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ABSTRACT

A systematl# procedure is developed for solving the eigenvalue
problem for a broad class of Hamiltonian operators containing no
terms higher than quadratic in generalized coordinates and their
conjugate momenta, The development is oriented toward practical
- applications in the area of the many-body problem., The procedure
accomplishes a canonical reduction of such a Hamiltonian to the
form of the Hamiltonian for a collection of noninteracting bosons,
‘with the eigenvalues of the Hamlltoﬁian expressed in terms of the
solutions to a single secular equation,

Application of the results to systems of interacting identical
bosons is discussed, including a presentation of a useful calculational
technique, - The procedures developed are illustrated by detailed
treatments of two specific problems of interest in physics,

The first problem considered is an exactly solvable separable
poteﬁtial model of particle fleld.thebry. This problem consists of
the description of a collection of light bosons interacting wfth an
infinitely heavy boson via a simple separable potential., Interest
in this problem centers on its use as a test case for approximation
techniques to be used on more complicated systems,

The second and more realistic problem investigated Is the

polaron problem of solid state physics, This problem involves the

v .



description of the motion of a single conduction electron within an
ionic solid, The polaron consists of the conduction electron
together with its self-induced polarization field, The polaron
problem is of interest not only because of its value in solid state
physics, but also because it, too, is useful as a testing groqnd
for approximation techniques,

Finally, broad applicational aspects of the procedures

developed are discussed,



CHAPTER 1

INTRODUCTION
(1,1) Objectives

The behavior of many physical systems may be described or
approximated by a (Hermitian) Hamiltonian operator which contains
no terms of order higher than quadratic in generalized coordinates
and their canonically conjugate momenta, The general form of

such a Hamiltonian is:

H=H.«H «H,

(1,151)

with

iy

Z[CJPJ +djclj]
J (1,1;2)

and

H=% EJ:[ s 7R, T4+ Ear(pyy Pﬁl

(1,1;3)



2

(1,1)

where j-and j' are.indices running 1,2,3,...,N (In some applications
the 1imit N = « Is taken,); qj is a generallzed coordlnate and pj

is its conjugate momentum; ujj" wjj" and zjj' are feal, symmetric
functions of j and j'; cJ and dJ are real functions of j; and Ho Is
a real constant, Consideration will be restricted to treatment of |
"the broad class of physical systems which possess a ground state

and whose Hamiltonian may be cast into the preceding form with

& U,.,P.p.y =~ 0,
jj" Ji'Ni%i

A trivial example of (1,131) is a Hamiltonian of the form

E |2, 2 z] .
= S— —-m' 1 [} -
H _ szFj Tz Miwiq; +H°,
J (1,1:4)
~where nh‘and (.o-i are real positive functions of j, |If Ho = 0, then
H is of the form of the Hémiltonidn for a set of N noninteracting

h

simple harmonic oscillators for which the jt one has mass "5 and

an angular frequency uh. If

H":-%Z\;w‘“

then # has the form of the Hamiltonian of a collection of bosons of

N types for which the jth typé has an energy of hwj. There are other
interesting physical systems whose Hamiltonians may bé approximated .
by (1,1;1). Notable examples, such as liquid helium,l the phonon

3

field of a polaron,2 and the n-meson field of a nucleon,” may be

selected from various flelds of physics,
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(1,1) - ¢

A central part of a quantum mechanical description of a system is
finding the eigenvalues and eigenfunctions of its Hamiltonian, The
primary objective of the present research is to prescribe a system-
atic and practical procedure for finding the eigenvalues of the
Hamiltonian (1,1;1). The secondary objective is to illustrate the
procedure with'physically interesting examples, The final objective
is to indicate a powerful method of employing the procedure to

systems whose Hamiltonian may be approximated by one of the form of
(1,151,
(1,2) Method

It turns out, as will be demonstrated, that it is possible to
define "new'' generalized coordinates, Qj(j =1,2,,..,n), and correspond-
ing conjugate momenta, Pj? as linear combinations of the '""old'" ones
(the qjis and the pj's) occurring in (1,1;1) through (1,1;3) in such
a way that when H is expressed in terms of them, the result is in

the so called !'completely reduced' form

;) B0} a]
= - o+ , .
H=z Z_F + Q1+ E,,
! (1,2;1)
2 2 2 .
where Eo and Q] , Qz yeoes QN are real constants to be determined,
In view of this result, the eigenvalues of H are well known, Unless
all of the Q.z's are positive, H will not possess a grodnd state,
J
contrary to the previously stated restriction., Hence Qj E1KJQJZ
(j =1,2,...,N) is positive; and the eigenvalues of H are given by



(1,2)

T\\;hz)“'l‘nN

= Z[’ﬁﬂj(hﬁz‘:ﬂ +E,,

J (1,2;2)

where n.j = 0,1,2,... « The eigenfunctions of H are similarly well
known functions of Q],QQ,...,QN, depending parametrically upon

Q],Qz,...,ﬂ Accordingly, the primary objective may be reduced

N.

to finding a practical procedure for determining the Qj's and Eo.
The reduction of the Hamiltonian H to the completely reduced

form (1,2;1) will be handled in two stages. |In the first stage, new

coordinates, qi' 's, and conjugate momenta, pi' 's,will be defined,

in terms of which H will have the form

a— ,..‘.. [ ' / , / ]
=3 Z Uy R+ Vi 959 | Y E,
4 ' : | (]:2;3)

where ij' and E, are to be specified. The first stage will involve
two steps. The first one will eliminate from the Hamiltonian terms
involving products of a coordinate and a momentum, called ''mixed
products.'" The second step will eliminate terms linear in coordinates
and momenta. In the second stage, the '"final'' coordinates, Qj's,

and conjugate momenta, Pj's, will be defiqed in terms of the qj' 's
and the pjl 's, occurring in (1,2;3), so that when H is written in
terms of them, the result is (1,2;1), with Q505 ¢ 0050 determined.
The second stage will involve three steps. First, terms involving

products of different momenta (‘'p-p cross terms'') will be eliminated.



(1,2)

Next, the coefficients of terms proportional to the square of a
momentum will be rendered all equal to unity by a simple, so called
scaling transformation.'! Finally, terms containing products of
different coordinates (''gq-q cross'térms”) will be eliminated. From
~ the considerations involved in stage two, a single secular equation

will be derived to determine QI’QZ""’QN'
(1,3) Notation

The symbolﬁ j and j' are reserved to denote indices running
1,2,3,.44,N.

