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Heart-rate recovery (HRR) can be defined as the 
rate at which heart rate declines, usually within minutes 
after the cessation of physical exercise.1–3 The autonomic 
nervous system (ANS) regulates both the initial increase 
in heart rate after the start of physical activity and the 
decrease in heart rate immediately after physical activ-
ity ends. The ANS is composed of a parasympathetic 
and a sympathetic branch that operate in a reciprocal 
and inverse manner: An increase in heart rate is caused 
by an increase in sympathetic activity combined with 
decreased parasympathetic drive, whereas HRR is charac-
terized by parasympathetic reactivation and sympathetic 
withdrawal.3–7 Cardiac output is adjusted during exercise 
based on the metabolic demand. The regulation occurs by 
intrinsic autoregulation of cardiac pumping (the so-called 
Frank-Starling law of the heart) and by sympathetic acti-
vation and parasympathetic deactivation, which increases 
heart rate and the contraction force of mainly the left 
ventricle.8 Increased sympathetic activity combined with 
parasympathetic withdrawal (eg, during exercise) leads 
to reduced skin blood flow and increased blood flow to 
the muscles.9 When the exercise stops, cardiac output is 
reduced by intrinsic autoregulation (by the ANS), more 

specifically by parasympathetic nervous system reactiva-
tion and inhibition of sympathetic impulses.

Although it is well documented that changes in HRR 
coincide well with changes in training status in patient 
populations,10 to our knowledge a systematic review on 
the use of HRR in athletes is missing. HRR may be an 
indicator of fitness, which is currently generally expressed 
in terms of VO2max or VO2peak, the maximum oxygen 
uptake during exhaustive exercise. Although VO2max has a 
strong relationship with training status in a general popu-
lation, it loses its predictive value for aerobic performance 
in already well-trained and elite athletes.2 In addition, 
the typical error of measurement of VO2max is relatively 
high, which makes VO2max unreliable to monitor training 
changes over time.2 In contrast, parameters such as HRR, 
peak power output, and/or peak treadmill running speed 
have lower typical errors of measurements, which makes 
them more sensitive to detect changes in training status.

Therefore, the aim of this study was to conduct a 
systematic review on the use of HRR in athletes to track 
long-term changes in training status.

Methods

Data Sources

An electronic literature search was performed in the 
digital databases of Scopus, EMBASE, and PubMed. 
The search terms used were a combination of heart/pulse 
rate(s), recovery/deceleration, (physical) exercise, and 
health(y) subjects/population. This search yielded 90 
scientific articles (see Figure 1).
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Study Selection: Inclusion and Exclusion 
Criteria

All considered articles were published before 2011 in 
generally accessible, English-language, peer-reviewed 
scientific journals. The abstracts of the 90 articles were 
read independently by the 4 reviewers to decide whether 
inclusion criteria were met.

Inclusion was based on

•	 HRR	being	the	dependent	variable:	The	method	to	
determine HRR was not considered as an inclusion 
or exclusion criterion.

•	 Applying	a	period	of	physical	training	of	at	least	5	
days. The type of training was limited to endurance 
training or interval training aimed at increasing 
endurance. As a result, 2 articles using strength 
training were excluded.

•	 The	selected	sample	being	specifically	recruited	from	
healthy athletes.

Using these inclusion criteria, 5 of the original 
90 articles remained, mainly in the area of sports 
research.1,2,11–13 These articles were read and the refer-
ence lists were checked. Based on this analysis, 7 other 
articles were found that met the inclusion criteria14–20 
but had been missed using the original databases and 
search terms.

Therefore, 12 articles were included as part of the 
current systematic review. After reading the articles and 
comparing the references, we have the impression that 
the selected articles cover the area of the review topic. 
We evaluated the included articles independently using 
the COSMIN (COnsensus-based Standards for the selec-
tion of health Measurement INstruments) method as a 
guideline.21 Using the COSMIN guidelines, we conducted 
a structured qualitative analysis of the available studies. 
The results of this analysis are presented, together with 
our common observations and overall conclusions.

Results
The results are presented as cross-sectional and longitudi-
nal studies. Table 1 summarizes the essential parameters 
of the selected studies.

