Information and Software Technology 51 (2009) 1631-1645

Contents lists available at ScienceDirect T
I 7 —
|____SOFTWARE |
—TECHNOLOGY |

Information and Software Technology

MD

journal homepage: www.elsevier.com/locate/infsof

A systematic review of UML model consistency management ™

Francisco J. Lucas *, Fernando Molina !, Ambrosio Toval

Software Engineering Research Group, Department of Informatics and Systems, University of Murcia, Spain

ARTICLE INFO ABSTRACT

Article history:
Available online 3 May 2009

Information System (IS) development has been beset by consistency problems since its infancy. These
problems are greater still in UML software development, and are principally caused by the existence of
multiple views (models) for the same system, and may involve potentially contradictory system specifi-
Keywords: cations. Since a considerable amount of work takes place within the scope of model consistency manage-
UML ment, this paper presents a systematic literature review (SLR) which was carried out to discover the
Model consistency i various current model consistency conceptions, proposals, problems and solutions provided. To do this,
Systematic literature review a total of 907 papers related to UML model consistency published in literature and extracted from the
most relevant scientific sources (IEEE Computer Society, ACM Digital Library, Google Scholar, ScienceDi-
rect, and the SCOPUS Database) were considered, of which 42 papers were eventually analyzed. This sys-
tematic literature review resulted in the identification of the current state-of-the-art with regard to UML
model consistency management research along with open issues, trends and future research within this
scope. A formal approach for the handling of inconsistency problems which fulfils the identified limita-
tions is also briefly presented.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consistency problems have existed in Information System (IS)
development since its beginning and are usually linked to the exis-
tence of multiple models or views which participate in the devel-
opment process.

Problems related to the maintenance and management of con-
sistency were identified in the design of the first databases. These
problems were, on some occasions, due to the duplication of infor-
mation as a result of design errors and, on others, caused by the
need to denormalize this design in order to obtain a more efficient
database execution.

When focusing on software development using UML (Unified
Modelling Language) [1], problems related to consistency between
models also appear. This is mainly due to the existence of multiple
views (models) for the same system, which may potentially con-
tain contradictory specifications. These inconsistencies among dif-
ferent models or views of a system may be a source of numerous
errors in the software developed [2] and may, moreover, conse-
quently complicate its management [3]. A proof of the importance
of UML model consistency in software development is the exis-

* Partially financed by the Spanish Ministry of Science and Technology, project
DEDALO TIN2006-15175-C05-03.
* Corresponding author.
E-mail addresses: fjlucas@um.es (FJ. Lucas), fmolina@um.es (F. Molina),
atoval@um.es (A. Toval).
1 Supported by the Fundacién Séneca (Regién de Murcia).

0950-5849/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.04.009

tence of both a considerable amount of work within this scope
(see Section 3.6), and specific workshops and conference sessions
attempting to deal with this kind of problems.

Furthermore, in recent years, the profound impact of the Model
Driven Engineering (MDE) [4] and particularly of the Model Driven
Architecture (MDA) proposal [5], in which the use of models guides
the development of a system, has caused models to gain more
importance. According to [6], inconsistency problems have become
critical within the scope of MDE and could make the use of models
as a source of automatic code generation impossible.

Attempts to solve these problems have led to the appearance of
a great deal of work in model consistency management. This paper
presents a systematic literature review (SLR), which was carried
out in order to discover the various current consistency concep-
tions, proposals, problems and solutions provided. A systematic lit-
erature review provides a means of identifying, evaluating, and
interpreting the literature relevant to a particular research ques-
tion or topic area [7]. There are numerous reasons for carrying
out systematic literature reviews such as:

- To summarize the existing evidence concerning a treatment or
technology, e.g. to summarize the empirical evidence of the ben-
efits and limitations of a specific agile method.

- To identify any gaps in current research in order to suggest areas
for further investigation.

- To provide a framework/background in order to appropriately
position new research activities.

mailto:fjlucas@um.es
mailto:fmolina@um.es
mailto:atoval@um.es
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1632 FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645

This SLR has been carried out by considering a total of 907 pa-
pers related to UML published in literature and extracted from the
most relevant scientific sources (IEEE Computer Society, ACM Dig-
ital Library, Google Scholar, ScienceDirect, and the SCOPUS Data-
base). The selected papers have been classified according to a
number of features within the scope of model consistency manage-
ment. In the context of this report, this systematic literature review
attempts to answer the following question: What inconsistency
problems have been tackled by the current approaches for model
consistency management and how extensible are they in guaran-
teeing its usability and maintainability, allowing the addition of
new problems and types of models? As a result of this systematic
literature review, the present state of consistency management re-
search is identified, along with open issues, trends and future re-
search within this scope. Moreover, a formal approach with
which to handle inconsistency problems based on transformation
languages, algebraic specifications and rewriting logic [8] which
will overcome the identified limitations is briefly presented.

Another survey on inconsistency management [9], which was
carried out in 2001, focused on the activities of an inconsistency
management process, and the positive features and limitations of
the approaches that can be used in each activity. However,
although the main limitations of each approach studied have also
been included in our review process (see [10]), the main aim of this
SLR is different since it focuses on the type of problems tackled by
current work, the diagrams supported and the maintainability of
each proposal, in order to answer the research question that has
motivated the SLR.

The remainder of the paper is structured as follows: Section 2
describes the background and the context of this work, and the
systematic literature review developed. Section 3 shows what an
SLR is and describes how that which appears in this paper has been
carried out. The results of the SLR are analyzed in Section 4. Finally,
a preliminary approach with which to overcome the limitations
found in the SLR is shown, along with our conclusions.

2. Background: model consistency concepts

Several possible definitions of model consistency and its classifi-
cation appear in existing literature. This is sometimes due to the fact
that these concepts are used in various, and even ambiguous or con-
tradictory, ways within different contexts [11]. The following defini-
tions and sources adopted for each concept related to consistency
have been used in order to unify the terminology used in this paper:

- Consistency. A state in which two or more elements, which
overlap in different models of the same system, have a satisfac-
tory joint description [9].

- Inconsistency Management. A set of activities for detecting and
handling consistency problems.

- Horizontal or intra-model consistency problems. These are
problems between models which are built at the same level of
modelling abstraction [12].

- Vertical or inter-model consistency problems. These problems
can appear between models built at different levels of abstrac-
tion, for example, when refinements are made during the devel-
opment [12].

- Syntactic consistency problems. This kind of consistency should
guarantee that a model conforms to its abstract syntax (speci-
fied by its metamodel) [13].

- Semantic consistency problems. This consistency requires that
models’ behaviour be semantically compatible [13].

These definitions will be used in the remainder of the paper. The
classifications between horizontal-vertical and syntactic-semantic

consistency problems are orthogonal. Table 1 shows an example of
each of the main classifications described (horizontal-vertical, syn-
tactic-semantic). All the papers analyzed are included in one of
these four categories.

Inconsistency problems may originate from various sources.
[12] identifies two main sources of these problems:

- The multiview nature of the models: a system is described as
multiple views that give the details of different concerns that
make up the system, with a possible overlap between them.

- The system is developed through multiple phases or iterations,
and each one produces a new, more refined description of the
system.

In addition to these sources, the distributed development of a
system with potentially multiple developers, which may on
occasions be geographically distributed (local or global develop-
ment), with multiple interpretations of both requirements and
the UML notation itself [12] may also produce inconsistency
problems.

3. Systematic literature review

This section shows a summary of the SLR presented in this pa-
per. The complete report of this SLR can be found in [10].

The process of conducting a systematic literature review is not a
simple task, since the whole process must be precisely defined and
documented, and must include intermediate results. To facilitate
the planning and execution of systematic literature reviews, [14]
proposes a review protocol template based on a systematic litera-
ture review protocol previously developed in the area of medicine,
along with other guidelines developed in the area of Software Engi-
neering. In this paper, we have carried out the SLR by using the
aforementioned template, and have also taken into account the
guidelines given by [7]. Therefore, this template has been slightly
extended to include some of the sections mentioned in [7], which
were not explicitly included.

The SLR presented was carried out by effectuating the following
activities:

. Question formularization.
. Source selection.

. Studies selection process.
. Information extraction.

. Extraction execution.

N WN =

The sections below give a detailed explanation of how each of
these activities was carried out.

3.1. Question formularization

In this paper, and by following the instructions given in [7,14],
we have defined the following research question in order to guide
the SLR:

- What inconsistency problems have been tackled by the current
approaches for model consistency management and how exten-
sible are they in guaranteeing its usability and maintainability,
allowing the addition of new problems and types of models?

This main question has been refined into the following set of
more specific research questions (RQ):

(RQ1) What is the UML version used in the work?

FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645 1633

Table 1
Concrete examples of consistency problem classifications.

Type of
consistency

Syntactic

Semantic

Horizontal
associated class diagram

The methods definition of a class should be consistent in all the
abstraction levels in which these methods could be defined

Vertical

The class names used in a sequence diagram should appear in the The events produced in a sequence diagram should not produce inconsistent states in the
state diagrams of the objects which participate in the interaction

When some child classes are created in a refinement from a parent class, the traces
defined by the statemachine of the parent class should be supported by the low-level

statemachines of the child classes

(RQ2) What is the method, language or technique used to carry
out the approach (and is it a formal or a non-formal tech-
nique)? This distinction is made due to the fact that formal
techniques have some features which help to avoid consis-
tency problems such as the imprecise or ambiguous inter-
pretation of the semantics of the modelling language [12],
and also offer a wide range of applications based on their
mathematical underpinning. A technique is considered to
be a formal technique if it specifies at meta-level (a) a syn-
tax, (b) semantics, and (c) a proof system [15].

(RQ3) What types of diagrams have been tackled in each
approach?

(RQ4) What kind of consistency problems have been tackled in
each approach?

