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Abstract

A pandemic disease, COVID-19, has caused trouble worldwide by infecting millions of people. The studies that apply artificial
intelligence (AI) and machine learning (ML) methods for various purposes against the COVID-19 outbreak have increased
because of their significant advantages. Although AI/ML applications provide satisfactory solutions to COVID-19 disease,
these solutions can have a wide diversity. This increase in the number of AI/ML studies and diversity in solutions can confuse
deciding which AI/ML technique is suitable for which COVID-19 purposes. Because there is no comprehensive review study,
this study systematically analyzes and summarizes related studies. A research methodology has been proposed to conduct the
systematic literature review for framing the research questions, searching criteria and relevant data extraction. Finally, 264
studies were taken into account after following inclusion and exclusion criteria. This research can be regarded as a key element
for epidemic and transmission prediction, diagnosis and detection, and drug/vaccine development. Six research questions are
explored with 50 AI/ML approaches in COVID-19, 8 AI/ML methods for patient outcome prediction, 14 AI/ML techniques in
disease predictions, along with five AI/ML methods for risk assessment of COVID-19. It also covers AI/ML method in drug
development, vaccines for COVID-19, models in COVID-19, datasets and their usage and dataset applications with AI/ML.
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Introduction

COVID-19, novel coronavirus, was announced in Wuhan,
China, in December 2019 as a group of fatal respiratory infec-
tions and spread quickly as a pandemic [1]. Coronaviruses are
pronounced zoonotic in nature and readily spread amongst
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people [2]. It is still a burning issue to investigate how it is
transferred into animal reserves and others [3]. Because no
vaccine and decided medication for COVID-19 found until
the beginning of 2021, social distancing was stated as the
most effective tactic to control and prevent [4]. In addition
to social distancing, quarantine is also a critical part of con-
trolling and avoiding the spread of the virus. According to
John Hopkins University, the total confirmed cases is 107.5
million, and global death is over 2.3 million in the world [5].
The most affected ten countries are the United States, Brazil,
India, Russia, France, Spain, Italy, Turkey, Germany and
Colombia. The COVID-19 pandemic is not only a medical
contagious but also an economical contagious [6]. Conse-
quently, it is necessary to build an artificial intelligence-based
healthcare system because it can quickly and precisely detect
cases and avoid the pandemic.

Artificial intelligence (AI) and machine learning (ML) [7]
have been recognized as the most potent and hopeful analyti-
cal tools in the healthcare domain [8]. Although many health
problems are handled by bioinformaticians and statisticians
instead of data scientists, a massive amount of data generated
in the healthcare creates a necessity to produce more benefi-
cial tools to distinguish exceptional cases from big data. AI

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00424-8&domain=pdf
http://orcid.org/0000-0003-3543-4012


2656 Complex & Intelligent Systems (2021) 7:2655–2678

computing performs various cognitive functions like humans
in a machine to act or react to input data. On the other hand,
classical computing has no autonomous intelligence since it
requires a hand-code to react to data [9]. It cannot react when
an unpredicted state has occurred. Therefore, AI tools contin-
ually adapt their reaction to adjust creating their behaviors.
In an AI method, computers are designed to analyze, inter-
pret and solve a problem. In machine learning, one of the
principal forms of AI, machines learn reactions to use in the
future for the same inputs when they face a particular result.

The applicability of AI/ML for epidemiological research
of COVID-19 is explored in the literature. Initially, it iden-
tifies the relevant key explanatory variables then uses the
dimensionality reduction technique to remove redundant fea-
tures or information. It utilizes Random forest and gradient
boosted machine learning models to measure the relative
influence of the explanatory variables. This method also
determines the interconnections among key explanatory vari-
ables, COVID-19 case and death counts. The study shows
that air pollution has a high impact on COVID-19 casual-
ties [10]. COVIDetectioNet [11] is proposed to detect the
COVID-19. It uses in-depth features generated from the
convolution and fully connected layers of the AlexNet archi-
tecture. This method has three steps such as pre-learned
in-depth features ensemble, feature selection, and classifica-
tion. It uses the relief algorithm for feature selection and the
support vector machine model for classification. This method
uses a tenfold cross-validation method to calculate the accu-
racy.

Deep learning (DL) models are very effective for time-
series datasets. In the literature, the prediction of COVID-19
cases using time series data is discussed with DL techniques.
Some models, such as long short-term memory (LSTM),
are used to predict the time-series datasets. Integration of
a convolutional neural network (CNN) and Long short-term
memory (LSTM) detects COVID-19 automatically using X-
ray images. CNN is used for deep feature extraction, and
detection is performed using LSTM using the extracted
features [12]. The sample size is a significant challenge
with the existing method. Samples contain multiple disease
symptoms is one more challenge of this method. Similarly,
the prediction of confirmed cases, deaths and recoveries in
10 major countries affected due to COVID-19 is studied.
Autoregressive integrated moving average (ARIMA), Sup-
port Vector Machine (SVM), LSTM and bidirectional LSTM
can be applied for prediction purposes [13]. The superiority
of the models can be measured various performance metrics
such as root mean square error, mean absolute error and R2

score. Multiple CNN models like ResNet, Inception net V3,
Xception net can be used to detect COVID-19 using chest X-
ray scans. The small sample size is the main disadvantage of
these methods. Due to overfitting, these methods are unable
to produce high accuracy [14].

AI/ML techniques have been widely applied to detect new
molecules on the way to ascertain COVID-19. Many data sci-
entists adopt AI tools to discover new medicines for the cure,
to use X-rays and computational tomography (CT) scans by
image processing, to identify the infectious people [15]. AI
tools can also develop tracking software to classify people
who breach the quarantine rule. AI-embedded thermal cam-
eras and smartphones are practiced to catch infected patients
[16]. In a general manner, AI is utilized to identify, track
and predict outbreaks by diagnosing the virus. The drones
and robots are used to transport food and medicine to related
areas or people [17]. Some researches benefit from AI advan-
tages to develop drugs and prepare vaccines [18,19].