Cross-Sectional Studies

In the 5 cross-sectional studies, trained and untrained sub-
jects participated in a maximal or submaximal test after 
which HRR was measured. Four studies14–16,22 reported 
the HRR measurements after a single test, while 1 study12 
measured HRR after several tests. An overview of the 5 
cross-sectional studies is given in Table 2A.

Darr et al14 found that HRR was about 6 beats/min 
faster in trained subjects (average VO2peak 60 mL · kg–1 · 

Figure 1 — Schematic overview of the literature search process.
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min–1) than in untrained subjects (average VO2peak 40 mL 
· kg–1 · min–1), while no age effect of HRR was observed. 
Dixon et al15 showed that HRR recovered faster in 10 
highly trained male long-distance runners (average 58 
beats in 5 min) than in 14 sedentary male control subjects 
(average 35 beats in 5 min). Du et al16 showed that HRR 
was faster in 6 well-trained female marathon runners 
(about 62 beats in 1 min) than in 8 female subjects who 
were not physically active (about 55 beats in 1 min). 
Bosquet et al22 showed no differences in HRR between 
a group who reached their ventilatory threshold at a rela-
tively low or at a relatively high percentage of maximal 
running speed. Buchheit et al12 observed that HRR was 
faster in under-15 than the under-17 soccer players after 
a submaximal running test (5′-5′ test).

In summary, 3 of the cross-sectional articles reported 
a faster HRR in trained subjects than in untrained sub-
jects.14–16 The article by Bosquet et al11 showed no dif-
ference in HRR as both groups possibly had a similar 
training status and as VO2max has a limited power to detect 
change in training status.23,24 The article by Buchheit et 
al12 showed no difference in HRR between subjects who 
had a fast and slow maximal aerobic speed. However, as 

none of the training-status parameters differed between 
the groups, no conclusion can be drawn.

Longitudinal Studies

The longitudinal studies investigated changes in HRR 
over longer periods of time and were frequently inter-
spaced by programs that aimed to either improve or 
maintain performance. A comprehensive overview of the 
8 included longitudinal studies is presented in Table 2B.

Buchheit et al12 showed no changes in HRR during 
a 3-week soccer competition camp. Borresen and Lam-
bert1 showed that HRR remained unchanged in the 
group that kept their training load constant, decreased 
(ie, slower HRR) in the increased-training-load group, 
and showed a tendency to increase (faster HRR) in the 
decreased-training-load group for 2 weeks. However, 
these outcomes need to be interpreted with care because 
changes in training status were not measured using 
maximal-performance tests in this study.

Lamberts et al2 showed an increase in HRR after 
4 weeks of high-intensity training (measured after a 
40-km time trial). A strong relationship was found 

Table 1 Overview of Studies Included in the Review

N (gender) Groups

No. of 
participants 
per group

Selection criterion 
groups Measurement

Training  
or observation 

period

Cross-sectional studies

 Bosquet et al22 26 (M, F) 2 13,13 % VO2max HRR (60 s)

 Buchheit et al12 33 (M) 4 8, 10 (<15 y); 
5, 10 (<17 y)

fitness, age HRR (60 s)

 Darr et al14 20 (M) 4 5, 5, 5, 5 training status, age HRR (60 s) and 
others

 Dixon et al15 24 (M) 2 10, 14 training status HRR (300 s)

 Du et al16 14 (F) 2 6, 8 training status HRR (60 s) and 
others

Longitudinal studies

 Borresen and Lambert1 28 (M, F) 3 9, 8, 11 performance 
increase, decrease, or 

same

HRR (60 s) 2 wk

 Buchheit et al12 33 (M) (teen-
agers)

1 33 n/a HRR (60 s) 3 wk

 Giallauria et al13 49 (M, F) 2 24, 25 over 70 or under 60 HRR (60 s) 8 wk

 Hautala et al17 95 (M, F) 2 80, 15 trained and control HRR (60 s) 2 wk

 Lamberts et al18 14 (M) 1 14 n/a HRR (60 s) 4 wk

 Lamberts et al18 14 (M) 2 8, 6 HRR increase or 
decrease

40-km TT time 
and HRR (60 s)

