
Received April 5, 2019, accepted May 3, 2019, date of publication May 22, 2019, date of current version July 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2918202

A Systematic Review on Code Clone Detection

QURAT UL AIN, WASI HAIDER BUTT , MUHAMMAD WASEEM ANWAR ,
FAROOQUE AZAM, AND BILAL MAQBOOL
Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST),

Islamabad 44000, Pakistan

Corresponding author: Muhammad Waseem Anwar (waseemanwar@ceme.nust.edu.pk)

ABSTRACT Code cloning refers to the duplication of source code. It is the most common way of reusing

source code in software development. If a bug is identified in one segment of code, all the similar segments

need to be checked for the same bug. Consequently, this cloning process may lead to bug propagation that

significantly affects the maintenance cost. By considering this problem, code clone detection (CCD) appears

as an active area of research. Consequently, there is a strong need to investigate the latest techniques, trends,

and tools in the domain of CCD. Therefore, in this paper, we comprehensively inspect the latest tools and

techniques utilized for the detection of code clones. Particularly, a systematic literature review (SLR) is

performed to select and investigate 54 studies pertaining to CCD. Consequently, six categories are defined

to incorporate the selected studies as per relevance, i.e., textual approaches (12), lexical approaches (8), tree-

based approaches (3), metric-based approaches (7), semantic approaches (7), and hybrid approaches (17).

We identified and analyzed 26 CCD tools, i.e., 13 existing and 13 proposed/developed. Moreover, 62 open-

source subject systems whose source code is utilized for the CCD are presented. It is concluded that there

exist several studies to detect type1, type2, type3, and type4 clones individually. However, there is a need to

develop novel approaches with complete tool support in order to detect all four types of clones collectively.

Furthermore, it is also required to introduce more approaches to simplify the development of a program

dependency graph (PDG) while dealing with the detection of the type4 clones.

INDEX TERMS CCD, SLR, code clone detection, CCD tools, code clone types.

I. INTRODUCTION

Code duplication by copying and pasting without or minor

modification into another section of code frequently occurs in

software development. This copied code is called code clone

and the process is called code cloning. If an error is identified

in one part of the code, correction is required in all the

replicated segments. Therefore, it is essential to identify all

related segments throughout the source code. Various studies

suggested that almost 20-50 percent of large software systems

consist of cloned code [1], [2].

There is no appropriate definition of code clone. Differ-

ent researchers used different terms for cloning. Krinke [3]

utilized the term ‘‘similar code’’. Baxter et al. [4] suggested

that a clone is ‘‘a code segment that is identical to another

segment’’. Ducasse et al. [2] utilized the term ‘‘duplicated

code’’. Komondoor and Horwitz [5] also used ‘‘duplicated

code’’ and clone as an item of duplicated code. Basic types

of clones are listed below [6]:

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

Exact clones (Type 1): Identical code segments except for

changes in comments, layouts and whitespaces.

Renamed clones (Type 2): Code segments which are syn-

tactically or structurally similar other than changes in com-

ments, identifiers, types, literals, and layouts. These clones

are also called parameterized clones.

Near Miss clones (Type 3): Copied pieces with further

modification such as addition or removal of statements and

changes in whitespaces, identifiers, layouts, comments, and

types but outcomes are similar. These clones are also known

as gapped clones.

Semantic clones (Type 4): More than one code segments

that are functionally similar but implemented by different

syntactic variants.

Although there are four types of clones, sometimes people

use different terms when referring to the clone relation to

their experiments. Common terms utilized by them are given

below.

Structural clones: Simple clones that follow the syntactic

structure of a particular language within the syntactic

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

86121

https://orcid.org/0000-0002-1347-3662
https://orcid.org/0000-0002-1193-5683

Q. U. Ain et al.: Systematic Review on CCD

boundary. These boundaries can be statement boundary,

structure boundary, class boundary etc. A structural clone can

be any of the four types of clones depending on its similarity

level.

Function clones: These clones are simple clones that are

limited to the procedure or method/function level granular-

ity. Similar to the structural clones these clones can also

be any of the four types of clones based on their level of

similarity.

Cloning is beneficial but it can also be harmful in many

ways. For example, in many software engineering tasks

such as aspect mining, program understanding, plagiarism

detection, copyright infringement investigation, code com-

paction, software evolution analysis, code quality analysis,

bug detection and virus detection may need the extraction

of semantically or syntactically similar code blocks, mak-

ing clone detection effective and useful part of software

analysis [7]. They can also lead to the bug propaga-

tion that significantly increases the software maintenance

cost. By considering these maintenance problems, software

clone detection appeared as an active area of research.

Several approaches and tools introduced so far, for the

detection of code clones and there have been many com-

parisons and evaluations studies. Text-based approaches,

Token-based approaches, Tree-based approach,Metric based,

Semantic approaches and Hybrid approaches are mainly

used [7], [8]. Similarly, several tools are available for CCD

like NICAD [9], [10], CCFinderX [11], [12], Simian [13],

CPMiner [14] etc. Furthermore, certain similarity measure

algorithms such as Fingerprinting [15], [16], Neural Net-

works [17], Euclidian Distance [18] etc. are also utilized for

the detection of code clones. However, this area of research

is quite intensive. Therefore, there is a strong need for the

intensive evaluation of modern CCD techniques and tools

in the existing state-of-the-art studies. In this regard, this

article performs a Systematic Literature Review (SLR) in

the area of CCD. According to Brereton et al. [19], Bud-

gen and Brereton [20] and Charters and Kitchenham [21],

a Systematic Literature Review (SLR) is a process of finding,

evaluating and interpreting all available research related to

a particular topic, research question, area or phenomenon of

interest.

It is important to note that there exist two survey arti-

cles [6], [22] , published in 2007, in the area of CCD. Fur-

thermore, a SLR is also performed in 2013 in the domain of

CCD [23] . Therefore, in this article, we conduct SLR from

2013 onward and comprehensively examine the latest tools

and techniques for CCD. We define 5 research questions for

the SLR as follows:

RQ1: What are the popular approaches utilized for CCD

and which type of clones they can detect?

RQ2: What are the popular tools used/developed for CCD?

RQ3: What are the open source subject systems or bench-

mark datasets commonly used for CCD?

RQ4: What are the advantages and limitations of CCD

techniques and tools?

RQ5:What are the key improvements required in the CCD

tools / techniques in order to meet the modern technological

advancements?

To answer the above-mentioned research questions,

we performed SLR on 54 research articles which include both

journal papers published during 2013-2018 and conference

papers published during 2015-2018. The contributions of this

study are summarized below:
• Firstly, this article selects 54 studies (i.e. 2013-2018)

pertaining to CCD by utilizing the standard guidelines

of SLR [21].

• Secondly, this article analyzes six main CCD techniques

and 26 CCD tools. This analysis surely assists the

researchers while selecting the right tool or technique

for CCD.

• Lastly, this article highlights the important gaps where

improvements are needed in CCD.

To perform this SLR, a review protocol is implemented in

(Sec. II). Firstly, six categories are defined (Sec. II(A))

for simplification of data extraction and synthesis process.

We selected four scientific databases (IEEE, ACM, Springer

and Elsevier) for search process (Sec. III(C)) as defined

in selection and rejection rules (Sec. II(B)). Accordingly,

we selected 54 research studies that have full conformity

with our selection and rejection rules. After that, we ensure

that these studies give reliable outputs in quality assessment

(Sec. II(D)). For the extraction and analysis of selected

studies, we define a template (Sec. II(E)). Six categories are

defined to incorporate the selected studies (Sec.III). After-

wards, these categories are comprehensibly examined namely

Textual (Sec. III (A)), Lexical (Sec. III(B)), Tree-based

(Sec. III(C)), Metric based (Sec. III(D)), Semantic

(Sec. III(E)) and Hybrid (Sec. III(F)). Various CCD tools

are identified and examined in (Sec. III(G)). Furthermore,

different open source software systems are investigated in

(Sec. III(H)). The detailed analysis of these studies provide

the answers to research questions (Sec.IV). Discussion and

limitations provided in (Sec.V). Lastly, conclusion is pro-

vided in (Sec. VI).

II. REVIEW PROTOCOL

Review protocol consists of seven elements. Two elements

such as background and research questions are discussed ear-

lier in the introduction. Therefore, in this section, the details

of these elements are excluded. The detail of the remaining

five elements is provided in the subsequent sections. The

overview of SLR is shown in Figure 1.

A. CATEGORIES DEFINITION

For the simplification of data extraction and synthesis pro-

cess, we define six categories. The description of these cate-

gories is given below.

1) TEXTUAL APPROACHES

Code clones can be detected by using different CCD

approaches. One of them is textual approaches, they

86122 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

FIGURE 1. Overview of systematic literature review.

detect type1 clones more effectively [64]. However, these

approaches can also identify type2 and type3 clones [8].

Therefore, this category consists of research studies that par-

ticularly deals with CCD using textual approaches.

2) LEXICAL APPROACHES

The research studies that particularly deal with CCD based

on lexical approaches are placed under this category. Lexical

approaches are also known as token-based approaches and

able to identify type 2 clones efficiently [64]. However, they

can also uncover type1 and type3 clones [8].

3) TREE-BASED APPROACHES

This category consists of the studies that are dealing with

CCD using tree-based approaches. They are most effective

for the detection of type3 clones [64]. However, they have

the ability to detect type1, type2, and type4 clones [8].

4) METRIC BASED APPROACHES

The research studies in which code clones are detected

by utilizing metric-based approaches are placed under

this category. They can detect type3 clones effectively [64].

However, they can also uncover type1, type2 and type4

clones.

5) SEMANTIC APPROACHES

The research studies that particularly deal with CCD based

on semantic approaches are placed under this category.

A semantic approach similar to tree-based and metric-based

approaches have the ability to detect type1, type2, type3 and

type4 clones. They are mainly used to uncover semantic or

type 4 clones [64].

6) HYBRID APPROACHES

The research studies in which a combination of two or more

aforementioned techniques e.g. (Textual, Lexical, Syntactic

or Semantic) is utilized should be placed under this category.

B. SELECTION AND REJECTION CRITERIA

Wedefine selection and rejection criteria to carry out this SLR

for obtaining desired goals. For this purpose, some rules are

defined as discussed below.

VOLUME 7, 2019 86123

Q. U. Ain et al.: Systematic Review on CCD

TABLE 1. Summary of search terms with results.

• The research studies in which keyword ‘‘code clone

detection’’ is included in the title or abstract are selected.

We discard such research studies where code clone

detection (CCD) is partially or not discussed.

• We consider the conference papers that are published

from 2015 to 2018 and journals published from 2013 to

2018. All those research studies published before

2013 are rejected to assure the inclusion of the latest

research studies.

• To perform this SLR, four well-known scientific

databases (i.e. Springer, IEEE, Elsevier and ACM) are

selected. Therefore, the research studies that are pub-

lished in one of the above-mentioned databases are con-

sidered. Studies other than these repositories are not

selected.

• Selected studies must be result oriented. Some solid evi-

dence and experimentation must support the proposed

methodologies and their ultimate outcomes.

• The research papers that have almost similar contents are

discarded and only one of them is selected.