Chest X-ray images have demonstrated a highly effective
screening technique for diagnosing the COVID-19. Vari-
ous hybrid techniques are adopted to detect the COVID-19.
Recently, a hybrid DL called COVID-CheXNet is demon-
strated to identify the COVID-19. In the beginning, the con-
trast X-ray image is enhanced using contrast-limited adaptive
histogram equalization, and the noise level is reduced with
the help of the Butterworth bandpass filter. It uses two pre-
trained models such as ResNet34 and HRNet, to identify
the COVID-19. Each model’s score is fused to obtain the
final class whether the individual is affected by the COVID-
19 or not [20]. Similarly, a transfer learning-based hybrid
2D/3D CNN architecture for COVID-19 detection. It uses
a pre-trained VGG16 deep model, a shallow 3D CNN. It
is also combined with a depth-wise separable convolution
layer (to preserve the valuable features) and a spatial pyra-
mid pooling module (to extract multi-level representations).
It uses the dataset with three classes such as COVID-19,
pneumonia and normal. It achieves reasonable performance
concerning sensitivity, specificity and accuracy [21]. A com-
prehensive study is performed to understand the automatic
detection of COVID-19 based on X-ray images using both
machine learning and deep learning models. The method’s
novelty is demonstrated using COVID-19 vs. Normal dataset
and adopt transfer learning to showcase the accuracy. Exper-
imental results indicate that the ResNet50 model performs
better as compared to other pre-trained models [22].

The number of studies on COVID-19 increases day by day
because of its popularity and necessity. Researchers need to
get a piece of quick information about related studies in this
area. In the field of healthcare, AI/ML techniques have been
implemented for many applications. For example, because
of the availability of MRI, X-ray, and CT images, they have
been widely applied for the COVID-19 outbreaks. Although
AI/ML applications provide satisfactory solutions to the
COVID-19 pandemic, these solutions have a wide diversity
in nature. There is no comprehensive study discussing the
AI/ML techniques used for the COVID-19 pandemic from
different perspectives. Therefore, to fill this scientific gap in
the literature, the study’s motivation is to analyze the poten-
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Fig. 1 Systematic literature
review flowchart

tial studies using the AI/ML methods [23,24] for several
purposes about the current COVID-19. The study analyzes
research on COVID-19 using AI/ML techniques from vari-
ous perspectives, such as data types, software/tools, applied
methods, drug and vaccines. This research’s novelty includes
systematically addressing AI/ML techniques as an emerg-
ing discipline with tremendous applications in the pandemic.
These techniques can be used to understand the nature of this
virus and further predict the upcoming issues related to pan-
demics. This study discusses the significance of AI/ML in
resolving the COVID-19 pandemic crisis by examining 264
latest references from seven accessible databases in a sys-
tematic way.

Contributions of this study include

– This study mainly focuses on different AI/ML techniques
that were applied for the COVID-19 outbreak.

– This study highlights the reasons for applying AI/ML
techniques to the pandemic.

– This study explains the data perspective of COVID-19
studies regarding measurement types of study success
and data types.

– This review research gives direction to researchers about
the various repositories available for COVID-19 outbreak
so that researchers can easily access.

– This study focuses on the current situation of drug and
vaccine discovery and how AI/ML methods can help in
the drug development.

– This study lists various software platforms available to
implement AI/ML methods in the COVID-19 outbreak.

This study is structured as follows. The next section gives
the research methodology based on seven significant con-
siderations. Research questions, which are critical aspects of
the review, are determined. Databases and search strategy
are explained together with inclusion and exclusion criteria
to select relevant studies. Then data extraction and collec-
tions steps are considered. Factors that affect validity to know
the strengths and weaknesses of the systematic review are
discussed. The subsequent section presents the results and
discussions considering defined research questions. Then the
limitations of the review are given. Finally, the study is con-
cluded.

Researchmethodology

According to Brereton et al. [25], a systematic review of the
literature is a method of identifying, evaluating, and inter-
preting all existing work on a particular research question,
subject area or interest. A systematic literature search is con-
ducted with a set of research questions. It aims to answer these
questions using a secure, rigorous and auditable methodol-
ogy [26]. The steps taken in this study are shown in Fig. 1.
The process steps in this study are described in the following
subsections

Research questions

The main objective of this systematic literature review is
to describe, analyze and synthesize the studies related to
the AI/ML implementations in the COVID-19 outbreak.
To obtain a more detailed and comprehensive view of the
subject, the overall objective is based on the following six
research questions (RQs) with motivations.

– RQ 1: What are the most frequently applied AI/ML tech-
niques in COVID-19?

– RQ 2: Why AI/ML approaches are applied in COVID-
19?

– RQ 3: What is the data perspective of studies?
– RQ 4: What is the current situation in drugs preparation?
– RQ 5: What software platforms are used?
– RQ 6: Which data sources can be reached?

Databases and search strategy

Seven online academic search engines were used to find
related studies.

– ACM Digital Library
– ArXiv.org
– Elsevier
– IEEE Xplore Digital Library
– PubMed
– Springer
– Wiley Online Library
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The search string used to facilitate searching in selected
libraries have four dimensions with their sub-domains:
AI/ML, study objective, COVID-19, and healthcare.

Inclusion/exclusion criteria

After collecting the studies, duplicate articles were removed.
If there are more than one studies, only the most complete
version was chosen. Later, studies were selected using the
following inclusion and exclusion criteria to find answers to
identified research questions and identify the most appropri-
ate studies.