4 wk

 Lamberts et al19 15 (M) 1 15 n/a HRR (60 s) 5 wk

 Sugawara et al20 10 (M) 1 10 n/a HRR (30 s) 8 wk

Abbreviations: M, male; F, female; VO2max, maximal oxygen uptake; HRR, heart-rate recovery; TT, time trial. HRR (60 s) means that the difference in heart 
rate is calculated between the last value at the end of exercise and the value 60 min after the end of exercise.
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between the change in HRR and the change in 40-km 
time-trial time. When the subjects were allocated to 
a group that showed a continuous increase in HRR 
throughout the entire training period (I) and to a group 
that showed a decrease in HRR (D), group I improved 
their mean and absolute relative power more than group 
D.18 However, as these groups were not fully matched, 
these outcomes must be interpreted with care. Another 
study by Lamberts et al19 looked at the reliability 
and predictive capacity of a novel submaximal cycle 
test including HRR. Training status and HRR did not 
change, while the typical error of measurement for HRR 
measurement was 2 beats.

Sugawara et al20 showed an improvement in HRR 
in 10 healthy untrained men during an 8-week training 

program, which returned to baseline during the following 
4 weeks of detraining. No objective performance param-
eters were measured after 8 and 12 weeks.

Hautala17 showed an improvement in VO2max in 80 
sedentary men and women after a 2-week endurance 
program, while HRR did not change. However, as no 
changes in peak power output were reported, confirming 
no change in training status, these outcomes need to be 
interpreted with care.

Since participation of the elderly in athletic events 
has become more common, it is interesting to include 
the study of Giallauria et al13 in this review. This study 
shows significant improvements in VO2max and HRR after 
8 weeks of training in elderly subjects. However, again, 
no peak power output values were reported.

Table 2A COSMIN Evaluation of the Evaluated and Described Cross-Sectional Studies

Study Strengths Remarks COSMIN evaluation

Darr et al14 Representative sample(s): 4 
groups.

High sampling frequency 
HRR (every 30 s).

Although VO2max is included, it is 
not used to validate HRR.

(Very) small size.

No comparison of different cardio-
vascular variables.

Mediocre to reasonable: Although representative 
sample, subsamples are too small; no cross-valida-
tion using the other cardiovascular variables.

Dixon et 
al15

Small, though representative, 
sample.

Comparison of HRR and HRV 
(validation).

Assessment or measurement 
design.

Matching for relevant covari-
ates.

Small sample size, only men.

Due to design, no specific effects 
of physiological challenges over 
time in the control subjects can be 
evaluated.

Reasonable: only men, though nice comparison 
between groups. Comparison HRR with HRV out-
comes.

Du et al16 Athletes vs controls.

HRR and HRV included.

Small sample.

Only females.

No cross-validation of HRR using 
HRV.

Reasonable: small sample size, only females. Com-
parison HRR with HRV outcomes.

Bosquet et 
al22

Homogeneous sample.

VO2max, HRR, and HRV 
included.

VO2max used as selection cri-
terion for 2 subsamples (high 
and low).

Comparison HRR and HRV.

Athletes, consequently not a rep-
resentative sample for general 
population.

Groups different on relevant 
covariate.

Mediocre to weak: homogeneous, nonrepresenta-
tive sample. Although sample is divided on relevant 
selection criterion, both subsamples appeared to 
differ significantly on relevant covariate (weight).

Buchheit et 
al12

Apart from longitudinal 
design, relevant comparison 
subsamples are being selected 
(transversal).

HRV (lnRMSSD) and HRR 
included.

Naturalistic setting.

Multiple measurements over 
time.

Division in 4 subsamples (young 
vs old, fit vs less fit) may be too 
much for sample size.

Not aimed at HRR: no conclu-
sion can be drawn regarding how 
changes in training status are mir-
rored in changes in HRR.

Reasonable: from a transversal-perspective, 
repeated-measures design. Though nonstandardized 
training load, what makes it hard to interpret: only 
little information on HRR, only indirect validation.