C. SEARCH PROCESS

The search process is started by utilizing four databases

(IEEE, ACM, Springer and Elsevier) as described in selection

and rejection rules. We have utilized many search terms or

keywords while performing the search process. The overall

summary of the search process isgiven in Table 1. To carry

out the research process, two types of operators such as AND,

OR are utilized. The outcomes collected from AND opera-

tor are not enough that is why OR operator is used. How-

ever, the results obtained by using the OR operator are very

large, therefore, it is not feasible to scan all of these results.

Therefore, advanced search options are utilized, provided by

selected databases e.g. where keyword contain ‘‘time span’’

in order to get precise results. After the investigation of

FIGURE 2. Summary of the search process.

primary results, we select only those studies that are highly

related to CCD. Finally, we get 54 research studies by follow-

ing certain steps as shown in Figure 2.
• We overall consider 3665 research papers and reject

1943 by reading their title.

• Afterwordwe consider remaining 1722 papers and reject

1084 by examining their abstract.

• We investigate the remaining 638 research studies.

Based on this investigation, we exclude 584 research

studies and include 54 studies, which are completely

meeting our defined selection and rejection criteria.

D. QUALITY ASSESSMENT

To assure the reliable results of this SLR, we have selected

high impact studies e.g. researches from repositories that are

authentic and accepted all over the world. Thirty-seven (37)

research studies are selected from IEEE, seven (7) studies

from Elsevier, five (5) studies from ACM and five (5) studies

from Springer. The results presented in Table 2 indicate that

86124 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

TABLE 2. Summary of selected studies according to scientific databases and publication type.

TABLE 3. Data extraction and synthesis template.

we try our best to choose the high impact and the latest

research studies. The overall summary of the repositories

w.r.t their publication type is given in Table 2. Database

represents the names of the repositories. Type represents that

whether the selected research study belongs to either journal

or conference. References are given for selected studies.

Total represents the number of total conference or journal

papers of every scientific repository.

In Table 2, it can be observed that 35 conference papers and

2 journal papers selected from IEEE, 5 conference papers

selected from ACM, 2 conference papers and 5 journal

papers from Elsevier and 2 conference papers and 3 journal

papers selected from Springer. To the best of our knowledge,

only one paper published in 2013 that deals with the system-

atic investigation of CCD, therefore, we select papers from

2013 onward. We consider all journal papers published from

2013 to 2018. There is no journal paper related to CCD avail-

able in 2013, 2 papers published in 2014, 2 papers published

in 2015, 1 study published in 2016, 2 studies in 2017 and

3 studies published in 2018. The journal papers represented

by a brown bar in FIGURE 3.

Similarly, conference papers published from 2015 to

2018 are selected. 5 conference papers found published

in 2015, 11 papers published in 2016, 20 studies published

in 2017 and 8 studies published in 2018 as represented by a

blue bar in FIGURE 3.

VOLUME 7, 2019 86125

Q. U. Ain et al.: Systematic Review on CCD

TABLE 4. Classification results of selected studies.

FIGURE 3. No. of selected studies w.r.t publication year.

E. DATA EXTRACTION AND SYNTHESIS

We have developed a template to extract data and perform

synthesis as presented in TABLE 5. Firstly, the mining of bib-

liographic information of each selected study is performed.

After that, core findings such as the proposed methodolo-

gies and implementation details of each selected study are

extracted. In order to achieve the goals of literature, this

provides the basis to carry out a detailed analysis. Moreover,

tools that have been utilized or developed in the selected

studies are identified. Furthermore, we find different open

source software systems whose source code is used for CCD

in the given studies. Finally, a comprehensive analysis is

performed to get the answers of the RQ’s as given above.

III. RESULTS AND ANALYSIS

The main objective of this article is to examine the given liter-

ature according to the research questions. Out of 54 research

studies, 10 are published as journals and 44 are published in

international conferences. Studies related to CCD are pub-

lished in wide-range of conference and journal proceedings.

It can be noticed that journals like Journal of Network and

computer application, Expert system with applications, IEEE

transaction on software engineering, Computer and Electrical

engineering, the journal of system and software and Journal

of computer science and technology are highly contributing to

our research. Similarly, there is a wide variety of conferences

such as conferences like International conference on software

engineering, a conference on Software Analysis, Evolution,

and Reengineering contribute largely in the selection pro-

cess of studies. Almost 83% of our literature published in

conferences and 17% published in journals. These research

studies divided into six categories as presented in TABLE 4.

For further analysis references of corresponding studies given

against each category.

It can be seen that in TABLE 4, the Textual Approaches

consist of twelve studies, Lexical Approaches comprises

eight research studies, Tree-Based Approaches consist of

three studies,Metric basedApproaches comprises seven stud-

ies, Semantic Approaches comprises seven research studies,

and Hybrid Approaches contain seventeen studies. The detail

of these categories summarized in subsequent sections.

A. TEXTUAL APPROACHES

Several CCD techniques are based on text-based approach.

These techniques consider the source code as a sequence of

lines or strings. To find the sequences of the same lines, two

code pieces are compared with each other. Whenever at least

two code fragments found to be similar then by detection

technique they are returned as clone class or clone pair. No or

little transformation is done with source code because these

are purely text-based techniques. In Table 5, CCD based on

Textual approaches is analyzed with the parameters given

below.1) Language describes the language of source code

that is used for clone detection. 2) Input Type/Intermediate

state shows that input taken by clone detection technique or

intermediate format in which source code transform before

clone detection. 3) Algorithm/Classifier used indicates that

algorithms/Classifiers utilized for the identification of clones.

4) Clone Type Detected shows types of clones detected in

these studies. The summary of these research studies is given

below.

In Table 5, Ragkhitwetsagul and Krinke [24] utilize

compilation/de-compilation to enhance clone detection. For

this purpose, they use NICAD, a text-based code clone detec-

tor, java source code as input and uncover type1, type2 and

86126 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

TABLE 5. Summary of research studies using textual approaches.

type3 clones. Kim and Lee [25] introduce Vuddy, a scalable

approach for vulnerable clone discovery by utilizing C/C++

programs as source code and generate fingerprints that are

utilized as input. This approach has the ability to identify

type1 and type2 clones. Jadon [26] proposes a technique for

the detection of similar clones (type 3) and quantify their sim-

ilarity. The proposed technique detects similar clones (type 3)

by using C programs as source code, feature set as an inter-

mediate format and Support VectorMachine (SVM) classifier

is used for classification. Yu et al. [27] propose multigranu-

ality CCD method based on Java bytecode by utilizing Java

source code that transforms into the .txt format and uncov-

ers type1, type2 and type3 clones. Kim et al. [28] present

Vuddy, a scalable approach for vulnerable code clone dis-

covery. The presented approach utilizes C/C++ programs as

source code and generate fingerprints from this source code,

which are utilized as input for CCD. MD5 Hash algorithm

is used to produce hash values. It can detect type1 and type2

clones.

Nakamura et al. [29] introduce an approach to detect inter-

language clones for a multilingual web application. Authors

utilize source code of multiple programming languages. Pat-

tern mining is used to identify frequently co-used program-

ming languages. This approach is able to detect type3 clones.

Lyu et al. [30] propose SuiDroid, an approach for android

app clone detection. It is implemented by using python and

shellcode. SuiDroid utilizes Layout XML files to identify

the apps, layout trees as intermediate representation and

CTPH Hash algorithm to measure the similarity. Results

indicate that type1, type2 and type3 clones are identified.

Xue et al. [31] describe a novel framework, clone hunter that

integrates machine learning based binary CCD to speed up

the elimination of redundant array bound checks in binary

executables. They utilize assembly code as source code and

Feature vectors as an intermediate format. AP Clustering

algorithm is used for binary CCD. This framework uncovers

type1, type2 and type3 clones. Chen et al. [32] apply NICAD,

a text-based code clone detector for detecting android mal-

ware. For this purpose, Java source code is used as input

and as we know that NICAD can detect type1, type2 and

type3 clones so we can assume that these types of clones

are identified. Thaller et al. [33] describe the results from

the analyses of code clones in real-world PLC software.

These results show that normalized C/C++, ST source

code is utilized and type1 and type2 clones are detected.

Newman et al. [34] develop a tool named as srSlice. It utilizes

C/C++ source code, which is transformed into srcML as an

intermediate format, and uncover code clones. Liu et al. [35]

propose VEDFECT a vulnerable code clone system. For

this purpose, C/C++ programs utilize as input, MD5 Hash

algorithm that is applied on code blocks, (which are different

from preprocessed code blocks) to construct fingerprints.

VOLUME 7, 2019 86127

Q. U. Ain et al.: Systematic Review on CCD

TABLE 6. Summary of research studies using lexical approaches.

By matching, the preprocessed code blocks with fingerprints

VEDEFECT uncovers the vulnerable code clones.

B. LEXICAL APPROACHES

Lexical approaches are also known as token-based

approaches. These approaches consist of two steps, lexical

analysis and clone detection. They transform targeted source

code into a sequence of tokens with the help of laxer or parser.

The sequence of tokens is scanned to find duplicate sub-

sequences of tokens and finally, the original code fragment

that represents the duplicate subsequences will be returned

as clones.

In TABLE 6, CCD based on Lexical approaches is ana-

lyzed with the parameters given below. 1) Dataset describes

the datasets available in these studies, which are converted

into tokes. 2) Data Structure evaluates the data structure

used for clone detection. 5) Algorithm Used indicates algo-

rithms utilized tomeasure similarity. 5)CloneTypeDetected

evaluates types of clones detected in these studies. The

summary of these research studies is provided in subsequent

paragraphs.

In TABLE 6, Nishi and Damevski [36] introduce a clone

detection approach by applying adaptive prefix filtering

heuristic. It utilizes IJaDataset 2.0, a clone detection bench-

mark. As a data structure Delta inverted index is used for

retrieving matching documents. This approach is able to find

type1, type2 and type3 clones. Tekchandani et al. [37] present

git code clone genealogy extraction model by utilizing the

DAG data structure and can detect type1 and type2 clones.

Farhadi et al. [38] present scalclone, a scalable assembly code

clone search system by using Zlib, DLL18, Malware297 and

DLL1GB datasets. LSH algorithm is applied to find inex-

act clones. It can detect type1, type2 and type3 clones.

Wang et al. [39] develop CCAligner, a token based clone

detector. It employs C, Java files as a dataset, find type1,

type2, and type3 clones.

Yuki et al. [40] present a technique to detect multi-grained

code clones. In the presented technique, Java files utilized as

a dataset and Smith-Waterman algorithm utilized to identify

the identical hash sequence. It uncovers type1, type2 and

type3 clones. Sajnani et al. [41] propose SourcererCC,

a token based clone detection tool. It employs IJaDataset.

The inverted index data structure is applied to quickly query

the proportional clones of a given code block. To mea-

sure recall, two benchmarks are used: 1) BigCloneBench,

a benchmark of real clones, 2) Mutation/Injection based,

the framework of thousands of artificial fine-grained clones.

It can identify type1, type2 and type3 clones. Similarly,

Semura et al. [42] develop another clone detection tool

CCFinderSW. It takes dataset from Rosetta Code, a web-

page that provides source code implemented in various pro-

gramming languages, and uncovers type1 and type2 clones.

