

results of the comparison, no such fine-grained analysis

was required to compare approaches: our criteria are pre-

cise enough to allow us to differentiate different

approaches.

5 Synthesis and evaluation

In Sect. 3.2, we defined taxonomies to classify and

characterize techniques and concepts used in the primary

studies. The selection of one or more than one element

from each of these taxonomies is denoted as a configu-

ration characterizing a given approach. Such configura-

tions are a way for us to abstract away from details and

allows the analysis of emerging, general patterns. The

taxonomy of requirements contains three sub-taxonomies:

DSI, Representation, and Natural Language. A combi-

nation of one or more element from these three sub-

taxonomies forms a requirements configuration. For

example, if an approach does not require DSI, is based

on use cases which are described in restricted NL, then

the requirements configuration of the approach is pre-

sented as a tuple (None, Use Case, Yes). As shown in

Table 2, the approach proposed in [47] conforms to this

requirements configuration (configuration 5 in Table 2,

Column 2). Steps taken by each approach are different.

For example, some approaches (e.g., [40]) that do not

contain intermediate models but require requirements

pre-processing contain only Step 1 and Step 6 (Fig. 7),

presented as a tuple (1, 6) in Table 2, Column 5. If an

approach contains two transformations (one intermediate

model), the transformation from pre-processed require-

ments to the intermediate model is rule-based, and the

transformation from the intermediate model to analysis

models is also rule-based, we use a tuple (R, R) to

represent the configuration of the transformations, as

shown in Table 2, Column 6. Over all, an approach

configuration is characterized by a requirements config-

uration, analysis models, requirements pre-processing

techniques, steps taken by the approach, types of

transformations, and automation and efficiency of the

approach. Configurations of each approach are given in

Table 2, grouped by requirements configurations.

In the rest of the section, using the notion of approach

configuration to structure the discussion and abstract away

from minor differences, we first analyze and evaluate the

reviewed approaches in terms of requirements configura-

tions, analysis models, and automation and efficiency of

transformations. Next, we evaluate the reviewed approa-

ches from other, complementary aspects such as whether

an approach is evaluated and whether the evaluation is

properly described in its primary study. Last, we summa-

rize the evaluation results. The detailed analysis of each

primary study is provided in [57] for reference.

5.1 Requirements configurations

A total of seven different configurations match the

reviewed approaches (Table 2, Column 1). Configuration 1

requires no DSI, no specific representation, and no

restricted NL. This configuration is the most frequently

used one; eight out of 16 approaches comply with this

configuration. Configurations 2, 6 and 7 require a DSI

(Sect. 3.2.1) as part of their requirements input, to assist the

computational NL processing. For example, a glossary is

mainly used to identify entities, objects, or classes. A

domain model serves as the structural basis of target

models such as sequence diagrams. Most of the domain

specific information is manually constructed. The rest of

the configurations do not require any DSI.

Configuration 3 needs requirements to be documented

using the OBFS template, a customized document template

that the transformation technique of the approach [54]

relies on. This configuration does not need any DSI or

restricted NL. Configurations 4–7 (six approaches) take use

cases as requirements representation. This is reasonable

since use cases are a commonly used notation for capturing

requirements in practice. Besides, a use case template helps

organize textual requirements so that the requirements pre-

processing and the following transformation(s) can be

facilitated.

Configurations 3, 5–7 require that requirements be

documented using restricted NL. There are three main

reasons why restricted NL is used in requirements docu-

mentation. A restricted NL aims to reduce ambiguity,

redundancy, and complexity in documents. It also makes

computational NL processing more reliable, efficient, and

accurate. Last, it facilitates translation into other languages.

However, the extent of restrictions varies across approa-

ches and a balance should be struck between the applica-

bility of restriction rules and facilitating analysis. We

summarize the restriction rules applied in the primary

studies (i.e., [47, 49, 52, 54]) in Table 3. These rules are

Requirements Eng (2011) 16:75–99 87

123

classified into three categories: sentence restrictions, sen-

tence structure restrictions, and wording restrictions (Sect.

3.2.1.1). The table also indicates where rules are applicable

and their purpose. Examples are given for some rules. The

restricted NL used in [47] is not well described in the

paper. That is why only one restriction rule is presented in

the table.

Based on the data we extracted from each primary study

and summarized in the first column of Table 2, we discuss

next how difficult it is to document requirements in the

format required by a specific approach according to our

evaluation criteria (Sect. 4.1). The configurations requiring

more significant effort to document requirements are

highlighted with a darker color, following the rationale

described next. The evaluation results show that it is most

difficult to document requirements in the format required

by configuration 7 (approach proposed in [45, 49]) because

a great deal of user effort is needed to obtain a domain

model containing classes, associations, and operations,

which are indispensable for generating state machines, and

additionally use cases are required to be written in

restricted NL. Configurations 2, 3, and 6 require the second

largest effort to document requirements. Though configu-

ration 2 [6] does not rely on restricted NL and does not

require any specific requirement representation, the diffi-

culty of documenting requirements is still high as users are

Table 3 Restriction rules on requirements documentation

Restriction Restriction rules Applying situation Purpose Rel.

works

Sentence restriction Apply simple sentencea Any statement Facilitate automatic NL

parsing; reduce ambiguity;

simplify the complexity of

sentences

[47, 54]

Use active voice rather than

passive voice (actor is omitted)

Any statement Facilitate automatic NL

parsing; easier to identify

messages or behavior

[52]

Use the same verb for the same

action in different sentences

Use case ? flow of events Improve the quality of NL

parsing; reduce ambiguity

[52]

Do not use pronouns Any statement Facilitate automatic NL parsing [52]

Sentence structure

restriction

And, or Use case ? condition Specify composite conditions [49]

GO TO Step [number] Use case ? Branching statements Specify branching [49]

CON [statement] Concurrency statements Specify concurrency

statements

[52]

If–then Conditional statements Specify conditional statements [52, 54]

While-endWhile,

Repeat[number]until[states],

Do-until

Iteration statements Facilitate the transformation to

sequence diagram

[52]

Wording restriction AFTER [duration], BEFORE

[duration]

After delay and before delay

statements

Facilitate the transformation to

state machines (timeout

transitions)

[49]

AND ON [entity] Use case ? Postcondition Facilitate the transformation to

state machines

[49]

Is a kind of, is specialization

of, is generalization of

Inheritance sentences Identify generalization between

subject and object

[54]

Drive, work for, maintain,

manage, own, execute, serve, use

Action sentences Identify objects and

associations

[54]

Talk to, communicate with,

refer to

Communication sentences Identify objects and

associations

[54]

Next to, goto Location sentences Identify objects and

associations

[54]

Has (a capability of), has

(a capacity for), can, able to has

not (a capability of), has not

(a capacity for), cannot,

not able to

Behavioral sentences Identify behaviors [54]

a A simple sentence is composed of one subject and one predicate

88 Requirements Eng (2011) 16:75–99

123

required to manually specify glossary and a significant

number of definitions in a specific form. Configuration 3

[54] implies requirements to be manually documented in a

non-standard modeling language (OBFS) and the use of

restricted NL. Configuration 6 [34, 52] needs a glossary,

and use cases are required to be written in restricted NL.