Inclusion criteria:

– Studies applying at least one AI/ML algorithm
– Studies producing solution to at least one of the COVID-

19 problem
– Studies containing experimental work using COVID-19

datasets
– Studies that explicitly address the COVID-19 issue
– Studies written in English only

Exclusion criteria:

– Studies published before 2019
– Extended abstracts and poster work
– Studies that mention AI/ML techniques but are not part

of the COVID-19 outbreak
– Studies that mention COVID-19 techniques but do not

use AI/ML techniques
– Theoretical studies without application

Study selection

The articles defined by the search terms from the databases
were initially considered only metadata (title and summary).
All works related to the subject were scanned. However, since
the number of studies found was too large, a second selec-
tion was made according to the keywords. The keyword is
a way of reducing the time needed to develop the classifi-
cation scheme and to ensure that the plan considers current
work [27]. The full text was examined for the suitability of
the articles at the end of the second stage. In the third step,
reference lists of related articles were scanned to find extra
articles. At the end of the final phase, 264 studies were found
eligible for the review.

Data extraction

A data extraction form was used to collect relevant data from
the selected studies to answer research questions. Selected
studies were evaluated three times in different days by dif-
ferent authors.

– RQ 1: AI/ML algorithms and techniques used for
COVID-19 should be defined.

– RQ 2: Objective of AI/ML approaches should be given.
– RQ 3: The data type, data size, study reliability should

be investigated.
– RQ 4: AI architecture for protein structure and drug anal-

ysis should be identified.
– RQ 5: AI/ML-based software specific to COVID-19 out-

break should be given.
– RQ 6: Data sources should be searched with a direct link.

Data collection

The electronic databases include international indexed jour-
nals and conferences searched and defined concerning
AI/ML approaches against COVID-19. ACM (n = 72),
arXiv (n = 136), Elsevier (n = 113), IEEE Xplore (n = 68),
PubMed (n = 111), Springer (n = 88) and Wiley (n = 64)
databases were scanned. 27 additional studies have been
identified by manually searching the reference lists from
important studies.

Threads to validity

It is essential to consider the factors that affect validity to
know the strengths and weaknesses of a systematic review
[28]. The factors are mainly related to study selection, data
extraction and researcher bias in this research.

To find out related studies, the seven search engines men-
tioned above were scanned. However, it may not be possible
to have other relevant works on the results. For this threat,
reference lists of selected studies were searched manually to
find other related studies, and 27 research were added to the
list.

Data extraction is one of the most critical tasks in this
work. To reduce the likelihood of extracting wrong data,
studies were evaluated twice on different days, and the data
needed to answer the RQs were collected.

When selecting and extracting data, it is possible to men-
tion researcher bias [29]. It is a useful systematic review
method that one researcher selects studies, and another
researcher checks them [30]. The studies in this study were
evaluated independently by two researchers and tried to pre-
vent the researcher bias.

Results and discussion

Relevant studies were determined by applying the research
strategy and inclusion/exclusion criteria. For the search on
the seven electronic databases described above, 652 candi-
date studies were selected, as shown in Fig. 2. After removing
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Fig. 2 Result of the study selection process

the first three exclusion criteria and the duplicated studies,
526 articles remained. Then a search based on meta-data
(title, keywords and abstract) was done. 237 studies were
left after unsuitable studies were eliminated according to
the title, abstract and keywords. All of the studies were
examined in full text. Since no inconvenience was observed,
no elimination was done. As a result, 237 studies related
to AI/ML implementations against COVID-19 were agreed
suitable for examination. After reviewing these studies’ full
text, 27 other studies related to the research were added to
the sources through reference lists. Thus, 264 articles were
selected directly related to the research.

In recent years, AI has been widely used in various fields
of medicine and healthcare [31–33]. Since the outbreak of
COVID-19, researchers were successfully used advanced AI
technologies in the COVID-19 battle and were achieved sig-
nificant progress [34–36]. In this survey, a comprehensive
review of the contributions of AI/ML in combating COVID-
19 is presented. The main scope of AI/ML in COVID-19
research includes the aspects of epidemic and transmission
prediction, diagnosis and detection, drug/vaccine develop-
ment [37].

RQ 1:What are themost frequently applied AI/ML
techniques in COVID-19?

The comparative survey presented in Fig. 3 showed that the
convolutional neural network (CNN) model is widely used
for medical imaging [38–45]. CNNs are specialized types
of neural networks and can be applied to many kinds of
data with different dimensions. CNN includes three kinds
of layers: convolutional, pooling, and fully connected layers.
Convolutional layers constitute the main building blocks of
a CNN and summarize the features in an image [46]. CNNs
are sensitive to the spatial coherence or local pixel correla-
tions in images. Most of the papers presented in this survey
adopted the CNN model because of its high accuracy [47–
51]. The results prove that the CNN and deep learning (DL)
methods perform best among all the models used in COVID-
19 [52,54–57]. Moreover, CNN was applied together with
other methods in many studies such as Unet [58,59], AlexNet

[60] and long short-term memory (LSTM) [61,62]. ResNet
is a pre-trained DL approach that applied more than others
[53,63–67]. However, there some challenges are using CNNs
in medical tasks. It is difficult to collect medical images
in good quality and sufficient numbers. The availability of
labeled data is limited. Collecting and labeling data is a time-
consuming process; besides, correctly labeling is critical and
depends on specialist experience [68–71]. Random forest
(RF) classifier is an ML classifier used by more than 50% of
the studies because of its ability to choose the best features for
classification [72–78]. SVM is another ML method mostly
applied in all scenarios like classification [79–81], prediction
[82–84], and diagnosis [85]. Some studies applied more than
one pre-trained models and compared their results to find the
best method against image recognition [86–89]. Pre-trained
networks are composed of two parts. The first part includes
a series of convolution and pooling layers, and these layers
end with a densely connected classifier. Convolutional fea-
ture maps take into consideration of object locations in an
input image. On the other hand, densely connected layers at
the top of the convolutional base are mostly useless for object
detection problems. A pre-trained network is trained on a
large dataset, generally on large-scale image classification
problems using ResNet, UNet, VGG, Xception, GoogLeNet
and XGBoost.