Li et al. [43] present CCLEARNER, a deep learning based

clone detection approach. This approach utilizes IJaDataset

(java code) that transforms into tokens. Deep learning algo-

rithm used by this approach is DNN and uncover type1,

type2 and type3 clones.

C. TREE-BASED APPROACHES

In tree-based clone detection techniques the program is

parsed to parse tree or abstract syntax tree with the help

86128 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

TABLE 7. Summary of research studies using tree based approaches.

of laxer or parser. After that similar subtrees are searched

by using a tree matching approach. When it matches, the

corresponding source code of similar subtrees is returned as

clone class or clone pair. In TABLE 7, CCD based on these

approaches is analyzed with the parameters given below.

1)AlgorithmUsed evaluates, the algorithms utilized to mea-

sure similarity in these studies. 2) Intermediate Representa-

tion shows the state in which source code is converted before

clone detection. 3)Machine Learning describes the machine

learning techniques utilized for clone detection 4) Open

Source Software’s indicate that whose datasets or source

code used for CCD. 5) Clones Detected describes types of

clones detected in these studies. 6) Tool Support describes

whether the tool used or develop support the Tree-based

approaches. The summary of these research studies is given

in subsequent paragraphs.

In TABLE 7, Yang et al. [44] propose a CCD technique

based on automated functions. Firstly, it creates AST from

functions, transforms it into a new tree structure and then

utilizes the Smith-Waterman algorithm to obtain similarity

score between functions. The experiment is conducted by

using five open source projects (JDK, Ant, Tomcat, ANTLR,

dnsjava) and function level (1, 2, 3 or 4) clone are detected.

Pati et al. [45] discuss a method for appropriate checking

and predicting evaluation of clone numbers across various

versions of open source software applications by comparing

three models BP-NN, ARIMA and MOGA-NN.

For this purpose, it utilizes AST as an intermediate format,

Multi-Objective Genetic Algorithm (MOGA) for optimizing

two objective functions as a cost function, BFGS quasi-

Newton method for training neural network and Time series

to evaluate clone components. ArgoUML is applied for the

implementation of the experiment and CloneDr used as a

support tool. This method uncovers type1 and type3 clones.

Chodarev et al. [46] proposed an algorithm for clone detec-

tion in the program source code. For this purpose, AST

is utilized as an intermediate state and Pattern recognition

algorithm is used to identify potential clones. It has the ability

to detect type1 and type2 clones.

D. METRIC BASED APPROACHES

In metric-based approaches, metrics are utilized to measure

clones in software after the calculation from source code. For

syntactic units such as function software or class, statement

metrics are calculated and after that, comparison of these

metrics values is performed. If two syntactic units have the

same metric value, they can be considered as clone pair. For

the calculation of the metric, this technique can also parse the

source code to AST/PDG representation.

In TABLE 8, CCD based on metric-based approaches

is analyzed with the following parameters.1) Input

Type/Intermediate State shows that input taken by clone

detection technique or intermediate format in which source

code transform before clone detection.

2) Similarity Measure shows measuring of similarity for

clone detection. 3) Dataset describes the datasets available

in these studies on which clone detection is performed.

4) Machine Learning evaluates the machine learning tech-

niques or algorithms utilized for clone detection.5) Clones

Detected describe types of clones identified in these studies.

The summary of these research studies is given in subsequent

paragraphs.

In TABLE 8, Tsunoda et al. [47] assess the differences

in clone detection methods utilized in fault-prone module

prediction. For this purpose, the source code is used as

input, the dataset is collected from Lucene 2.4.0, an open

source software, and Logistic regression is used to build

prediction models. Svajlenko and Roy [48] overviewed the

concepts of CloneWorks, a near miss (type 3) clone detec-

tion tool by using IJaDataset, Jaccard similarity metric for

clone detection. Sudhamani and Rangarajan [49] propose a

method to detect duplicate clones. The experiment is con-

ducted on dataset downloaded from fisourcecode. The source

code is utilized as input, the similarity is measured by apply-

ing the self-defined formula and K-mean clustering is uti-

lized for grouping the similar values where K= 2. It is

able to find all types (type1, type2, type3 and type4) of

clones. In another work, Svajlenko and Roy [50] provide

further details of CloneWorks, a clone detector, by utilizing

VOLUME 7, 2019 86129

Q. U. Ain et al.: Systematic Review on CCD

TABLE 8. Summary of research studies using metric based approaches.

IJaDataset source code as input and Jaccard similarity metric

for clone detection. Results show that it can identify type1,

type2 and type3 clones. Haque et al. [51] develop a generic

technique to detect code clones from different input source

codes by dividing the code into a number of functions or

modules. This approach is a combination of more approaches

and methods. It has the ability to uncover all types of clones.

Ragkhitwetsagul et al. [52] present an image based clone

detection approach and a tool named Vincent. It applies

java source files as a dataset, transforms it into PNG image

as an intermediate state and then utilizes Jaccard similarity

for clone detection. Results indicate that type1, type2 and

type3 clones are identified. Sudhamani and Rangarajan [53]

address structure similarity detection using the structure of

control statements. For this purpose, C/C++, java files are

used as dataset and self-defined formula used for similar-

ity computation. This method can efficiently uncover struc-

turally similar (type1, type2, type3, or type4) clones.

E. SEMANTIC APPROACHES

In these techniques, the program is represented as a pro-

gram dependency graph (PDG). Approaches that depend on

program dependency graph goes one-step further to obtain

high abstraction of source code representation than others

because it considers semantic information of the source. Pro-

gram dependency graph carries control flow and data flow

information and hence contain semantic information. Once a

set of PDGs is obtained, the isomorphic subgraph matching

algorithm is applied for finding similar subgraphs which are

returned as clones.

In TABLE 9, CCD based on semantic approaches is

analyzed with the help of following parameters. 1) Algo-

rithm Used shows that the algorithms utilized for identifi-

cation of clones. 2) Similarity Measure indicates measuring

of similarity for clone detection. 3) Language represents the

language of the source code, which is transformed into PDG.

4) PDGConstructor describes a framework or anything that

helps in the construction of PDG from source code. 5) Clone

Type Detected evaluates types of clones detected in these

studies. Summary of these studies is given in subsequent

paragraphs.

In TABLE 9, Wang et al. [54] present CCSharp: An

efficient three-phase clone detector using modified PDGs.

It applies Frama-C2 to generate program dependency graphs

of source code in C language.

It utilizes Vector filtering algorithm to exclude the PDG

pairs, which are not likely to be cloned. Euclidean distance

is used to measure the numerical similarity and Levenshtein

Distance is utilized to measure string similarity. As this tool

is based on PDG based approach, so we can suppose it has the

ability to detect type 4 clones. Sabi et al. [55] examine how

clone detection result changes by rearranging the program

statements by using PDGs. For this purpose, the Java source

code is used. Results show that type1 and type2 clones are

identified. Crussell et al. [56] propose AnDarwin, a tool

for finding applications with the similar code on large scale

by utilizing WALA to generate program dependency graphs

of source code in C language, LSH algorithm for finding

an approximate nearest neighbor in a large number of vec-

tors and Min-Hash algorithm to measure partial or full app

similarity.

Sargsyan et al. [57] propose an algorithm for scalable

and accurate clone detection. For this reason, PDG is con-

structed by a compilation of C program files, LLVM is used

as compilation infrastructure and Isomorphism algorithm is

used for similarity measure. The proposed algorithm can

identify type 4 clones. Similarly, Hu et al. [58] present

another algorithm by utilizing java source code to identify

86130 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

TABLE 9. Summary of research studies using semantic approaches.

new clone relations from the clone pair results of PDG base

detection. For this purpose, the ASM algorithm is used and

type 4 clones are identified. Kamalpriya and Singh [59] pro-

pose a semantic-based approach to find functions of binary

clone and implement this approach in a prototype system

namedCACOMPARE. The experiment is conducted by using

the binary code in assembly language, IDA Pro dissemble

this code and extract CFGs, Min-Hash algorithm to quickly

estimate the Jaccard index and LCS algorithm for similarity

score computation. The result indicates that type 4 clones are

detected. Avetisyan et al. [60] present a framework for CCD

that is based on LLVM. It utilizes the source code written in C

language and LLVM for the transformation of bytecode into

PDGs. It uncovers type1, type2, type3 and type4 clones.

F. HYBRID APPROACHES

The combination of two or more CCD approaches (Tex-

tual, Lexical, Syntactic or Semantic) is called a hybrid

approach. The hybrid approach holds better results than the

normal one [61]. CCD based on hybrid approaches is ana-

lyzed in Table 10 with the help of following parameters.1)

Hybrid shows the combination of clone detection approaches

used as a hybrid. 2) Dataset indicates the dataset available

in the form of source code which is converted into different

states for clone detection.3) Transformation describes the

source code undergoes in different forms for clone detec-

tion. 4)Algorithm Used shows the availability of algorithms

for similarity measure or clone detection. 5) Clone Type

Detected shows that types of clones detected in these studies.

The summary is given below.

In Table 10, Singh [61] focuses on enhancements in the

CCD algorithm by using a hybrid approach, that is a combina-

tion of metric based approach and PDG based approach. The

dataset used by this approach is Java source code, which

is transformed into AST and PDG. It can identify type1,

type2 and type3 clones. Misu and Sakib [62] develop an

interface driven CCD approach (IDCCD) by combining token

based and metric-based approaches. For this purpose, IJa-

Dataset is used that transforms into regularized tokens and

ASTs. It has the ability to find type1, type2 and type3 clones.

Sheneamer and Kalita [63] propose an efficient metric based

approach for clone detection and it extracts features from

ASTs and PDGs.

It utilizes IJaDataset 2.0 (Java code) that undergoes AST

and PDG transformation, and Rotation Forest, Random For-

est, Xgboost algorithms that can detect clones automati-

cally. This approach can find type1, type2, and type3 and

type4 clones. Vislavski et al. [64] describe LICCA, a tool

for cross-language clone detection that is a combination of

token based, AST based and metric-based approaches and

uncovers type1, type2 and type3 clones. This tool utilizes

Java, C, JavaScript, Scheme and Modula-2 code as a dataset,

eCT representation for AST based detection and a variant of

LCS algorithm for token based detection. Misu et al. [65]

describe an exploratory study on interface similarity in code

clones. For this purpose, token-based and text-based tools

are used and Java source code undergoes AST transforma-

tion. Results indicate that type1, type2 and type3 clones

are identified. Akram et al. [66] develop Droid CC a clone

detection approach, by combining text-based and token based

approaches for android applications. The dataset utilized by

this approach is java code that transforms into regularized

tokens. The MD5 Hashing algorithm is used to get hash

values against each chunk. This approach can detect type1,

type2 and type3 clones.

Sheneamer et al. [67] introduce a framework for obfus-

cated and semantic clones by using machine learning. It is

a combination of semantic and tree-based techniques and

VOLUME 7, 2019 86131

Q. U. Ain et al.: Systematic Review on CCD

TABLE 10. Summary of research studies using hybrid approaches.