(RQ5) How can the approach be extended to support new consis-
tency checks? This question is related to both the usability
and the maintainability of the proposal. The most up to
date solutions for these problems are only partial and
are of an academic nature [6], partly due to the impossibil-
ity of implementing all the possible checks by the authors
of each approach. Thus, if a modeller wishes to include
new consistency checks, s/he has to specify or implement
them directly over the language or technique used in the
approach, which may often be unknown to the modellers.
The way in which each approach can be extended will
therefore be considered as a further research question.

(RQ6) How suitable is the integration of the approach within
CASE tools? Another feature that an approach should offer
for its use within an industrial software development
environment is that of good support within a CASE tool,
since this helps to provide suitable feedback during mod-
elling. In order to obtain a suitable integration between
approach and tool, on the one hand, the approach should
be easy for the modellers to use as a result of its integra-
tion within the CASE tool and, on the other hand, the
extension mechanism offered by the approach to express
new problems should also be integrated within the CASE
tool. This will be considered in each work.

(a) For those approaches that do not offer integration within a
CASE tool, we will consider whether they offer a prototype
tool through which to facilitate the use, or learning, of the
approach.

After carrying out this SLR we expect to obtain:

- Relevant information concerning the present state-of-the-art
with regard to UML model consistency management.

- The identification of gaps in current research, solutions, trends
and future research within this scope.

- Recommendations concerning the features that should be
included in an approach which offers suitable and extensible
support in the solution of consistency management prob-
lems. These will be extracted from the conclusions of the
SLR.

As a consequence of these results, the definition of a novel pre-
liminary approach for handling inconsistency problems which ful-
fils these recommendations is briefly presented in Section 5.

3.2. Source selection

The sources identified for use in the search for primary studies
were those recommended by [7] which, from our point of view,
were also appropriate for this review since they contain the work
published in those journals, conferences and workshops which
are of recognized quality within the research community. These
sources are:

- IEEE Computer Society, search fields: title, abstract and full text;

- ACM Digital Library, search fields: title, abstract and review;

- Google Scholar, search fields: title, abstract and full text;

- Science direct, search fields: title, abstract and full text; and

- The SCOPUS Database, search fields: title, abstract and
keywords.

Other important sources such as DBLP or CiteSeer were not
explicitly included since they were indexed by some of the men-
tioned sources (e.g., Google Scholar and SCOPUS Database). In the
selected sources, we experimented with various search string cri-
teria. That which eventually retrieved the highest number of useful
results was:

(“management” AND
“consistency”))

OR (“model” AND (“inconsistency” OR “consistency”))

Certain synonyms and terms related to the concept of the model
within the scope of consistency management were also taken into
account in the search process. Specifically, the terms diagram, view
and concern have been used as synonyms of model.

“model” AND (“inconsistency” OR

3.3. Studies selection process

Having defined the source selection, we shall now describe the
process used to identify those studies that provided direct evi-
dence with regard to the research question. We shall do this by
defining a basic inclusion and exclusion criteria based on the re-
search question, along with a procedure through which this selec-
tion was made. This is explained below.

3.3.1. Definition of inclusion and exclusion criteria

The approaches selected must be related to model consistency
management. Approaches which were not based on UML models
were excluded. Initially, the selection criteria were interpreted lib-
erally and clear exclusions were only made with regard to title, ab-
stract and introduction.

3.3.2. Procedures for studies selection

By following the indications mentioned in [7], we established a
multistage process made up of three stages with different selection
criteria:

1634

In the first stage, the search string must be run on the selected
sources. An initial set of studies was obtained from the reading
of the title, abstract and introduction of all the studies selected
according to the inclusion and exclusion criteria. Studies which
were not clearly related to any aspect of the research question
were not included.

In a second stage, the exclusion criteria were based on the fol-
lowing practical issues: short papers, non-English papers, non-
International Conference papers and non-International Work-
shop papers.

In a third stage, the selection process was based on detailed
research questions (see Section 3.1).

Furthermore, and in accordance with [7], a list of studies which
had been excluded as a result of the more detailed inclusion/exclu-
sion criteria was be created. This list did not include those irrele-
vant papers that could be clearly excluded in the first stage after
having applied the exclusion criteria.

Finally, please note that the procedure execution and all the
studies selected were analyzed by the first two authors of this pa-
per and supervised by the third.

3.3.3. Selection execution

The review process must be documented in sufficient detail [7].
The execution of our selection therefore produced various lists of
studies which collected the output of each stage of the selection
procedure. The information for each stage of the studies selection
procedure was collected in the following manner:

The first stage produced as output a list for each source which
contained all the studies that fulfilled this first stage.

The second stage produced as output a list of studies for each
source which contained all the studies that did not fulfil the sec-
ond stage inclusion criteria of the procedure for studies selec-
tion. These lists contained the excluded work together with
the reason for their exclusion from the SLR.

The third stage produced as output a list of studies for each
source which contained all the studies that fulfilled the second
stage of the procedure for studies selection. A completed extrac-
tion form was included for each work (see Section 3.5).

All the generated lists are available in the complete version of
this SLR (see [10]).

3.4. Threats to the validity of this SLR
The main threats to validity in this systematic literature review

are related to bias in the selection of the studies to be included and,
in some cases, possible inaccuracy in data extraction.

FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645

We have considered the five digital libraries mentioned in
Section 3.2 which, in turn, include other important electronic
sources such as DBLP or CiteSeer. With regard to this point, per-
haps the major validity issue facing this systematic literature re-
view is whether we have failed to find all the relevant primary
studies, although the scope of conferences and journals covered
by the review is sufficiently wide for us to have achieved com-
pleteness in the field studied. Nevertheless, we are conscious
that it is impossible to achieve total completeness. Some relevant
papers may exist which have not been included, although the
width of the review and our knowledge of this subject have
led us to the conclusion that, if they do exist, there are probably
not many.

The selection of papers and data extraction has been carried
out by following a multistage process as is suggested in [7].
The three authors of the SLR have participated in this process,
and all the selected studies have been analyzed by the firsts
two authors and supervised by the third throughout the process.
The criteria applied in each stage have been detailed in Section
3.3.2. It is important to note that any systematic literature re-
view is limited to reporting the information provided in the pri-
mary studies.

Finally, in order to validate the completeness of the SLR, the
studies selected in stage two were reviewed by external experts
who detected some important papers that had not been included
in the SLR. The primary studies in the SLR have therefore been ex-
tended with those papers [16,17] provided by experts in this field.
These papers will not be taken into account in the statistics shown
in either Tables 2 and 3 or in Fig. 1 since they summarize statistics
related to the search process.

3.5. Information extraction

Having defined how the studies were to be selected, it was nec-
essary to design data extraction forms to record the information
obtained from the primary studies. The extraction form developed
was based on the research questions defined in Section 3.1, general
information related to the study identification and certain features
defined in [14] related to the objective and subjective results of
each study. Each paper’s extraction form included the following
items:

- Source. Where the paper was found (see Section 3.2).

- Study identification.

- Summary of the paper.

- Inclusion and Exclusion Criteria.

- Research Questions:

Method, technique or language used in the paper to manage
the model consistency.

Table 2
Summary of the studies selected at each stage of the selection procedure.
IEEE ACM Google Scholar Science direct Scopus Total

Total results 10 170 485 24 218 907
Results selected (stage one) 10 12 24 7 37 90
Results selected (stage two) 4 6 12 5 27 54
Table 3
Summary of search engines overlap in the second stage.

IEEE ACM Google Scholar Science direct Scopus
IEEE - [18] [19] 0 [18,20]
ACM [18] - [21,22] 1] [20,18,21,23,22]
Google Scholar [19] [21,22] - [24] [18,21,22,24]
Science direct 0 0 [24] - [18,24,25]
Scopus [18,20] [20,18,21,23,22] [18,21,22,24] [18,24,25] -

FJ. Lucas et al./ Information and Software Technology 51 (2009) 1631-1645

1635

10 DOJournal of Software and System Modeling
] B JIST (Journal of Information and Software
Technologies)
8 W JUCS (Journal of Universal Computer
Science)
7 DWSEKE (International Journal of Software
Engineering and Knowledge Engineering)
6 B JSS (Journal of Systems and Software)
5 @JOT (Journal of Object Technology)
4 ISpnnger
3 DIEEE
2
DENTCS
1
BmACM
0 1 T T T T T
2001 2002 2003 2004 2005 2006 2007 |7 Otercenference proccedngs
Fig. 1. Number of publications over specific time period.
e UML version. If the approach used a simplified or owned ver- e Extension mechanism.
sion of the UML metamodel, this field was filled in with “Sim- e CASE tool integration.
ple UML". e Automatic support.
e Formal approach (Yes/No). - Objective Result Extraction
e Diagram support. Types of diagrams supported by the e Study Results: effect obtained through the study review.
approach. e Study Problems: study limitations found by the paper’s
e Consistency support: Syntactic-Semantic. Horizontal- author.
Vertical.
Table 4
Summary: technique and support.
Reference Technique UML version Formal Extension CASE Integration Automatic support
mechanism
Amaya et al. [26] xLinkit Simple UML NO NO NO NO
Amalio et al. [27] z Simple UML YES NO NO NO
Chiorean et al. [24] OCL 1.3 NO OCL NO YES, OCLE
Diethers et al. [28] Timed Automata (UPPAAL model checker) 1.3 YES NO YES YES
Egyed et al. Constraints defined with the language/checker 1.3 NO NO YES (IBM YES
[20,18,23] available in IBM rational Rose Rational Rose)
Egyed et al. [29] Transformation and comparison 1.3 NO NO YES (IBM YES
Rational Rose)
Engels et al. CSP (Communication Sequential Process) 1.3 YES NO NO YES, consistency
[30,31,25,32-34] workbench
Fryz et al. [35] Graphs 2.0 YES NO NO NO
Graaf et al. [36] Manual inspection 1.4 NO NO NO NO
Hausmann et al. [37] Graphs 1.4 YES NO NO NO
van Hee et al. [38] Petri Nets (PN) and Z Simple UML YES NO NO NO
Inverardi et al. [39] SPIN model checker Simple UML YES NO NO YES
Kholkar et al. [40] SAL (Symbolic Analysis Laboratory) Simple UML YES NO NO YES
Laleu et al. [41] B Simple UML YES NO NO YES
Lam et al. [42] pi-Calculus 2.0 YES NO NO NO
Lucas et al. [43] Rewriting Logic (Maude) Simple UML YES NO NO NO
Malgouyres et al. CLP (Constraint Logic Programming) Simple UML YES NO NO NO
[22]
Mens et al. [44] Graph transformation rules Simple UML YES NO NO YES, AGG
Ossami et al. [45] B Simple UML YES NO NO YES, B/Smart Tools
Paige et al. [21,46] PVS (theorem proving), Eiffel and JML (OO- Simple UML (BON YES NO NO YES, BON- CASE
programming) diagrams)
Paige et al. [47] OCL Simple UML NO oCL NO NO
Rasch et al. [48] Object-Z and CSP 1.5 YES NO NO YES, FDR
Sapna et al. [19] SQL triggers Simple UML NO 0oCL NO NO
Schrefl et al. [17] Petri Nets Simple UML YES NO NO NO
Shinkawa et al. [49] Colored Petri Nets (CPN) Simple UML YES NO NO NO
Spanoudakis et al. OCL Simple UML NO OCL NO YES, S-Tool
[50,51]
Straeten et al. [52- Description Logic (DL) 2.0 YES NO YES YES
55]
Wagner et al. [16] Graphs 1.5 YES NO YES, plugin of NO
Fujaba
Wang et al. [56] FSP (Finite Transition System) Simple UML YES NO NO YES
Yao et al. [57] Petri Net (PN) Simple UML YES NO NO YES, Owner tool
Yeung et al. [58] B and CSP 1.4 YES NO NO NO
Zhao et al. [59] SPIN model checker Simple UML YES NO NO YES