Researchers frequently combined AI/ML techniques and
advanced statistical methods to increase the effectiveness
of the study outcomes [74,77,78,86,87,90–94]. Various ML
techniques supported many of the COVID-19 studies [72,
95–100]. For example, Mei et al. [76] developed a joint
model that uses CNN and ML (SVM and RF) as a clas-
sifier. Susceptible–infectious–recovered (SIR) model and
its derivatives such as susceptible–infectious–recovered–
deceased (SIRD) or susceptible–exposed–infectious–recovered
(SEIR) produces acceptable results using case data [101–
104]. Some studies proposed intelligent methodologies
including some ML techniques to present effective solutions.
For example, Mohammed et al. [37] have evaluated and com-
pared by an intelligent methodology of COVID-19 diagnosis
models. They have presented a decision matrix that combined
a mix of ten evaluation criteria and twelve diagnostic models
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Fig. 3 AI/ML approaches in COVID-19

for COVID-19. The multi-criteria decision-making method
is applied to evaluate and benchmark the various diagnostic
models for COVID-19. They have selected SVM classifier
as the best diagnosis model for COVID-19.

RQ 2:Why AI/ML approaches are applied in
COVID-19?

AI/ML techniques were used in the COVID-19 pandemic
for (1) classification, (2) prediction, (3) diagnosis and (4)
other applications like early warnings and alerts. Classifi-
cation is the most popular aim for applying AI/ML methods
[38,48,56,65,89,105]. Review results presented in Fig. 4 indi-
cates that most of the models (almost 50% of studies) used
ResNet for classification. Recent advancements in DL led
to the potential usage of various CNN architectures. Next to
ResNet, some authors attempted the CNN model for clas-
sification (45% of studies). Few authors also tried to use
traditional ML algorithms like SVM and RF for classifica-
tion of COVID-19 data.

Prediction is the second popular objective in AI/ML
approaches [106–111]. Regression analysis is a widely
accepted model for prediction purposes (100% of studies)
[112]. DL models are another popular prediction approach,
which was adopted by 70% of studies. One of the most used
mathematical models for the COVID-19 pandemic is SIR
frameworks. More than 60% of the studies used the SIR
framework for prediction [32,91,101–104]. Diagnosis is the
third popular AI/ML usage purpose [113–117]. RF and SVM
techniques were applied for diagnosis of COVID-19 with
nearly 25–30% rates, respectively. As DL-based methods,
CNN and ResNet, were used to classify, predict, and diag-
nose purposes. The results produced by this comprehensive

review prove that AI methods are a promising mechanism to
use for the current scenario of the COVID-19 pandemic.

Other reasons that concluded from the selected studies to
apply AI/ML approaches in COVID-19 are given below.

Patient outcome prediction AI tools were developed to
predict risk status of contracting the coronavirus. It is critical
to know the factors that will put the patients at risk. LSTM is
a popular method to predict patient outcome. For example,
Obaid et al. [62] proposed a prediction mechanism that uses
LSTM to carry this model out on a coronavirus dataset that
identified from the records of infections, recovery cases and
deaths across the world. Researchers came up with a different
proposal to identify the risk factors that will help the clini-
cians. Some studies proposed models to assess the patients’
severity using the RF and regression model (Reg) [118–120].
Time-series prediction is an important task to predict pan-
demic diseases. In [121], the authors developed a time series
forecasting model using a hybrid machine learning model.
Beetle antennae search swarm intelligence algorithm is used
for optimization. The proposed model was evaluated using
real-time patient data obtained from China by World Health
Organization (WHO). The proposed model obtained an R2

score of 0.9763. Table 1 summarizes AI/ML methods for
patient outcome prediction.

AI and ML models are potentially strong to fight with
different pandemic (flu, dengue, zika, cholera, ebola, H1N1,
influenza, swine fever) with different methods like classifica-
tion, forecasting, prediction and pattern recognition. AI/ML
tools covering these methods to play an essential role in fight-
ing with the deadly disease [126]. Table 2 shows different
AI/ML techniques in disease predictions.

Risk assessment of pandemic AI/ML models help to assess
the risk of the pandemic. DL-based models were developed
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Fig. 4 Objectives of AI/ML approaches in COVID-19

Table 1 AI/ML methods for
prediction of patient outcome

Study Objective AI/ML approach

[97] Identify the monocyte ratio and blood pressure in human body RF

[118] Predicting hospitalization RF and Reg

[119] Severity assessment RF and Reg

[120] Severity assessment Reg

[122] Identify the high-risk and low-risk patients Reg

[123] Identify the mortality risk, XGBoost

[124] Patient risk stratification CNN

[125] Confirmation of covı cases LSTM

XGBoost extreme gradient boosting

to predict the duration of the disease [141,142], community-
level risk assessment [143] and transmission prediction
[144]. Early risk assessment of COVID-19 patients helps to
reduce mortality. Several ML algorithms were developed in
the literature. For example, Heldt et al. [145] proposed a
model that extracts the informative clinical features from the
data. XGBoost algorithm with 100 trees was trained on the

dataset. The proposed model obtained (AUC-ROC) scores
from 0.76 to 0.87. Table 3 gives an overview of risk assess-
ment of COVID-19 with AI/ML methods.