Abbreviations: COSMIN, COnsensus-based Standards for the selection of health Measurement INstruments; HRR, heart-rate recovery; VO2max, maximal 
oxygen uptake; HRV, heart-rate variability.
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Table 2B COSMIN Evaluation of the Evaluated and Described Longitudinal Studies

Study Strengths Remarks COSMIN evaluation

Sugawara 
et al20

Elaborative protocol.

Naturalistic setting, normal 
adults.

Actual validation of HRR.

Alternative algorithm for 
HRR.

Small sample size.

Only (young) men.

Comparison t30 with classical 
methods would have strengthened 
the article.

Mediocre: small sample size and lack of external vali-
dation of t30.

Giallauria 
et al13

Naturalistic setting.

Elderly: representative 
sample.

Standardized, longitudinal 
physical training program.

Change in HRR in response 
to exercise program (8 wk).

Letter to the editor/abstract.

Young sample showed no changes 
in HRR, though did not follow 
training program either: 2 × 2 
design might have been more 
appropriate.

Reasonable: Sample size is considerable; comparison 
of (changes in) HRR with other cardiovascular out-
comes; describes changes in HRR over time as a result 
of regular physical exercise.

Hautala et 
al17

Representative sample.

Used cardiovascular vari-
ables.

Used parameters of HRV.

Information control group is lack-
ing.

Opportunity to investigate relation 
between different HRV components 
and HRR (external validity) missed.

Reasonable to good: nice design with clear-cut hypoth-
eses and although not specifically used for that aim 
strong external comparison of HRR.

Borresen 
and Lam-
bert1

Standardized protocol.

Naturalistic setting.

Covariates included.

Sample size may be (too) small to 
justify subsamples.

No changes in performance param-
eters measured.

Reasonable: no real measurements available that can 
show a change in training status before and after the 
observation period.

Lamberts 
et al2

Longitudinal (standardized) 
design.

Participants intensively 
monitored.

Standardized outcome 
measure.

Comparison with peak 
power output and 40-km 
time-trial performance.

Specific population (well-trained 
athletes).

Monitored during period of high-
intensity training.

Reasonable to good: comparison with peak power 
output and 40-km time-trial performance outcomes 
contributes to external validation.

Lamberts 
et al18

Allocation to group based 
on HRR.

Longitudinal (standardized) 
protocol.

Groups were not fully matched. Reasonable: As groups were not fully matched, relative 
changes in performance parameter were also compared 
between the 2 groups. Although sufficient, a relatively 
small sample size.

Lamberts 
et al19

Longitudinal (standardized) 
design.

Naturalistic sample.

Standardized assessment 
battery.

Repeatability design.

Athletic sample.

No change in training status.

Reasonable to good: from a statistical perspective 
(measurement error, intraclass correlation) a well-
designed and -described study.

Buchheit 
et al12

Developmental factor 
included (age).

HRV (lnRMSSD) and 
HRR.

Naturalistic setting.

Specific outcomes (above-average 
physically active adolescents).

Not particularly aimed at HRR.

Sample size may be (too) small to 
justify subsamples.

No change in training status.

Significant changes in subjective 
feelings of fitness/fatigue and total 
activity time.

Reasonable: the inclusion of both HRV and HRR is a 
major advantage of this study as it provides the oppor-
tunity to check for external validity. Relatively large 
variations in HRR and significant changes over time in 
subjective feelings of fatigue.

Abbreviations: COSMIN, COnsensus-based Standards for the selection of health Measurement INstruments; HRR, heart-rate recovery; HRV, heart-rate variability.
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In summary, the longitudinal studies can be subdi-
vided into 3 categories: category 1, studies reporting a 
change in HRR with a concomitant change in training 
status18,20,25; category 2, studies that report no change in 
HRR with no change in training status12,19; and category 
3, studies that show a change in HRR but do not report 
adequately how training status changed in their sub-
jects.1,13,17 Based on these findings there appears to be 
empirical evidence that an increase in HRR occurs when 
the training status or (physiological) fitness improves in 
healthy individuals.