1636 FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645

- Subjective Results Extraction
e General Impressions and Abstractions: subjective conclusions
after studying the paper.

This form was used for classifying each study. A complete list of
the forms filled in for each primary study can be found in [10]. Part
of this information is included in the following sections.

3.6. Extraction execution

The systematic literature review took place in March 2008 and
no limitations were imposed on the years covered by the search
(although the studies which were eventually analyzed were from
2001 to 2007). Table 2 shows a summary of the studies selected
in each stage of the selection procedure for each source. The “Total
results” are those results which were obtained by running the
search string on the selected sources. The next two rows show
the results obtained after applying stages one and two of the stud-
ies selection procedure. The approaches resulting from this last
stage were studied in depth and information concerning the de-
tailed research questions and other fields of the extraction forms
was extracted from each paper. Although 56 works were selected,
some of them appeared in different sources, so repeated studies
were eliminated. 44 works were eventually analyzed (see first
column Table 4). Moreover, Fig. 3 summarizes the overlapping
search engines produced in the second stage, in order to provide
details of how many papers were found in various different
sources. Fig. 1 presents an overview of the number of selected pub-
lications over a specific period of time, together with their publish-
ers. As the reader can notice, consistency management has
attracted the attention of numerous quality journals and confer-
ences in recent years, which denotes that this still is a very active
field of research.

Table 5
Summary: diagram and consistency support.

4. Results of the systematic literature review

This section shows a summary of the results obtained in the
SLR, along with an analysis of the data collected, in order to iden-
tify open issues, limitations of the current approaches and recom-
mendations which can be used to offer a suitable model
consistency management within the scope of UML.

Once the extraction execution had been completed, it was
important to ensure that multiple publications of the same ap-
proach were not included in the data analysis. Papers that ap-
peared in multiple sources were thus taken into account only
once. Once the duplicated papers had been removed, the different
papers describing the same data or approach were grouped to-
gether, since duplicate reports would seriously bias the results of
the data synthesis [7]. The total number of different approaches in-
cluded in Tables 4 and 5 is 32.

The results are summarized in two tables. Each of the table’s en-
tries groups the papers according to the author’s own approach,
and these entries have been ordered by the year of publication
and the first author’s name. Table 4 shows the values regarding
to the research questions related to “Technique”, “UML version”,
“Formal”, “Extension mechanism”, “CASE integration” and “Auto-
matic support”. This table therefore shows the general information
of each approach, i.e., which method is used and what the tool sup-
port offered by each approach is.

Table 5 shows the diagrams supported by each approach and
what kind of inconsistency problems they handle. The remaining
items included in the extraction form for each approach can be
found in [10].

Moreover, Fig. 2 and Table 6 show schematically which dia-
grams and what consistency support is offered in current litera-
ture. Fig. 2 shows the percentage of diagrams involved in the
proposals. As we can see, three diagrams (class, state and interac-

Reference Diagram support

Consistency support

Amaya et al. [26] Use cases, class and sequence
Amalio et al. [27] Class and statecharts
Chiorean et al. [24] Class

Diethers et al. [28]
Egyed et al. [20,18,23] Class, sequence and statecharts
Egyed et al. [29] Class

Engels et al. [30,31,25,32-34] State diagrams

Fryz et al. [35] Use cases and class

Graaf et al. [36] Sequence and statecharts
Hausmann et al. [37] Class and objects

Hee et al. [38] Class, sequence and statecharts
Inverardi et al. [39] Statecharts and sequence
Kholkar et al. [40]
Laleau et al. [41]

Lam et al. [42] Sequence and statecharts
Lucas et al. [43] Class and communication
Malgouyres et al. [22] Class

Mens et al. [44] Class and statecharts

Class and statecharts
Class and communication
Class and sequence

Class and statecharts

Ossami et al. [45]

Paige et al. [21,46]

Paige et al. [47]

Rasch et al. [48]

Sapna et al. [19]

Schrefl et al. [17]
Shinkawa et al. [49]
Spanoudakis et al. [50,51]
Straeten et al. [52-55]

Statecharts

Class and sequence
Class, sequence and statecharts

Wagner et al. [16] Class

Wang et al. [56] Sequence and statecharts
Yao et al. [57] Sequence and statecharts
Yeung et al. [58] Class and statecharts
Zhao et al. [59] Sequence and statecharts

Sequence and statecharts diagrams

Use cases and class + owner diagrams (see [10] for details)
Class, statecharts and communication

Use case, activity, class, sequence and statecharts diagrams

Use case, sequence, activity and statecharts

Semantic - Horizontal
Syntactic/Semantic — Horizontal
Syntactic - Horizontal

Semantic - Horizontal

Syntactic — Horizontal

Syntactic - Vertical

Semantic — Horizontal/Vertical
Syntactic — Horizontal

Semantic - Horizontal

Syntactic - Horizontal

Syntactic — Horizontal

Semantic - Horizontal
Semantic - Horizontal

Syntactic - Horizontal

Semantic - Horizontal

Syntactic — Horizontal

Syntactic — Horizontal

Syntactic - Vertical
Syntactic/Semantic — Horizontal/Vertical
Syntactic/Semantic - Horizontal/Vertical
Syntactic — Horizontal
Semantic - Horizontal
Syntactic - Vertical

Semantic — Horizontal/Vertical
Syntactic - Horizontal

Syntactic — Horizontal
Syntactic/Semantic - Horizontal/Vertical
Syntactic — Horizontal

Semantic - Horizontal
Semantic - Horizontal
Syntactic/Semantic - Horizontal
Semantic - Horizontal

FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645 1637

Use case

Class I

Sequence- |
Communication

Statecharts |

Others l

0 10 20 M 40 50 60 70 60

Fig. 2. Percentages of diagram support.

Table 6

Percentages of consistency support.

Type of consistency Syntactic Semantic
Horizontal 53.13% (17 of 32) 53,13% (17 of 32)

Vertical 18.75% (6 of 32) 15,63% (5 of 32)

tion diagrams) are tackled by more than 60% of the proposals,
whereas the remaining UML diagrams are usually overlooked.

Table 6 shows the percentage of approaches tackling each type
of consistency. The table clearly demonstrates that vertical incon-
sistency problems are studied with less frequency than those
which are horizontal.

4.1. Analysis of results, conclusions and recommendations

Having shown the results of the systematic literature review, in
this section we provide: (1) our conclusions, which were obtained
by analyzing the collected data for each research question and our
own experience; and (2) recommendations for possible future re-
search based on the research questions used in this review.

Table 7
Specification technique paradigm.

4.1.1. UML version

The majority of the approaches presented (60%) use simplified
versions of the UML metamodel. This is a disadvantage with regard
to the use of the approaches in industrial software development,
but this problem is understandable since many authors do not
have the support of companies and their proposals are of an aca-
demic nature and solely attempt to fill a gap that exists in current
UML modelling. The other proposals (40%) use the UML version
available at the time of their publication or the version offered
by the tool used for building the models.

Although this is an understandable limitation, it is one
that should be rectified in future approaches. A means of solving
this might be through the integration of the proposal into a
standard software development platform such as EMF (Eclipse
Modelling Framework) [60], which allows different metamodels
(UML 2.0, simple metamodels, DSLs (Domain Specific Languages),
...) to be worked on since it includes an implementation of EMOF
[61].

4.1.2. Formal approach

75% of the techniques used in the proposals for detecting and
handling inconsistency problems are formal. None of the formal
techniques used stand out above the others, although almost all
the proposals that tackle semantic inconsistency problems use a
model checker to simulate the behaviour of the system and to find
inconsistencies.

This high percentage reveals that the use of formal techniques
offers advantages in dealing with consistency problems. Formal
techniques add precision to UML models, and their mathematical
underpinning permits the use of a wide range of applications
such as model checkers, theorem provers, coherence checkers,
etc.,, to name but a few. Many approaches therefore use these
methods, in spite of the fact that formal techniques are not yet
very popular in the industrial software development community
[62]. This unpopularity is usually due to the fact that these ap-
proaches are difficult for the modellers to use directly, and that
the feedback they offer is usually poor and difficult for non-ex-
perts to understand. However, this problem can be solved if the
approach is integrated into standard software development plat-
forms [62].