Configuration 5 requires even less user effort since no DSI

is necessary. Configuration 4 requires less effort than

Configuration 5 to document requirements as not only no

DSI is required but additionally use cases do not need to be

documented using restricted NL. Configuration 1 requires

the least effort to document requirements.

5.2 Analysis models

We can see from Table 2, Column 2 that twelve out of 16

approaches can derive structural model elements (e.g.,

objects, classes, associations, components) from require-

ments. Most of the approaches are able to generate objects,

classes, and associations, but not all of them can generate

attributes, operations, and generalizations. Nine approaches

can generate behavioral features of a system (e.g., sequence

diagrams, state machines, and/or activity diagrams).

Three approaches ([24], [18, 35, 44] and [10]) (high-

lighted) conforming to configuration 1 are capable of

generating analysis models including both structural and

behavioral aspects of a system, which are characterized as

complete according to our evaluation criteria (Sect. 4.2);

two approaches ([6] and [25]) (highlighted) conforming to

configuration 2 and 4, respectively, can also generate

complete analysis models. The generated domain models

of the approach proposed in [24], conforming to configu-

ration 1, contain only objects and links, rather than com-

monly used class diagram representations; the generated

hybrid activity diagrams (i.e., UML activity diagrams also

including the concepts of actors, business rules, and mes-

sages) are at a very high level of abstraction, and are

independently generated from the generated domain mod-

els (i.e., there might be inconsistencies between the two

diagrams). The NIBA project [18, 35, 44], also conforming

to configuration 1, can derive class, activity, and state

machine diagrams from requirements. User intervention is

required in many places, especially during the transfor-

mation from requirements to intermediate models. There is

not enough information provided in the papers to show that

the generated class, activity, and state machine diagrams

are correct, consistent, or precise enough. The approaches

proposed in [10] and [25], conforming to configurations 1

and 4, are all manual; therefore the completeness and

correctness of generated analysis models mainly depend on

the capability of users, rather than the approaches them-

selves. The approach proposed in [6] requires a great deal

of user effort on documenting requirements, two

intermediate models (three transformations), and a

sequence of requirements pre-processing techniques.

Not surprisingly, UML (e.g., class, activity, sequence,

and state machine diagrams) is the most frequently used

language in the reviewed approaches to represent generated

analysis models.

5.3 Transformation–automation

Only five approaches describe the algorithms they used to

various extents of details. Most of these algorithms are not

described at a level of detail that is amenable to an

implementation. According to the evaluation criterion

discussed in Sect. 4.3, we summarize the evaluation results

of transformations: automated, automatable, semi-auto-

mated, or manual.

As shown in Table 2, Column 7, seven out of 16

approaches are automated; two are not automated but are

automatable; two approaches require user intervention to

semi-automatically perform the transformation; four

approaches require manual transformations. Complex pre-

processing techniques are required for all the automated

approaches, except the approach proposed in [34, 52]

(Configuration 6), which only requires lexical analysis, and

the approach proposed in [45, 49] (Configuration 7), which

does not have any requirements pre-processing techniques

since the transformation from use cases plus a domain model

to state machines relies on the template structure of the use

cases and the domain model. However, two intermediate

models (three transformations) are required in this approach

(Column 5). For the approach proposed in [14] (first

approach in Configuration 4), the transformation from use

cases to intermediate models (Step 2) is not described in the

paper and therefore the automation of this step is unknown as

indicated in the table. The approaches proposed in [45, 49]

and [17] have been implemented and therefore they are

automated approaches. The one proposed in [54] is not

automated but is automatable, and the one proposed in [40] is

semi-automated since a significant user intervention is

required. The transformation is not explicitly discussed in

[47], because the approach does not attempt to provide a

solution for the transformation of requirements into analysis

models though the proposed approach can be adapted to that

purpose, which is also the reason why we included this paper

for review. Last, three manual approaches are proposed in

[25], [10] and [4], respectively. Though the approach pro-

posed in [45, 49] is automated, a great deal of user effort is

needed to obtain a domain model and specifying use cases

and applying restrictions. Additionally, the consistency

between the domain model and the use cases must be man-

ually maintained. Manual requirements pre-processing (e.g.,

users are required to manually classify the sentences) is

required for the automated approach proposed in [17].

Requirements Eng (2011) 16:75–99 89

123

5.4 Transformation–efficiency

As we have discussed in Sect. 4.3, the efficiency of an

approach is evaluated by analyzing how many transfor-

mation steps are taken in the approach, and how many

requirements pre-processing techniques are applied.

As shown in Table 2, Column 4, most approaches apply

at least one of the requirements pre-processing techniques

(Sect. 3.2.1.2). We do not know what requirements pre-

processing techniques are applied in the approach proposed

in [14], since it is not described in the paper. The approach

proposed in [45, 49] does not have any requirements pre-

processing technique since the transformation from use

cases plus a domain model to state machines relies on the

template structure of the use cases and the domain model.

The approach proposed in [47] does not require any

requirements pre-processing technique because the

approach describes three equivalent requirements repre-

sentations, and each of them can be transformed into the

other. The approach proposed in [25] does not need any

requirements pre-processing technique since it proposes a

set of techniques for users to manually specify require-

ments and also a process to guide the users to derive the

conceptual models from the requirements. It does not aim

to automatically transform requirements into an analysis

model. Similarly, Abbott’s heuristics [4] do not need any

requirements pre-processing technique.

As shown in Table 2, Columns 5 and 6, rule-based

transformations are most frequently used to create the first

intermediate model (Step 2 of the process): first letter in the

transformation tuple (Column 6). An ontology-based

transformation is used in [21] since the intermediate model

is all ontology-based. A ‘‘?’’ for approach [14] indicates

that the transformation is unknown since it is not discussed

in the paper. Only one approach [47] applies pattern-based

transformations (denoted as ‘‘P’’) and only one approach

[6] applies identity transformation (denoted as ‘‘I’’). Most

of the approaches containing Step 4 use rule-based trans-

formations (except [10] and [14]). Eight approaches use

intermediate models (containing Step 2), when direct

transformation from requirements to an analysis model

cannot be achieved. Two intermediate models (three

transformations, and therefore Step 3 is required) are

contained in [6], [24], and [34, 52] instead of only one

intermediate model (two transformations) in the other six

approaches that use intermediate models. Most of the

approaches use rule-based transformations to transform

pre-processed requirements directly into an analysis model

(Step 6).