Workload reduction of health professionals Because the
sudden spike of COVID-19-affected patients, healthcare
workers have a growing burden. Various AI/ML techniques
were proposed for early diagnosis of the disease [147–149].
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Table 2 AI/ML techniques in
disease predictions

Study Disease AI/ML method Country

[127] Dengue fever CTree Bangladesh

[128] Oyster norovirus GP USA

[129] Dengue fever Reg, NB India

[130] H1N1 Flu NN Japan

[131] Influenza RF Iran

[132] Dengue fever NN Japan

[133] Swine Fever RF China

[134] Asthma exacerbations NB, SVM USA

[135] Dementia prediction SVM Italy

[136] Diabetes classification Reg, NN, NB, KNN, RF Brazil

[137–139] Hepatic fibrosis NB, RF, KNN, SVM, NN N/A

[140] Course of depression Reg N/A

CTree classification tree, GP genetic programming, KNN K-nearest neighbors, NB Naive Bayes, NN neural
network

Table 3 AI/ML methods for risk assessment of COVID-19

Study Objective AI/ML technique

[141] Predict the duration of the disease LSTM

[142] Transmission prediction LSTM, RNN

[143] Community-level risk assessment GAN

[144] Transmission prediction TL

[146] Disease monitoring CNN

GAN generative adversarial network, RNN recurrent neural networks,
TL transfer learning

AI can tackle future challenges and address to reduce the
workload of healthcare professionals [150].

Social control With high transmissibility of COVID-19,
many countries adopted AI for pandemic management [151]
and are successful in reducing the mortality rate. For exam-
ple, a predictive model for mortality rate in COVID-19 using
ML was developed by Booth et al [152]. Model identified the
prognostic serum biomarkers in COVID-19 patients. Five
serum parameters were used in the data set using a sup-
port vector classifier for classification. The proposed model
achieved 91% specificity and 91% sensitivity. AI can facil-
itate the management of contact tracing, quarantine and

self-isolation of people, screening for infection [153,154].
AI-based drones were used to enforce social isolation [155].

Early warnings and alerts AI is a potential tool to fight
against COVID-19, and AI-based systems are used in spot-
ting COVID-19 disease outbreaks. Bots based on AI were
used to predict the possible outbreak [156,157]. Before
the WHO (World Health Organization) sounded an alarm
on the possible outbreak of COVID-19, an AI bot named
“BlueDOT” [158] alerted employees’ possible outbreak of a
pandemic. A similar bot, called “Health Map”, developed in
the USA sounded the alarm for possible outbreak [159].

RQ 3:What is the data perspective of the research?

Table 4 gives the validity measurement types of researches.
Most of the studies validated the research results by accu-
racy [77,160–163]. Accuracy scores vary from 50 to 100%.
However, these results are not the final output of these stud-
ies. For example, Elgendi et al. [86] and Hemdan et al. [87]
applied various pre-trained AI methods. Whereas Elgendi
et al. [86] reached 100% accuracy rates using ResNet-50,
DarkNet-53, VGG-19, DenseNet-201, ResNet-18, ResNet-
101, and GoogLeNet, Hemdan et al. [87] obtained a 50%
accuracy score by InceptionV3. 82% of the research were

Table 4 Measurement types of study success

Measurement Percentage Min (%) Max (%) Measurement Percentage Min Max (%)

Accuracy 31 50 100 Precision 6 79% 99.29

AUC 12 85 99.6 R squared 3 98% 99.7

Explained variance 2 99 99.7 RMSE 1 136.547

Sensitivity 20 0.01% 99.62

F1-score 7 79 98.46 Specificity 18 70.7% 99.99

AUC area under the curve, RMSE root mean square error
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Table 5 Data types used in the COVID studies

Data type Percentage Min Max

CT 49 106 images 16,756 images

X-ray 35 50 images 15,085 images

Case data 16 14 days 77 days

tested the validity by three measurement types: accuracy,
precision and sensitivity [58,164].

Table 5 represents data types and their statistics. Almost
half of the COVID-19 works that benefit from AI/ML tech-
niques analyzed CT images [59,165–170]. X-ray is the
second popular data type with a rate 35% [31,66,89,162,171–
174]. A massive data size scale was used in those studies,
ranging from 106 to 16,756 CT images and 50–15,085
X-ray images. Some studies focused on case data such
as death and recovery numbers between a specific period
[77,90,91,175,176]. Other data types such as dialogue data
[92,177], genome data [99], symptoms [72], blood data
[74,98] were excluded in Table 5 because they were mea-
sured below 5% of the studies.

RQ 4:What is the current situation in drug
preparation?

Due to the rapidly spreading across to the world and the
lack of effective treatment options, drug developers have
adopted the various strategies to fast track the drug discovery.
Whereas some studies applied AI/ML techniques to predict,
some of them analyzed the molecular structure of coronavirus
because drug discovery is an expansive and lengthy process.
Table 6 represents the drug studies against to COVID-19.

AI is a cost-effective and fast tool in drug discovery to fight
against COVID-19. Shin et al. [180] proposed a Molecule
Transformer Drug Target Interaction (MT-DTI) model that
provides low-cost drugs and personalized medicines with
multi-layered protein. MT-DTI was also applied to predict
commercially available drugs [179]. This is the drug-target
interaction model that uses deep learning. The result showed
that Atazanavir, Remdesivir, and Efavirenz are suitable to
fight against SARS-CoV-2. Hofmarcher et al. [178] proposed
a DL model for drug discovery by predicting the inhibitory
effects of molecules. Initially, they identified one billion
molecules from the ZINC database for screening and rank-
ing, and further molecules were reduced to 30K.

Some studies identified the drug compounds to fight
against SARS CoV-2 coronavirus. Kadioglu et al. [183] iden-
tified three potential drugs for COVID-19 by adopting in
silico methods to identify novel drugs using an AI model
based on NB and NN. Hu et al. [182] identified ten drugs as
potential inhibitors fight against SARS-CoV-2 by predicting

the binding between drugs and protein using DL methods.
Figure 5 summaries some candidate drugs or vaccines to
treat this disease, which includes small molecule drugs, small
molecule agents, herbal medicines and biological products
[185–190]. Blue texts show the drug developments, whereas
green texts refer vaccine developments.