Reference Formal technique

Paradigm

Amalio et al. [27]
Diethers et al. [28]
Engels et al. [30,31,25,32-34]
Hausmann et al. [37]
Fryz et al. [35]

Hee et al. [38]
Inverardi et al. [39]
Kholkar et al. [40]
Laleu et al. [41]

Lam et al. [42]

Lucas et al. [43]
Malgouyres et al. [22]
Mens et al. [44]
Ossami et al. [45]
Paige et al. [21,46]
Rasch et al. [48]
Schrefl et al. [17]
Shinkawa et al. [49]
Straeten et al. [52-55]
Wagner et al. [16]
Wang et al. [56]

Yao et al. [57]

Yeung et al. [58]
Zhao et al. [59]

z

Timed Automata (UPPAAL model checker)
CSP (Communication Sequential Process)
Graphs

Graphs

Petri Nets (PN) and Z

SPIN model checker

SAL (Symbolic Analysis Laboratory)
B

pi-Calculus

Rewriting Logic (Maude)

CLP (Constraint Logic Programming)
Graph transformation rules

B

PVS (theorem proving)

Object-Z and CSP

Petri Nets

Colored Petri Nets (CPN)
Description Logic (DL)

Graphs

FSP (Finite Transition System)

Petri Net (PN)

B and CSP

SPIN model checker

State transitions
State transitions
Process algebra
State transitions
State transitions
State transitions
Logic

State transitions
State transitions
Process algebra
State transitions
Logic

State transitions
State transitions
Logic

State transitions and Process algebra

State transitions
State transitions
Logic

State transitions
State transitions
State transitions

State transitions and Process algebra

Logic

1638 FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645

Due to the advantages offered by these methods, we recom-
mend that inconsistency problems be tackled with the use of for-
mal techniques, although a suitable support within a CASE tool
should be developed if they are to be used in industrial software
development.

Finally, in order to show what the most frequently used formal
techniques are, we have classified each technique according to the
four paradigms identified in [63]:

- State transitions: the specification describes a transition relation
on a set of states, e.g. B, Z, Petri Nets, etc.

- Algebra: the specification describes a set of operations defined
on a set of types (also called sorts). Events are represented by
a function (also called an operation). The behaviour of functions
is given by a set of equations (axioms) which states how func-
tions are related, e.g. CASL.

- Process algebra: this is a special type of algebra. Its operations
are applied to elementary processes and events to describe
how events may occur, e.g. (e-)LOTOS.

- Logic: the behaviour of functions is given by a set of equations
(axioms) which states how functions are related, e.g. PVS, pi-cal-
culus, etc.

More detailed information about these definitions can be found
in [63].

In Table 7, each approach has been classified according to this
classification. Fig. 3 shows a summary of this information. As the
table shows, most of the approaches presented (71%) use a state
transitions technique.

4.1.3. Diagram support

The diagrams tackled by each approach alter according to the
kind of consistency problem that they wish to check or handle.
For example, approaches that deal with behaviour consistency
problems usually consider sequence and state diagrams, whereas
approaches for static consistency problems usually tackle class dia-
grams together with other diagrams that use the information de-
fined in the class diagram such as sequence, communication or
state diagrams.

As Fig. 2 shows, in general, the interaction (sequence or com-
munication), statecharts and class diagrams are those most fre-
quently tackled, whereas other UML 2.0 diagrams such as
timing, activity or components diagrams are not studied.
Although this may be a limitation, studies such as [64] demon-
strate that these diagrams are those which are most frequently
used in industrial software development. The diagrams checked
are therefore sufficiently representative to prove the validity of
a proposal.

80

7

70

60

80

40

30

21
20 7

10

0

State transitions Logic Process algebra Algebra

Fig. 3. Summary of formal paradigm.

4.1.4. Consistency support

Table 6 shows a summary of the consistency support offered by
the selected proposals. Note that the consistency problems most
frequently tackled are syntactic and horizontal problems.

One of the most important conclusions that may be reached by
studying this figure is that only a small number of proposals cover
problems related to vertical consistency. This kind of problems is
particularly important within the scope of MDE approaches in
which consistency problems at different levels of abstraction arise.
Future proposals dealing with the solution of consistency problems
should, therefore, consider this type of inconsistencies.

4.1.5. Extension mechanism

As was previously mentioned, the extensibility of a proposal is
related to its usability and its maintainability. However, Table 4
shows that only 12.5% of the approaches offer a means of extend-
ing the proposals without being forced to program in the technique
used. These proposals use OCL (Object Constraint Language) [65] as
a language through which to express consistency problems. How-
ever, OCL is too limited to express them. For example, it does not
allow us to fix any inconsistencies found since its constraints are
side-effect free and cannot modify model elements. Other prob-
lems related to OCL, such as the fact that it is not easy to under-
stand, are identified in [66].

On the other hand, as was mentioned in the previous section,
the remaining approaches (87.5%) are limited to the implementa-
tion offered by the authors, since it is impossible to include all
the possible inconsistency checks made by the authors of the ap-
proach. This limitation makes expert support necessary if support
for new UML diagrams or consistency checks and handling are to
be included. This limitation becomes more meaningful within the
scope of DSL development, which is rising due to its use in the
majority of the proposals connected with MDE. New kinds of mod-
els are defined within this scope, so the lack of maintainability also
appears when we wish to tackle inconsistency problems within
these new models.

This limitation signifies that the solutions proposed for these
problems are only partial. However, they could be overcome if
the approach were to offer a way in which to extend them through
a well-known language, which has sufficient power to express both
the definition and the handling of consistency rules or constraints
and expressiveness, thus making them easy to read and
understand.

4.1.6. CASE tool integration

The studied approaches are usually supported by a tool (53.1%),
but only 15.6% of them are suitably integrated within a CASE tool
which permits the easy use of the checks implemented. Moreover,
the non-integrated approaches in a CASE tool offer poor feedback
which is difficult for modellers to understand, since the output of
the consistency checks is usually expressed within the scope of
the technique chosen (for example, the formal technique used).

Future new approaches should not only facilitate the use of the
checks already implemented, but also integrate the definition of
new consistency checks and handlings through to the extension
mechanism and improve the feedback that the consistency check
produces with the aim of easing the modellers task of identifying
and handling the problems detected in the models. To do this it
will be necessary to select and extend one of the existing CASE
tools. The extension capacities of CASE tools should, therefore, be
taken into account during the selection process.

4.2. Other future research trends

In addition to the observations concerning each research ques-
tion which may serve to guide future research in model consis-

FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645 1639

tency management, this SLR has also brought to light other consid-
erations, recommendations and open issues which should be taken
into account.

4.2.1. Inconsistencies in MDE

Model transformations have always been an important field of
research through which to automate (totally or partially) model
evolution throughout downstream development, or simply to dis-
cover models which improve certain features of the source models
(based on certain criteria: experience, metrics. ..). Furthermore, in
recent years, the profound impact of the MDE proposal has meant
that model transformation has become a highly active direction for
research and development. Since MDE proposes the construction of
a system’s models at different levels of abstraction, from models
that do not contain details of a specific platform to models that
take into account the features of the specific platform in which
the system will be implemented, inconsistencies in the more ab-
stract models could make (semi-)automatic generation impossible
[6]. Moreover, changes in less abstract models may produce incon-
sistencies with regard to their more abstract models. Vertical con-
sistency therefore becomes one of the most relevant unresolved
problem since, as we have already mentioned, it is usually over-
looked in the approaches used to handle inconsistency problems.

4.2.2. Handling inconsistencies

A concrete inconsistency problem can be handled by several
solutions. Moreover, in most situations, the modeller should decide
which solution is the most suitable for the system that is being
developed. For instance, if a method used in a sequence diagram
does not appear in its corresponding class diagram it is possible
to, for example, add a new method to the class of the object that
receives the message or modify the method of the message with
one from that class. Although, some approaches handle the incon-
sistencies found, this handling might not be the most suitable for
the system, so new approaches should offer the possibility of defin-
ing and choosing among multiple possible actions.

5. Our proposal: model consistency management powered by
transformation languages

Having taken into consideration the recommendations for sur-
veys provided in [67], in this section we define an approach which
attempts to show the viability of overcoming the limitations and
unresolved situations identified by the systematic literature re-
view. The features of this approach are focused on offering an ap-
proach that will be: (1) extensible, (2) aligned with the MDA
proposal, and (3) suitably CASE tool integrated. By taking these
aims as our starting point, this section proposes an initial approach
based on three elements:

- Transformation languages, which will be the basis for the defini-
tion of the extension mechanism and the front-end of the
proposal.

- Rewriting logic [8]. Owing to the benefits of formal techniques
already commented on, the approach will be implemented over
a formal language in order to use its mathematical underpinning
to enable theoretical properties to be proved. The formal lan-
guage used to give support to the whole proposal is Maude
[68]. This technique will be the back end of the proposal.

— A CASE tool which appropriately integrates all these technolo-
gies based on Eclipse EMF [60].

Since the approach presented is not the main aim of this paper
and will be presented in further work, these features will be ex-
plained only briefly in the following sections.

5.1. A transformation language for model consistency management

One of the most important limitations of the current ap-
proaches used outside academic scopes is the absence of an exten-
sion mechanism. This problem can be solved by offering a well-
known intermediate representation or language to extend the
approach.

Since a consistency problem can be seen as a set of relationships
that must be held among model elements conforming to one or
several metamodels, and since transformation languages define
relationships among the metamodel elements that will be trans-
formed, our proposal consists of reinterpreting the semantics of
one of these transformation languages and using it as a basis to de-
fine an extensible approach for model consistency management.