According to our evaluation criterion on efficiency of

approaches, the approach proposed in [45, 49] shows

highest efficiency because it does not need any require-

ments pre-processing technique and requirements are

directly transformed into analysis models. Note that it does

not make sense to evaluate the efficiency of manual

approaches so their efficiency is marked as ‘‘N/A’’.

5.5 Transformation–others

5.5.1 Evaluation

Only four out of 16 approaches have their transformation

approaches evaluated. Case studies have been performed to

evaluate the approaches proposed in [21] and [14] by

manually comparing the tools results with the manually

constructed analysis models. A performance evaluation

method is also proposed in [21] and five case studies were

performed to evaluate the performance of the tool. The

evaluation results show that the approach can perform

better than other language-processing technologies, such as

information retrieval systems. Three industrial pilot studies

were performed to test the acceptability of the tool

implementing the approach proposed in [6]. The evaluation

of the approach proposed in [18, 35, 44] is not discussed in

details in the papers, except for the statement that ‘‘the

approach has been applied for practical requirements

analyses and the results showed to be encouraging.’’ The

other approaches were not evaluated, though some of them

present a running example to illustrate their approach

rather than to evaluate it.

5.5.2 Traceability support

Among the papers we have reviewed, only two transfor-

mation approaches [20] and [25] report on traceability. In

[20], it is claimed that traceability is supported, though this

is not discussed in the paper. A traceability model, repre-

sented as a function decomposition table (rows are use

cases and columns are the identified classes), is proposed in

[25] to link the identified classes to the use cases. Deriving

traceability links (Step 7) from already established links is

not an issue for transformation approaches that do not

involve intermediate models; however, for those which

require one or more intermediate models, it is an indis-

pensable step since from the users’ perspective it is very

important to access derived traceability links between

requirements and analysis models without having to deal

with the intermediate model(s). This step is not covered in

any of the approaches we reviewed.

5.5.3 Completeness and structuredness of transformation

rules

Nine ([36], [21], [34, 52], [24], [18, 35, 44], [10], [17],

[54], and [4]) out of 16 approaches describe their trans-

formation rules in their primary studies but none of them

90 Requirements Eng (2011) 16:75–99

123

evaluate the completeness of the transformation rules. Five

([6], [14], [20], [45, 49] and [40]) out of 16 approaches do

not describe their transformation rules at all. Note however

that the completeness of the transformation patterns of [14]

was evaluated by performing some case studies (not

described in the paper though). The evaluation was man-

ually performed by comparing the tool generated interac-

tion models with the ones manually constructed by the

experts. The evaluation results show that 65% of the

sequence diagram fragments generated by the tool are

identical (i.e., modeling the same interactions with the

same instances and the same messages) to the manually

obtained sequence diagram fragments, 28% of the auto-

matically generated fragments are equivalent (i.e., model-

ing the same interactions with different instances and

messages) to the manually obtained one, and 7% of these

fragments are different (modeling different interactions).

The approaches proposed in [25] and [47] do not purport to

provide solutions for transforming requirements into anal-

ysis models; though both of them can be adapted to that

purpose, which is also the reason why we included them.

Therefore, no transformation approach is discussed in these

two papers.

Seven approaches directly transform requirements into

analysis models (Step 6): [40], [54], [17], [25], [47], [45,

49], and [4]. The others use intermediate models to bridge

the gap between requirements and the analysis model.

Transformation rules of these indirect transformation

approaches contain two rule sets: transformation rules from

requirements to intermediate models and transformation

rules from intermediate models to the analysis model. The

intermediate models act as the target models of the first

rule set and also the source models of the second rule set.

Because of the differences among these intermediate

models, it is hard to synthesize these rules. Therefore, we

only summarize and synthesize the transformation rules of

the rule-based transformation approaches that directly

transform requirements into an analysis model, except for

the approach proposed in [47] in which the transformation

is not explicitly discussed, because the approach does not

aim to provide a solution for the transformation from

requirements into an analysis model though the proposed

approach can be adopted to achieve that. The papers [45,

49] and [40] do not describe the transformation rules they

used. The transformation rules from [17], [54], [25], and

[4] are presented in Table 4 and Table 5. We also sum-

marize (in the same tables) the heuristics rules proposed in

[9, 31, 33] which extend or do not refer to Abbott’s heu-

ristics rules [4]. Their completeness, effectiveness, and

correctness are not evaluated through empirical studies.

Though the approach proposed in [21] does not directly

transform requirements into an analysis model (interme-

diate model is required), the paper describes the mapping

relations between the two types of transformation rule sets

and therefore the mapping relations are derived as trans-

formation rules and also included in the Table 4 and

Table 5. In each one of these four approaches, transfor-

mation rules are independent from each other: Each rule

simply describes the mapping relationship between a

requirements concept (Column 2) and an object-oriented

concept (Column 3). Requirements constructs include

natural language concepts (e.g., noun, subject, etc.). In

Column 4, constraints are provided when necessary. Col-

umn 6 provides some examples for the transformation rules

that are not easy to understand.

5.6 Summary of evaluation results

An ideal approach for transforming requirements into

analysis models would have the following characteristics:

(1) requirements should be easy to document using the

format required by the approach, (2) generated analysis

models should be complete (i.e., contain structural and

behavioral aspects of a system), (3) the approach should

contain the least number of transformation steps as possible

(high efficiency), (4) the approach should be automated,

and (5) the approach should support traceability manage-

ment (Step 5). However, none of the reviewed approaches

conforms to the ideal configuration, as described next.

1. Requirements configuration

a. Requirements configuration 1 (Table 2)

The approaches conforming to requirements con-

figuration 1 require the least user effort to

document requirements. However, only two of

these approaches are automated and one is auto-

matable. The other five approaches are either

semi-automated or completely manual. Besides,

complicated requirements pre-processing tech-

niques and intermediate models are required for

the two automated approaches and therefore their

efficiency is low. It is also worth noticing that

these two automated approaches are not capable of

generating complete analysis models, i.e., includ-

ing both static and dynamic aspects of a system.

b. Requirements configuration 4

Requirements configuration 4 ranks second in

terms of user effort to document requirements.