The following convention will be used. If vj is a singly
subscripted symbol, then, the symbol, v, obtained by dropping the

subscript is reserved to denote the matrix

Similarly, if tjj' is a doubly subscripted symbol, then

'tu T v 'tm

t.').\ t?.’.). reo 't;m

.t

1]

s . SN, (1,3;2)
T tm. e tuu

The transpose of a matrix t will be denoted by t. The unit

*

NxN matrix will be denoted by e.



- 6
(1,3)

Square brackets with exterior subscripts are used to denote the
set of all quaqtities obtained by substituting all possible values of
the exterior subscript into the enclosed function of the exterior
subscript. (Example: |If i has possible values 1 and 2, then

[fiilji = fli" f2;|')



CHAPTER 2
REDUCTION
(2,1) Elimination of Mixed Products and Linear Terms

Recall equations (1,1;1) through (1,1;3):

HzHo'*'H,"'H'Z (2,131)
H Z[CJP +dd%]
(2,1;2)

H=z Z[% Wii 939y +ZJJ'< qur%%ﬂ.
| (2,1;3)

To eliminate mixed products, define canonically conjugate coordinates

q'" and momenta p'' by the equations

M+8qll |
-— H
9=9, ) (2,1;4)
where

-u'z.

coO
"

(2:];5)



(2,1)
Substitution of (2,1;4) into (2,1;1) through (2,1;3) and use of
(2,1;5) yield -
/ '
H=H.+H +H,, |
(2,1;6)
with
/ P
= C‘ I+-F ”]
H, Z[ iR 19,
J (2:];7)
and
H=1 2 Lugpp gy |
> 2 55 P Vir99y 1
JJ :
(2)];8)
where
F=d+gc
(2’];9)
and v is the symmetric matrix
(2,1;10)

To eliminate linear terms, define canonically conjugate coordinates

q' and momenta p' by



(2,1)
a =P
P =P
; q”: q' +m‘
(2;'3”)'
where
L=-2ucC
m=-2v+F.
(2,1;12)
" Substitution of (2,1;11) iﬁto (2,1;6) through (2,1;8) and usé of
(2,1;12) yleld
-1 Y [uypp + qa ]+
H" 2 Z u\“‘PJ,}o +VJJ'QJCL" +E° ¢ |
W | (2,1;13)-
with
et tliuss ]
E,=H.* g2 +Fm+zLIug+Tvml],
(2,1;14)

where equations (2,1;5), (2,1;9), (2,1'10), and'(Z,l 12) express
v, 4, my and f in terms of quantities occurring in the original

expression for H, given by (2,1 1) through (2,1;3).
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(2,2)
(2,2) Completion of the Reduction
Since'the matrix u is real and symmetric, there exists4 an
orthogonal matrix, t, such that the matrix
uwziut
i . (2,2;1)
is diagonal; i.e.,
(2,2;2)

+"sjj2 must be real and

positive. Define conjugate coordinates Q' and corresponding momenta

where; since u is positive definite, sjj

P by |
p'=t P
'<]'='t CD(

(2,2;3)

Substitution of (2,2;3) into (2,1;13) and use of (2,2;1) and (2,2;2)

give

- __I_ 2 nz . g “ 0]
H=2 Z[SJJB §ip + Vi QO3+ B,
JiJ°

(2,2;4)

*For proof that P'' and Q' are conjugate, see Appendix (Al,1).
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(2,2)
"where
vi=tvt.
(2;2;5)

Notice that p-p cross terms have been eliminated from (2,2;4).
Next, define canonically conjugate coordinates, Q', and momenta
P! by
!

Il= . / )
B=sh
Q\;”: Sjj Q‘; . (2,2;6)

For reference, let

s=du’=

(2,2;7)

¥4

and note that the unit NxN matrix, e, may be writteh as
= ¢~ g\ |
= U
S ush (2,2;8)

Substitution of (2,2;6) into (2,2;4) gives

H“'ZLZ[PJ i Vi QQJ] E

W (2,2;9)
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(2,2)
where

n_ = ’ '
V =5V S§=85V'S,
| (2,2;10)
Notice that the coefficient of PJ.'2 in (2,2;9) is unity for all j.

- . - . L] h
Finally, since v'' is real and symmetric, there exists an

orthogonal matrix,r, such that the matrix rv''r is diagonal. Thus

1

VYETV'T

(2,2;11)

9
Define final coordinates Q and corresponding momenta P by‘

'
P=rP
, _
' erQ (2,2;12)
Substitution of (2,2;12) into (2,2;9) and use of (2,2;11) yield the
desired completely reduced form,

H=3 ) B d )+,

J (2,1513)
_ Notice that the deriviation of this result requires the restriction
that u be positive definite, The further restriction that H possess a
ground state will be met if and only jf all of thé sz's are positive
which in turn is equivalent to the requirement that v be poéitive

definite,

“For proof that P and Q are conjugate, see Appendix (Al,1),



13 |
(2,2)

- A useful and convenient single secular equation for the deter-

mination of 012’022""’QN2 may now be derived from the precéeding

results. Let-

y=t5r.

(2,2;1k)

The equation
2_ N2 '
TJT [ﬂ ﬂJ =0 (2,2;15)

clearly yields exactly the solutions 0 = 0,%,0,%+..,0,%. This
equation may be reexpressed as follows by employing equations

(2,2;11), (2,2;8) (2,2;10), (2,2;5), (2;2;])) and (2,2;14) and by

recalling that s is diagonal and that r and t are othogonal:
o=T Lat-03]

= (Ye-ev” “

e -( r"er)(r"v"r>“

Oe-(r's'u's® r"er V'S F)”

e - (r-ls-l 'ut .5"‘ rxr-‘s f‘ vVis r)”

fqﬁf—uﬂyn"

1l

0% -uv



14
(2,2)

Thus, the solutions of the secular equation

| H_Qz_e _uvl=0
(2,2;16)

are exactly 02 = 012,922,...,QN2.