Both small molecule drugs and small molecule agents are
more potential drugs for COVID-19 [191]. Small molecule
drugs like Lopinavir/Ritonavir and Ribavirin were used for
the antiretroviral activity. On the other hand, Chloroquine
phosphate and Arbidol were used to synthesize viral DNA
or RNA. Small molecule agents such as Remdisivir, Favipi-
ravir were used as an RdRp inhibitor. Similarly, biological
products were used as a monoclonal antibody (Tocilizumab)
or passive immunity boosters (Convalescent plasma). Some
studies treated the COVID-19 with the help of a combina-
tion of drugs such as (hydroxychloroquine, azithromycin),
(azithromycin, nitazoxanide), (favipiravir, hydroxychloro-
quine) and (favipiravir, azithromycin) [192].

Scientists are looking for a vaccine at least 95% effective to
stop the pandemic [193]. AI techniques were widely used in
the design of vaccines against SARS-CoV-2 [194,195]. Some
studies utilized AI approaches to obtain protein sequences
[196] and nucleotide sequences [197]. Epitope prediction
using AI/ML techniques were also popular in vaccine devel-
opment against COVID-19 [196–201].

RQ 5:What software platforms are used?

Practitioners encountered severe challenges in the detection
of Ncov-2019 because SAR-CoV-2 viruses spread rapidly.
Reverse Transcription Polymerase Chain Reaction (RT-PCR)
approach is not applicable due to some obstructions [202].
The shortcomings of RT-PCR can be obviated by analyzing
medical images because developing digital technologies help
prevent diseases by applying statistics, machine learning, and
artificial intelligence models [203]. Table 7 presents several
models and software platforms. These models’ capability
was provided in a broad range of uses; from disease detec-
tion and prediction to social control. Applications involve
real-time data analysis for disease detection and diagnosis,
treatment monitoring, prediction of cases and mortality, and
drugs/vaccines development [204]. Except from the studies
in the table, some studies used more than one software such as
Python and Excel [205], Python and R [118,206], MATLAB
and Excel [207].

RQ 6:Which data sources can be reached?

Data are presented as an essential aspect of implementing
scientific methods. The research community always follows
two approaches: closed source or open source [224]. Closed
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Table 6 AI/ML method in drug development

Study Drug type AI method AI/ML objective Potential drugs

[178] SARS-CoV-2 inhibitors ChemAI Predict inhibitory effects of
molecules

30,000 top-ranked compounds

[179] Antiviral drugs MT-DTI Predict commercially available
antiviral drugs

Atazanavir, Remdesivir, and
Efavirenz

[180] Antiviral drugs MT-DTI Predict binding affinity between
drugs and protein target

Remdesivir, Atazanavir,
Efavirenz, Ritonavir, Dolute-
gravir, Kaletra

[181] Anti-COVID-19 drugs CNN, LSTM, MLP Generate SMILES strings and
molecules

110 drugs

[182] Targeted proteins of SARS-CoV-2 DL Predict binding between drugs
and protein

10 drugs

[183] SARS-CoV-2 drug NN, NB Construct drug likelihood pre-
diction model

3 drugs

[184] 2019-nCoV DL Generate new molecular struc-
tures for 3CLproa structures

100 molecules

aThe viral main proteinase of coronavirus

Fig. 5 Drugs and vaccines for COVID-19

source is considered for proprietary objects, whereas open
source leads to more precious quality, transparency, verifia-
bility, usability [225,226]. In the COVID-19 pandemic, the
open-source approach is considered more effective for miti-
gating and detecting the virus due to its prior symptoms. It is
highlighted that the COVID-19 pandemic needs a collabora-
tive and unified approach along with open-source data, so the
scientific community can get transparent and valid research

[227,228]. Different datasets were presented to combat with
the COVID-19 pandemic in different ways [224].

Three main types of datasets in COVID-19 were used,
textual data, medical data and speech data. Textual data rep-
resents dashboard, mobility data, case reports, social media
posts and articles. Medical data generally presents diag-
nosis and screening of COVID-19 patients since medical
images consider X-rays, CT scans, ultrasound or MRI (Mag-
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Table 7 Models in COVID-19
with software platform

Software Study Model Data source

Python [207] SIR, SDM, PA Worldometers

[208] Regression model MoHFW, covid19india.org

[209] Pre-trained CNN GitHub, Kaggle, Open-I repository

[160] CT radiomics GitHub

[205] Regression model covid19india.org, WHO

R [210] SIRD and SVM Worldometers

[211] ARIMA, SIR Johns Hopkins U.

[212] Regression model Worldometers

[213] SIR Johns Hopkins U.

[214] Regression model Worldometer, covid19India.org

[163] Hybrid model approach Worldometers, ourworldindata.org

[215] Regression model MoHFW, John Hopkins U

[216] Regression model WHO, Historical weather

Not Given [217] Regression model, MLP Kaggle

[218] ARIMA, SVM WHO

[219] Fractional mathematical model N/A

[220] AP, TB WHO, Worldometers

[221] Exponential growth model MoHFW, WHO, covid19india.org

[222] SIR, Network model COVID19USA

[223] Regression model John Hopkins U

AP arithmetic projection, ARIMA autoregressive integrated moving average, MoHFW Ministry of Health and
Family Welfare, Government of India, MLP Multilayer perceptron, PA propagation analysis, SDM social
distancing matrix, TB tree-based model

netic Resonance Imaging). Most of the datasets represent
CT scans, X-rays, and AI/ML techniques applied to predict
resources in the future. Speech datasets help to detect and
diagnose by cough sound, breathing rate and stress detection
techniques.

Most of the datasets were stored on different reposito-
ries, such as Github and Kaggle. Table 8 presents 18 textual
datasets, nine medical datasets and seven speech datasets.