Discussion
Although an extensive literature search yielded 90 sci-
entific articles, only 12 articles matched the criteria and 
described HRR and training status in healthy subjects. 
Seven of these studies were not found by standard search 
terms but were indirectly derived from the 5 articles that 
remained after the search protocol. In some cases the 
keywords attached to an article were not optimal to cover 
its content. The available studies substantially differed in 
methodology (both in design and ways to calculate HRR), 
research population, and type of physical challenges used 
to induce a cardiovascular effect. The available studies 
could be divided into cross-sectional studies (comparing 
HRR between groups) and longitudinal studies (study-
ing changes in HRR over time). In general, the results 
of longitudinal studies are more reliable than those of 
cross-sectional studies since they exclude the possibil-
ity of selection bias. In addition, this research design 
provides the opportunity to determine the association 
between the change in HRR and the change in training 
status. These associations have a practical application 
for the ongoing monitoring of athletes. In 1 study12 both 
designs were combined.

The focus in this review is on HRR. However, both 
HRR and heart-rate variability have been identified as 
powerful indicators of an individual’s well-being and 
physiological training status due to their close link with 
the autonomic nervous system.26 Although some authors 
suggest that HRR seems to be more responsive to recently 
applied training loads,26,27 more recent work28,29 shows 
that heart-rate variability can also track fast changes in 
training status.

When reviewing the articles it became evident that 
changes in HRR could only be well interpreted if changes 
in training status were also well documented. As several 
studies1,12,17 did not accurately report training status and 
changes, these studies were hard to objectively interpret.

Overall, 3 cross-sectional studies14–16 showed a faster 
HRR in well-trained than untrained healthy individuals. 
In addition, 3 longitudinal studies reported a faster HRR 
with an improvement in training status after a training 
intervention.2,18,20 Two longitudinal studies12,19 showed 
that HRR did not change when training status did not 
change. The groups were not well matched for body 
composition (eg, body-mass index, sum of skinfolds) or 
training status (eg, maximal running speed and competi-

tive playing time) in the study of Buchheit et al,12 and 
their results should be interpreted with caution.

These results support the notion that HRR has suf-
ficient sensitivity to also be used as an indicator for train-
ing status in healthy individuals. In support of this, the 
cross-sectional study by Bosquet et al22 showed similar 
HRR rates in subjects with same peak treadmill-running 
velocities (training status). We challenged their concept 
that ventilatory threshold should be seen as the only 
indicator of training status. We were unable to objectively 
interpret the findings of Hautala et al,17 as no real changes 
in training status were measured, and subjects took part 
in a relatively short training program (2 wk).

The findings by Borresen and Lambert1 seem to 
contradict the findings in the other articles, as they show 
that HRR decreases with an increase in training load and 
there was a tendency for a faster HRR with a decrease 
in training load. The authors speculate, however, that 
the decrease HRR with an increase in training load can 
possibly be explained by a sharp increase in training 
load (training impulses increased by 55% ± 22%), which 
made the subjects show symptoms of overreaching. The 
findings by Lamberts et al18 support this hypothesis since 
subjects with a decrease in HRR improved their 40-km 
time-trial power output less than subjects who had a con-
tinuous increase in HRR. In contrast, in a case study in 
an elite cyclo-cross cyclist, HRR increased along with a 
large increase in training load.30 The authors explain this 
observation as representing a decreased sensitivity to the 
sympathetic nervous system in line with earlier work of 
Lehmann et al31 and speculated that a faster HRR will be 
observed with acute fatigue while a slower HRR is found 
with a chronic fatigue state. These findings suggest that 
HRR can be used not only to predict changes in training 
status but also to monitor the accumulation of fatigue.

Confounders
Apart from training status and possibly the accumulation 
of fatigue, other factors can affect HRR. These factors 
are briefly discussed following and are based on the 
available literature, including articles not included in the 
systematic review.

Personal Factors

Age can affect HRR. The maximum heart rate varies con-
siderably between subjects and decreases with increasing 
age32 but may also have a small dependency on training 
status.33 As age increases, maximum heart rate decreases. 
If thresholds for HRR such as 12 beats/min34 are used as 
risk indicator for cardiovascular diseases, elderly subjects 
will therefore easily be assessed to be at risk. In line with 
the decrease in maximal heart rate with age, Antelmi et 
al35 observed a slower HRR in older subjects. Even inde-
pendent of age, subjects with high peak heart rates have 
better HRR.36 Age can therefore be a potential cofounding 
factor when assessing change in HRR measurement over 
longer periods (>5 y).
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Gender may be a factor of relevance, as well. 
Although Arena et al37 observed faster recovery in males, 
Antelmi et al35 found just the opposite, while Lamberts 
et al38 did not report gender-based differences.