(2,3) Resume of Results

A canonical linear transformation has been found which reduces

a Hamiltonian of the form

H=H, + JZ[CJPJ- +dq,]

+z Z [“JJ'PJ.B. TWirq9, t ZJJ"(E;‘\J-'* 9, Pjﬂ

J) (2:3;])

to the form
H=z LB +0ja ]+ B,
| (2,3;2)
2

In this result, the set {012,02 ,...,QNZ} is the set of solutions of

the secular equation,

lo*e - uvl=0,

| | (2,3;3)

where v is given by
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(2,3)
VEW +Zg
| (2,3;4)
and
g=-u"z.
(2:3;5)
Moreover, E0 is given by
E°=H°+E£+Fm+%[£u£+ﬁﬁvhl
(2J3;6)
where
d=-2uc
m=-2v{f
f= d+§c‘ (2,3;7)

The results summarized in (2,3;1) through (2,3;3) are valid if and
only if either u or v is positive definite. However, according to
the original statement of the problem, both u and v are positive

definite.
(2,4) Translation to Second Quantization Language

It is desirable for applicational purposes to express the pre-
ceding results for obtaining the eigenvalues of H in the language of

second quantization. Such a reexpression of results will be accomplished



16
(2,4)

in a rather direct manner in the present section.
The Hamiltonian, H, given in terms of p and q by (2,3;1) may be

rewritten as

H= ho+ht+h2)
(2,4;1)

with

h ‘ * T]
h‘: 'I? Z[TLJ QJ+TLJO'J
)
(2)4;2)

and

_fLZ:{ . L t +
h,2= % / J- (o5 =1 By) a;a. + etjri By )50
JJ’ '

o, |
+25':;yajaj‘ ; (2,4;3)

wherein
n=c-id
A=W-=W
3=wiu
p=2z |
ho= Ho “‘Z:; \553 (2,4:1)

=175 (q+ip)
a+=%:<q—i';>)- (2,4;5)

and
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(2,4)
In view of‘(z,h;s), ajT and aj satisfy the commutation rules,
17 -
[a‘i ,QJ,] - SJJ'
- T 1=
[aj, aJ.] = [aj ; QJ,] o, - (2,4:6)
appropriate for creation and distruction operators respectively.
Similarly, H, given in terms of P and Q by (2,3;2), may be
rewritten as
- ) lsaAal+ E
CH= L RO A AL+ E
(2,4;7)
where
p— —"—_—""" : )
AJ" 12.‘5.0_J (ﬂij +u P,)
T ' (
A= TR \0,Q;-1 P)
. (2)4;8)
and where, in view of (2,3;3) through (2,3;7) and (2,4;4),
Qz = 012,922,...,QN2 are the roots of the secular.équation
(K% |=0
e -—uv
. (2:4;9)

and

eep BT {32 0]

J

~d g "" ol
+CL +fm + ?_[Iuhmvm]: (2,4;10)
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(2,4)
wherein

c=z(u+®) )
£=7 % (pe*) +% (-0%)
u=7 (-
V=gt - @ (070 |
£=‘ZV'F (2,4;11)
m=-2uc. w

Since, according to (2,4;8), the AUT'S and the Aj's satisfy

the creation and distruction operator commutation rules,
1-
[AJ )AJ'] - 5\“'
Tt at - .
[AJ ) Aj'-] - [AJ' ) Ajl] - O J (2,14-,]2)

then, the eigenvalues of a Hamiltonian of the form of (2,4;1) with
(2,4;2) and (2,4,3) are given directly in terms of the coefficients
occurring in it by

E.n = ZT\Q\;Y)J 'f'_E,o,
¥ J

‘Jnl‘toan

(2’4;]3)

where nj =0,1,2,3,... ,‘nj = +‘i0j2 , and where Eo' and

QIZ,QZZ,...,QNZ are determined by (2,4;9) through (2,4;11).

These results hold if and only if both u and v are positive

definite,



CHAPTER 3

APPLICATIONS
(3,1) Introduction and Orientation

Hitherto the discussion has centered about a systemization of
procedures for canonicaily reducing a quadratic Hamiltonian. It
is the purpose of this chapter to illustrate the application of these
systematic procedures to specific physically interesting problems.

The physical systems which will be used for il]us}ration are
systems of identical, interacting bosons. The discussion of these
systems will be cast in the language of second quantization. The
quantum mechanical states of such a system are to be described in

terms of the single particle states given by

ik-r

s . .

o=
%(m-—We

3

where T is the coordinate vector, V = L” is a cubic normalization
volume, and Kk is the wavevector of a particle in the state v;(?).
The imposition of periodic boundary conditions on the surface of the

normalization volume requires that the ith rectangular component of

K satisfy

19
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(3,1)

(3,151)

and

In the final analysis, the limit L » » is taken so that K becomes a

. continuous variable and

% - | ok

all k-space (3,1;2)

In Chapters 1 and 2, the indices employed have a finite domain
of N elements. For the applications which follow, it will be assumed
tacitly that the results are valid in the limit N = «. This point

will not be belabored here.
(3,2) A Caiculational Technique

Prior to focusing attention on specific physical systems, it

5

will be advantageous to investigate a calculational method.

Suppose it is desired to evaluate



2]

(3,2)

32 ) Gla) - 2 Glot),
o "
(3,2;1)
'where G Is some function of a single complex variable and where the

first summation fs over the set of all solutions for  of the secular

equation

- \ |
“[Q‘w(kﬂ&;w‘"{f‘:(m* F(k)\\ O.

o (3)2;2)
In equations (3,2;1) and (3,2;2), K and k' are indjceé whose domain

is given by (3,1;1); w(k) Is a real function of ks and

Fliys FB* 2. KRR,
(3,2;3)

wherein n is a finite (preferably small) positive integer and

Ei(ﬁ) is a real function of k and i, Since w(?)&uz, + F(ib*F(K')

is real and symmetric, the solutions for Q of equation (3,2;2) are
real, It will be assumed, moreover, that the greatest lower bound,
‘wo, of\the union of [Q]0 with [w(ﬁ)]z is a positive number, .

in a complex plane, z,‘qonslder a path, P, which encloses the

locus, L, of all points, z,ﬂon the real axis such that i > W
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(3,2)

Bramech cut

of L032-2 L:Re(®2w,, In(R=0 _

¥

—-——-——-.—-..L—-.—-————-.’
3
}
]
}

If G(z) is analytic everywhere within and on the closed contour

P, then
l G (&) G(2)
g;-é: ?-mf dz Z §z w(k\az
k
(3,2;4)
= 1 - A l
A dz G(Z‘)[Z; - Z Z-w(-\;)]
P

) 4 (3:2;5)

For -all z not on the locus L indicated in the accompanying

diagram, define



J@ =TT (z-0)

< | l2- w6y - & F@eFll

J@:T l2- @)
! .