Two of the three approaches conforming to this

configuration are automated, which however can

only automatically generate the behavioral aspect

of a system, instead of a complete analysis model.

c. Requirements configuration 5

Compared with requirements configuration 4,

requirements configuration 5 requires use cases

to be documented in restricted NL; therefore, it

Requirements Eng (2011) 16:75–99 91

123

requires more user effort to document require-

ments. The approach conforming to this configu-

ration still cannot generate complete analysis

models.

d. Requirements configurations 2, 3 and 6

Two approaches conforming to requirements con-

figurations 2 and 6, respectively, are automated

and the approach conforming to configuration 3 is

automatable. Requirements needed by these three

configurations rank second in terms of

documentation difficulty. Only one of them (i.e.,

[6]) is capable of generating a complete analysis

model. Additionally, the efficiency of the

approach is low since two intermediate models

(three transformations) and a sequence of require-

ments pre-processing techniques are needed.

e. Requirements configuration 7

Requirements configuration 7 is the one that

requires the most user effort to document require-

ments. The approach is automated and does not

Table 4 Summary of transformation rules (part 1)

Transformation rule Rel. work Example

Requirements concepts OO concepts Constraint

(recurring) noun or noun

phrase

Object, class [4, 9, 21, 33]

Subject of a sentence Object, class The subject is noun [17, 54]

Object of a sentence Object, class The object is noun [17, 54]

Actor of use cases Object [9, 25]

Use case Object �control� object [9]

Genitive case (e.g.,

using of, ‘s)

Attribute The first noun is the

attribute of the second

noun

[9, 21] The name of a student

The object (noun) of a

simple sentence

Attribute The predicate of the

sentence contains has
| consist of | contain of |

denote | identify

[21, 54] Person has name

Attributive adjective Attribute value of the noun that

the attributive adjective

modifies

[4, 21] A large library has many

sections. ‘large’ is the value

of the attribute size of the

class Library.

Doing verb Operation [4] ‘submits’ are doing verbs

Having verb Aggregation [4] ‘has’ and ‘consists of’ are

having verbs

Verb/verb phrase Association Verbs/nouns connecting

two objects

[9, 31] Two trains following each

other. ‘following’ is the verb

connecting two objects;

therefore a reflexive

association is identified for

class Train.

Property sentences Aggregation association Is made up of or is part of
or contains is used in the

sentence.

[21] The university contains 10

departments.

Universal quantifier (first

entity) ? unique

existential quantifier

(second entity)

Many-to-one association From the first entity to the

second

[21] A complex aircraft uses

the radar.

Singular (first

entity) ? quantified

by the definite article

(second entity)

One-to-many association From the first entity to the

second

[21] The student passed all

exams.

Singular (first

entity) ? singular

(second entity)

One-to-one association From the first entity to the

second

[21] The student passed the

exam.

Specific number Multiplicity Specific number [21] The student passed 3

exams.

92 Requirements Eng (2011) 16:75–99

123

need requirements pre-processing. The efficiency

of the approach conforming to this configuration is

high. However, the approach still cannot generate

complete analysis models (i.e., static and dynamic

aspects).

f. As expected, approaches requiring more user effort

to document requirements achieve better automa-

tion and higher efficiency.

g. Use cases are the most frequently applied require-

ments representation.

2. Analysis model representation

UML diagrams are the most frequently used represen-

tations of analysis models, which confirms that in

practice UML is used in many IT software develop-

ment organizations [41].

3. Efficiency

a. Requirements pre-processing

Most of our reviewed approaches apply at least

one of the requirements pre-processing techniques,

among which lexical analysis (Sect. 3.2.1.2) is the

most commonly used technique. This is under-

standable because requirements are usually written

in textual form that must be tokenized and POS of

sentences should be identified in order to facilitate

transformations. Syntactic parsing (Sect. 3.2.1.2)

is also commonly applied in the approaches that

require determining grammatical structures such

as subjects and predicates of sentences. When not

applying any pre-processing technique (except

categorization), one needs to manually transform

requirements into intermediate models or analysis

models. Categorization (Sect. 3.2.1.2) is another

technique frequently used in the primary studies.

All these papers require categorization to be

performed manually. Complex pre-processing

techniques are usually required for automated

approaches.

b. Transformation steps

Most of the reviewed approaches have one

intermediate model. Few of them need two

intermediate models. For those using intermediate

models (containing Step 2), rule-based transfor-

mations are most frequently used.

c. Efficiency

According to our evaluation criterion on efficiency

of approaches, only one of the reviewed

approaches [45, 49] has clearly superior efficiency

because it does not need any requirements pre-

processing technique and requirements are directly

transformed into analysis models.

4. Automation

More than half of the reviewed approaches are

automated or automatable. A high level of automation

is an absolute requirement for any approach to scale up

in industrial practice.

5. Approach configuration

No approach, with acceptable user documentation

effort and efficiency (e.g., one or two transformation

steps), is currently able to automatically or semi-

automatically generate a complete (i.e., containing

both static and dynamic aspects), consistent analysis

model.

6 Open issues and suggestions

As we have discussed in Sect. 5, a desirable approach,

involving acceptable user effort in documenting require-

ments, should be able to (semi-) automatically and effi-

ciently generate a complete (i.e., including both static and

Table 5 Summary of transformation rules (part 2)

Transformation rule Rel. work Example

Requirements concepts OO concepts Constraint

Being verb Inheritance/generalization [4] ‘is a kind of’ is a being verb

Modal verb Constraints [4] ‘must be’ is a modal verb

Verb/verb phrase Behavior Verb, predicate contains has a
capability to | can | able to

[4, 54] The student has a capability to

learn. to learn is the behavior

of the student

Direct object Message Sentence structure like subject-
direct object-indirect object

[17] The clerk sends the status of
the load_bay to the system

Transitive verb Message Sentence structure like subject-
transitive verb-object

[17] The attendant enables the pump

Basic flow, alternative

flow of use cases

Sequence diagram [25]

Requirements Eng (2011) 16:75–99 93

123

dynamic aspects of a system) and consistent analysis

model. Since none of the existing approaches achieves this,

based on the systematic review results, the goal of this

section is threefold. We want to identify recurring issues in

the research and reporting of the primary studies we

reviewed, highlight open issues in existing solutions, and

identify useful avenues of research.

6.1 Approach configuration

In this section, we first discuss the open issues identified for

each aspect in an approach configuration. Then we rec-

ommend an approach configuration which, with due

research, should be able to provide a solution to automat-

ically and efficiently generate complete analysis models,

based on acceptable user effort in documenting

requirements.

6.1.1 Requirements configuration

A desirable requirements configuration should be able to

effectively facilitate transformation from requirements to

analysis models, while minimizing user effort in docu-

menting requirements. However, tradeoffs exist between

the difficulty of following a requirements configuration and

the extent to which it facilitates transformation, especially

automated transformation:

(1) Some approaches require additional DSI (Sect. 3.2.1)

as requirement supplements; however, these

approaches rely on users to manually provide DSI

so that a great deal of user effort is required. We

believe that demanding a textual glossary as a

requirements supplement could be practical and

requiring a domain model or definition could lower

the representation gap between requirements and

analysis models. However, it would be desirable to

generate such a domain model automatically from

requirements, at least an initial version to be refined,

rather than asking users to provide it. Furthermore, if

the modeling of DSI is required, this should be well

supported by tools.

