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In this paper, the influence of magnetic shunt geometry on the transformer leakage field and short-circuit impedance is examined. The
magnetic-field computation is conducted with the use of a particular hybrid finite-element method (FEM) boundary-element method
(BEM) formulation, facilitating the parametric investigation of magnetic shunt effects through application of appropriate boundary
conditions. A design sensitivity analysis for the optimization of the shunt geometry ensuring a desired change in short-circuit impedance
and shunt losses has also been developed, in conjunction with the magnetic-field model.

Index Terms—Design optimization, finite-element (FEM) boundary-element (BEM) hybrid methods, sensitivity analysis, transformers.

I. INTRODUCTION

UMERICAL field-analysis techniques used in con-

junction with optimization algorithms for the design
optimization of magnetostatic devices are widely encountered
in the technical literature and both the finite element method
(FEM) [1], [2] and boundary element method (BEM) [3] have
been employed for this purpose.

In cases where the difference between the actual (measured)
and specified transformer short-circuit impedance value does
not satisfy the contracted specifications or limitations imposed
by international standards [4], design modifications should be
implemented in order to meet the specifications. Appropriate
magnetic shunts placed along the transformer tank walls can in-
crease the magnetic leakage field and the winding leakage in-
ductance. Experimental study of this kind of shields is carried
out in [5], while in [6] and [7] the transformer tank shield geom-
etry is optimized with the use of three-dimensional (3-D) FEM.

A method based on a particular FEM-BEM hybrid formula-
tion has been developed in [8], presenting important advantages
in power transformer parameter evaluation. In this paper, this
method is extended to cases involving the shape optimization
of power transformer magnetic shunts. The proposed method,
which has been validated through local field measurements, is
particularly suitable for use with optimization algorithms, as it
reduces the total time needed for the magnetic field calculation
during each iteration. The shape optimization is combined with
the shunt power loss minimization, resulting to total cost reduc-
tion of the magnetic shielding.
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Fig. 1. Perspective view of the transformer one phase part modeled.

II. TRANSFORMER MODELING WITH MIXED FEM-BEM

For the transformer magnetic field simulation, a particular
mixed FEM-BEM formulation was adopted [8]. Fig. 1 illustrates
the three-dimensional one phase part model of the considered
three-phase, wound core power transformers, consisting of the
low-voltage (LV) and high-voltage (HV) winding of one phase
as well as the iron cores that surround them. The model is di-
vided in two regions.

1) The active part (FEM region), represented by a tetrahe-
dral finite element mesh. A scalar potential formulation,
necessitating no prior source field calculation [9] is used
for the derivation of the magnetic scalar potential ® in the
mesh nodes.

2) The area between the active part and the tank walls
(BEM region), represented by a triangular mesh of its
boundaries.

This formulation is suitable for the transformer parameter eval-
vation and the considered optimization problem, as it enables
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easier implementation of moving boundary of shield (along the
tank walls) through BEM technique. Moreover, the choices of
meshes for the transformer active part and shield are completely
independent (a gradual mesh size change is necessary, in case
of surrounding air discretization by FEM).

III. GEOMETRY OPTIMIZATION OF MAGNETIC SHUNT

A. Mathematical Formulation

The general mathematic form of the magnetic shunt geom-
etry optimization consists in the minimization or maximization
of an objective function F(X;), where X; is the vector of the
design variables of the problem. In case of the magnetic shunt,
the design variables comprise the geometrical parameters of the
shunt, while the objective function is governed by the desired
change in the transformer leakage field. The vector X; is sub-
ject to constraints imposed by the transformer geometry (active
part and tank dimensions).

B. Optimization Algorithms

The following optimization algorithms, [10], have been tested
in case of magnetic shunt optimization.

1) Steepest Descent Method: The steepest descent is a gra-
dient-based method, i.e., the search direction S; for the optimal
solution is constructed using the gradient of the objective func-
tion. The descent direction is obtained by reversing the gradient,
according to

S; = —~VF(X;). (1)

2) CG-FR Method: The conjugate gradient Fletcher—
Reeves (CG-FR) method is a variation of the steepest descent
method, where the search direction for the solution is given by

VF(X;)TVF(X;)
VF(X_L_I)TVF(XL—I) .

S; = —VF(X;) + )

3) DFP Method: The Davidon—Fletcher—Powell (DFP)
method is a quasi-Newton, variable metric (VM), gra-
dient-based method. In quasi-Newton methods, the history
from all previous iterations is collected into a n X 7 matrix

[A;], called the metric, which is updated with each iteration
and is used to establish the vector S; as

Si = —[A|VEF(Xi),

Y = VF(Xij1) — VF(X;) }

Z=[A)Y, [A]=[A]+ 5505 - %2 3
4) BFGS Method: The Broydon-Fletcher—Gold-

farb—Shanno (BFGS) method is another VM method, whose
metric is updated according to (4) and converges to the Hessian
of the objective function as the solution is approached

S; = —[A)VF(X;), Y =VF(Xi11)-VFX,)

T VF(X,))VF(X;)T
[Ai1] = [Ai] + 9% — V<F()X4)T(Sq')

“)
5) Pattern Search Method: In this nongradient optimization
method, the search direction is cycled through the number of n
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Fig.2. Comparison of measured and computed field values along the line AB
of Fig. 1 during short circuit.