- ” [2- w('!?)] Sc 1 “ )

and -

I _ W(E-n) .
5@ T [z-w®)]
k

RECE

Thus from (3,2;5) and (3,2;8), it follows that

9 =7 j;az Gla 5 Koy (D),

P

23

(3,2)

(3)2;6)

(3,2;7)

(3;258)

(3,2;9)
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(3,2)

= | 3 .
o?pcr? z /&7 Z.I + dn?z. -

(3)2;”)
Integration by parts once yields
.%:. vaidEG‘ Z)Xt?r<23.
P (3,2;12)

By definition of I'(z) in (3,2;8), (3,2;7), and (3,2;6),'one may

_ I | | .
iz = o] z- w@) &2~ 57 FeRIFiR))]
_ ) 5-*-* _ A | F(E)*F(E') ‘\
STV {z- e fz-wm@

‘Let
R ()

Q(k F (Z w(k)
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(3,2)

or

M= 18- 2 @ubaan |,

k
(3,2;13)

where i and i'are indices running 1,2,...,n. (See Appendix (Al,2)

for justification of the last step.) Thus

Pm*” b=~ Z Z“"j}‘;’n

(3,2;14)
Using (3,1;2), one may write
R (k) Fe(k) | Rl Rt _
[ [ M __,’
- Z - wk) w3 d’k Z- w(k) I'"L
k : :
("":2;]5).

Hence, T(z) is a sum of a finite number of terms; one being unity,
others being products of_up to N.intergals of the type Iiil’the inte-.
grands of which involve only known functions.

Since G'(z)Log T'(z) is analytic above and below the real axis and
on the real axis between 0 and Wy the path.P may be allowed to

approach the locus L. Let z = x + is. Then, (3,2;12) becomes
- w | . 0 W \

8 = 6%:”; ST, ) P G'(Mic)aﬁ, r(#i‘)-f- de'(l-ii)xo‘ T'(x-i6)

i

L)
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(3,2)

- 9= # 'de G [%ﬁ'; -(Xaar‘(xne)-a&v F‘(x—:.e)iﬁ

(3:2;]6)

Let T(x + ie) = u(x) + iv(x). From (3,2;14), it then follows that
I'(x - ie¢) = u(x) = iv(x). By defining

L,

E=O

[((x Lé)‘ = M (x)

and

f‘i”; O.n? l—‘(xt.i.e): MW,

(3,2;17)

one may write

EZ—TS [fa? Mx+ie) - Xo'? Y‘(;vte)}“ 2L,

Hence, from (3,2;16), one concludes that

=%J G O,

(3,2;18)
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(3,2)

where, in summary, from (3,2;11), (3,2,13), (3,2;14), (3,2;15), and

(3,2;17), oné has

Lo,
M (x) = €*O%P(x+ie3 )

[Mxeie) =

61~ gt [EDED |

L 3
g %= ewlk) +1E

U= 1,2, n. J (3,2;19)

This result makes it possible to perform sums over solutions of a
multidimensional secular equation without directly evaluating the
density of the solutions, in the limit as the dimensionality of the

secular equation becomes infinite.
(3,3) A  Separable Potential Model in Particle Field Theory

In the following, the procedures developed previously are
applied to the investigation of a two-body separable potential,
field-theoretic model. This model is of interest because it is an
exactly soluble model and is useful for testing calculational
techniques. Previous studies of this model have been made by

7

Urrechaga=-Altuna and Chi]dress,6 Henley and Thirring,
9

Kazes,

Yamaguchi,” and Yamguchi and Yamaguchi]o to mention but a few.
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Consider the simple separable potentia1 model in which light
neutral scalar bosons of rest mass, my interact with a static heavy

_neutral boson of mass M in a manner described by the Hamlltonlan,

H= H+ H;

(3,3;1)
' where ‘
H;" ‘f\.; w(l:)'g-,; by,
(3,3;2)
Hi'= X6 2 F 06 b; b
Py
(3:3;3)
Hhwlk=c (k’+)})%,
(3,3;4)

A is the interaction coupling constant, ¢ is the speed of light and

b= moc/n . The function f(k) is a function of the magnitude of. the
wave vector K and is assumed to have such analytic properties as

may be necessary to guarantee the existence of any integrals encountered.
The operators b'-r. and b'l'z respectively designate creation and an-‘

k
nihilation operators for light bosons of momentum n;-l'c.'and satisfy the



commutation relations

[E]; , \32'}= 5-‘:;%
[b;;, b;;']= O .
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For notational convenience the natural system of units

h=c=]

will be used in the following.

(3:3;5)

It may be noted that (3,3;1) is of the form of (2,4;1) through

(2,4;3) wherein the following identifications are made;

Clj — t)r

Hip= G5p7 1y =ho= 0

o= B e 2 Lo Se + 1 §0040)

’N‘

%

(3,3;6)

Hence, it follows from the procedure outlined in (2,4) that, if y is

positive definite, there exists a canonical transformation, which

reduces (3,3;1) to the form

H=2. 0,88,

(3,3;7)
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with

[B,,B1=8,,.
B, Bl=0.

In these equations v and v' are members of an index set whose elements
may be put into one-to-one correspondence with the domain of K, (3,131),
Qv 4{0 2, and the Q 2's are the solutions for 02 of the secular

equation (2,4;9); i.e., .

[0t - 3 2 b e ll=0

or

= ” _Z [ﬂ Sive Sprie ™ z‘kl?' e “

k”

Z [-O- 512"" i‘"k‘ .O. Xk W g*n

20 % St ~ ¥ i Yoo 1 “

=1 Hasm-ttlase st

'\:u
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“.O. S;;: - %Z\W “\\QSW + "‘2'_' X\ﬁl‘i’“ = 0.

(3,3;8)
Note that the solutions obtained by setting either one of the im-
mediately preceding determinants equal to zero are just the negatives
of the solutions got by setting the other to zero, Hence, all the
sz's may be obtainéd by solving the secular equation for either
determinant, However, equation (3,3;8) is valid only for y positive
definite; and one way to determine the positive definite character

of v is to find its eigenvalues, Hence, if the solutions to

”Q (S'k‘;' - -‘7 ZS‘-‘;;;' “:O

are positive, then y is positive definite and the solutions are the
required ones; otherwise the system fails to have a ground state,

Substituting (3,3;6) into this secular equation yields

l0- w8z - 20000l T (-0 0.
~ (3,3;9)
To solve this equation, first regard the normalization volume,
V, as finite and consider the function D(z) of a complex variable, z,
defined by
T (Ez-9))
Di(z)= q_‘(z_ () '

(3,3;10)
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| |
D(Z)- (,‘))\\(Q-w(k%;;")f(k\f(k‘)\\
k (3,3;11.)
6*_' _ PRI
ke '[z-w(lc)"\'z-w(k’)'
(3,3;12)
M

=] = A Z Z - w(k

(3,3;13)

In the last step, use is made of the theorem proved in Appendix (Al,2).
By inspection of (3,3;10), the values of the Qv's are characterized
as all values of z for which D(z) vanishes together with the set of
all values of w(k) except perhaps for those values of w(k) such that
D(z) =.w.