(2) Other approaches do not use any representation to

structure their requirements (i.e., pure textual speci-

fications); however, if requirements are structured

(e.g., using use case templates), one can expect that

transformations be greatly facilitated. Almost half of

the approaches require anyway that their require-

ments be documented using some form of use case

template. Besides, use case modeling is commonly

applied in practice. Therefore, we suggest having use

cases, using appropriate templates, as the means of

documenting requirements to facilitate automated

transformations. Whether a use case template is easy

to apply and whether it is able to effectively facilitate

automated transformations should be experimentally

investigated [56].

(3) Restricted NL is sometimes used for documenting

requirements; however, the rationale for restriction

rules is often not clearly justified. Our summary table

regarding restriction rules (Table 3) provides the

rationale of each rule (Column 4 of the Table), but

we had to devise them by carefully examining each

primary study since this information was in most

cases not provided. It is important to know why a

particular restriction rule is applied because further

research may relax it by, for example, using new or

improved NL analysis techniques. It is also para-

mount to know whether a set of restriction rules is

easy to apply and whether its application can lead to a

higher quality of automatically derived analysis

models [56]. Again, experimental evaluations are

required to further investigate this issue.

In summary, we believe that (i) it is desirable not to

require additional DSI, though it may be practical to

demand a textual glossary, (ii) use cases should be sup-

ported as they are most frequently used for requirements

representation, and (iii) restricted NL might be used for

documenting requirements so that automated transforma-

tion can be facilitated. Using our tuple representation—

(DSI information, requirement representation, NL

requirement)—we therefore, recommend that the following

set of requirements configurations be considered in future

work: (None, Use cases, No), (None, Use cases, Yes),

(Glossary, Use cases, Yes), and (Glossary, Use cases, No).

We also recommend that experimental evaluations be

performed to evaluate a requirements configuration method

in terms of its applicability and effectiveness at automati-

cally deriving analysis models.

It is worth noticing that requirements are not stand-alone

artifacts; goals, assumptions, standards, and risks are all

part of a complete requirements document. However, in the

context of MDA, in order to generate an object-oriented

analysis model, object-oriented analysis and design meth-

odologies mostly use functional requirements as input for

this specific transformation. Higher-level requirements

artifacts such as goals, assumptions, standards and risks

usually form a basis and justification for deriving detailed

functional requirements (represented as use cases), which

can then be further used to derive analysis models. Most of

the primary studies identified by our systematic review take

functional requirements (represented as use cases) as input

to generate analysis models (Table 2) but the rest only use

unstructured text as input (e.g., [36] and [24]), therefore not

specifying the type of requirements they use in input.

94 Requirements Eng (2011) 16:75–99

123

6.1.2 Analysis model

As we have observed in Sect. 5.2, UML diagrams are most

frequently used in the reviewed approaches to represent

analysis models. This conforms to the MDA [29] transfor-

mation concept, which requires the source (e.g., PIM) and

target (e.g., PSM) of a transformation to be represented as

UML models. UML is a standardized language, is widely

supported by a growing body of tools (e.g., [22]), open source

plugins (e.g., [16]), and has been specialized for many

domains.

If use case models, including use case diagrams and use

case specifications, are used to structure and document

requirements and UML models are used as the representation

of the analysis model, a relationship can be clearly estab-

lished between the use case models and parts of the analysis

models. In particular, since use case descriptions describe

interactions of the system and actors along the time line, they

can be transformed into messages in sequence diagrams, an

important component of behavioral modeling in analysis

models. With an appropriate use case template, it is expected

that conditions and branches in use case specifications can be

automatically captured and transformed into Combined-

Fragments [38] in sequence diagrams. In addition, extend

and include relationships in use case specifications can be

transformed into InteractionUse [38] of sequence diagrams.

UML models can model not only the structural aspect of

a system (e.g., class diagrams), but also the behavioral

aspects (e.g., sequence and activity diagrams). Though this

is to some extent dependent on the modeling method used,

consistency between the structural and behavioral aspects

can be easily achieved in the context of UML since when

transformations are performed, one single UML model is

created, queried, and maintained during the transforma-

tions; different diagrams are just different, overlapping

views of the same underlying model.

Therefore, for the above practical and technical reasons,

we suggest using UML models as the representation of

analysis models.

A methodological open issue we identified in this review

is that many of the approaches cannot generate a complete

analysis model (i.e., both structural and behavioral aspects).

Additionally, the correctness of their generated analysis

models is not evaluated. The quality of an automatically

generated analysis model should be evaluated by, for

example, comparing it with existing expert solutions to see

how close the automated analysis model is to these expert

solutions.

6.1.3 Automation

The level of automation is one of the important charac-

teristics of transformations. Automated transformations are

always desired; however when a certain amount of manual

intervention is indispensable for documenting require-

ments, performing transformations, or establishing trace-

ability links, it should be explicitly described and its

expected effort should be evaluated. For automated

approaches, transformation algorithms should be clearly

specified, and this is a requirement which is not always met

in the approaches of this review.

6.1.4 Efficiency

Our evaluation results show that most of our reviewed

approaches need complicated requirements pre-processing,

contain two or more transformation steps, and/or user

intervention is required in many places. In terms of

requirements pre-processing techniques, some approaches

require significant user effort to manually pre-process

requirements, for example, manual categorization of

requirements (Sect. 3.2.1.2). We suggest that only auto-

matable NL processing techniques should be used. Since it

is paramount to automate transformations, user’s involve-

ment should be minimized. Additionally, the more inter-

mediate models, the more difficult the validation and

verification of the approach; the more intermediate models,

the higher the chances of loosing information during the

transformation from requirements to analysis models

(because of multiple transformations). However, the com-

plexity of transformations and amount of information to

manipulate suggest that not relying on an intermediate

model might be difficult to achieve. Indeed, most of our

reviewed approaches have one intermediate model (two

transformations). Last, we will argue in Sect. 6.3 that one

intermediate is necessary. Therefore, we suggest that a

maximum of one intermediate model be required in an

approach.

According to above discussion, we recommend the

following set of approach configurations:

Automatically transform use case models with or

without restricted NL and/or glossaries to complete

(i.e., including both static and dynamic aspects),

correct and consistent UML models using one inter-

mediate model and fully automatable requirements

pre-processing techniques (e.g., lexical analysis and

syntactic parsing).

6.2 Intermediate model

Some approaches use intermediate models as bridges for

transformation between requirements and analysis models.

The main reason is that requirements are usually text-

based, and automated transformations (to fully integrate

requirements into model-driven approaches) cannot be

Requirements Eng (2011) 16:75–99 95

123

easily supported with unrestricted, unstructured require-

ments representations such as pure text. The reason for

using one specific type of intermediate models should be

explicitly justified in the research literature, and the fol-

lowing considerations should be taken into account when

intermediate models are selected:

• The representation of the source and target models

since they drive the selection of intermediate models (if

any) as well as transformation rules.