Several transformation languages with which to define trans-
formations have appeared within the scope of MDE [69-71]. These
definitions are usually expressed as a set of transformation rules
that describe how a source model is transformed into a target
model [72]. That is, these rules describe how metamodel elements
of the source model are transformed into other metamodel ele-
ments in the target model. From our point of view, the semantics
of these transformation rules will be reinterpreted in order to ex-
press relationships that must be held among metamodels, i.e., con-
sistency relationships that must exist among metamodels. An
inconsistency problem will thus be expressed as a set of relation-
ships (by means of transformation rules). With these semantics,
it would appear to be suitable to use a transformation language
such as an intermediate language which is well-known to
modellers.

The language chosen for our approach is that of QVT Relations
[69], proposed by the OMG (Object Management Group) within
the scope of MDA. In this language, relations among metamodels
establish how the transformations are carried out. The main rea-
sons for choosing this language as the basis of our approach have
been:

- It is one of the languages defined by the OMG in QVT. This guar-
antees a wide acceptance within the software development
community.

— QVT Relations is the most abstract and user-friendly language of
all the languages defined within the QVT standard [69].

- It is capable of expressing any kind of transformation, and thus
any kind of consistency problem among metamodels.

Therefore, QVT Relations provides a well-known and suffi-
ciently expressive language which, when interpreted in this way,
provides a mechanism through which to define consistency rela-
tionships in industrial software development. Other features of this
language are declarative specification and complex object pattern
matching, features which are easily supported by our approach.

5.2. The formal language maude

The formal language chosen to specify our approach is Maude
[68]. This language is based on equational and rewriting logic
and its specifications are executable, thus allowing us to build pro-
totypes, check constraints over a system, and prove theoretical
properties over the behaviour of a system in an efficient manner
(from half a million to several million rewrites per second [68]).

In rewriting logic [8], a system is specified through a rewrite
theory, which consists of a signature X (sorts and operations), a
set E of equations, and a set of rewriting rules. The static part of
a system is modelled by means of equational logic (X and E), and
the dynamic part is specified by adding rewriting rules, that is, a
set of rules which specify how the system’s state changes.

1640

One of the most important concepts of rewriting logic that will
be used in our approach is the concept of the rewriting rule. A
rewriting rule (named [) describes a local concurrent transition
that can take place in a system. If the pattern on the left-hand side
of the rule (t) matches a fragment of the system state, the matched
fragment is transformed into the corresponding state of the right-
hand side of the rule (t'), which is expressed as: [: t — t'.

Maude allows both the specification of this kind of logic and its
execution in an object oriented manner, in which the system ele-
ments are represented as classes that can be instantiated as objects
that exchange messages between each other. Maude also offers
several extension modules which can be used in the context of
model consistency management. Two of these are the Maude strat-
egies language, which allows us to establish the execution order of
the consistency rules, and the Maude metaprogramming capaci-
ties, which help us to link rewriting logic with the front end of
the proposal.

5.3. Model consistency management through IQVT-Maude language

Fig. 4 summarizes the main elements of which the approach is
made up. This figure shows OMG standard elements, the Maude
elements, the relationships among them and how an inconsistency
problem in natural language will be expressed, firstly as QVT Rela-
tions and then as rewriting rules, in the formal back end. The role
of each element in this approach will be shown in the following
sections by means of an example.

5.3.1. Metamodels specification

The metamodels used in this paper will be specified according
to the concepts given in Section 5.2. Metamodel elements will be
specified in Maude by means of classes with attributes that de-
scribe the metamodels, and their instances (Maude objects) repre-
sent models that conform to their corresponding metamodel.

Consistency

FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645

These relationships are shown in Fig. 4 by means of solid lines be-
tween models and metamodels.

In this Figure, two metamodels are involved in the consistency
definition. However, in general, more than two metamodels can
appear, and the definition may even involve only one metamodel.
As an example, in this work we will use metamodels of a simple
UML class diagram and a simple UML sequence diagram. Both will
be specified in Maude, and their models will be instantiated
through Maude objects. These metamodels are shown in Fig. 5.

5.3.2. QVT Relations features in maude

In this subsection, we briefly analyze the basis of QVT Relations
and how they are also presented in Maude. This concept is summa-
rized in Fig. 6.

QVT Relations is a declarative model transformation language,
which means that its implementation using a declarative language
such as Maude is more “natural” than other non-declarative
languages.

On the one hand, a relation declares constraints that must be
satisfied by the metamodels (or domains) that participate in the
relation. Each domain establishes a pattern (with a set of variables
and constraints) that must be matched with the candidate models
in order for the transformation to be carried out. These are known
as object template expressions, which are directly expressed in
Maude since pattern-matching is one of its features.

These QVT Relations will be specified as Maude rewriting rules
(see Fig. 4) which change, create or, in this case, verify the elements
in the models. Moreover, the constraints express conditions over the
models which will be specified as conditions in the rewriting rules.

QVT Relations provide all these elements textually, but once
they have been specified in Maude, they are transformed into
mathematical entities, thus enabling us to take advantage of the
total power of mathematical inference mechanisms, without losing
the intuition of the QVT concepts.

Relationships

in Natural Language
[]

d
OMG Standards SSRESSC =5
Metamodel A Metamodel B ecified
by
e conforms to conforms to
Sprctiied QVT Relations T
b __—8Model A . to.C Tl Model B .
apecIfied \
B
> Metamodel A Specs. Metamodel B Specs.
ecified 1‘conrorms To Tcnnfnr’ms to
b o
Modal A e G odel
OF sy s rules ’Ob}:dcct SB spegified
1ects dpecs b
MAUDE ¥
Fig. 4. Summary of the approach elements.
Class -attribute Attribute
-hame -hame -Sender -Sent
1 % UMLObject Message
-name 1 * |lreturnValue
1 -ClassName -receiver -received [MethodName
-method Method
-name 1 *
- returnValue

(a)

(b)

Fig. 5. Simple class diagram (a) and simple sequence diagram (b) metamodels.

FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645 1641

QVT Relations Maude
Relations = Rewnting Rules
| [
Cbject Pattern-
Template <—>| matching in
Expressions R. Rules

I |
Conditions — Conditional

R. Rules

| I
Relaticn Strategies
Invocaticn —

] [

Fig. 6. Equivalence of concepts—features.

relation SequenceObjectMessageToClassMethod{
cn, mn, rv:String;
checkonly domain sequence o:UMLObject{
className = cn,
received = ms:Message {
methodName = mn, returnValue = rv

}
};
enforce domain class c:Class{
mame = cn,
method = mt :Method { name = mn, returnValue = rv }
};

}

Fig. 7. Consistency relation in the use of methods through a QVT relation.

5.3.3. IQVT-Maude language

The main features of QVT Relations can be supported directly in
Maude. However, the pattern-matching of Maude is based on the
syntax which defines the terms of the model elements, so the
means of expressing relations between objects and matching them
during their execution is slightly different to that offered by QVT
Relations, which would not allow Maude to be directly usable by
modellers. In order to solve this problem, we have used Maude’s
metaprogramming capacities to extend it with a new pattern-
matching language called the IQVT-Maude (like-QVT-Maude) lan-
guage, which will be used to join the front end of the proposal with
the back end.

In order to implement this pattern language based on QVT Rela-
tions, Maude also allows us to define the grammar of domain-spe-
cific languages (in our case, a simplified version of the QVT
Relations pattern-matching grammar, named [QVT-Maude). Since
the pattern matching and its execution in Maude are based on
the Maude grammar, this specific language is not directly execut-
able in Maude. To solve this problem, once the grammar has been
defined, Maude allows the specification of metalanguage applica-
tions, in which Maude parses and handles the new language using
its metaprogramming capacities. In our approach we will write
rewriting rules, using the IQVT-Maude language to define the pat-
terns on the left-hand and right-hand sides of the rules, and meta-
programming is used to handle each rule and to transform it into
an executable patterns based on the Maude grammar.

As the following sections will show, rewriting rules and a like-
QVT pattern-matching will be used as an extension mechanism for
the approach for managing consistency constraints.

5.3.4. Example: consistency between class and sequence diagrams
This section shows (1) how the QVT Relations language can be
used to define and handle consistency relationships, and (2) how

IQVT-Maude is used to express these QVT relations in Maude. To
do this, we define an example of a consistency relationship in the
use of methods between Sequence and Class Diagrams. In this par-
ticular case, a consistent use of a method in the sequence diagram
(“methodName”) implies that a method exists with the same name
in the class of the object (“className”) which receives the mes-
sage, and that the type of the return value is also the same. Fig. 7
shows the QVT Relation that expresses this consistency
relationship.

Two domains are involved in this relation: a sequence model
and a class model. The rule establishes the relation that must exist
among the elements of these models. To do this, it matches objects
in each domain that hold the relation. The variables “cn”, “mn” and
“rv” are used to match the objects of the models. Fig. 8 shows a
schema of the objects that hold the relation. If it is not possible
to find a set of objects that match the relation, an inconsistency
problem exists.

Once the relation has been defined, it will be expressed in
Maude through IQVT-Maude and rewriting rules. The purpose of
the rewriting rules will be firstly to check the consistency relation-
ship and, if this fails, to handle the inconsistency problem. As will
be observed, the rewriting rules using IQVT-Maude will still be syn-
tactically different from the relation in Fig. 7, since certain imple-
mentation details must be considered in the current specification
of IQVT-Maude. Moreover, the concept of the rewriting rule does
not exist within the scope of QVT, but is close to the transformation

Y
+~ Method "+,
....... 4! name Y
\ returnValue, .’

P Messa_ge ",
¢ methodName
. returnValue .

Fig. 8. Schema of the objects matched in the relation.

vars cnmn rv : String .
rl [SequenceObjectMessageToClassMethodCheck] :
domain "sequence" 0:UMLObject{
className = cn,
% The "checked" attribute is used to find
*** messages that have not been checked yet.
received=ms:Message {
methodName = mn, returnValue = rv,
checked = false }
}
domain "class" c:Class{ name = cn,
method=mt :Method { name = mn, returnValue = rv }
}
=>
domain "sequence" o:UMLObject{
className = cn,
***x If a message holds the consistency relation,
% it is marked as checked.
received=ms:Message {
methodName = mn, returnValue = rv,
checked = true }
}
domain "class" c:Class{ name = cn,
method=mt :Method { name = mn, returnValue = rv }

}.