To investigate the character of D(z) in the limit V » », regard
z as fixed at any value remaining different from any of the (discrete)
.values of w(k) as the limit V = ® is taken so that the sum in (3,3;13)
remains well defined, Then, in view of (3,1;2), equation (3,3;13)

approaches

1o . f
Digy =1~ 45 PP d?’k—z':f%,d'
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. +00 .1 Z‘
D@ =] - ’:};% PP{ zk.Fu()‘:l)
- (3,3;14)

where PP stands for "principal part''. In the limit V - «, the set
of all values of w(k) becomes the continuum of real values = p, For
sufficiently well behaved functions f(k), the integral in (3,3;14)
will remain finite for z 2 b in which case the solutions to (3,3;9)
will be all (real) values 2 p together with the solutions for z of
the equation D(z) = 0,

Suppose, for the sake of a more detailed discussion of a

specific problem, that f(k) is defined in the following way:

KFw = '{,(—tf;j ‘

(3,3;15)
Substitution of (3,3;15), (3,3;4), and (3,3;5) into (3,3;14) yields

Dimy=1+21m,

(3,3;16)

where

iy = PPJ«Qz(k\dk

(3,3:17)
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and

l
k)= 75— T '
tﬁ-}_(y <k -f-/-(X k"_‘_}AZ _Z) |

(3,3;18)

Evaluation of (3,3;17) as a function of z yields

(2, 2:0 )
2 | .
2/4[ 'tw""(‘ 22-21)] TIMEZ 042 <p
//;fz

1(2)= «J - f

L? 21Ut Z"

k /“7-‘ Z'Iz"- - 'Jz"
(3,3;19)

(See Appendix (A2,1) for the details of this evaluation.) .

The analytical form of (3,3;17), (3,3;18), and (3,3;19) leads to

the qualitative plot of 1(z) versus z shown in the following diagram.
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AL

From‘(3,3;l6) and the above plot of [(z), it follows that D(z)
has no infinities for z =2 p. Hence, the set of single particle
energy levels, [ijv’ contains the set, [w(k)]ﬁ, all the elements
of which are positive. _Fsr a given value of \ all other elements of
[Qv]v are given by the values of z for which -1/ = 1(z). If thé
values of z obtained by setting -1/\ equal to I(z) and solving for
z are positive, then vy is positive definite. |If any of the values of
z so obtained are nonpositive, then y is not positive definite,
contrary to the requirement for the validity of the procedures used
to obtain the secular equation, (3;3;9), and to the original require-

ment that the system possess a ground state. Thus, any values of A\
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which lead to a nonpositive element of [Qv]v will be excluded from
further consideration.

Consider the following four ranges of the coupling constant, A.

l. =1/A < -(nLZ)/uZ. For \ in this range there is no value of
z for which D(z) = 0. For lack of physically interesting results, this
case will be given no further‘consideration.

2. -(n-z)/u2 < -1/A<0. Fbr‘x in this range there is a positive,
unique value of z for which D(z) = 0. Denote that value of z by

0 Note: Qv* > M,

3. 0<=-1/A%g 2/u2 . For A\ js this range there is a nonpositive,
ynique value of z such that D(z) = 0. This case is of n§ further
interest on the‘bésis of the discussion in fhe previous baragraph.

L, 2/p,2 < ~1/\. For A in this range there is a positive,
unique value of z for which D(z) = 0. vDethe that value of z by
Q0 (0 <Qvo<p,).

For the two cases of interest; namely, case 2 and case 4, it

follows that

i}

[0, = [aJulewk

and

[Dy]v [ﬂvoj ul w(k)];;

respectively.
These results may be given the following interpretation: in the

presents of interaction, the light bosons behave like a collection



37

(3,3)
of‘noninteracting particles, or '"quasi=particles'., The ground state
of the system is the vacuum state |0 ), characterized by svlo yE |o),
with zero energy eigeﬁvalue. If = 1/A> 2/u2, then the first excited
state is the single quasi-particle state Biolo ) with energy h Qvo.
This state would be relatively stable against external perturbative
influences because of separation in enérgy of this state from other

eigenstates of the system,” The other single quasi-particle states
1
A

the situation is similar except that in place of Biolo ), one- has

have the continuous band of energy values = u, |If _(EEZ) S -=<0,
instead the state BI*IO ) whose energy is embeded in the continuum
band, Such a quasi-particle state would be unstable,

(3,4) The Polaron Problem

In this section both the procedures of Chapter 2 and the cal=-
culational technique of section (3,2) will be employed in an
investigation of the ground state energy of the polaron,

The polaron problem originates from studies in solid state
physics, 1ts intrinsic values, then, make this problem worthy of
considerable interest, This interest is enhanced by the fact that
the polaron is a relatively simple, yet realistic example of a large
class of many body problems in various areas of physics, Hence, the
polaron problem may be used as a tool to test approximation methods
which may be applied to more complicated problems.

The polaron problem consists of a nonrelativistic quantum mechanf-
cal description of a single conduction electron within an ionic crystal
such as NaCl, The entity consisting of the conduction electron with

crystal mass, m, and its self-induced polarization field is called

the polaron,
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The Hamiltonian for the polaron was derived by Fréhlich and may

be expressed in the language of second quantization as2

HRY=(R-2Kakag) + L akos

Ll

| o
Vil 2 (- ag),

&
(3,4;1)
where H is written in terms of dimensionless variables, and
Zf _ ) 4md
- o o .
' S (3,4;2)

where o is the polaron coupling constaﬁt and S is the dimensionless
normalization volume. In (3,#;1),? is the total wave vector of the
system and is a constant of the motion. The index, FL takes on the
quantized values of the wave vectors of the polarization field
quanta, as given by (3,1;1).

The term

Z O-Tr Qg
k

represents the energy of the polarization field in the absence of

interaction with the conduction electron, and the operators ap and
a% satisfy the usual commutation rules,
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and

[ag,al=0.
The operator
- kagag
k
represents the total wave vector of the polarization field.