86132 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

Java code is used as a dataset that transforms into BDG,

AST and PDG. In order to train and test the model ensem-

ble approach (majority voting) among ten classifiers (i.e.

Naïve Bayes, IBK, SVM, Logit Boost, Ran-dom Subspace,

Random Committee Rotation Forest Random Forest J48) is

utilized. This framework can detect type1, type2, type3 and

type4 clones. Matsushita and Sasano [68] present an algo-

rithm that detects clones with gaps by using the combination

of token based and AST based approaches. ML programs

used as a dataset that transforms into regularized tokens and

ASTs. The algorithm can find type1, type2 and type3 clones.

For method level clone detection, Kodhai and Kanmani [69]

propose an approach named LWH. This is a combination

of metric-based and text-based techniques. It utilizes C and

Java code as a dataset, clustering algorithm to measure the

similarity and uncover type1, type2, type3 and type4 clones.

Similarly, Tekchandani et al. [70] present another algorithm

that is a hybrid of token based, AST based and semantic

approaches for IoT applications by using Java source code

that transforms into Tokens and ASTs. It can identify type

4 clones. Uemura et al. [71] propose a method CCD in

Verilog HDL by combining token based and metric-based

techniques. The dataset employed by this method consists of

HDL code which is transformed into C++ code and then

into tokens. It can detect type1 and type2 clones. Nasirloo

and Azimzadeh [72] present a method for semantic (type

4) CCD using AMSs and PDGs. It applies C source files

as a dataset that transforms into tokens PDGs and AMSs

before clones are detected. Singh and Sharma [73] present

a hybrid approach (text-based + metric Based) to detect file

level clones for high-level cloning by applying dataset that

consist of C, C#, Java and text files. It can detect structural (1,

2, 3 or 4) clones. Sheneamer and Kalita [74] present hybrid

CCD technique using fine-grained and coarse-grained tech-

niques. It utilizes the combination of lexical and metric-based

approaches, Murakami’s (java files) dataset that transforms

into regularized tokens and uncovers type1, type2 and type3

clones.

White et al. [75] present a technique for CCD based on

deep learning of code fragments by combining lexical, tree-

based and metric-based techniques. This technique utilizes

RtNN as deep learning algorithm and Java source code as a

dataset, which transforms into tokens and ASTs. ASTs then

transform into a full binary tree. It can detect type 3 clones.

Ragkhitwetsagul et al. [76] compare the code similarity ana-

lyzers. For this purpose, they utilized java source code and

transforms it into bytecode, which is utilized for similarity or

clone detection. For clone detection bytecode further trans-

forms into tokens or ASTs by using different clone detec-

tion tools (simian, NICAD, CCFinderX, iclones, Deckard)

supported by clone detection techniques (text-based, token-

based, tree-based). Results indicate that these clone detection

tools and techniques perform better than general similarity

measures. Ghofrani et al. [77] introduce a framework for

clone detection using a deep neural network as a machine

learning algorithm and hybrid (token based andmetric-based)

technique as a CCD technique. Regularized tokens utilized as

an intermediate format and type 4 clones are identified.

G. CLONE DETECTION TOOLS

Overall 26 tools (13 existing and 13 developed) from

54 selected studies are identified as presented in TABLE 11

and TABLE 12. Detail of these tools provided in subsequent

paragraphs.

Existing Tools: There are 13 tools based on CCD

techniques utilized in selected studies as summarized in

TABLE 11 with parameters given below: 1) Tool Name

indicates that the name of the tool. 2)Technique indicates the

CCD techniques that support these tools. In this parameter,

technique names are provided. 3) Availability indicates that

the tool is openly available or not. 4) License Type shows

that the type of license under which these tools released.

References of these studies are given for further details.

From TABLE 11, we overall analyzed 13 tools where three

tools (NICAD, Simian and Duploc) based on text-based tech-

niques, six tools (SourcererCC, CCFinderX, CCFinder, DUP,

iClones and CPD) based on lexical techniques. Furthermore,

two tools (Deckard, and CloneDR) based on tree-based tech-

niques, one (CLAN) based on metric based technique and

one (Duplix) based on PGD based technique.

NICAD is a text-based hybrid code clone detector. It can

detect method level clones, and with the help of its pre-

defined configuration files it categories these clones into

exact (type1), parameterized (type2) and gapped (type3)

clones [24], [65]. It is based on TXL [32] and embed it for

pretty printing, and compares source code by using string

similarity [76]. It is an open source tool and released under the

license of BSD. Simian is a clone detection tool based on text-

based technique [47]. It uncovers exact (type 1) clones in all

source codes but for several programming languages, it incor-

porates additional normalization features [33]. It relays on

the comparison of text line with an ability for checking basic

modification of code [76].Duploc is a text-based detector and

identifies code clones by normalizing source code [69]. It is

freely available and released under GPL license.

SourcererCC is a clone detection tool, which is based on

the lexical approach [36]. It has the ability to achieve high

precision and recall as compared to other tools. Sourcer-

erCC is used to detect inter-project and intra project method

clones [65]. It is an open source and released under GPL

license. CCFinderX is also a tool that based on lexical (token

based) approach [47], [37]. To identify syntactic units such as

statements or functions it parses the code. However, it does

not strictly perform parsing to construct the entire AST [71].

It uses suffix trees to detect similarity [76]. This tool is openly

available for education, research and in house use. Its license

type is Freeware. Similarly,CCFinder is also a detector based

on lexical (token based) approach [38], [68], [69]. It is able to

identify type 1 and type 2 clones in a short time [39]. This tool

is also openly available for education, research and in house

use. Its license type is Freeware. There is another tool DUP

based on tokens [69], freely available and its license type is

VOLUME 7, 2019 86133

Q. U. Ain et al.: Systematic Review on CCD

TABLE 11. Summary of tools based on CCD techniques utilized in selected studies.

Freeware. Furthermore, IClones is also a token-based detec-

tor. Over several revisions of programs, it performs token-

based incremental clone detection [76]. It is open source

for academic utilization and released under Apache license.

Another tool CPD based on the lexical approach [47] is

also open source and released under Apache license. [47].

Deckard is a detector based on a tree-based approach. It con-

verts source code into an abstract syntax tree and computes

similarity by comparison of characteristic vectors generated

from the abstract syntax tree. This tool identify clones based

on approximate tree similarity [76]. It is freely available and

released under GPL license. Similarly, CloneDR is also a

clone detection tool based on a tree-based approach. It uses

abstract syntax tree for CCD [45], [69].CLAN is metric based

code clone detector [69]. Duplex is a detector that detects

clones based on program dependency graph [69].

Tools Developed:We identified 13 tools proposed / devel-

oped for CCD in 54 selected research studies, as presented

in TABLE 13, with parameters given below: 1) Tools Name

indicates the name of the tool which is proposed or developed.

2) Supported Platform evaluates OS/CPUs supported by the

tool. 3) Supported Language shows that the language of

source code used for clone detection supported by the tool.

SourcerereCC is a token-based detector of code clones

and detects near-miss clones (Type3) accurately. To attain

large-scale detection of clones on the standard workstation,

it utilizes filtering heuristics and optimized the partial index.

It works in two phases: 1) Partial Index Creation and 2) Clone

Detection. It can also identify type1 and type2 clones, sup-

port Java, C and C# and executed on a standard platform

with a quad-core i7 CPU, solid-state drive and 12GB of

memory [41]. A decrescendo is a tool that is developed to

detect code clones. It takes single or multiple software’s,

minimum clone length and maximum gap rate as inputs,

and the output consist on method level, file level and code

fragment level clones. By setting, it can switch detection

on/off for each granularity (method, file or code fragment).

It supports source code written in Java and executed on a

workstation with 2.40 GHz Intel Xeon CPU (8 logic pro-

cessors), and 32.0 GB of memory. Output databases and

experimental targets located on SSD [40]. VUDDY is imple-

mented as a technique for the discovery of vulnerable clones

but compared with clone detection tools to determine accu-

racy. Modeling of VUDDY consists of two stages: 1) pre-

processing and 2) clone detection. Its design principles are

directed towards length filtering while maintaining accuracy

86134 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

TABLE 12. Summary of clone detection tools proposed/developed in selected studies.

and extend scalability through functional-level granularity,

so that it can manage to identify vulnerable clones from the

speedily increasing pool of open source software. It supports

source code written in C/C++ and executed on Ubuntu

16.04 with a 2.40 GHz Intel Zeon processor, 6 TB HDD

and 32 GB RAM [28], [25]. LICCA is a tool designed for

the detection of cross-language clones. It utilizes AST as

intermediate representation and a variant of the LCS algo-

rithm for the detection of the clone. It is utilized with the

SSQSA platform. eCST representation of source code is used

in LICCA for identification of clones which is provided

by SSQSA eCST Generator [64]. CCSharp, a three-phase

program dependency graph based clone detection technique

that is implemented as a tool named CCSharp. These three

phases consist of 1) PDG’s Structure modification, to sim-

plify overall structure of PDG, 2) Vector filtering, to cut

down the pairwise comparison quantity of the PDG pairs

and, 3) ARGs subgraph Isomorphism, to find clone pairs.

CCSharp achieves high accuracy and recall as compared to

the famous clone detection tools such as NICAD, Deckard,

and SourcererCC. It supports source code written in C lan-

guage. The experiment is conducted on Ubuntu with a quad-

core CPU and the memory size is 8GB [54]. CCFinderSW,

a token-based code clone detector that identifies code clones

in multiple programming languages. The CCD process of

CCFinderSW consists of four steps: 1) Lexical Analysis,

2) Transformation, 3) Detection, 4) Formatting. It has the

ability to identify type1 and type2 clones and run on the

Linux kernel [42]. CCLearner is designed and developed

as an approach to identify clones with deep learning and

token usage analysis. CCLearner is compared with CCD

tools for checking its effectiveness. It consists of two steps:

1) Training, this step utilized both clones and non-clones

for the training of a classifier in a deep learning framework.

2) Testing, this step utilizes codebase for the identification

of clones with the trained classifier. It supports source code

written in Java. With high precision and recall, it can identify

different clones [43]. CloneWorks, a fast and flexible clone

detection tool for large scale clone detection experiments.

CloneWorks consist of three command-line tools 1) cwbuild

for running input builder, 2) cwdetect for clone detection,

3) cwformate to formate the clone results [48]. For source

code processing, before clone detection, CloneWorks gives

the users full control for enabling the user to target any

clone type or perform custom clone detection experiments.

It supports Java, C and C# and runs on 3.6GHzquad-core-

i7-2600 12GB of memory [48], [50]. Vincent is an image

based clone detection tool. It detects clones at method level

and currently supports Java. Based on visual representation it

compares code fragments, which resembles how developers

manually looking for clones. Vincent detects additional clone

pairs that were not detected by any other tool. The experiment

VOLUME 7, 2019 86135

Q. U. Ain et al.: Systematic Review on CCD

TABLE 13. Summary of open source subject systems used in selected studies.

86136 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

conducted on Ubuntu 16.04.1 machine with two 3.40 GHz

processors and 8 GB of RAM [52]. CCAlinger can detect

large gap clones which weremissed by other competing tools.