TABLE 1
SHORT-CIRCUIT IMPEDANCE VALUE FOR DIFFERENT GEOMETRY OF MAGNETIC
SHUNT ON A 400 KVA, 20-15 KV/400 V TRANSFORMER

0,
Geometry of magnetic shunt Uk (%)

Coarse mesh Dense mesh
Initial value (no shunt) 7.43 6.75
Magnetic shunt on the tank wall near the
HV winding 7.60 6.92
Magnetic shunt on the tank walls near the
HV winding and above the iron cores 7.71 7.02

variables in sequence and the n + 1 search direction is assem-
bled as a linear combination of the previous n search directions
according to

Si = Z Oéjéj (5)
7j=1

IV. RESULTS AND DISCUSSION

In order to investigate the accuracy of the proposed hybrid
method for this class of problems, the computed field has been
compared to the measured one by a Hall effect probe during
short-circuit test. Fig. 2 gives the variation of the perpendic-
ular flux density component B,, along the line AB, positioned
as shown in Fig. 1, for a 400-kVA, rated primary voltage 20
and 15 kV (dual voltage in primary winding), rated secondary
voltage 400-V, three-phase, wound core, power transformer in
case of short circuit. The figure illustrates the good correlation of
the simulated results with the local leakage field measurements,
enabling application of the method in geometry optimization.

A. Formulation of the Objective Function

In order to evaluate the most effective shunt configuration,
the short-circuit impedance has been calculated before and after
the placement of shunts above and beside the transformer ac-
tive part. Table I presents the simulated short-circuit impedance
(Uk) by using a coarse and a dense mesh (comprising 2000
and 90 000 nodes, respectively). The short-circuit impedance is
overestimated approximately 10%, when a coarse mesh is used,
adifference relying on the fact that, with the use of this mesh, the
magnetic filed sources (coils) area is not represented in detail,
resulting to respective overestimation of the current density and
the calculated Uj. The overestimation is practically constant for
all three cases in Table I, as the active part mesh is the same and
the sparsity of the mesh in the coils region affects the results in
the same way.
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Fig. 3. Short-circuit impedance variation with the distance of magnetic shunt
placed on the tank wall.

The results of Table I indicate that the geometry of the shunt
near the HV coil is the one influencing the most the Uy, variation.
An investigation of the influence on U of the shunt distance
from HV winding for this type of shunt has also been conducted,
and the respective results are shown in Fig. 3. During this inves-
tigation, the shunt area was considered to be equal to the surface
of the respective tank wall.

According to Fig. 3, an increase from 2% up to 4% can be
achieved by approaching accordingly the shunt to the external
HV coil surface. However, in such a case, the increase in the
shunt power loss must be considered, since, as the distance from
the windings decreases, the eddy current losses in the shunt in-
crease, resulting to significant rise in the total transformer power
loss. Moreover, changes in the shunt geometry (with respect to
its distance from the windings) may produce different results in
the Uy, increase, thus optimizing the total shunt material needed
for the achievement of the objective variation in the short-cir-
cuit impedance. Therefore, the search for the optimal configura-
tion of the magnetic shunt becomes a complex task, taking into
account variations of three variables, namely, the shunt width,
height, and distance from HV winding. This is solved as a non-
linear, multicriteria, constrained optimization problem.

The objective function must take into account the three
factors mentioned above: desired increase in short-circuit
impedance, restrain of the increase in the shunt power loss and
minimization of the shunt material. During the optimization
process, the objective function value is calculated with the use
of the hybrid FEM-BEM method described in Section II and
a dense mesh (see Fig. 4). The analytical expression of the
objective function is given by

DU — DU ppeale Geale
F = + shunt + shunt (6)
= w1 DUspec w2 Dpmax gmax
k shunt shunt
where

DU calculated increase in the short-circuit impedance;

DUP*®  specified (desired) increase in Uy;

DPSMe - calculated increase in the shunt power loss (com-
pared to the shunt power loss for the maximum
distance from the transformer windings);

DP;3*. maximum permissible increase in the shunt loss;

gfﬂfm shunt surface used during the current iteration;

SHax. maximum shunt surface;

w1, wa, ws weight coefficients of the objective function com-
ponents.

A physical interpretation of the multiobjective function

weights is that they should be proportional to the cost impact

of the respective objective function components. This penalty
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Fig. 4. Geometry of magnetic shunt configuration and design variables.