The term
[K' Z k r:ar:}
k

represents the kinetic energy of the conduction electron expressed
in terms of polarization field quantities.

The term

: dor

(8 DT (al -ap)
k

represents the potential energy of interaction of the polarization
field with the electron.
Note that if K =0 in (3,4;1), then this expression becomes the

Hamiltonian for a polaron at rest, i.e.
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>+ ¥ Z T
H=(Zk&rau> t Loagog
% _ k
lv .
fd ) v (ab-ap).
) - (3,4:3)

The ground state energy of a polaron at rest. (in other words, the
self-energy of the‘polaron) is just the least eigenvalue, Eo, of
(3,4;3). Any e}genvalue of (3,4;3)>is clearly a function of the
polaron coupling constant, «o. [n order to maintain a greater degree
of generality, a will be regarded as an arbitrary positive parameter,
and Eg will be expressed as a function of a.

A great deal of work has been done to evaluate the self-energy
of the polaron. As a result, the dependence of Eo upon « |
is fairly well known. |t is advantageous, then, to review the research
which bears directly on the development of the approach to be taken
here. |

In the case of weak coupling, i.e. o ~» 0, it is possible to treat

the interaction term,
2 F(ak - ap)
L 5; — K ag —ag/,
-k
as a perturbation2 of the remainder of the Hamiltonian, (3,4;3).

The result of this treatment may be expressed as
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Fert.
F. =-do-o0.0160a”+@®.
(3, 4:1)

In this approximation the second order correction, =0.0160 az, is

less than 2% of the first order term, -, at o = 1, and is less than
10% of the first order term at o = 6.

A weak coupling variational methodz"”"lz.v]%”\L

has been
developed for evaluating Eo as a function of o Basically, this
method may be outlined in the following manner.

First, define a transformation, such as (2,1;11), designed to

eliminate linear terms in H, (3,4;3). Let

a; = by +if;
to_r g
G-L‘:b;"‘l.ﬁ;,
(3)4;5)
Substituting (3,4;5)vinto (3,4;3), one obtains the following
expression: A
H=H,+H, +H, +H, +H,,
(3,#;6)

where

Ho.zz {CU(WC;‘-{;— % (ﬁ; 1'1(;;“>} * '\JéﬁJ
k

(3)4;72
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H,= L;{[% -ﬁ': w(kﬁ b:: - [% - ;;*w(k)] b; }
ARV ;-\: (‘Fz*.b; '{;‘pg;\ , ‘
_ 3 (3,4;8?
Hf Z}; w(k)b:; by t2U Z_‘:A k g;; b:
' ';{“-ﬁ[ﬁfwb‘;bt,-z&f;f&-.bu. 4 bebe |,
(3,4;9)
Hyr 20 {082 bebobe 4 Byt be
(3,4;10)

H4= ; (EE) l;,-; Brr.l);; l)-':, ;
(3,4;11)
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wl) =) +k
(3,4;12)
and
G ) LRE
k
(3,4;13)

In the complete reduction scheﬁe of Chapter 2, one would now set
the coefficients of bé and by in (3,4;8) to zero, and thus define
the function, ﬁR . However, in the weak coupling variational approach,
ﬁE is left unspecified at this point. The next step is to con-
struct a weak coupling trial ground state, vector, Iw.c.). Then the
ground state expection value of H in (3,4;6) is calculated with
respect to this state, ,W-°->- F}nally, the expectation value of H
is minimized wi?h respect to the function, fﬁ’ to obtain the
variationally optimal choice for ﬁE. |

Suppose that one takes as a trial ground state [w.c.> = |0 ),

the (normalized) state defined by

b; 10 =0.
(3,4;14)

This approximation amounts to optimally accounting for the terms of
the interaction Hamiltonian which are linear in creation and de-
struction operators, but neglects the quadratic and higher order

interaction terms generated in the elemination of the linear terms,

This neglect is of order 02, in an expansion of Eo about « = 0,
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In this case one obtains the following results for the expectation

value of H:

(3:h;]5),

Cweel Hiwey=<olHlo> = H,.

Hence, the weak coupling variational approximation to the ground

state energy, Ez.c.’ of the polaron at rest is given by (3,4;7),

(3,4;12), and (3,4;13) as

S I(T ( S DI

(3,4;16)

Minimization of Ez'c' with respect to ﬁﬁ and f% yields
o=t = 2 g
Tk \jr20k +R /.
'(3)1"';]7)

If one substitutes (3,4;17) into (3,4;13), one obtains the result

that U = O. Hence, the expression for fE becomes

(3,4;18)
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Substitution of (3,4;18) into (3,4;16) for Y€ gives
EW-C. - "'6‘2 Z \ .
(o] o —‘: \3 (\ +k2)
(3,4;19)

Replacing y in (3,4;19) by the expression in (3,4;2) and performing

the integration resulting from the substitution,

:E:: == 25213 &k

k

one obtains

(3,4;20)
One may now consider an improvement on the weak coupling varia=-
t?onal method suggested by Ef P. Grossls. Initially, one makes a
transformation, such as (3,4;5), on (3,4;3), leaving the function fr
'unspecified. Next, a canonical transformation designed to reduce
the quadratic part, H,, of (3,4;6) is made., Finally, the expectation

value of H with respect to the least energy eigenstate of H2 is

calculated, and the result is minimized with respect to the fR's.
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The resultiné equation obtained for determining fE is too complicated
for practical use, Instead'a specific functional form is chosen for
fE involving variational parameters for the function; fﬁ. One
then minimizes with respect to these parameters in the final analysis,
Following the procgdure outlined in the previpus paragraph, one

makes a transformation of the form of (3,4:;5) on H, (3,4;3) where

it is assumed that

e B
f‘i'fu'ﬂ'k 124 k2

?
(3,4;21)
with A and ko to be treated as variational parameters.' In this case

H may be written as

H=H H o Ry Hy

- ‘ (3,4;22)
where

H,= Z{w(k)f: - ﬁ,},

(3,4;23)
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Zk{w(kk'k]b b)}
- - 3,2k
H,e 2wl ;{(\:-Te)- ‘
[ bh +bebe) * 26 B b
| (3,4;25)
H;’ ZL ; g(‘:?) [ﬁ \:T; ‘_D;Eﬁ""{k g—,; g;' br;”,
(3,4;26)

H,r 2 (R Pbebibebr

(3,4;27)
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and w(k) is given by (3,4;12).

Now H,, (3,4;25), may be put into the form of (2,4;1) by making

the following replacements:
a; ’ k)ﬁ ' _ ' ‘ '\

h.— H.