• Whether the intermediate model(s) can be easily

integrated into existing tool support.

• If user interventions are required during transforma-

tions, it is important that the intermediate model be

easy to understand by users.

• Whether the intermediate model is general enough to be

used for multiple purposes, such as generating not only

class diagrams, but also sequence diagrams, activity

diagrams, and state machines. The intermediate model

KCMP [18] is one such example.

• Whether it can be used independently of different NL

processing techniques.

• Whether it is suitable to support traceability analysis.

The above items are usually not carefully discussed in

most primary studies. As a result, the proposed technolo-

gies are often difficult to assess.

6.3 Transformations

In this section, we discuss open issues and our recom-

mendations on transformations from the following aspects:

transformation approaches (Sect. 6.3.1), traceability sup-

port (Sect. 6.3.2), transformation algorithm (Sect. 6.3.3),

and the transformation quality characteristics (Sect. 6.3.4)

such as efficiency and scalability.

6.3.1 Approach

As discussed in Sect. 3.2.5, four types of transformation

approaches are applied in the primary studies we have

reviewed. Selecting which transformation approach to

apply is closely related to the representations of source and

target models, the complexity and scalability of transfor-

mations, and the extent of automation which is targeted.

A classification of transformation approaches is reported

in [12, 13], along with a high-level discussion on pros and

cons of each type of transformation approaches. For rule-

based and pattern-based transformation approaches, as

indicated in [12, 13], transformation rules5 should clearly

specify, for example, their application domains,

parameters, application constraints, and directions. None of

the primary studies of this review clearly specify their

transformation rules according to these aspects.

There exist techniques in academia and commercial tools

that can facilitate the specification and execution of trans-

formation rules. The Atlas Transformation Language (ATL)

[7, 26] is one such model to model transformation technique,

developed on top of the Eclipse platform [15], to facilitate the

specification, structuring (by packaging rules into modules),

and execution of transformation rules. Besides, it provides

both declarative and imperative constructs to define trans-

formation rules. However, during the execution of an ATL

transformation, its target model cannot be navigated. This

often results in complex transformation rules since results

from previously executed rules cannot be used as inputs of

other rules. Kermeta [27] is an imperative metamodeling

language, also built on top of the Eclipse platform, which can

facilitate the manipulation of both source and target model

elements. Kermeta also supports packages, inheritance,

classes, and operations so that transformation rules can be

well organized. In addition, another interesting characteristic

is design-by-contract for rules: operations implementing

rules support pre and post conditions and classes use

invariants. There are other academic and commercial tools

and languages which can support model to model transfor-

mations, such as the IBM Model Transformation Framework

(MTF) [23] and the Query/View/Transformation (QVT)

standard [39]. A quite exhaustive list of such tools and lan-

guages can be found in [13]. We suggest utilizing an existing

transformation framework to support transformation from

requirements to an analysis model. However, requirements

are usually textual, not models. Therefore, we suggest that

requirements are transformed into an intermediate model,

which can then be further transformed into an analysis model

by applying one of the model-to-model transformation

techniques.

Another open issue we identified in this review is that

many of the approaches do not address the extent to which

their generated analysis models are correct and precise

enough. One possible evaluation method could be experi-

mentally comparing the analysis model generated by the

transformation approaches with the one manually devel-

oped by software developers. Research (e.g., [46]) has also

been conducted to systematically test and thus validate

transformation approaches themselves to ensure that they

have the desired behavior. If possible, these approaches

should be applied in our context.

6.3.2 Traceability support

Most of the approaches do not address traceability. This is

perhaps because in order to support traceability, a mecha-

nism should be proposed to establish and maintain explicit

5 In [12, 13], patterns are considered as one type of transformation

rules.

96 Requirements Eng (2011) 16:75–99

123

traceability links between the source and target of each

transformation. In cases where multiple transformation steps

are involved, traceability links should also be derived for

requirements and analysis models from the established

traceability links during each transformation step. A trace-

ability link should at least contain references to the source

and target elements connected by the link and should pref-

erably indicate which transformation rule(s) are applied to

trigger the creation of the link. Another interesting aspect,

which is not addressed in any of the approaches, is that

transformation rules may rely on the results of other trans-

formation rules, more specifically transformation rules may

rely on traceability links established by other transformation

rules. One advantage is that transformation rules can thus be

simplified. For example, instead of conducting analyses

already performed by other rules, we can simply use trace-

ability links. For example, suppose that a class has been

generated from a requirement construct (e.g., a noun) and a

traceability link has been established accordingly between

the generated class and the requirement construct. If a new

transformation rule identifies that this noun (requirement

construct) is qualified by an adjective (another requirement

construct), then the established traceability link can be used

to create an attribute in the generated class. This way, the

output (traceability link) of the first transformation rule is an

input to the second. This mechanism is very useful for

transformation approaches that need to query previously

generated target elements and trace back to their corre-

sponding source elements through the traceability links

previously established.

6.3.3 Algorithm

Not all approaches do provide transformation algorithms.

And when they do, they often do not describe their algo-

rithms at a proper level of details that is amenable to an

implementation. To facilitate automated transformation, an

algorithm should be clearly specified, for example to

describe how and when to apply transformation rules. A

transformation algorithm should specify the sequence of

applying transformation rules, when there are sequential

constraints among them. For example, to generate

sequence diagrams, one must identify objects before

identifying messages exchanged between these objects. A

transformation algorithm should also specify how to verify

conditions triggering transformation rules. A well-designed

algorithm should be easily modifiable when additional

transformation rules are added or existing rules are modi-

fied. It is possible not to rely on transformation rules (i.e., a

transformation is fully described in an algorithm); how-

ever, this strategy just works for very simple transforma-

tions, which is rarely the case. In cases with a large number

of rules, the logic of the algorithm will become very

complex and modifications increasingly more difficult. We

suggest clearly separating transformation rules from

transformation algorithms applying them.

6.3.4 Quality characteristics

Ideally, we also expect transformation approaches to

address quality characteristics such as efficiency, scalabil-

ity, extensibility, and interoperability. Fine-grained trans-

formation from requirements to an analysis model could be

very complex; therefore, efficiency and scalability of

transformation approaches could become an issue for large

software systems. Large-scale case studies are required to

evaluate these two quality characteristics. In addition, we

also suggest using a minimum number of intermediate

models since additional intermediate models unavoidably

make transformation approaches less efficient: the more

intermediate models, the more difficult the validation and

verification of the approach and the higher the chances of

loosing information during transformations. In terms of

extensibility, it is important to be able to add new trans-

formation rules easily and modify transformation algo-

rithms without too many side effects. It is also desirable

that a proposed transformation approach be easily inte-

grated with other approaches or tools, used within a soft-

ware engineering process such as approaches transforming

analysis models into design models, and code generation.