Total 18 textual datasets were discussed to show the
relevancy of different purposes. These datasets consider
COVID-19 case reports, report analysis, mobility data, social
media data, scholarly articles, tweets, non-pharmaceutical
interventions (NPI). Several studies maintained and shared
the epidemiological data of COVID-19 cases in China
[225,263]. COVID-19 case reports include different details
like (a) symptoms of the disease, (b) dates of patient admis-
sion, date of infection confirmation, travel dates, (c) other
information like resources of food [263]. They were pre-
sented to analyze the transmission, testing, forecasting and
death cases [264–269]. Some studies evaluated and inves-
tigated human mobility, travel restriction, social distancing
and control measure [270–274]. Social media data and schol-
arly articles were also collected to present different textual
data such as emotions and worries [275–281] and scientific

article data from existing studies [282–286]. Tweets also pro-
vide collected textual data. Several studies collected twitter
datasets to identify the pandemic information from a social
aspect and analyze human behavior [278,279,287]. NPI is
considered as different sets of measures accepted by govern-
ments to prevent the COVID-19 pandemic. The NPI effect
was analyzed for COVID-19 cases [288]. Mobility datasets
are significant to provide the information of infected cases
and also helpful to diagnose the response of societies in NPI
restrictions. Several open-source datasets provide informa-
tion with dynamic features.

Medical datasets, which include CT and X-ray images,
are essential in diagnosis of COVID-19. Studies based on
COVID-19 diagnosis used different datasets for CT-Scan
[34,89,165,289–297] and X-ray [20,78,87,298,299] images
by different AI/ML techniques [160,300,301]. The study
of Sharma and his colleagues [302] distributed the origi-
nal image dataset into 10% external validation dataset-I and
90% training dataset as Dataset-II. Dataset-I has 35 images,
and Dataset-II has 317 images and generated a total of 27
different types of training and validation datasets for chest
X-ray images. Out of these datasets, one dataset includes
real images, and 26 datasets consist of single augmenta-
tion images. All these 27 datasets were used to train and
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Table 8 Datasets and their details

Textual data sets Medical datasets

Data sets Explanation Data sets Explanation

T1 [229] Datahub repository M1 [230] COVID-19 CT scans of Chinese hospitals
with an online repository

T2 [231] Github repository of the data M2 [232] Dataset consists of 20 COVID-19 CT scans

T3 [233] Medical community M3 [234] Segmentation benchmark

T4 [235] Real-time interactive dashboard M4 [236] COVID-19 CT segmentation dataset

T5 [237] Open source datasets M5 [238] Images from a repository

T6 [239] crowd-sourced list of open access COVID-
19 projects

M6 [240] 3D CT scans of confirmed cases

T7 [241] Country specific case reports and articles M7 [242] COVID-19 positive and suspected patients

T8 [243] Demographic database M8 [244] Analyzing radiographical images

T9 [245] Real-time and historical mobility data from
Wuhan

M9 [246] Repository for COVID-19 radiographic
images

T10 [247] Real-time data Speech and audio datasets

T11 [248] Data sets of Twitter posts Data sets Explanation

T12 [249] Data sets of Twitter posts S1 [250] Web application for data collection

T13 [251] Web search portal for dataset of scholarly
articles

S2 [252] Open source voice dataset

T14 [253] Google mobility reports S3 [254] Collection of the cough data

T15 [255] Data set available on mobility based on user
requests to location services

S4 [256] Collection of the cough data

T16 [257] Web application identifying mobility pat-
terns across the U.S

S5 [258] Collection of the cough data

T17 [259] Mobility data from Baidu location services S6 [260] Data collection for cough data

T18 [261] Google location services S7 [262] Repository for the cough data

validate the 29 types of chest X-ray classification models.
A comprehensive study was performed to understand the
performance of automatic detection of COVID-19 based on
medical images [22]. This study uses COVID-19 and normal
X-ray images and adopts transfer learning to increase the
accuracy. To make general framework and avoid overfitting,
different training policies are adopted using AdaGrad algo-
rithm. A hybrid deep learning framework COVID-CheXNet
has been proposed by Al-Waisy et al. [20] to reduce the
load on radiologists and control of the pandemic. This
model helps to diagnose the COVID-19 virus in chest X-
ray images and is composed of four primary stages: image
pre-processing, image classification, features extraction and
fusion. Mohammed et al. [22] have proposed an automatic
prediction to identify COVID-19 for discriminating auto-
matically between normal and COVID-19 infected people
in X-ray images. To accomplish this, they used traditional
ML methods such as SVM, NN, DT and kNN techniques.
They also applied deep learning models such as ResNet50,
MobileNets V2, DarkNet, GoogleNet, and Xception.

Speech or audio datasets help to detect and diagnosis of
infection by three different method such as cough sound anal-
ysis [303–305], breathing rate analysis [306–309] and stress

detection [310–312]. Cough sounds can identify a COVID-
19 infected case by applying ML techniques. Breathing rate
can be identified by speech, resulting in COVID-19 patient
screening. Stress detection also helps to identify the cases
that person suffer from mental health issues and symptoms
of COVID-19. These methods can be done by remote medi-
cal care or smart devices. AI/ML techniques are successfully
applied for extracting features and classify new inputs based
on model training.