Qu=m;=0

o — ez = -4 (R

iy _ Xﬁ'ﬁ' =2 wlk Sm‘g + 4(1?‘-‘:').'[:;.{:.: .
‘ (3:4;28)

Using (3,4;28), (3,4;21), and the fact that o is positive, one
may observe that u and v as given in (2,4;11) are both positive
definite. Hence, the procedures developed in Chapter 2 are valid

for the reduction of HZ‘

Thus, there exists a canonical transformation that completely

reduces H, to the form of (2,4;7). This transformation may be

written as
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] t]
bl}' Z @:,9"“‘” ‘BV + %an’ BV

(3,4;29)
where [(p-',v] is a complete orthonormal set of functions of ’12, -
orthonormal in the sense that g v (pﬁ v = Sy and dk,v and

&Tc. y are given by

0[.]; - —Q-v"‘w‘k) ’ e - ﬂ w(‘(\
a [A ﬂvw(k) ' z-l

where mv]v and the‘cp,—z’v,5 are chosen to reduce Hz.‘

Substitution of (3,#;29)‘and' 3,4;28) into H yields |

HeHosHovH +Hy v Hye Hy

(3,4;30)
where

H, = Z[wm e ”‘f]“'z-};n,
-0 w206,
k A

(3;k;31)
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' +
H?_ Z’ ﬂ,g Bp BV )
: - (3,4;32)
| H," is a quadratic term that results from substituting (3,4;29) lnto'H;,

if': Hi';vH3', and H,' are linear, cubic, and quartic, respectively, in
' j" U t - 2 2, 2
__By and B, O, +"0v s and the Q,” 's are the solutions for Q

 t6 secular equation, (2,4;9), with (2,4;11) and (3,4;28):

0= Mot e e - 4 otlEr1A, ]

:u(nz_ u}a&é;y’ 4 (D(K)[E'l']ﬂ{g“; H ’F)-a—(:g \\ .

.- Therefore,

Riltee W) bz~ 4 700 e (YA l=o.

(3,4;33)
One may take as a trial ground state of the system the exact

' ground state of Hy', l.e., the state, | 0), such that

 BlovEo.

(3,4;34)
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Using the completeness of the set [@E vJv and symmetry arguments,°v
one may show 12,15 that '
. / / ! ’ " '-
COlH! +H, +H, +HiH; I = 0.
- (3,4;35)

Hence, the ground state energy of a polaron at rest, Eo’ may be

approximated by

E.=<0lHI0)= H, .
| (3,4:36)

Substitution of (3,4;31), (3,4;28), and (3,4;12) Into (3,4;36)
yields |

E.29+6.,

; (3,4337)

where . ’ _ ‘ : ,

(3;1’338)
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and

%- HZQ Zw k>3

(3,4;39)

To evaluate (3,4;38), one uses ' (3,4;21), (3,4;2), and the

replacement

T e

-2

k

integrating first over angles and then, by the method of residues,

over the magnitude of E, to obtain
1"]
Qe= "2 Ko [2 AT
(3,4;40)

The expression for 9y) (3,4;39), may be evaluated by the procedure
described in section (3,2). (See Appendix (A2,2).) The result of

this evaluation is

(> <]

E}z:='$%' dw w <:>(VV))

o (3,4;41)
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where

@)= gL K> v Yo,

(3,4;42)

X () = \ + A 17{4 & (11 B (31~ I)(W"+ 2- k’;XW% 2~ kom (W ‘:_3?.}
)

R (Wi z-R Y (wre kY
(3,4;43)

and

e 2ok X ) w }
Y( )— 3 {(Wz-*kzoyl q

(3,4;44)
Expansion of 9o in the weak coupling limit, o = 0, and evaluation

of the resulting integrals to first order in « yields

k2,
%2" 7

(3,4;45)
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(See Appendix (A2,3).)
If one now substitutes (3,4;45) and (3,4;40) into the approxi=-
mation for the ground state energy of a polaron at rest, (3,4;36),

he obtains, to first order in a,

L, = ~aklea- E]e 2 R1+ O,

(3,4;46)

Minimizing E_ with respect to k, and A, one finds that the optimum

choice for ko and A\ is .

ko= X = 1.

(3,4;47)

Hence, (3,4;46) becomes

F_o=-a + O(a),

(3,4;48)

Thus, to first order in the coupling constant, o, the approximation

for Eg given by (3,4;37) is exactly equal to the Lee-Low-Pines weak

coupling result, Eg'c'.
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One may evaluate E_ in (3,4;37) to second order in « and obtain

the result,

E,=-a-0.01260" + O

(3,4;49)
(See Appendix (A2,3).)

This result compares favorably with the second order result,
(3,4;4), given by perturbation theory, the coefficient of the
secbnd order term in the former being approximately 80% of that
of the latter.

Hence, the result of this approximation in the weak coupling
limit is superior to the Lee-Low-Pines weak coupling result and
slightly inferior to the perturbation theory resul;. However, it
has the distinct advantage over the perturbation approximation.
.that it is variationally correct for all values of o; i.e,, the
exact self=-energy of the polaron is less than or equal to the

result of this approximation,



‘CHAPTER 4

-

CONCLUSION

It is shown that the quadratic Hamiltonian for a broad class
of systems may be reduced to the form of the Hamiltonian for a
collection of noninteracting bosons by means of a succession of
canonical linear transformations, The reduction procedure leads
to a single secular equation, the solutions of which determine the
eigenvalues of the Hamiltonian., The application of the procedure
is illustrated by two problems of ph&sical interest; namely, a
simple separable potential model from particle field theory and
the polaron problem of solid state physics, In this way the primary
and secondary objectives of this research are accomplished, It
remains to attain the final objective, to indicate a method of
employing the procedure herein developed to systems whose Hamil-
tonians may be approximated by quadratic ones of the class treated,

Consider such a system, and denote the exact and quadratic,
approximate Hamiltonians by H and HZ’ respectively, .H2 may or may
not be the quadratic part of H, depending on the specific physical
system of interest,

A variational approximation to a giQen~gigenvalue of H may be
obtained in the following way. Examine H2 to determine the form

of the canonical transformation which would reduce it in the light

B
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of the procedure developed, However, instead of determining the
hatrix elements of this transformation to reduce HZ’ apply the
transformation to H, leaving these matrix elements unspecified,
Calculate the expectation value of H with respect to the appropriate
eigenstate of H2 in its reduced form and minimize the result with
respect to the matrix elements of the transformation. In this way
one may obtain variationally correct results for the expectation
values of the full Hamiltonian, H, with respect to states, which, if
H2 is a good approximation to H, should be good first approximations
to the eigenstates of H.