TABLE 1II
RESULTS OF DIFFERENT OPTIMIZATION METHODS (SPECIFIED DUk = 4%)

Optimal Shunt Geometry — Shunt . "
) ) Total ~Distance DU ™ DPZ’ ¢ No of
Method  width  Height Areq from HV coil (%]; (s%jm Iterations
(mm)  (mm) (mm") (mm)
Steep. 35000 683 23904  5.89 400 129.86 12
Descent
CG-FR 34246 58.1 19909 0.43 4.00 137.05 11
DFP 34999 577 20192 1.09 398 121.58 20
BFGS 350.00 56.1 19643 0.19 4.00 121.58 34
Pat.Search 350.00 86.9 30403 10.08 4.00 141.73 5
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Fig. 5. Convergence to the target U, value of the optimization methods
illustrated in Table II.

approach was preferred from other stochastic methods, such as
evolutionary algorithms, due to the larger number of function
evaluations required by the latter ones. This fact has a great
impact in the computational efficiency when considering ob-
jective function evaluations based on numerical techniques,
especially in cases of 3-D configurations [11].

B. Comparison of Different Optimization Methods

The methods presented in Section III.LB were used to
minimize the objective function (6) in case of DU =
4%,DP3> = 100%, and S52%, = 60000 mm?. Table II
summarizes the respective results for the optimal shunt geom-
etry, the calculated increase in the short-circuit impedance and
the shunt power loss (corresponding to the optimal solution
given by each method) and the number of iterations needed for
the convergence of each method. Fig. 5 illustrates the variation
of the difference between the specified and calculated increase
in U}, with the iterations of the methods of Table II.

The observation of the results listed in Table II and the curves
of Fig. 5 leads to the following conclusions.

1) The pattern search is the quickest converging method,

providing the optimal solution in the smallest number of
iterations. However, this solution is inferior to the ones
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Fig. 6. Sensitivity of objective function and its components to the variation of
weights coefficients.

provided by the gradient-based methods, as it corresponds
to the greatest increase in the shunt power loss and area.

2) Between the gradient-based methods, the CG and the
steepest descent are the ones concluding to the optimal
solution in the least number of iterations. The CG solu-
tion is more effective in terms of construction cost, as it
corresponds to the minimum total area.

3) The CG and BFGS methods converge practically to the
same minimum, the only difference between them con-
sisting in the total number of iterations.

4) Table II presents a significant variation between the
optimal shunt height and distance from HV coil, through
the different optimization methods. The CG-FR and
BFGS methods result to the smaller distances (0.43 and
0.19 mm, respectively), which correspond to cases of
shielding involving small optimum distance and reduced
shield dimensions.

According to the above observations, the CG-FR method
appears to be the most effective one for the solution of the
magnetic shunt geometry optimization problem.

C. Sensitivity Analysis

A common difficulty with multiobjective optimization
problem is the conflict between the objectives. In the optimiza-
tion process of Section III, the weighted sum strategy was used,
i.e., three objective functions were combined into the overall
objective F' such that

3 3
F(Xi) =Y wifi(Xi), 0<wi<l, Y wi=1 (7)
=1 =1

For the selection of the appropriate weight vector w; and the
optimal scaling of each objective function component, a sen-
sitivity analysis was carried out, with the use of CG-FR, i.e.,
the most effective of the methods presented in Section IV-B. A
parametric investigation was realized, examining the impact of
the weighting factor w; alteration to the variation of F and its
components f1(%), f2, and f3 for different values of wy (w3
is dependent on w; and ws according to (7)). Fig. 6 illustrates
this variation for wy = 0.1. According to the diagram of Fig. 6,
the objective function local minima appear for w; = 0.1, 0.6,
and 0.8. However, for w; = 0.1, the deviation from the speci-
fied increase in Uy, is close to 100%, while the shunt loss and
area ratios are low enough to minimize the overall objective
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function. For values of w; above 0.3, the desired increase in
the short-circuit impedance is achieved with acceptable toler-
ances in the two other objective function components, while for
wy >0.6 the components f; and f3 increase significantly. The
extraction of the curves of Fig. 6 for greater values of ws pro-
duces local minimum values of F greater than the one appearing
for we = 0.1. Consequently, the choice of a weight coefficient
vector equal to (0.6, 0.1, 0.3) is considered the most appropriate.
This result has been confirmed through repetition of the above
analysis with plots of F, f1, fo, and f3 sensitivity to the alter-
ation of wo and ws.

V. CONCLUSION

This paper introduced the application of a 3-D mixed
FEM-BEM method, based on a particular scalar potential
formulation, to the geometry optimization of magnetic shunts
on power transformers. The problem was solved as a non-
linear, multiobjective, constrained optimization problem and
the proposed method was combined to several deterministic
optimization algorithms. The CG-FR algorithm showed the
best results in terms of convergence rate and optimal solution
quality. For the optimal scaling of the multiple objectives con-
sidered, a sensitivity analysis was carried out, resulting to the
appropriate formulation of the compound objective function.
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