Table 9 gives a tabular and descriptive survey for various
open source datasets. This table covers 20 datasets with dif-
ferent data-types such as X-ray, CT Scans, Ultra-sound, case
data, tweets, voice data. These datasets were applied differ-
ent methods with different applications. For example, CNN,
SVM and TL were applied for diagnosis [38,165,313–315].
Bayesian approach method was applied in community trans-
mission [316–321], while data mining methods [322–327]
were used for symptoms identifications. Regression analysis
methods [148,328–331] were used for transmission control
analysis.
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Table 9 Dataset applications
with AI/ML

Study Application Methods Database

[332] COVID-19 diagnosis DenseNet, TL Medical

[290] COVID-19 diagnosis Deep CNN Medical

[87] COVID-19 diagnosis Deep learning Medical

[78] COVID-19 diagnosis CNN, TL Medical

[31] COVID-19 diagnosis CNN Medical

[301] COVID-19 diagnosis CNN Medical

[271] Cases exported from China Statistical Medical

[266] Correcting under reported cases Statistical Textual

[273] International travel control analysis Statistical Textual

[274] COVID-19 transmission control Regression analysis Textual

[333] Community transmission Expectation maximization Textual

[334] Community transmission Bayesian approach Textual

[276] Social dynamics data Statistical analysis Textual

[335] Perception and policies Proposed NLP Textual

[281] COVID-19 symptom identification Data mining Textual

[304] COVID-19 diagnosis Boosting Trees, SVM Speech

[305] COVID-19 diagnosis N/A Speech

[309] COVID-19 speech analysis SVM with linear kernel Speech

[279] Government and Media Tweets N/A Textual

[277] Conversation dynamics N/A Textual

Limitations

Some limitations of the current research should be accepted.
The research is limited to selected search terms, databases
and selection criteria.

This research was conducted in a certain period of time.
However, the number of studies on COVID-19 increases day
by day because of its popularity and necessity. Because a
systematic literature review was presented with this research,
it is necessary to limit the research content. To decrease the
effect of this situation, the inclusion and exclusion questions
were prepared to select the studies published in the research
period.

Seven online databases were scanned for the review. How-
ever, other databases can be scanned. If the research is to be
expanded, the number of databases can be increased.

Apart from selected studies in this research, there are
many different studies. It should not be forgotten that some
criteria were set for narrowing the research scope. For exam-
ple, studies that do not mention the algorithm applied in
the implementation or do not give details were ignored.
Applied AI/ML studies are generally implemented for dif-
ferent purposes without considering COVID-19 problems.
Therefore, COVID-19 problems are not explicitly stated in
the publications. By evaluating each study individually, it
was determined which problem discussed. At this stage, there
may be unobserved publications.

Conclusion

This systematic review study investigates 264 studies from
seven accessible databases to find answers for six signifi-
cant research questions. This research aims to explore and
organize potential literature so that practitioners, academi-
cians, and researchers can easily access the existing methods,
applications, and datasets. The main contribution of this
research to identify the AI/ML methods and techniques
for disease prediction, measurement and data types, AI/ML
method in drug development, available drug and vaccines,
and existing models and datasets for the COVID-19 pan-
demic. CNN, RF, ResNet and SVM approaches are the
most used AI/ML approaches against COVID-19. These
approaches were applied for various purposes. Classifica-
tion, prediction and diagnosis are the most popular AI/ML
objectives. ResNet applied for classification and diagnosis,
whereas regression is used for prediction studies. Apart from
these objectives, previous studies benefited from the advan-
tages of AI/ML tools for several additional purposes, such
as patient outcome prediction, risk assessment, workload
reduction of health professionals, social control and early
warnings and alerts. This study concludes that the methods’
success varies widely. Nine major measurement types were
considered to evaluate models’ success. Accuracy, sensitiv-
ity and specificity were measured 69% of studies. 84% of
studies used either CT or X-ray images between 50 and near
to 17,000. Case data are the third popular data type with a
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Table 10 Abbreviations used in this study

Abbr. Explanation Abbr. Explanation

AI Artificial intelligence NN Neural network

AP Arithmetic projection NPI Non-pharmaceutical interventions

ARIMA Autoregressive integrated moving average PA Propagation analysis

AUC Area under curve Reg Regression models

CNN Convolutional neural network RF Random forest

COVID-19 Coronavirus disease 2019 RMSE Root mean square error

CT Computational tomography RNN Recurrent neural networks

CTree Classification tree RQ Research questions

DL Deep learning RT-PCR Reverse transcription polymerase chain reaction

GAN Generative adversarial network SDM Social distancing matrix

GP Genetic programming SEIR Susceptible, exposed, infectious, recovered

KNN K-Nearest Neighbor SIR Susceptible, infectious, recovered models

LSTM Long short-term memory SIRD Susceptible, infectious, recovered, deceased

ML Machine learning SVM Support vector machine

MLP Multilayer perceptron TB Tree-based

MRI Magnetic resonance imaging TL Transfer learning

MT-DTI Molecule transformer drug target interaction WHO World Health Organization

NB Naive Bayes XGBoost Extreme gradient boosting

rate of 16% up to 77 days. Python and R the most preferred
software platform to apply AI/ML methods. Some studies
used Matlab, Microsoft Excel and more than one software.
Data were stored in three main categories, textual, medical,
and speech. Because the research has review borders, it has
some limitations that were discussed in the study.

This study is most significant for new practitioners and
researchers who plan to develop an AI/ML model or drug for
COVID-19. They can reuse existing models and drugs rather
than design from scratch and save time for doing potential
research and future studies. Besides, this research provides
a backbone for different aspects such as disease diagnosis
and detection, drug and vaccine development, AI/ML models
and techniques. The conducted literature provides compre-
hensive details of AI’s potential and existing contribution to
combating the pandemic.

As it is understood from the literature review, many
researchers applied CNN models. The main reason can be
that they are powerful for the spatial coherence or local pixel
correlations in medical images. CNN technique was usu-
ally applied for either classification or diagnosis. However,
authors should remind aforementioned drawbacks before
applying CNN for COVID-19 studies.

For further research, the authors can focus on several
points. First of all, researchers can scan other databases such
as ERIC, DOAJ and JSTOR. Some additional research ques-
tions can be investigated to clarify interesting and meaningful
results.

Abbreviation

Table 10 presents the abbreviations used in the study.
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