7 Conclusion

In the context of model-driven development, the early step of

transforming requirements into an analysis model is a crucial

but difficult step. Although mostly performed manually,

there have been attempts to automate this software devel-

opment step. However, despite a significant amount of

research, we still do not have a practical, workable auto-

mated solution. To gain a precise and structured under-

standing of the state of the art and identify directions for

future research, this paper provides a systematic review of

existing work on automating this step. This review system-

atically selected, investigated, and compared 16 approaches

for transforming requirements into an analysis model.

In order to facilitate the synthesis and comparison of the

approaches in a systematic manner, a conceptual frame-

work was designed to provide common concepts and ter-

minology for the comparison and evaluation of

transformation technologies. This framework also includes

a description of the general steps of transforming require-

ments into an analysis model while establishing traceability

links. A set of evaluation criteria, which are derived from

the conceptual framework, is proposed to assess each

approach in a precise and structured manner. These

Requirements Eng (2011) 16:75–99 97

123

evaluation criteria can be adapted to evaluate future

research works on the same topic.

Based on the systematic review results, we observed that

no existing approach (i) requires acceptable user effort to

document requirements, (ii) is efficiency enough (e.g., one or

two transformation steps), (iii) is able to (semi-) automati-

cally generate a complete (i.e., static and dynamic aspects),

consistent analysis model, which is expected to model both

the structure and behavior of the system at a logical level of

abstraction, e.g., UML models that at least contain consistent

class and interaction diagrams. However, by carefully ana-

lyzing and evaluating each aspect of the reviewed approa-

ches, we can make recommendations for future work and a

desirable approach can be outlined. A desirable approach is

one that can automatically and efficiently transform a use

case model using reasonable restrictions to natural language,

with or without domain-specific information provided in a

glossary, into a complete, correct and consistent UML model

comprising both structural and behavioral aspects using one

intermediate model and fully automatable requirements pre-

processing techniques.

Additionally, our review results show that four types of

transformation approaches are applied in the reviewed

approaches and selecting which transformation approaches

to apply is closely related to multiple factors such as the

representation of requirements and analysis models. Existing

model to model transformation techniques (e.g., ATL [7] and

Kermeta [27]) can be adopted to implement a requirements-

to-analysis model transformation approach. Transformation

rules and algorithms should be clearly structured and spec-

ified. We also summarize and classify transformation rules

applied in the reviewed works for future research reference.

Our review results also show that most of the approaches do

not address traceability. We suggest that a traceability

mechanism should be proposed to create and maintain

traceability links between requirements elements and anal-

ysis model elements. In cases where intermediate models are

used, traceability links should also be derived all the way

from requirements, through the intermediate models, to the

analysis model. Last, we also suggest that research on

transformation approaches address, in part through empirical

studies, their quality characteristics such as usability, effi-

ciency, scalability, extensibility, and interoperability.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Parsing, http://www.en.wikipedia.org/wiki/Parsing (Last acces-

sed April 2008)

2. Sentence, http://www.en.wikipedia.org/wiki/Sentence (Last

accessed April 2008)

3. IEEE Std. 830-1998, IEEE Standard for Software Requirement

Specification, 1998

4. Abbott RJ (1983) Program design by informal English descrip-

tions. Com ACM 26(11):882–894

5. Aizenbud-Reshef N, Nolan BT, Shaham-Gafni Y (2006) Model

traceability. IBM Syst J 45(3):515

6. Ambriola V, Gervasi V (2006) On the systematic analysis of

natural language requirements with CIRCE. Autom Softw Eng

13(1):107–167

7. Altas Transformation Language (2008) http://www.eclipse.

org/m2m/atl/. Last Accessed March 2008

8. Borgo S, Gangemi A, Guarino N, Masolo C, Oltramari A Won-

derWeb Deliverable D15 Ontology RoadMap, http://www.

wonderweb.semanticweb.org/deliverables/documents/D15.pdf

9. Bruegge B, Dutoit AH (2004) Object-oriented software engi-

neering using UML, patterns, and Java, 2nd edn. Prentice Hall

10. Capuchino AM, Juristo N, Van de Riet RP (2000) Formal justi-

fication in object-oriented modelling: a linguistic approach. Data

Knowl Eng 33(1):25–47

11. Christiansen H, Have CT, Tveitane K (2007) From use cases to

UML class diagram using logic grammars and constraints. In:

Proceedings of recent advances in natural language processing,

pp 128–132

12. Czarnecki K, Helsen S (2003) Classification of model transfor-

mation approaches. In: Proceedings of OOPSLA workshop on

generative techniques in the context of the MDA

13. Czarnecki K, Helsen S (2006) Feature-based survey of model

transformation approaches. IBM Syst J 45(3):621–645

14. Diaz I, Pastor O, Matteo A (2005) Modeling interactions using

role-driven patterns. In: Proceedings of IEEE international con-

ference on requirements engineering, pp 209–220

15. Eclipse Foundation, Eclipse Technology Project, http://www.eclipse.

org/technology/index.php (Last accessed November 2008)

16. Eclipse Foundation, UML2: EMF-Based UML 2.0 Metamodel

Implementation, http://www.eclipse.org/uml2/ (Last accessed

November 2008)

17. Feijs LMG (2000) Natural language and message sequence chart

representation of use cases. Inf Softw Technol 42(9):633–647

18. Fliedl G, Kop C, Mayr HC, Salbrechter A, Vöhringer J, Weber G,

Winkler C (2007) Deriving static and dynamic concepts from

software requirements using sophisticated tagging. Data Knowl

Eng 61(3):433–448

19. Fliedl G, Mayerthaler W, Winkler C, Kop C, Mayr HC (1999)

Enhancing requirements engineering by natural language based

conceptual predesign. In: Proceedings IEEE international con-

ference on systems, man, and cybernetics, 5, pp 778–783

20. Grubacher P, Egyed A, Medvidovic N (2004) Reconciling soft-

ware requirements and architectures with intermediate models.