It consists of two phases: 1) Lexical Analysis and 2) Clone

Detection. It supports source code written in C and Java and

uncovers type1, type2 and type3 clones. It can achieve good

recall and precision [39]. AnDarwin is a tool that is used

to identify applications with a similar code on large scale.

It accomplishes its task in two phases of clustering: 1) LHS,

grouped semantic vectors into features and 2) minHash, find

applications with similar features and feature sets that mostly

occur together. It can also be used for the improvement of the

marketing system. It is an efficient tool to find cloned and

rebranded applications, support java language, runs on quad

Intel Xeon E7-4850 CPUs and the memory size of 256 GB

DDR3 [56]. srcSlice, a tool that implements a forward static

slicing technique. This tool is enabled by the srcML infras-

tructure. srcML augments source code with abstract syn-

tactic information. This syntactic information is utilized for

the identification of program dependences as required when

computing slice. Currently srcSlice support C and C++. The

tool is run on the Linux kernel [34]. CloneManager is a

tool that can identify potential clone pairs. It takes Java and

C source code as input and separates the functions/methods

present in it. These methods processed by utilizing built-

in hand-coded parser following an island driven parsing

approach. After identification of these methods, different

source code matrices computed for each method and stored in

the database. With the help of these matrices, the near equal

methods are extracted and subject to textual comparison to

identify potential clone pairs [69].

H. OPEN SOURCE SUBJECT SYSTEMS

We overall identify 62 open source subject systems whose

datasets or source code used for CCD. These are summarized

in TABLE 13 with the following parameters: 1) Subject Sys-

tem indicates that the name of the open source subject system

whose source code utilized for CCD. 2)Language shows that

the implementation language of these open source subject

systems. 3)License Type represents the type of license under

which they release. 4) Reference of the paper is provided for

further detail.

We hope that TABLE 13 may help researchers in the selec-

tion of most frequently used open source subject systems as

a benchmark for evaluation and empirical studies. Linux has

been used commonly for CCD. Similarly, JDK, Apache-Ant,

HTTPD and ANTLR are also widely used for CCD. All other

open source subject systems utilized in one or two studies for

CCD. Other than these subject systems, IJaDataset which is

a benchmark dataset consist of java code repository is also

extensively used for code clone detection.

IV. ANSWERS OF RESEARCH QUESTIONS

RQ1: What are the popular approaches utilized for CCD and

which type of clones they can detect?

Answer: We overall identified six code clone detection

techniques utilized in 54 selected studies. Categorization

of all studies performed based on these techniques.

The techniques include Text-based (Table 5), Token-

based (TABLE 6), Tree-based (TABLE 7), Metric based

(TABLE 8), Semantic (TABLE 9) and hybrid (Table 10).

Twelve (12) studies are found based on Text-based tech-

niques, eight (8) studies are found based on Token based

techniques, three (3) studies based on Tree based techniques,

seven (7) studies based on Metric based techniques, seven

(7) studies based on Semantic techniques and seventeen (17)

studies depend on Hybrid techniques.

It has been analyzed that text-based techniques consider

the source code as a sequence of lines or strings. To find the

sequences of the same lines, two code pieces are compared

with each other. No or little transformation is done with

source code because these are purely text-based techniques.

These techniques detect type1 clones most effectively. How-

ever, they also has the ability to detect type2 and type3 clones.

Similarly, token-based techniques consist of two steps lexical

analysis and clone detection. They transform targeted source

code into a sequence of tokens with the help of laxer or parser.

The sequence of tokens is scanned to find duplicate sub-

sequences of tokens and finally, the original code fragment

that represents the duplicate subsequences will be returned

as clones. They can find type2 clones effectively. However,

they can also uncover type1 and type3 clones. Moreover,

in tree-based techniques, the program is parsed to parse tree

or abstract syntax tree with the help of laxer or parser. After

that similar subtrees are searched by using a tree matching

approach and subsequently, the corresponding source code of

similar subtrees is returned as clone class or clone pair. These

techniques uncover type3 clones effectively. Moreover, they

can also identify type1, type2 and type4 clones.

In metric-based approaches, metrics are utilized to mea-

sure clones in software after the calculation from source

code. For syntactic units such as function software or class,

statement metrics are calculated, and after that, comparison

of these metrics values is performed. Similar to tree-based,

this approach can detect type3 more efficiently. They also

have the ability to uncover type1, type2 and type4 clones.

In semantic approaches, the program is represented as a

program dependency graph (PDG). Once a set of PDGs is

obtained, isomorphic subgraph matching algorithm is applied

for finding similar subgraphs which are returned as clones.

The semantic approach has the ability to detect type1, type2,

type3 and type4 clones. They are mostly used to uncover

semantically or type4 clones. Finally, in Hybrid approaches,

two or more CCD techniques are combined. Types of clones

detected depends on techniques, which are utilized in a

hybrid. The hybrid approach holds better results than the

normal one.

RQ2: What are the popular tools utilized/developed for

CCD?

Answer: We overall identify 26 tools in literature for CCD.

These tools categorized into existing tools (13) presented

VOLUME 7, 2019 86137

Q. U. Ain et al.: Systematic Review on CCD

TABLE 14. Comparative analysis of CCD techniques.

in TABLE 11 and proposed/developed tools (13) presented

in TABLE 12. These tools based on CCD approaches.

Analysis shows that in existing tools, three tools (NICAD,

Simian and Duploc) based on text-based techniques, six tools

(SourcererCC, CCFinderX, CCFinder, DUP, iClones and

CPD) based on token-based techniques, two tools (Deckard,

and CloneDR) based on tree-based techniques, one tool

(CLAN) supported by metric based technique and one

tool (Duplix) use semantic or PDG based technique. There

is no existing tool found in the literature that belongs to the

hybrid technique. Similarly, in proposed/developed tools, two

tools (VUDDY, srcSlice) based on text-based techniques, five

tools (SourcererCC, Decresendo, CCFinderSW, CCLearner,

CCAlinger) supported by token-based techniques, two tools

(CloneWorks, Vincent) based on metric based techniques,

two (CCSharp, AnDarwin) tools supported by PDG based

and two (LICCA, CloneManager) based on hybrid tech-

niques. There is no tool proposed in the selected studies that

belongs to the tree-based technique.

RQ3: What are the open source subject systems or bench-

mark datasets commonly used for CCD?

Answer:We have observed several open source subject sys-

temswhose source code is utilized for CCD.We overall found

62 open source subject systems (TABLE 13) in literature. The

analysis shows that ant is utilized several times for CCD.

Linux and its different versions are extensively utilized as

open source subject system to carry out CCD. Similarly, JDK

is also used to find out the code clones. Furthermore, ANTLR

andHTTPD are also extensively used to identify the impact of

code clones. All other open source subject systems utilized in

one or two studies for CCD. Similar to software systems, two

benchmark datasets (Mutation / Injection-based framework

and IJaDataset) are also utilized for CCD. The comprehen-

sive investigation of selected studies shows that IJaDataset,

a big data software repository containing 25,000 open

source java systems is most commonly used benchmark

dataset.

RQ4: What are the advantages and limitations of CCD

techniques and tools?

Answer: Before concluding the answer to this question,

it is first required to investigate CCD techniques and tools

from selected research studies. Therefore, we perform the

comparative analysis of CCD techniques in TABLE 14 and

CCD tools proposed / developed in TABLE 15 and

Table 16 with the help of different evaluation parameters.

Detail of this analysis is summarized in the subsequent

paragraphs.

In TABLE 14, textual techniques have high accuracy,

low execution time and can uncover type1, type2 and

type3 clones. These techniques are easy to implement but

unable to detect type 4 or semantic clones. Similarly, lexi-

cal techniques also have high accuracy, low execution time

and can identify type1, type2 and type3 clones. These tech-

niques comprise of good scalability but unable to detect

type4 clones. Tree-based techniques, similar to textual and

lexical techniques, have high accuracy. These techniques can

reveal all types (type1, type2, type3 and type4) of clones

and contain more information about the structure of code but

the generation of ASTs is difficult and their time complex-

ity is also high. Metric-based techniques comprise of high

accuracy, low execution time and can detect all types (type1,

type2, type3 and type4) of clones. However, when metrics

become complex these techniques are difficult to implement.

Similar to metric-based techniques, semantic approaches can

reveal all types (type1, type2, type3 and type4) of clones

and have high accuracy but PDGs generation is a difficult

and time-consuming process. In hybrid techniques, accuracy,

execution time, types of clones detected etc. depends on

the combination of techniques that are utilized in hybrid

technique.

In TABLE 15 and TABLE 16, Sajnani et al. [41] pro-

pose SourcererCC, a token-based code clone detector. Its

scalability, execution time, precision and recall is evalu-

ated and compared with four (NICAD, CCFinderX, Deckard

86138 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

TABLE 15. Comparative analysis of CCD proposed/ developed tools w.r.t technique, Accuracy and clone detection abilities.

and iClones) publically available state-of-the-art code clone

detection tools. Results show that it can scale 100 MLOC

without any issue in just 1 day 12 hours 54 minutes and 5 sec-

onds with an overall 90% recall and 83 % precision. It has

the highest scalability with the lowest execution time, second

best precision and recall. SourcererCC has the ability to detect

type1, type2 and type3 code clones. However, clone detection

precision is very much an open problem and detection of

type4 clones is outside the scope of this tool. Similarly,

Semura et al. [42] propose CCFinderSW, a token based

detector for detection of clones in multiple programming

languages.

It can find type1 and type2 clones but detection of

type3 and type4 clones outside the scope of this tool.

Li et al. [43] introduce CCLearner a deep learning based

approach supported by token-based approaches. It is devel-

oped as an approach but its comparison is performed against

the publically available state of the art clone detection tools

(NICAD, Deckard, SourcererCC). Its evaluation is performed

w.r.t different aspects (e.g. precision, recall, execution time

and scalability). It can scale 3.6 MLOC in just 47 minutes

with 93% precision. The comparison shows that it has

second-best precision, third best scalability and execution

time. It can uncover type1, type2 and type3 clones. As its

precision is evaluatedmanually therefore, precision rates may

be subjected to human unintentional or bias errors. Further-

more, Wang et al. [39] develop another token-based clone

detector, named as CCAligner. Its performance is evaluated

w.r.t. to some aspects (e.g. precision, recall, execution time,

scalability) and compared against popular tools (CCFinderX,

Deckard, NICAD, iClones and SourererCC). Experiment

results indicate that it can scale 10 MLOC in just 24 min-

utes and 56 seconds with 83% precision and 92% recall.

From the comparison, it is concluded that it has the lowest

execution time, second best scalability, recall, and third best

precision. It has the ability to detect type 1, type 2 and

VOLUME 7, 2019 86139

Q. U. Ain et al.: Systematic Review on CCD

TABLE 16. Comparative analysis of CCD tools w.r.t scalability, execution time and limitations.

type 3 clones. However, it has some scalability and evaluation

work limitations. Yuki et al. [40] present a technique to detect

multi-grained code clones and develop a tool Decresendo

based on the proposed technique. This tool supported by

token-based code clone detection approaches and can identify

type1, type2 and type3 clones.