Fig. 9. IQVT-Maude rule to check the inconsistency problem.

1642 FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645

rule definition, and the use of IQVT-Maude brings its syntax closer
to that of the QVT Relations.

Fig. 9 shows the IQVT-Maude rewriting rule, called “Sequence-
ObjectMessageToClassMethodCheck”. The left-hand side of this
rule matches the objects that fulfil the consistency relation and,
once they have been found, the right-hand side of the rule marks
the element that must be consistent (the message in this example)
as being correct. The extra attribute “checked” (which does not ap-
pear in the QVT relation) is used to mark the elements, and se-
quence diagrams that do not hold the relation will therefore
contain unmarked messages after checking has taken place. This
is one of the implementation details that must be taken into ac-
count in the current implementation of IQVT-Maude.

Other implementation details that make the rewriting rule in
Fig. 9 different from the relation in Fig. 7 are the definition of vari-
ables by following the Maude grammar, certain syntactical differ-
ences in the domain definitions or the need to include the left-
hand and right-hand sides in the rewriting rule. These differences
signify that, future versions of IQVT-Maude will be extended to of-
fer a syntax which is closer to the QVT Relations language.

Once the inconsistency has been found, it is necessary to define
how to handle it. However, as was mentioned in Section 4.1, a con-
crete inconsistency may have several solutions. IQVT-Maude and
rewriting rules are therefore used to allow modellers to define
new ways of handling inconsistency problems. In this example,
two possible solutions to this inconsistency problem are: to add
a new method to the object class that receives the message or to
find a candidate method in the class and change it in the message
in order to rectify the inconsistency. The specification of only the
first solution is shown due to lack of space. Fig. 10 shows the rule
which adds the lost element to the source model in order to rectify
the inconsistency problem. The left-hand side of the rule shows a
pattern that matches the necessary model elements to rectify the

vars cnmn rv : String .
*** Once a model has been checked, we can fix the
**xx errors found.
rl [SequenceObjectMessageToClassMethod] :
domain "sequence" o:UMLObject{
className = cn,
% The value of the "checked" attribute is false
*xx for the messages that do not hold the
*%x consistency relation.
received=ms:Message {
methodName = mn, returnValue =rv,
checked = false }
}
domain "class" c:Class{
name = cn, method = mt :Method{}
}
=>
domain "sequence" o:UMLObject{
className = cn,
*%x Once the inconsistency has been fixed, the
*** value of the "checked" attribute is
**%x established to true.
received=ms:Message {
methodName = mn, returnValue = rv,
checked = true }

}
domain "class" c:Class{
name = cn,
% A newmethod is created in the class named "cn".
method=mt :Method{ name = mn, returnValue = rv,
checked = false }
}

Fig. 10. IQVT-Maude rule to handle the inconsistency problem.

inconsistency (in this case, the object and the message in the se-
quence model, and the class of the object in the class model).
The right-hand side of the rule is used to rectify the inconsistency
by adding a new element (a method in this example) to the class
model. As Fig. 10 shows, the attribute “checked” is used in the
left-hand side of the rule to find inconsistent messages previously
checked.

Modellers can therefore use IQVT-Maude and rewriting rules to
write the rules which are necessary to manage the consistency
problems of their models. The operations over these rules (defini-
tion, modification, choosing a specific checking and handling ...)
will be offered and managed through the CASE tool integration cur-
rently being developed (see the following section).

5.4. A glance at managing semantic inconsistency problems

Finally, this section briefly analyzes how the semantic inconsis-
tency problems can be defined and tackled by only defining trans-
formation rules, in order to show how the presented approach can
be also used to manage this kind of problems.

5.4.1. Behaviour definition

Semantic inconsistency problems are related to the behaviour
defined by the semantics of the different models (metamodels) in-
volved in the system development. From our point of view, trans-
formation rules (IQVT-Maude + rewriting rules) will be used firstly
to express how the system behaviour, represented by models,
changes. In general, this definition may involve any number of
metamodels. For example, if we define an example of a consistency
relationship between statemachine and sequence models, we can
define their behaviour based on a simulation of the statemachine
of each object that appears in the sequence diagram using the re-
ceived messages as its lifeline. Each message received by an object
will thus provoke a change in the state of the statemachine.

5.4.2. Consistency checking

Once the behaviour has been defined, Maude inference mecha-
nisms and commands are used to execute the transformation rules
and check these problems. Note that, since different semantic
inconsistency problems can be defined over the same behaviour
defined, the same behaviour definition can be used to manage all
of them. In this example, we can define many possible semantic
inconsistency problems between statemachine and sequence mod-
els. One of them is to check the consistent behaviour between an
object that takes part in the interaction and its associated statema-
chine. That is, if a sequence of messages received by an object is not
supported by its statemachine, an inconsistency problem exists.
This problem can be checked by means of the Maude rewriting
command, which allows us to use the previous behaviour to simu-
late a statemachine. This simulation would have two possible ter-
minations: (1) the sequence of messages is fully simulated
(meaning that the statemachine and the sequence diagrams are
consistent); or (2) a message of the sequence can not be simulated
in the statemachine since a transition fired with that message does
not exist.

5.4.3. Consistency handling

Once the inconsistency has been found, in our approach model
transformations are again used to define how to handle it. In this
example, once the inconsistency has been found, several possible
solutions to this problem exist. In our case, when an inconsistency
is found, the transformation rule will add a new state and a new
transition to allow the statemachine to tackle the inconsistent
message (this process was used in [73] to create partial statema-
chine models from sequence models). Note that the next messages
to appear in the sequence diagrams will become the new inconsis-

FJ. Lucas et al./ Information and Software Technology 51 (2009) 1631-1645 1643

tency problems, since new outgoing transitions in the new created
state do not exist, so the checking-handling process will have to be
repeated for the remaining messages in the interaction to allow the
complete sequence of messages to be tackled by the statemachine
model.

Finally, note that if the proposed solution is not useful, the mod-
eller can only check the models and fix them by manual handling
or by defining her/his own transformation rule for handling it.

5.4.4. Other maude commands for tackling semantic inconsistency
problems

Another Maude inference mechanism could be used to check
other inconsistency problems. For example, some Maude tools al-
low us to check deadlock among any set of rules. Since Maude
rewriting rules are used to define the models behaviour, we can
use these tools to check deadlock free behaviours. We can there-
fore, for example, define the behaviour of a statemachine (as in
Section 5.4.2) and check that the use of several statemachines for
one system is consistent in terms of deadlocks and livelocks.

Thanks to the chosen formalism, the proposed approach thus
offers the possibility of tackling both syntactic and semantic prob-
lems while most of the approaches studied tackle only one kind
since their techniques are more sensitive to each kind of problem.
The use of this proposal in semantic consistency will be presented
in greater depth in future work.

5.5. CASE tool integration: eclipse EMF

In general, a quite common disadvantage of a formal approach
is related to the lack of a suitable and transparent integration with
the tools used by the modellers during the development life cycle.

We have chosen the EMF [60] for our implementation. This has
become one of the most frequently used modelling tools in aca-
demic and industrial environments [74,75] due to its plug-ins
mechanism. This mechanism makes it easy to reuse and to add
functionality. Another of the most important advantages of using
EMF is the full and easy access that it offers to its model and meta-
model representation, which is essential for tackling the imple-
mentation of our proposal.

With regard to our approach, we use the Ecore metamodel of
EMF both to support UML 2.x, and to define new metamodels
and models. Moreover, we use MOFScript [76] to transform these
metamodels and models into code (in this case, Maude specifica-
tions from metamodels and objects from specific models). The
Eclipse plug-in mechanism is useful in that it offers IQVT-Maude
language directly in the EMF environment and a suitable integra-
tion of all the elements involved in the approach. The main fea-
tures that this environment offers are: (1) the possibility of
selecting the inconsistency checks that will be executed, (2) the
possibility of selecting a solution for inconsistency handling once
a problem has been detected, (3) the definition of new consistency
problems and how to rectify them, and (4) suitable feedback to the

Table 8
Answers for the research questions of the proposal.

Research question RQ value Technique used

UML version 2.X Eclipse EMF

Formal approach YES Maude

Diagram support UML 2.x, DSLs,... Eclipse EMF

Consistency Syntactic/Semantic — Horizontal/ 1QVT-Maude rewriting
support Vertical rules

Extension YES QVT Relations
mechanisms

CASE tool YES Eclipse EMF
integration

Automatic Support YES Eclipse

modeller with regard to the activities executed. This integration is
still under development and will be shown in its entirety in future
work.

5.6. Research questions for the proposal

This section summarizes how the different research questions
defined in the SLR are answered in the preliminary proposal pre-
sented (see Table 8). All the features of the proposal and its use
for tackling inconsistency problems will be presented in depth in
future work.

6. Conclusions and further work

This work presents the results obtained after carrying out a sys-
tematic literature review of literature whose aim was to identify
and evaluate the current approaches for model consistency man-
agement. To do this, a total of 907 papers published in literature
and extracted from the most relevant scientific sources were con-
sidered, of which 44 were eventually analyzed in depth, in accor-
dance with the SLR process adopted.

The results of this SLR show that UML model consistency is a
highly active and promising line of research, in which a great deal
of quality work has been done, but in which some important gaps
and limitations still exist, which should be tackled in future work.
With regard to the new UML model consistency management pro-
posals, we have three main recommendations to make (see Section
4 for more details). From our point of view, these proposals should:

(RQ1) Include a mechanism to extend the proposal in order to
facilitate the managing of new models and inconsistency
problems.

(RQ2) Tackle inconsistency problems related to vertical consis-
tency, since they have been less frequently studied.

(RQ3) Fully integrate of all the features of the proposal within a
CASE tool. This will thus permit its use and validation out-
side the academic scope.