Softw Syst Model 3(3):235–253

21. Harmain HM, Gaizauskas R (2003) CM-Builder: a natural lan-

guage-based CASE tool for object-oriented analysis. Autom

Softw Eng 10(2):157–181

22. IBM Rational Software Architect, http://www-01.ibm.com/

software/awdtools/architect/swarchitect/ (Last accessed March

2009)

23. IBM Model Transformation Framework, IBM, http://www.

alphaworks.ibm.com/tech/mtf (Last accessed November 2008)

24. Ilieva MG, Ormandjieva O (2006) Models derived from auto-

matically analyzed textual user requirements. In: Proceedings on

software engineering research, management and applications

25. Insfrán E, Pastor O, Wieringa R (2002) Requirements engineer-

ing-based conceptual modelling. Requir Eng 7(2):61–72

26. Jouault F, Kurtev I (2006) Transforming models with ATL.

Lecture notes in computer science, vol 3844, pp 128

98 Requirements Eng (2011) 16:75–99

123

http://www.en.wikipedia.org/wiki/Parsing
http://www.en.wikipedia.org/wiki/Sentence
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/
http://www.wonderweb.semanticweb.org/deliverables/documents/D15.pdf
http://www.wonderweb.semanticweb.org/deliverables/documents/D15.pdf
http://www.eclipse.org/technology/index.php
http://www.eclipse.org/technology/index.php
http://www.eclipse.org/uml2/
http://www-01.ibm.com/software/awdtools/architect/swarchitect/
http://www-01.ibm.com/software/awdtools/architect/swarchitect/
http://www.alphaworks.ibm.com/tech/mtf
http://www.alphaworks.ibm.com/tech/mtf

27. Kermeta, Kermeta metaprogramming environment, http://www.

kermeta.org/ (Last accessed August 2009)

28. Kitchenham BA (2007) Guidelines for performing systematic

literature reviews in software engineering. EBSE Technical

Report EBSE-2007-001

29. Kleppe A, Warmer J, Bast W (2003) MDA explained—the model

driven architecture: practice and promise. Addison-Wesley,

Boston

30. Kruchten P (2003) The rational unified process: an introduction.

Addison-Wesley, Reading

31. Lamsweerde AV (2009) Requirements engineering: from systems

goals to UML models to software specifications. Wiley, New

Jersey

32. Larman C (2004) Applying UML and patterns, 3rd edn. Prentice-

Hall, New Jersey

33. Lethbridge TC, Laganiere R (2001) Object-oriented software

engineering: practical software development using UML and

Java. McGraw-Hill Education, Boston

34. Liu D (2003) Automating transition from use cases to class

model, Thesis, University of Calgary, Department of Electrical

and Computer Engineering

35. Mayr HC, Kop C (2002) A user centered approach to require-

ments modeling. LNI 12:75–86

36. Mich L (1996) NL-OOPS: from natural language to object ori-

ented requirements using the natural language processing system

LOLITA. Nat Lang Eng 2(02):161–187

37. OMG ‘‘OCL 2.0 Specification’’ (2003) Object Management

Group, Final Adopted Specification ptc/03-10-14

38. OMG ‘‘UML 2.0 Superstructure Specification’’ (2005) Object

Management Group, http://www.omg.org/spec/UML/2.0/

39. OMG ‘‘MOF Query/Views/Transformations V1.0’’ (2008) Object

Management Group, http://www.omg.org/spec/QVT/1.0/

40. Overmyer SP, Benoit L, Owen R (2001) Conceptual modeling

through linguistic analysis using LIDA. In: ICSE’01, 2001,

pp 401–410

41. Pender T (2003) UML Bible. Wiley, New Jersey

42. Pressman RS (2005) Software engineering: a practitioner’s

approach, 6th edn. McGraw-Hill, UK

43. Rilling J, Charland P, Witte R (2007) Traceability in software

engineering—past, present and future. CASCON Workshop, IBM

Technical Report

44. Salbrechter A, Mayr HC, Kop C (2004) Mapping pre-designed

business process models to UML. In: Hamza MH (Hrsg.) Pro-

ceedings on IASTED international conference on software

engineering and applications. Cambrigde, USA

45. Samarasinghe N, Somé S (2005) Generating a domain model

from a use case model. In: Proceedings on intelligent and adap-

tive systems and software engineering

46. Sen S, Baudry B, Mottu JM (2008) On combining multi-for-

malism knowledge to select models for model transformation

testing. In: Proceedings of ICST 2008, pp 328–337

47. Śmiałek M, Bojarski J, Nowakowski W, Ambroziewicz A,

Straszak T (2007) Complementary use case scenario representa-

tions based on domain vocabularies. In: Proceedings on MoDELS

48. Somé SS (2003) An approach for the synthesis of State transition

graphs from use cases. Proc Softw Eng Res Pract 1:456–462

49. Somé SS (2006) Supporting use case based requirements engi-

neering. Inf Softw Technol 48(1):43–58

50. Sommerville I (2004) Software engineering, 7th edn. Addison

Wesley, Boston

51. Subramaniam K, Far BH, Eberlein A (2004) Automating the

transition from stakeholders’ requests to use cases in OOAD.

Proc Can Conf Elect Comput Eng 1:0515–0518

52. Subramaniam K, Liu D, Far BH, Eberlein A (2004) UCDA: Use

case driven development assistant tool for class model genera-

tion. In: Proceedings of SEKE’04

53. Tan HBK, Yang Y, Bian L (2006) Systematic transformation of

functional analysis model into OO design and implementation.

IEEE TSE 32(2):111–135

54. Wahono RS, Far BH (2002) A framework for object identification

and refinement process in object-oriented analysis and design. In:

Proceedings of cognitive informatics, pp 351–360

55. Young RR (2001) Effective Requirements Practices. Addison-

Wesley, Boston

56. Yue T, Briand LC, Labiche Y (2009) A use case modeling

approach to facilitate the transition towards analysis models:

concepts and empirical evaluation. In: Proceedings of

MODELS2009

57. Yue T, Briand LC, Labiche Y (2009) A systematic review of

transformation methodologies between user requirements and

analysis models. Carleton University, Technical Report SCE-09-

03

Requirements Eng (2011) 16:75–99 99

123

http://www.kermeta.org/
http://www.kermeta.org/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/QVT/1.0/

	A systematic review of transformation approaches between user requirements and analysis models
	Abstract
	Problem definition
	Scope
	Structure

	Systematic review method
	Research questions
	Search strategy
	Identification of query string
	Electronic and manual search
	Inclusion/exclusion criteria
	Statistics from included primary studies

	Conceptual framework
	Static model
	Taxonomies
	Taxonomy of requirements
	Requirements representation
	Requirements supplements (DSI)
	Natural language (NL)

	Taxonomy of restriction rules
	Taxonomy of analysis models
	Taxonomy of requirements pre-processing approaches
	Taxonomy of transformation approaches

	Process model

	Evaluation criteria
	Evaluation criterion for requirements
	Evaluation criterion for analysis models
	Evaluation criteria for transformation
	Discussion

	Synthesis and evaluation
	Requirements configurations
	Analysis models
	Transformation--automation
	Transformation--efficiency
	Transformation--others
	Evaluation
	Traceability support
	Completeness and structuredness of transformation rules

	Summary of evaluation results

	Open issues and suggestions
	Approach configuration
	Requirements configuration
	Analysis model
	Automation
	Efficiency

	Intermediate model
	Transformations
	Approach
	Traceability support
	Algorithm
	Quality characteristics

	Conclusion
	Open Access
	References