Kim et al. [28] and Kim and Lee [25] present VUDDY,

an approach for vulnerable code clone discovery. Its com-

parison is performed with four (SourcererCC, CCFinderX,

Deckard and ReDeBug) state of the art tools. Its scalabil-

ity, execution time, recall and precision is evaluated and

compared with these tools. Results indicate that it can scale

1BLOC in just 14 hours and 17 minutes with 100% precision

and 82% recall. It has the highest scalability and precision,

lowest execution time and second best recall. VUDDY is

supported by text-based approaches and has the ability to

detect type1 and type2 clones. However, its capabilities are

only limited to C/C++ and detection of type3 and type4

clones outside of its scope.

Vislavski et al. [64] propose LICCA, a tool for cross-

language clone detection. It is supported by hybrid

approaches (e.g., token-based, tree-based and metric-based)

and can uncover type1, type2 and type3 clones. However,

currently, clone detection of LICCA is only limited to seman-

tically similar segments while functionally similar segments

are not covered yet. Wang et al. [54] present another tool

CCSharp, a three-phase PGD based clone detection tech-

nique implemented as a tool. Its experiment is performed

on PostgreSQL program and less program against three

(NICAD, Deckard, SourcererCC) popular clone detection

tools. Results indicate that it has 6 minutes and 42 seconds

setup cost and 0.95 seconds comparison cost for less pro-

gram, 33 minutes and 1-second setup cost and 14.9-second

comparison cost for PostgreSQL program. As CCSharp is

PDG based clone detector so we can suppose that it can detect

type 4 or semantic clones. However, it has some procedural

limitations as it cannot process some procedures and also

have limitations in the configuration setting. Svajlenko and

Roy [48] overviewed the concepts of CloneWorks, a nearmiss

(type3) code clone detection tool. Its further details are pro-

vided by Svajlenko and Roy [50] where two configurations

conservative and aggressive for detection of type3 clones are

provided. Its precision is evaluated and compared with state

of the art tools (iClones, NICAD, SourererCC). Results show

that its precision is 93% for conservative and 83% for an

aggressive configuration that is comparable with the other

tools. It can detect type3 clones as large as in 250 MLOC

in just 4 hours on an average workstation. It can also detect

type1 and type2 clones but the detection of type4 clones is

not covered.

86140 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

Newman et al. [34] introduce a tool named srcSlice, sup-

ported by text-based approaches. Its performance is evaluated

on the bases of certain parameters (e.g. execution time, scala-

bility). From the results of the experiment, it is concluded that

it can scale 13000,000 LOC of Linux kernel in just 7 min-

utes but currently its capabilities are limited to just C/C++.

Crussell et al. [56] propose AnDarwin, a tool for finding

applications with a similar code on large scale and supported

by semantic clone detection approaches. The experiment is

conducted to evaluates its performance. Results indicate that

it can identify at least 4295 cloned apps and 36,106 rebranded

apps in just 10 hours.

Kodhai and Kanmani [69] propose CloneManager, a tool

for method level code clone detection and supported by a

hybrid approach (text-based and metric-based approaches).

The experiment is conducted to evaluate its performance

by taking dataset from various open source systems against

popular clone detection tools (NICAD and CLAN). Results

shown that it has the ability to scale 35KLOC of Eclipse-

ant in just 1.35 minutes and identify type1 clones with 97%

precision and 95 %recall; type2 clones with 88% precision

and 98% recall; type3 clones with 100% precision and 95%

recall and type4 clones with 100% precision and 100% recall.

However, it may have language dependency issues, utilizes

slightly higher memory and based on manual analysis which

may be subjected to human errors. Ragkhitwetsagul et al. [52]

present a tool named as Vincent for image-based code clone

detection. This tool supported by metric-based approaches

and utilizes two similarity measures jeccard and EMD. The

experiment is conducted to check out its performance. From

the experiment, it is concluded that Vincent has the ability to

scale 241924 LOC in 5 hours and 31minutes. Its accuracy has

been evaluated and compared with publically available tools

(CCFinderX, Deckard, iClones, NICAD and Simian).

It can detect clones with 93% accuracy by using jeccard

similarity measure and 92% accuracy with EMD similarity

measure. Theses accuracies are comparable with other tools.

It can find type1, type2 and type3 clones but its investigation

is performed manually which can be subjected to human

errors

From this analysis, it is concluded that each technique and

tool has some strengths and limitations. Therefore, this anal-

ysis surely help the researchers in the selection of technique

or tool according to their requirements.

RQ5:What are the key improvements required in the CCD

tools / techniques in order to meet the modern technological

advancements?

Answer: From the above mentioned facts, it is concluded

that each technique and tool has some strengths and lim-

itations. Therefore, some improvements can be made in

future. For example, as mentioned in TABLE 14, some

approaches cannot detect most difficult type of clones

semantic or type 4 because these clones are functionally

similar but structurally different. Although Tree based,Metric

based approaches can identify type4 clones but Seman-

tic or PDG based techniques are mainly used to identify

type4 clones [64]. However, PGD generation and PGD struc-

ture modification is still a time-consuming process [54].

Therefore, there is a need to overcome this problem.

From TABLE 13, it is analyzed that mostly source code

of java or C/C++ is used to identify clones. Consequently,

source code of other programming languages should be target

to examine the efficiency of these techniques. Moreover, it is

examined that source code of open source software systems

is used for CCD. Similar to open source systems, clones

can also exist in commercial software systems. Therefore,

in future, the commercial software systems should be target

to check the validity of these approaches.

From TABLE 15 and TABLE 16, it is investigated that

only one tool (CloneManager) available yet that can detect all

types of clones, especially semantic or type4 clones [69]. This

tool also has certain limitations like it can only deal with the C

and Java code. Furthermore, this tool utilizes slightly higher

memory and its verification is done by manual analysis.

Therefore, it is required to develop more tools in which these

limitations can be handled. Furthermore, provision of finding

all types of clones especially sematic or type4 clones should

be included with simplicity.

V. DISCUSSION AND LIMITATIONS

In software programs, code clone is an identical or similar

segment of code. Mostly, code clones occur by copy-paste

activity of code in software development. Cloning is helpful

but it can also be adverse in many ways. For example, if a

bug is found in one piece of code then fixing is needed in all

replicated sections. Duplicated segments can also have neg-

ative impacts on software quality and software maintenance.

By considering these issues, code clone detection becomes

an active area of research because detecting and eliminating

duplicate data or clones will improve the overall efficiency

of the software, especially ease the maintenance and reuse

of the components from the repositories. Therefore, in this

article, we conduct an SLR to comprehensively analyze code

clone detection. We selected 54 studies out of 3665 stud-

ies and provide categorization and quantitative overview.

Our focus is on including the most recent research studies

related to code clone detection. In this article, we analyze

different code clone detection techniques and tools based

on certain parameters. Our focus is broader as compared to

the previous studies because we also investigate the advan-

tages and limitations of code clone detection techniques

along with tools. Furthermore, we perform detailed compar-

ative analysis of tools and techniques that provide ease to

the researchers in the selection of appropriate CCD tool or

technique.

From this literature, it is analyzed that a large number of

studies supports the harmfulness of code cloning in software

systems.We observed that in most of the studies the detection

of different types of clones is carried out. Investigation shows

that there are four types (type1, type2, type3 and type4) of

clones and different techniques can detect different types of

clones. Text-based techniques can detect type1, type2 and

VOLUME 7, 2019 86141

Q. U. Ain et al.: Systematic Review on CCD

type3 clones; these are most effective for the detection of

type1 or exact clones [64]. Similarly, token-based techniques

can identify type1, type2 and type3 clones and these are more

useful for the detection of type2 or renamed clones [64].

Furthermore, tree-based and metric-based techniques can

reveal type1, type2, type3 and type4 clones but they are

more powerful for the identification of type3 or near miss

clones [64]. Moreover, semantic approaches can find type1,

type2, type3 and type4 clones but they are especially useful

for the detection of type4 or semantic clones [64]. As seman-

tic or PDG’s based approaches are mainly used to iden-

tify type4 or semantic clones but PGD generation and PGD

structure modification is still a time-consuming process [54].

Therefore, there is a need to overcome this problem. In hybrid

approaches, detection of clone types depend on the types of

techniques used as a hybrid technique. As tree based, metric

based and semantic approaches can detect all types of clones.

However, in only 6 studies ([49], [51], [60], [63], [67], [69])

out of 54 studies, all types of clones are detected. Therefore,

this area is still open. Different types of CCD tools based on

these techniques are also investigated.We found that only one

tool (CloneManager) is developed that can identify four types

of clones [69]. However, it has certain limitations as well, for

example, source code utilized by this tool consists of only

C and Java code and does not declare that the findings can

be held true for other programming languages. Furthermore,

the use of memory is also slightly higher and verification of

tool is done by manual analysis, which means that there is a

chance of human error. Therefore, there is a need to develop

more tools in which these limitations can be handled and

can reveal all types of clones. Furthermore, dataset or source

code for detection of clones is taken from open source subject

systems. Mostly, source code or dataset consists of java files,

sometimes C/C++ files and rarely the files of any other pro-

gramming language, as summarized in TABLE 13 . In some

studies, clone detection is carried out just considering java

code and their capabilities are limited to java code. Therefore,

there is a need to utilize source code of other programming

languages for code clone detection. From literature, it is

analyzed that only open source software systems are targeted

for CCD. Similar to open source systems, clones can also be

present in commercial software systems. Consequently, it is

required to extend this area on commercial scale.

Although we have completely followed the guidelines of

SLR [21], and strictly observed the review protocol. However,

there are still certain limitations:

• We have selected four well-known scientific reposito-

ries i.e., ACM, Springer, IEEE, Elsevier for this SLR.

These repositories provide a huge amount of confer-

ence and journal papers. Therefore, we performed the

search process by utilizing only these repositories. How-

ever, there may exist some amount of relevant stuff in

other repositories. Accordingly, there is a chance we

missed some related researches from other repositories.

However, we consider that exclusion of such reposito-

ries does not significantly affect the outcome of this

SLR because selected repositories provide good quality

recent research literature.

• We have utilized relevant keywords and thoroughly

checked the search results. However, few keywords

returned a large number of results and cannot thoroughly

analyzed. Moreover, we have rejected many research

studies based on their title or abstract. Therefore, there

is a chance we missed some relevant research studies.

• We have selected English language for selecting

research studies. However, there is a chance we may

miss some relevant researches written in other languages

e.g., French, Germen etc.

VI. CONCLUSIONS AND FUTURE WORK

This research study comprehensively analyzes how code

clones can be detected and which techniques and tools are

utilized for this purpose. Particularly, an SLR is performed

to identify and investigate 54 research articles, published

during 2013-2018, in the domain of code clone detection.

Six categories are defined to incorporate selected studies

i.e., textual approaches (12), lexical approaches (8), tree-

based approaches (3), metric-based approaches (7), semantic

approaches (7) and hybrid approaches (17). Afterwards, each

category is comprehensively investigated to understand how

code clones can be detected and which technique detect

which type of clones. Moreover, 13 existing tools and 13 pro-

posed tools are presented. Furthermore, 62 open source

subject systems are investigated. Consequently, the leading

approaches, important tools and open source subject systems

utilized for code clone detection are provided in a single

study. This will help the researchers and practitioners to

select appropriate approach or tool for code clone detection

according to their requirements.