Following these conclusions, we have presented a preliminary
formal approach for the handling of inconsistency problems. This
approach is based on transformation languages and rewriting logic
and attempts to solve the limitations identified by the SLR while
simultaneously including the strengths of the existing proposals.
The main features included in this proposal are: extensibility,
alignment with the MDA proposal, a formal basis and CASE tool
integration.

The approach presented aims to fulfil the research challenges
identified in the SLR through the definition of an extension mech-
anism by using the QVT Relations syntax. This mechanism will al-
low us to tackle any type of diagram, since the QVT Relations
language can be applied over any metamodel (or DSL), in order
to add new consistency checks and to define new ways of handling
an inconsistency problems.

Furthermore, vertical inconsistency problems, which have not
been studied in depth by the current approaches with regard to
the SLR results, can be tackled in a natural manner thanks to the
alignment of our proposal with MDA and transformation lan-
guages, which tackle models at different levels of abstraction. Since
model transformation languages are well-known in this scope, the
approach presented is particularly useful for modellers who are
familiar with model-driven engineering processes.

Moreover, the use of rewriting logic in this approach, which
manages all the elements as mathematical entities, offers a power-
ful manner in which to verify type properties and the correctness
of the models or to use the inference mechanisms of this formalism

1644 FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645

without losing the legibility, practicality, and expressivity of other
known languages such as QVT Relations.

As regards future work, we first intend to extend the IQVT-
Maude language to avoid having to consider the implementation
details mentioned. The distance between QVT Relations and the
IQVT-Maude language will thus be smaller still. Moreover, this lan-
guage is beginning to be used in more complex examples and in
other kinds of inconsistency problems. What is more, since rewrit-
ing rules allow us to transform model elements, their use in offer-
ing formal automatic support for model transformations within the
scope of QVT and their applications to the verification and valida-
tion of transformations will also be studied in future work.

References

[1] OMG, Object Management Group. Unified Modeling Language: Superstructure.
Version 2.1.1, Retrieved from: <http://www.omg.org/uml>, 2007.

[2] J. Muskens, R. Bril, M. Chaudron, Generalizing consistency checking between
software views, in: 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA'05), 2005, pp. 169-180.

[3] Z.Huzar, L. Kuzniarz, G. Reggio,].L. Sourrouille (Eds.), Proceedings of Workshop
on Consistency Problems in UML-based Software Development II, 2003.

[4] D. Schmidt, Guest editor's introduction: model-driven engineering, IEEE
Comput. 39 (2) (2006) 25-31.

[5] OMG, MDA Guide Version 1.0.1, <http://www.omg.org/mda>, 2001.

[6] J. Simmonds, C.M. Bastarrica, A tool for automatic UML model consistency
checking, in: Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, Long Beach, CA, USA, 2005.

[7] B. Kitchenham, Guidelines for performing systematic literature reviews in
software engineering, EBSE Technical Report EBSE-2007-01, Software
Engineering Group, School of Computer Science and Mathematics, Keele
University, UK and Department of Computer Science, University of Durham,
Durham, UK, 2007.

[8] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification. Equations and
Initial Semantic, Springer-Verlag, 1985. ISBN: 3-540-13718-1.

[9] G. Spanoudakis, A. Zisman, Inconsistency management in software
engineering: survey and open research issues, in: S.K. Chang (Ed.), Handbook
of Software Engineering and Knowledge Engineering, vol. 1, World Scientific
Publishing Co., 2001, pp. 329-380.

[10] EJ. Lucas, F. Molina, A. Toval, A systematic review of UML model consistency
management, Technical Report LSI 1-2008, Departamento de Informatica y
Sistemas, University of Murcia, (Also available from: <http://express.inf.um.es/
fjlucas/>), December 2008.

[11] Y. Shinkawa, Inter-Model Consistency in UML Based on CPN Formalism, XIII
Asia Pacific Software Engineering Conference (APSEC'06), 2006.

[12] Z. Huzar, L. Kuzniarz, G. Reggio,].L. Sourrouille, Consistency problems in UML-
based software development, in: N. Jardim Nunes, B. Selic, A. Silva, A. Toval
(Eds.), UML Modeling Languages and Applications, UML 2004 Satellite
Activities Lisbon, October 11-15, LNCS, vol. 3297, Springer Verlag, Portugal,
2004. Revised Selected Papers.

[13] G.Engels,].M. Kiister, R. Heckel, L. Groenewegen, A methodology for specifying
and analyzing consistency of object-oriented behavioral models, in:
Proceedings of Eighth European Software Engineering Conference Held
Jointly with Nineth ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE2001), September 2001, ACM Press, Vienna,
Austria, 12, 58, pp. 186-195.

[14] J. Biolchini, P. Mian, A. Natali, G. Travassos, Systematic review in software
engineering, Technical Report RT-ES679/05, Universidade Federal do Rio de
Janeiro, Program de Engenharia de Sistemas e Computacdo, 2005.

[15] M. Gogolla, Benefits and problems of formal methods, in: Reliable Software
Technologies - Ada-Europe 2004, Proceedings of the 9th Ada-Europe
International Conference on Reliable Software Technologies, Palma de
Mallorca, Lecture Notes in Computer Science, Springer, Spain, 2004, pp. 1-15.

[16] R. Wagner, H. Giese, U. Nickel, A plug-in for flexible and incremental
consistency management, in: Proceedings of the International Conference on
the Unified Modeling Language 2003 (Workshop 7: Consistency Problems in
UML-based Software Development), San Francisco, USA, Technical Report,
Blekinge Institute of Technology, San Francisco, 2003.

[17] M. Schrefl, M. Stumptner, Behavior-consistent specialization of object life
cycles, ACM Trans. Softw. Eng. Methodol. 11 (1) (2002) 92-148.

[18] A. Egyed, Fixing inconsistencies in UML design models, in: 29th International
Conference on Software Engineering (ICSE’07), 2007, pp. 292-301.

[19] P.G. Sapna, H. Mohanty, Ensuring consistency in relational repository of UML
models, in: 10th International Conference on Information Technology (ICIT
2007), 2007, pp. 217-222.

[20] A. Egyed, UML/Analyzer: a tool for the instant consistency checking of UML
models, in: 29th International Conference on Software Engineering (ICSE'07)
00, 2007, pp. 793-796.

[21] R.F. Paige, P.J. Brooke, J.S. Ostroff, Metamodel-based model conformance and
multiview consistency checking, ACM Trans. Softw. Eng. Methodol. 16 (3)
(2007) 11.

[22] H. Malgouyres, G. Motet, A UML model consistency verification approach
based on meta-modeling formalization, in: SAC'06: Proceedings of the 2006
ACM Symposium on Applied Computing, ACM, USA, 2006, pp. 1804-
1809.

[23] A. Egyed, Instant consistency checking for the UML, in: ICSE'06: Proceedings of
the 28th International Conference on Software Engineering, ACM, New York,
NY, USA, 2006, pp. 381-390.

[24] D. Chiorean, M. Pasca, A. Carcu, C. Botiza, S. Moldovan, Ensuring UML models
consistency using the OCL environment, Electr. Notes Theor. Comput. Sci. 102
(2004) 99-110.

[25] J.M. Kister, Towards inconsistency handling of object-oriented behavioral
models, Electr. Notes Theor. Comput. Sci. 109 (2004) 57-69.

[26] P. Amaya, C. Gonzalez,].M. Murillo, Towards a subject-oriented model-driven
framework, Electr. Notes Theor. Comput. Sci. 163 (1) (2006) 31-44.

[27] N. Amilio, S. Stepney, F. Polack, Formal proof from UML models, in: Formal
Methods and Software Engineering, Proceedings of the 6th International
Conference on Formal Engineering Methods, ICFEM 2004, Lecture Notes in
Computer Science, Springer, Seattle, WA, USA, 2004, pp. 418-433.

[28] K. Diethers, M. Huhn, Vooduu: verification of object-oriented designs using
UPPAAL, in: Tools and Algorithms for the Construction and Analysis of
Systems, Proceedings of the 10th International Conference, TACAS 2004, Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2004, Barcelona, Spain, 2004, pp. 139-143.

[29] A. Egyed, Consistent adaptation and evolution of class diagrams during
refinement, in: Fundamental Approaches to Software Engineering, Proceedings
of the 7th International Conference, FASE 2004, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2004
Barcelona, LNCS, Springer, Spain, 2004, pp. 37-53.

[30] G. Engels, R. Heckel, J.M. Kiister, L. Groenewegen, Consistency-preserving
model evolution through transformations, in: UML 2002 - The Unified
Modeling Language, 5th International Conference, Dresden, Germany,
Lecture Notes in Computer Science, Springer, 2002, pp. 212-226.

[31] G. Engels,].M. Kiister, R. Heckel, L. Groenewegen, Towards consistency-
preserving model evolution, in: IWPSE'02: Proceedings of the International
Workshop on Principles of Software Evolution, ACM, New York, NY, USA, 2002,
pp. 129-132.

[32] J.M. Kister, G. Engels, Consistency management within model-based object-
oriented development of components, in: Formal Methods for Components
and Objects, Second International Symposium, FMCO 2003, Leiden, The
Netherlands, November 4-7, Revised Lectures, Lecture Notes in Computer
Science, Springer, 2003, pp. 157-176.

[33] G.Engels,].M. Kiister, R. Heckel, L. Groenewegen, A methodology for specifying
and analyzing consistency of object-oriented behavioral models, SIGSOFT
Softw. Eng. Notes 26 (5) (2001) 186-195.

[34] R. Heckel, .M. Kiister, Behavioral constraints for visual models, Electr. Notes
Theor. Comput. Sci. 50 (3) (2001) 257-265.

[35] L. Fryz, L. Kotulski, Assurance of system consistency during independent
creation of UML diagrams, in: International Conference on Dependability of
Computer Systems (DepCoS-RELCOMEX 2007), IEEE Computer Society,
Szklarska Poreba, Poland, 2007, pp. 51-58.