The article by Hautula et al17 showed that genetic 
polymorphism in acetylcholine receptor M2 (CHRM2) 
also partially explains HRR. This finding indicates that, 
especially within homogeneous groups, changes in HRR 
need to be used with care as an indicator of overall train-
ing status and, rather, changes in HRR should be used as 
an indicator of a change in training status.

Exercise Intensity, Type, and Duration

Exercise Intensity. In contrast to heart-rate variability-
analysis, measurement of HRR has to be preceded by 
an exercise period. Obviously, high exercise intensities 
will result in high heart rates and therefore are likely to 
create a larger decrease in heart rate after the cessation 
of exercise.39 HRR from maximal exercise seems to be 
slightly slower, mainly because sympathetic activation 
may carry on into the early stages of recovery.25,40

Type and Duration of Exercise. The mode of exercise 
(intermittent vs continuous, endurance vs resistance41) 
and exercise duration39 affect HRR. Since the human 
body adapts to exercise, differences are observed in HRR 
between different types of exercise: Athletes engaged 
in intermittent sports have faster HRR than endurance 
athletes.42 In addition, differences are observed in HRR 
for different types of endurance exercise. HRR yields 
higher values for running than for cycling, which is 
probably related to the higher aerobic demands in 
running.43 Otsuki et al44 observed that both strength- 
and endurance-trained subjects show improved HRR 
compared with controls.

Based on the mentioned confounders, the use of a 
standardized exercise protocol before HRR is measured 
is imperative to yield consistent results. Standardization 
has to address the exercise mode, intensity, duration, 
and frequency. Examples of standardized protocols are 
the HIMS,2,38 a submaximal running test consisting 
of 4 stages that aims to elicit a submaximal heart rate 
90% to 95% of heart rate maximum, from which HRR 
is measured, and the 5′-5′ test,45 a submaximal running 
test in which subjects run for 5 minutes at speed of 9 
km/h, which is followed by 5 minutes of seated rest 
during which HRR is measured. However, since these 
tests have a fixed exercise intensity, a change in training 
status might result in a different heart rate at the end 
test, and subsequently one would calculate HRR from a 
different heart rate. A recent study by Lamberts et al,46 
however, shows that this possible confounding effect 
can be minimized if the heart rate at the end of the test 
is 86% to 94% of the maximal heart rate. Minimization 
of the measurement error improves the ability to detect 
small changes between interventions.

Another way around this limitation is to fix the 
submaximal heart rate before the measurement of HRR. 
This approach has been adopted in the submaximal cycle 

test when it is designed to finish at 90% of heart-rate 
maximum.19 This method ensures that HRR is always 
measured from the same submaximal heart rate and thus 
reduces variation in HRR.

Environmental Factors

It is increasingly difficult to release body heat to the 
environment when the ambient temperature and humid-
ity are high, wind is absent, and the sun heats the body 
through radiation. In those cases of climatic strain, the 
blood vessels in the skin open up, resulting in reduced 
venous return, which is compensated by an increased 
heart rate.47 In line with these observations, Kilgour et 
al47 found a slower HRR after work in the heat than after 
work under thermal-neutral circumstances. The same 
mechanism also applies for rest in the heat.

Calculation Methods

HRR is calculated over different time frames, generally 
ranging between 30 seconds and 2 minutes. Most studies 
use the difference between the end value of exercise and 
heart rate after 60 seconds of recovery as the dependent 
variable. Lamberts averaged the heart rate at the end of 
exercise over the last 15 seconds and took the 1-minute 
value as the average over seconds 45 to 60.2,38 This 
method seems to be more objective and is less dependent 
on the exact actual moment of cessation of exercise.