It is concluded from this SLR that the detection of type

4 clones is complex process. For this reason, very few studies

are dealing with the detection of type 4 clones with certain

limitations. Therefore, a main future direction is to develop a

novel technique and tool to successfully detect type 4 clones

with simplicity. In this regard, the findings of this article

are highly beneficial. Additionally, existing studies mostly

consider java and C/C++ languages for code clone detection.

In this regard, it is essential to take in the other programming

languages like C# etc. in the area of CCD in order to meet the

real and current demands of software industry.

REFERENCES

[1] B. S. Baker, ‘‘On finding duplication and near-duplication in large software

systems,’’ in Proc. 2nd Work. Conf. Reverse Eng., Jul. 1995, pp. 86–95.

[2] S. Ducasse, M. Rieger, and S. Demeyer, ‘‘A language independent

approach for detecting duplicated code,’’ in Proc. IEEE Int. Conf. Softw.

Maintenance (ICSM), Aug./Sep. 1999, pp. 109–118.

[3] J. Krinke, ‘‘Identifying similar code with program dependence graphs,’’ in

Proc. 8th Work. Conf. Reverse Eng., Oct. 2001, pp. 301–309.

[4] I. D. Baxter, A. Yahin, L.Moura,M. Sant’Anna, and L. Bier, ‘‘Clone detec-

tion using abstract syntax trees,’’ in Proc. Int. Conf. Softw. Maintenance,

Nov. 1998, pp. 368–377.

[5] R. Komondoor and S. Horwitz, ‘‘Using slicing to identify duplication in

source code,’’ in Proc. Int. Static Anal. Symp. Berlin, Germany: Springer,

2001, pp. 40–56.

86142 VOLUME 7, 2019

Q. U. Ain et al.: Systematic Review on CCD

[6] C. K. Roy and J. R. Cordy, ‘‘A survey on software clone detection

research,’’ Queen’s School Comput., Tech. Rep. 541, 2007, vol. 115,

pp. 64–68.

[7] C. K. Roy, R. J. Cordy, and R. Koschke, ‘‘Comparison and evaluation of

code clone detection techniques and tools: A qualitative approach,’’ Sci.

Comput. Program., vol. 74, no. 7, pp. 470–495, 2009.

[8] N. Saini and S. Singh, ‘‘Code clones: Detection and management,’’ Proce-

dia Comput. Sci., vol. 132, pp. 718–727, Jun. 2018.

[9] C. K. Roy and J. R. Cordy, ‘‘An empirical study of function clones in

open source software,’’ in Proc. 15th Work. Conf. Reverse Eng., Oct. 2008,

pp. 81–90.

[10] C. K. Roy and J. R. Cordy, ‘‘NICAD: Accurate detection of near-

miss intentional clones using flexible pretty-printing and code normaliza-

tion,’’ in Proc. 16th IEEE Int. Conf. Program Comprehension, Jun. 2008,

pp. 172–181.

[11] T. Kamiya. The Official CCFinderX WebSite. Accessed: 2008. [Online].

Available: http://www.ccfinder.net/ccfinderx.html

[12] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘On software

maintenance process improvement based on code clone analysis,’’ in Proc.

Int. Conf. Product Focused Softw. Process Improvement. Berlin, Germany:

Springer, 2002, pp. 185–197.

[13] Tool Simian. Accessed: Nov. 2008. [Online]. Available: http://www.

redhillconsulting.com.au/products/simian/

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, ‘‘CP-Miner: Finding copy-paste

and related bugs in large-scale software code,’’ IEEE Trans. Softw. Eng.,

vol. 32, no. 3, pp. 176–192, Mar. 2006.

[15] J. H. Johnson, ‘‘Visualizing textual redundancy in legacy source,’’ in Proc.

Conf. Centre Adv. Stud. Collaborative Res. Indianapolis, IN, USA: IBM

Press, 1994, p. 32.

[16] J. H. Johnson, ‘‘Substring matching for clone detection and change track-

ing,’’ in Proc. ICSM, vol. 94, 1994, pp. 120–126.

[17] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley, ‘‘The development

of a software clone detector,’’ in International Journal of Applied Software

Technology. London, U.K.: University of Hertfordshire Research Archive,

1995.

[18] G. A. Di Lucca, M. Di Penta, and A. R. Fasolino, ‘‘An approach to identify

duplicated Web pages,’’ in Proc. 26th Annu. Int. Comput. Softw. Appl.,

Aug. 2002, pp. 481–486.

[19] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,

‘‘Lessons from applying the systematic literature review process within the

software engineering domain,’’ J. Syst. Softw., vol. 80, no. 4, pp. 571–583,

2007.

[20] D. Budgen and P. Brereton, ‘‘Performing systematic literature reviews

in software engineering,’’ in Proc. 28th Int. Conf. Softw. Eng., 2006,

pp. 1051–1052.

[21] S. Charters and B. Kitchenham, ‘‘Guidelines for performing systematic

literature reviews in software engineering,’’ Keele Univ. Durham Univ.

Joint Rep., Newcastle, U.K., Tech. Rep. EBSE-2007-01, Version 2.3, 2007.

[22] R. Koschke, ‘‘Survey of research on software clones,’’ inDagstuhl Seminar

Proceedings. Schloss Dagstuhl, Germany: Informatik, 2007.

[23] D. Rattan, R. Bhatia, and M. Singh, ‘‘Software clone detection: A system-

atic review,’’ Inf. Softw. Technol., vol. 55, no. 7, pp. 1165–1199, 2013.

[24] C. Ragkhitwetsagul and J. Krinke, ‘‘Using compilation/decompilation

to enhance clone detection,’’ in Proc. IEEE 11th Int. Workshop Softw.

Clone (IWSC), vol. 11, Feb. 2017, pp. 8–14.

[25] S. Kim and H. Lee, ‘‘Software systems at risk: An empirical study of

cloned vulnerabilities in practice,’’ Comput. Secur., vol. 77, pp. 720–736,

Aug. 2018.

[26] S. Jadon, ‘‘Code clones detection using machine learning technique:

Support vector machine,’’ in Proc. Int. Conf. Comput., Commun.

Automat. (ICCCA), Apr. 2016, pp. 303–399.

[27] D. Yu, J. Wang, Q.Wu, J. Yang, J. Wang,W. Yang, andW. Yan, ‘‘Detecting

java code clones with multi-granularities based on bytecode,’’ in Proc.

IEEE 41st Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2017,

pp. 317–326.

[28] S. Kim, S.Woo, H. Lee, andH. Oh, ‘‘VUDDY:A scalable approach for vul-

nerable code clone discovery,’’ in Proc. IEEE Symp. Secur. Privacy (SP),

May 2017, pp. 595–614.

[29] Y. Nakamura, E. Choi, N. Yoshida, S. Haruna, and K. Inoue, ‘‘Towards

detection and analysis of interlanguage clones for multilingual Web

applications,’’ in Proc. IEEE 23rd Int. Conf. Softw. Analysiss, Evol.,

Reeng. (SANER), vol. 3, Mar. 2016, pp. 17–18.

[30] F. Lyu, Y. Lin, J. Yang, and J. Zhou, ‘‘Suidroid: An efficient hardening-

resilient approach to Android app clone detection,’’ in Proc. IEEE Trust-

com/BigDataSE/ISPA, Aug. 2016, pp. 511–518.

[31] H. Xue, G. Venkataramani, and T. Lan, ‘‘Clone-hunter: Accelerated

bound checks elimination via binary code clone detection,’’ in Proc.

2nd ACM SIGPLAN Int. Workshop Mach. Learn. Program. Lang., 2018,

pp. 11–19.

[32] J. Chen, M. H. Alalfi, T. R. Dean, and Y. Zou, ‘‘Detecting Android

malware using clone detection,’’ J. Comput. Sci. Technol., vol. 30, no. 5,

pp. 942–956, 2015.

[33] H. Thaller, R. Ramler, J. Pichler, A. Egyed, ‘‘Exploring code clones in

programmable logic controller software,’’ Jun. 2017, arXiv:1706.03934.

[Online]. Available: https://arxiv.org/abs/1706.03934#

[34] C. D. Newman, T. Sage, M. L. Collard, H. W. Alomari, and

J. I. Maletic, ‘‘srcSlice: A tool for efficient static forward slicing,’’ in Proc.

IEEE/ACM 38th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2016,

pp. 621–624.

[35] Z. Liu, Q. Wei, and Y. Cao, ‘‘VFDETECT: A vulnerable code

clone detection system based on vulnerability fingerprint,’’ in Proc.

IEEE 3rd Inf. Technol. Mechatron. Eng. Conf. (ITOEC), Oct. 2017,

pp. 548–553.

[36] M. A. Nishi and K. Damevski, ‘‘Scalable code clone detection and search

based on adaptive prefix filtering,’’ J. Syst. Softw., vol. 137, pp. 130–142,

Mar. 2018.

[37] R. Tekchandani, R. Bhatia, and M. Singh, ‘‘Code clone genealogy detec-

tion on e-health system using Hadoop,’’ Comput. Elect. Eng., vol. 61,

pp. 15–30, Jul. 2017.

[38] M. R. Farhadi, B. C. M. Fung, Y. B. Fung, P. Charland, S. Preda, and

M. Debbabi, ‘‘Scalable code clone search for malware analysis,’’ Digit.

Invest., vol. 15, pp. 46–60, Dec. 2015.

[39] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, ‘‘CCAligner: A token

based large-gap clone detector,’’ in Proc. 40th Int. Conf. Softw. Eng., 2018,

pp. 1066–1077.

[40] Y. Yuki, Y. Higo, and S. Kusumoto, ‘‘A technique to detect multi-grained

code clones,’’ in Proc. IEEE 11th Int. Workshop Softw. Clones (IWSC),

Feb. 2017, pp. 1–7.

[41] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, ‘‘Sourcer-

erCC: Scaling code clone detection to big-code,’’ in Proc. IEEE/ACM 38th

Int. Conf. Softw. Eng. (ICSE), May 2016, pp. 1157–1168.

[42] Y. Semura, N. Yoshida, E. Choi, and K. Inoue, ‘‘CCFinderSW: Clone

detection tool with flexible multilingual tokenization,’’ in Proc. 24th

Asia–Pacific Softw. Eng. Conf. (APSEC), 2017, pp. 654–659.

[43] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, ‘‘Cclearner: A deep

learning-based clone detection approach,’’ in Proc. IEEE Int. Conf. Softw.

Maintenance Evol. (ICSME), Sep. 2017, pp. 249–260.

[44] Y. Yang, Z. Ren, X. Chen, and H. Jiang, ‘‘Structural function based code

clone detection using a new hybrid technique,’’ in Proc. IEEE 42nd Annu.

Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2018, pp. 286–291.

[45] J. Pati, B. Kumar, D. Manjhi, and K. K. Shukla, ‘‘A Comparison Among

ARIMA, BP-NN, and MOGA-NN for Software Clone Evolution Predic-

tion,’’ IEEE Access, vol. 5, pp. 11841–11851, 2017.