[36] B. Graaf, A. van Deursen, Model-driven consistency checking of behavioural
specifications, in: Proceedings - Fourth International Workshop on Model-
Based Methodologies for Pervasive and Embedded Software, MOMPES, 2007.

[37] J.H. Hausmann, R. Heckel, S. Sauer, Extended model relations with graphical
consistency conditions, in: Proceedings UML 2002 Workshop on Consistency
Problems in UML-based Software Development, Blekinge Institute of
Technology, 2002, pp. 61-74.

[38] K.M. van Hee, N. Sidorova, LJ. Somers, M. Voorhoeve, Consistency in model
integration, in: Business Process Management: Proceedings of the Second
International Conference, BPM 2004, Potsdam, Germany, 2004, pp. 1-16.

[39] P. Inverardi, H. Muccini, P. Pelliccione, Automated check of architectural
models consistency using SPIN, in: 16th IEEE International Conference on
Automated Software Engineering (ASE 2001), Coronado Island, San Diego, CA,
USA, 2001, pp. 346-349.

[40] D. Kholkar, G.M. Krishna, U. Shrotri, R. Venkatesh, Visual specification and
analysis of use cases, in: SoftVis’05: Proceedings of the 2005 ACM Symposium
on Software Visualization, ACM, New York, NY, USA, 2005, pp. 77-85.

[41] R. Laleau, F. Polack, Using formal metamodels to check consistency of
functional views in information systems specification, Inf. Softw. Technol. 50
(7-8) (2008) 797-814.

[42] V.S.W. Lam, J.A. Padget, Consistency checking of sequence diagrams and
statechart diagrams using the pi-calculus, in: Integrated Formal Methods,
Proceedings of the 5th International Conference, IFM 2005, Eindhoven, The
Netherlands, 2005, pp. 347-365.

[43] FJ. Lucas, A. Toval, A precise approach for the analysis of the UML models
consistency, in: BP-UML'05: 1st International Workshop on Best Practices of
UML, in 24th International Conference on Conceptual Modeling (ER 2005),
Klagenfurt (Austria), ISBN: 3-540-29395-7. LNCS 3770, Springer.

[44] T. Mens, RV.D. Straeten, M. D’Hondt, Detecting and resolving model
inconsistencies using transformation dependency analysis, in: Model Driven
Engineering Languages and Systems, Proceedings of the 9th International
Conference, MoDELS 2006, LNCS, Springer, Genova, Italy, 2006, pp. 200-214.

[45] D.D.O. Ossami, J.-P. Jacquot,]. Souquiéres, Consistency in UML and B Multi-
view specifications, in: Integrated Formal Methods, Proceedings of the 5th
International Conference, IFM 2005, LNCS, Springer, Eindhoven, The
Netherlands, 2005, pp. 386-405.

http://www.omg.org/uml
http://www.omg.org/mda
http://express.inf.um.es/fjlucas/
http://express.inf.um.es/fjlucas/

FJ. Lucas et al./Information and Software Technology 51 (2009) 1631-1645 1645

[46] RF. Paige, L. Kaminskaya, J.S. Ostroff, J. Lancaric, BON-CASE: an extensible
CASE tool for formal specification and reasoning, J. Object Technol. 1 (3) (2002)
77-96.

[47] R.F. Paige, D.S. Kolovos, F. Polack, Refinement via consistency checking in MDA,
Electr. Notes Theor. Comput. Sci. 137 (2) (2005) 151-161.

[48] H. Rasch, H. Wehrheim, Checking consistency in UML diagrams: classes and
state machines, in: Formal Methods for Open Object-Based Distributed
Systems, Lecture Notes in Computer Science, Springer, 2003.

[49] Y. Shinkawa, Inter-model consistency in UML based on CPN formalism, in: XIII
Asia Pacific Software Engineering Conference (APSEC'06), 2006.

[50] G. Spanoudakis, K. Kasis, F. Dragazi, Evidential diagnosis of inconsistencies in
object-oriented designs, Int. J. Softw. Eng. Knowl. Eng. 14 (2) (2004) 141-178.

[51] G. Spanoudakis, H. Kim, Diagnosis of the significance of inconsistencies in
object-oriented designs: a framework and its experimental evaluation, J. Syst.
Softw. 64 (2002) 3-22.

[52] R.V.D. Straeten, V. Jonckers, T. Mens, A formal approach to model refactoring
and model refinement, Softw. Syst. Model. 6 (2) (2007) 139-162.

[53] RV.D. Straeten, M. D'Hondt, Model refactorings through rule-based
inconsistency resolution, in: SAC06: Proceedings of the 2006 ACM
Symposium on Applied Computing, ACM, New York, NY, USA, 2006, pp.
1210-1217.

[54] R.V.D. Straeten, Inconsistency detection between UML models using racer and
nRQL, in: ADL'04 Third International Workshop on Applications of Description
Logics, 2004.

[55] R.Van Der Straeten, T. Mens,]. Simmonds, V. Jonckers, Using description logics
to maintain consistency between UML models, in: P. Stevens, J. Whittle, G.
Booch (Eds.), UML 2003 - The Unified Modeling Language, Lecture Notes in
Computer Science, vol. 2863, Springer-Verlag, 2003, pp. 326-340.

[56] H. Wang, T. Feng, J. Zhang, K. Zhang, Consistency check between behaviour
models, in: ISCIT 2005 - Wab International Symposium on Communications
and Information Technologies 2005, Proceedings II, 2005.

[57] S. Yao, S.M. Shatz, Consistency checking of UML dynamic models based on
petri net techniques, in: 15th International Conference on Computing (CIC'06)
0, 2006, pp. 289-297.

[58] W.L. Yeung, Checking consistency between UML class and state models based
on CSP and B, J. Universal Comput. Sci. (J. UCS) 10 (11) (2004) 1540-1559.

[59] X. Zhao, Q. Long, Z. Qiu, Model checking dynamic UML consistency, in: Formal
Methods and Software Engineering, Proceedings of the 8th International

Conference on Formal Engineering Methods, ICFEM 2006, Lecture Notes in
Computer Science, Springer, Macao, China, 2006, pp. 440-459.

[60] E.M.F. Project, Eclipse Modeling Framework (EMF), <http://www.eclipse.org/
modeling/emf/>, 2007.

[61] OMG, MOF MetaObject facility specification, Object Management Group.,
Retrieved from: <http://www.omg.org/docs/ptc/04-10-15.pdf>, 2004.

[62] B. Beckert, T. Hoare, R. Hihnle, D.R. Smith, C. Green, S. Ranise, C. Tinelli, T. Ball,
S.K. Rajamani, Intelligent systems and formal methods in software
engineering, IEEE Intelligent Syst. 21 (6) (2006) 71-81.

[63] H. Habrias, M. Frappier, Software Specification Methods, iSTE, 2006.

[64] B. Dobing, J. Parsons, How UML is used, Commun. ACM 49 (5) (2006) 109-
113.

[65] J. Warmer, A. Kleppe, The Object Constraint Language: Precise Modelling with
UML, Addison-Wesley, 1999.

[66] J.L. Sourrouille, G. Caplat, Constraint checking in UML modeling, SEKE (2002)
217-224.

[67] AJ. Smith, The task of the referee, [EEE Comput. 23 (4) (1990) 65-71.

[68] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,]. Meseguer, C. Talcote,
Maude 2.3 Manual., <http://maude.csl.sri.com/>, 2007.

[69] OMG, MOF QVT Final Adopted Specification, Object Management Group,
Retrieved from: <http://www.omg.org/docs/ptc/07-07-07.pdf>, 2007.

[70] F. Jouault, F. Allilaire,]. Bézivin, I. Kurtev, P. Valduriez, Atl: a qvt-like
transformation language, 21th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006,
Portland, Oregon, USA.

[71] J.S. Cuadrado, J.G. Molina, Building domain-specific languages for model-
driven development, IEEE Softw. 24 (5) (2007) 48-55.

[72] A.G. Kleppe,]. Warmer, W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003.

[73] P. Selonen, K. Koskimies, M. Sakkinen, Transformation between UML diagrams,
J. Database Manag. 14 (3) (2003) 37-55.

[74] Borland, Together: Visual Modeling for Software Architecture Design, <http://
www.borland.com/together>, 2007.

[75] Rational, Rational Software Architect, <http://www-306.ibm.com/software/
awdtools/architect/swarchitect/>, 2008.

[76] Eclipse, Generative Modeling Technologies (GMT): MOFScript, <http://
www.eclipse.org/gmt/>, 2007.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.omg.org/docs/ptc/04-10-15.pdf
http://maude.csl.sri.com/
http://www.omg.org/docs/ptc/07-07-07.pdf
http://www.borland.com/together
http://www.borland.com/together
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www.eclipse.org/gmt/
http://www.eclipse.org/gmt/

	A systematic review of UML model consistency management
	Introduction
	Background: model consistency concepts
	Systematic literature review
	Question formularization
	Source selection
	Studies selection process
	Definition of inclusion and exclusion criteria
	Procedures for studies selection
	Selection execution

	Threats to the validity of this SLR
	Information extraction
	Extraction execution

	Results of the systematic literature review
	Analysis of results, conclusions and recommendations
	UML version
	Formal approach
	Diagram support
	Consistency support
	Extension mechanism
	CASE tool integration

	Other future research trends
	Inconsistencies in MDE
	Handling inconsistencies

	Our proposal: model consistency management powered by transformation languages
	A transformation language for model consistency management
	The formal language maude
	Model consistency management through lQVT-Maude language
	Metamodels specification
	QVT Relations features in maude
	lQVT-Maude language
	Example: consistency between class and sequence diagrams

	A glance at managing semantic inconsistency problems
	Behaviour definition
	Consistency checking
	Consistency handling
	Other maude commands for tackling semantic inconsistency problems

	CASE tool integration: eclipse EMF
	Research questions for the proposal

	Conclusions and further work
	References