If 2 minutes are used to calculate HRR instead of 
a single minute, the decrease in heart rate is obviously 
higher. After 2 minutes, the heart rate is closer to base-
line values. It is well documented that the results differ 
between methods:37,48 HRR after 1 and 2 minutes should 
be considered different parameters. Some authors argue 
that using the values only after 1 or 2 minutes of exercise 
disregards the information between the time intervals and 
propose fitting an exponential function.49 However, the 
simplicity of the 1-minute method should be appreci-
ated. Although Bosquet et al11 observed no differences 
in reliability between the HRR after 1 minute, 2 minutes, 
and the fitted function, Lamberts et al38 clearly showed 
that the coefficient of variation of the HRR measure-
ment was significantly higher after 2 minutes than after 
1 minute. It is important that a consensus be reached on 
the time frame over which HRR should be calculated. 
The available data suggest that HRR after 1 minute has 
a better capacity to detect meaningful differences over 
time than HRR measured after 2 minutes. HRR is gener-
ally expressed in absolute terms (beats/min). It may be 
useful to express it relative to the heart-rate recovery (ie, 
the difference between resting and maximal heart rate) 
to minimize interpersonal differences.

Traditional Statistics and Magnitude-
Based Inferences

In most studies, traditional statistics (P < .05) are used 
to test a hypothesis and determine if a parameter has 
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significantly changed over time. Although sometimes 
no significant differences can be shown (due to, for 
example, a small sample size), the change in parameters 
can still be clinically relevant. To objectively quantify 
this, Batterham and Hopkins50 have proposed an addi-
tional statistical analysis known as magnitude-based 
inferences. This method quantifies the likelihood of a 
difference being clinically relevant. For this procedure, 
normal day-to-day variations of the parameter need to 
be known. Normal day-to-day variation in HRR have 
been studied by Lamberts et al25,38 and Buchheit et al.12 
HRR in a large group of individuals working at different 
exercise intensities varies by 8 ± 3 beats on a day-to-day 
basis38; individuals who reach heart rates of 85% to 95% 
of heart-rate maximum vary by only 6 ± 2 beats.25 In 
addition, Lamberts recently showed that adapting work-
load decreases the typical error of measurement of HRR, 
achieving the highest sensitivity to detect meaningful 
changes at 86% to 94% of heart-rate maximum.46 The 
typical error of measurement of HRR in the submaximal 
cycle test was 2 beats.19 In addition to magnitude-based 
inferences, day-to-day variation in HRR can also be used 
for sample-size calculations for future studies.

Practical Applications
Cross-sectional studies show that HRR is faster in trained 
than in untrained healthy individuals. All longitudinal 
studies, except for that of Hautala et al,51 support the 
capacity of HRR to quantify differences in training status 
between trained and untrained healthy individuals. When 
fatigue or a state of overreaching are excluded, HRR 
improves with a better training status, remains unchanged 
with no change in training status, and decreases with a 
decrement in training status. Therefore, based on the lim-
ited and diverse literature available, we recommend HRR 
as a possible tool to monitor training status in athletes and 
less well-trained subjects, to optimize training programs 
and monitor the accumulation of fatigue. The use of HRR 
to indicate overreaching still has to be investigated.

Nonetheless, changes in HRR need to be in inter-
preted with care. Confounding factors such as the testing 
protocol after which HRR is measured, environmental 
factors, genetic polymorphism, state of fatigue, and pos-
sibly age and gender need to be taken into account when 
interpreting changes in HRR. The effect of confound-
ing factors such as climate on HRR needs to be further 
investigated and at least taken into consideration when 
interpreting HRR on both an individual and a group level.

While it is difficult to make a fair comparison 
between studies due to presence of several factors 
influencing HRR, each study itself can be seen as a 
valuable contribution to the knowledge pool. Most of 
the investigated studies observed improvement of HRR 
when training status improved, and we could identify 
methodological flaws in the studies that did not show 
consistent results.

In addition, it is important that HRR be measured 
after a standardized test, which elicits a similar heart rate 
relative to its maximum and is associated with the lowest 
possible typical error of measurement. The error can be 
brought down to about 2 beats/min, which guarantees 
the highest sensitivity to detect meaningful changes in 
HRR due to training or fatigue in athletes. Focus of future 
studies should be to confirm that fatigue can be monitored 
with HRR and to establish the difference between heart-
rate variability and HRR.
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