[46] S. Chodarev, E. Pietriková, and J. Kollár, ‘‘Haskell clone detection using

pattern comparing algorithm,’’ in Proc. 13th Int. Conf. Eng. Mod. Electr.

Syst. (EMES), Jun. 2015, pp. 1–4.

[47] M. Tsunoda, Y. Kamei, and A. Sawada, ‘‘Assessing the differences of

clone detection methods used in the fault-prone module prediction,’’ in

Proc. IEEE 23rd Int. Conf. Softw. Anal., Evol., Reeng. (SANER), vol. 3,

Mar. 2016, pp. 15–16.

[48] J. Svajlenko, C. K. Roy, ‘‘Fast and flexible large-scale clone detection with

cloneworks,’’ in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. Compan-

ion (ICSE-C), May 2017, pp. 27–30.

[49] M. Sudhamani and L. Rangarajan, ‘‘Code clone detection based on order

and content of control statements,’’ in Proc. 2nd Int. Conf. Contemp.

Comput. Inform. (IC3I), 2016, pp. 59–64.

[50] M. Sudhamani and L. Rangarajan, ‘‘Cloneworks: A fast and flexible large-

scale near-miss clone detection tool,’’ in Proc. IEEE/ACM 39th Int. Conf.

Softw. Eng. Companion (ICSE-C), May 2017, pp. 177–179.

[51] S. M. F. Haque, V. Srikanth, and E. S. Reddy, ‘‘Generic code cloning

method for detection of clone code in software development,’’ in Proc. Int.

Conf. Data Mining Adv. Comput. (SAPIENCE), Mar. 2016, pp. 335–339.

[52] C. Ragkhitwetsagul, J. Krinke, and B. Marnette, ‘‘A picture is worth a

thousand words: Code clone detection based on image similarity,’’ in Proc.

IEEE 12th Int. Workshop Softw. Clones (IWSC), Mar. 2018, pp. 44–50.

VOLUME 7, 2019 86143

Q. U. Ain et al.: Systematic Review on CCD

[53] M. Sudhamani and L. Rangarajan, ‘‘Structural similarity detection

using structure of control statements,’’ Procedia Comput. Sci., vol. 46,

pp. 892–899, Apr. 2015.

[54] M. Wang, P. Wang, and Y. Xu, ‘‘CCSharp: An efficient three-phase code

clone detector using modified PDGs,’’ in Proc. 24th Asia–Pacific Softw.

Eng. Conf. (APSEC), 2017, pp. 100–109.

[55] Y. Sabi, Y. Higo, and S. Kusumoto, ‘‘Rearranging the order of program

statements for code clone detection,’’ in Proc. IEEE 11th Int. Workshop

Softw. Clones (IWSC), Feb. 2017, pp. 1–7.

[56] J. Crussell, C. Gibler, and H. Chen, ‘‘Andarwin: Scalable detection of

Android application clones based on semantics,’’ IEEE Trans. Mobile

Comput., vol. 14, no. 10, pp. 2007–2019, Oct. 2015.

[57] S. Sargsyan, S. Kurmangaleev, A. Belevantsev, and A. Avetisyan, ‘‘Scal-

able and accurate detection of code clones,’’ Program. Comput. Softw.,

vol. 42, no. 1, pp. 27–33, 2016.

[58] Y. Hu, Y. Zhang, J. Li, and D. Gu, ‘‘Binary code clone detection across

architectures and compiling configurations,’’ in Proc. 25th Int. Conf. Pro-

gram Comprehension, 2017, pp. 88–98.

[59] C. M. Kamalpriya and P. Singh, ‘‘Enhancing program dependency

graph based clone detection using approximate subgraph matching,’’

in Proc. IEEE 11th Int. Workshop Softw. Clones (IWSC), Feb. 2017,

pp. 1–7.

[60] A. Avetisyan, S. Kurmangaleev, S. Sargsyan, M. Arutunian, and

A. Belevantsev, ‘‘LLVM-based code clone detection framework,’’ in Proc.

Comput. Sci. Inf. Technol. (CSIT), 2015, pp. 100–104.

[61] Roopam and G. Singh, ‘‘To enhance the code clone detection algorithm

by using hybrid approach for detection of code clones,’’ in Proc. Int. Conf.

Intell. Comput. Control Syst. (ICICCS), Jun. 2017, pp. 192–198. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/8250708

[62] M. R. H. Misu and K. Sakib, ‘‘Interface driven code clone detec-

tion,’’ in Proc. 24th Asia–Pacific Softw. Eng. Conf. (APSEC), Dec. 2017,

pp. 747–748.

[63] A. Sheneamer and J. Kalita, ‘‘Semantic clone detection using machine

learning,’’ in Proc. 15th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),

Dec. 2016, pp. 1024–1028.

[64] T. Vislavski, G. Rakić, N. Cardozo, and Z. Budimac, ‘‘LICCA: A tool for

cross-language clone detection,’’ inProc. IEEE 25th Int. Conf. Softw. Anal.,

Evol. Reeng. (SANER), Mar. 2018, pp. 512–516.

[65] M. R. H. Misu, A. Satter, and K. Sakib, ‘‘An exploratory study on interface

similarities in code clones,’’ in Proc. 24th Asia–Pacific Softw. Eng. Conf.

Workshops (APSECW), Dec. 2017, pp. 126–133.

[66] J. Akram, Z. Shi, M. Mumtaz, and P. Luo, ‘‘DroidCC: A scalable clone

detection approach for Android applications to detect similarity at source

code level,’’ inProc. IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMP-

SAC), Jul. 2018, pp. 100–105.

[67] A. Sheneamer, S. Roy, and J. Kalita, ‘‘A detection framework for semantic

code clones and obfuscated code,’’Expert Syst. Appl., vol. 97, pp. 405–420,

May 2018.

[68] T. Matsushita and I. Sasano, ‘‘Detecting code clones with gaps by function

applications,’’ in Proc. ACM SIGPLAN Workshop Partial Eval. Program

Manipulation, 2017, pp. 12–22.

[69] E. Kodhai and S. Kanmani, ‘‘Method-level code clone detection through

LWH (Light Weight Hybrid) approach,’’ J. Softw. Eng. Res. Develop.,

vol. 2, no. 1, p. 12, 2014.

[70] R. Tekchandani, R. Bhatia, and M. Singh, ‘‘Semantic code clone detec-

tion for Internet of things applications using reaching definition and

liveness analysis,’’ J. Supercomput., vol. 74, no. 9, pp. 4199–4226,

2018.

[71] K. Uemura, A. Mori, K. Fujiwara, E. Choi, and H. Iida, ‘‘Detecting and

analyzing code clones in HDL,’’ in Proc. IEEE 11th Int. Workshop Softw.

Clones (IWSC), Feb. 2017, pp. 1–7.

[72] H. Nasirloo and F. Azimzadeh, ‘‘Semantic code clone detection using

abstract memory states and program dependency graphs,’’ in Proc. 4th Int.

Conf. Web Res. (ICWR), Apr. 2018, pp. 19–27.

[73] M. Singh and V. Sharma, ‘‘Detection of file level clone for high level

cloning,’’ Procedia Comput. Sci., vol. 57, pp. 915–922, Aug. 2015.

[74] A. Sheneamer and J. Kalita, ‘‘Code clone detection using coarse and fine-

grained hybrid approaches,’’ in Proc. IEEE 7th Int. Conf. Intell. Comput.

Inf. Syst. (ICICIS), Dec. 2015, pp. 472–480.

[75] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, ‘‘Deep learning

code fragments for code clone detection,’’ in Proc. 31st IEEE/ACM Int.

Conf. Automated Softw. Eng., 2016, pp. 87–98.

[76] C. Ragkhitwetsagul J. Krinke, and D. Clark, ‘‘A comparison of code

similarity analysers,’’ Empirical Softw. Eng., vol. 23, no. 4, pp. 2464–2519,

2018.

[77] J. Ghofrani, M. Mohseni, and A. Bozorgmehr, ‘‘A conceptual framework

for clone detection using machine learning,’’ in Proc. IEEE 4th Int. Conf.

Knowl.-Based Eng. Innov. (KBEI), Dec. 2017, pp. 810–817.

QURAT UL AIN received the B.S. degree in soft-

ware engineering from the Government College

University Faisalabad, Pakistan. She is currently

pursuing the M.S. degree in software engineer-

ing with the Computer and Software Engineering

Department, College of Electrical and Mechanical

Engineering, National University of Sciences and

Technology, Pakistan. Her area of research is soft-

ware engineering.

WASI HAIDER BUTT is currently an Assis-

tant Professor with the Department of Computer

and Software Engineering, College of Electrical

and Mechanical Engineering, National Univer-

sity of Sciences and Technology, Pakistan. His

areas of interests include model-driven software

engineering, web development, and requirement

engineering.

MUHAMMAD WASEEM ANWAR is currently

pursuing the Ph.D. degree with the Depart-

ment of Computer and Software Engineering,

CEME, National University of Sciences and

Technology, Pakistan. He is a Senior Researcher

and an Industry Practitioner in the field of

model-based system engineering (MBSE) for

embedded and control systems. His major

research area includes MBSE for complex and

large systems. His profile can be viewed at

http://ceme.nust.edu.pk/ISEGROUP/seniormembers/waseem.html.

FAROOQUE AZAM is currently an Adjunct

Faculty with the Department of Computer and

Software Engineering, College of Electrical and

Mechanical Engineering, National University of

Sciences and Technology, Pakistan. He has been

teaching various software engineering courses,

since 2007. His areas of interests include model-

driven software engineering, business model-

ing for Web applications, and business process

reengineering.

BILAL MAQBOOL received the M.S. degree

in software engineering from the Computer and

Software Engineering Department, College of

Electrical and Mechanical Engineering, National

University of Sciences and Technology (NUST),

Pakistan, in 2018. From 2017 to 2018, he was a

Research Assistant with NUST, where he is cur-

rently a Senior Researcher in the field of software

engineering. His area of research is business pro-

cess automation through model-driven software

engineering (MDSE) and natural language processing (NLP).

86144 VOLUME 7, 2019

	INTRODUCTION
	REVIEW PROTOCOL
	CATEGORIES DEFINITION
	TEXTUAL APPROACHES
	LEXICAL APPROACHES
	TREE-BASED APPROACHES
	METRIC BASED APPROACHES
	SEMANTIC APPROACHES
	HYBRID APPROACHES

	SELECTION AND REJECTION CRITERIA
	SEARCH PROCESS
	QUALITY ASSESSMENT
	DATA EXTRACTION AND SYNTHESIS

	RESULTS AND ANALYSIS
	TEXTUAL APPROACHES
	LEXICAL APPROACHES
	TREE-BASED APPROACHES
	METRIC BASED APPROACHES
	SEMANTIC APPROACHES
	HYBRID APPROACHES
	CLONE DETECTION TOOLS
	OPEN SOURCE SUBJECT SYSTEMS

	ANSWERS OF RESEARCH QUESTIONS
	DISCUSSION AND LIMITATIONS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	QURAT UL AIN
	WASI HAIDER BUTT
	MUHAMMAD WASEEM ANWAR
	FAROOQUE AZAM
	BILAL MAQBOOL