I f Hy is fairly complicated, the variationally optimal choices
for the matrix elements of the transformation may be too complex
to allow computation of expectation values of H, In this case the
qualitative character of these optimal choices might be imitated
by constructing relatively simple analytical forms containing
variational parameters to be determined by the variational
principle,

The previous discussion briefly outlines a variational method
for obtaining approximate eigenvalues of a Hamiltonian which may

be qualitatively simulated by a quadratic one of the type treated

here and thereby accomplishes the final objective of this work,
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APPEXDIX 1
MATHEMATICAL DEVELOPMENTS

(A1,1) cCanonical Linear Coordinate Transformations,
Let q],qz..,,qj,...,qN be a set of generalized coordinates
for some physical system, Let the set of linear equations

N
!l = Z C‘“‘
qJ Jl=l W qj‘

(A1,151)

] ] ] '
define N linearly independent coordinates qp 29y seeely o Let

pl,pZ,"”pN be momenta conjugate to CIFLPYRRIL respectively and let

-
Kok
| (A1,1;2)
Then
[PJ" E:]:[qj , Cly] =0
(A1,153)
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and

[P_ CL—,') Z.z:dwc P,q‘]

3 n
N N 1
2;; djn CJW (Snn(;f-)
" N
=T ZT djn Cjrn

[} i ] 1 ]
Therefore, Pl s PgyeresPy will be canonically conjugate to 9y 29y seees

! .
N respectively if and only if

N
2; djn Cjn = CSJJ' 3

i.e., the matrices ¢ and d are inverse transposes of one another,

(A1,1;:4)

That ¢ and d are inverse transposes of each other implies and is

implied by the fact that the inverses of ¢ and d are inverse transposes
of each other, Hence, if the transformation described by (Al,1;1)

and (Al1,1;2) is canonical, then (and only éhen) will its inverse

be canonica]f Also, if this transformation is canonical, and if ¢

(or d) is orthogpnal,‘then ¢ = d since the inverse of an orthogonal
matrix is its transpose; and converselyBIf ¢ = d so that the .coordinates
and momenta trénsform alike, then c must be orthogonal if the trans-

formation is to be canonical,
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(A1,2)
(A1,2) Reduction of the Order of‘a Determinant
it i§ required to show that
Il Dyy' \\N - \\ DLJ\\J 3
(A1,2;1)
where
va‘ * Syy ~; Qk(\’) Qk(\") ,
Dij = 6¢,J B Z» QL(V) QJ(V'> 3
(A1,2;2)

lower case Greek symbols take on the values 1,2,,.,.,N; lower case
Latin symbols take on the values 1,2,,..,J < N; ana Qk(v) are
arbitrary functions of the indicated indices, Here, ]I IIM
represents the M x. M determinant of the enclosed M x M matrix., One
may regard an N x N matrix as representing a linear transformation of
an N-dimensional -vector space, V, and a J x J matrix, a linear
transformation of a J-dimensional subspace V' of V,

Let Au(v) be the vth component of the pth element.of any

complete orthonormal set of vectors in V chosen so that
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(A1,2)
- Z O . Amly
V) — m, k ( >
.(A1,2;3) .
and
le.m =a‘m)k .
(A1,2;4)
Using (A1,2;3) and (A1,2;4), one may write
Z_ QL(V) QJ()’) :. Z\“,at,k a,j,k
(A1,2;5)

Since the determinate of a matrix is invariant under an

orthogonal transformation, it follows that

“ DW Z ALl v) Dyw A (v')“N.

Use of (A1,2;2) and (Al1,2;3). yields

Io,.. ], =l Z A9 byyr A e (V)

Zamkam n Z Ao A A, A v)\\

k mm’



S RIS R |

kmm'

Mgy - Lanan |,

Substitution of (A1,2;5) into the above expression yields the

desired results; namely,

1o, M. =Dy,

V\J'

63

(A1,2)



APPENDIX 2
MISCELLANEOUS CALCULATIONS
(A2,1) Evaluation of 1(z) in (3,3;17)

The following is an evaluation of 1(z), where

I® = LK) dk

-

(AZ,];])

where

(1) =

| :
(L?#)QZ {Eh*yp"_,ii)
| (AZJI;Z)

In order to use the method of residues to evaluate (A2,1;1),
it is necessary to specify a branch of the square root function in

(A1,1;2). Write

2 Y _ C\ Va2
(k*'/uz) - (kh)*) (k-t ) ,
and define the branch of that function as follows:
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(A2, 1)
', "‘% b
' (kff-}a) ",+‘{FI-‘€
., 8
Y ;
(k+i/1)2=+rr; e =, '
where
3T m _ I 3T
[>0,£50,"2%6<2,"2¢6<2 J
(A2)1;3)

with réSpect to the following diagram,

| '( Pla'ne.

v

=

Branch cut 1’
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(A2,1)

Note that <pz(k) has poles at k = * ip and k = & | “2_22

for 0 <z <pand at k =% iy and k = =% 4 22_“2 for z = oo
Consider the following path, P, of integration in the complex

k-plane for 0 < z < .

t
I
|

GEJR): (€,R)

k FJOJ)Q

|
|
ly

A

|
|
iy

t

|
|
|

ot
|
|
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(A2,1)
| | 1
P {ketaplyzo,RexsRUCUCLUC,
where ' | |
C;{Hx,}b, X2y :R’, 04ySR,E£X4R or "RE K<€ })
. CD: {k=(x,y)! X=t€ , pre syt R}
and
e llemerelrme Feos ]
| (A2, 134)
Then, . .
Lim,
I@®= ee { f 3.k - f\a,kak-fqo,&wk- J;,(k)dk}
‘ P
L C'D » (A2,1;5)
for 0 < z p.
Note that

L [ 009k =0,
& .

Now,
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(A2,1)
ﬁ%ﬁf (dk = Lo
€70 ) (K )(412- t-2)
C/u.
=T o
- (ee’ cle , 230,
(ZL/A)é'e. °CB
é.ac;\j:é (k)(“( - :;;—' J & #(9
) (A2,1;6)
- Consider the integration over the contour, CD.
b |4 i = Lim | dk

€0 (k {E;;:1‘29

R
J(ﬂ idy Jﬁ idy .
By Xidyr=-2) | Gpeydidy™pF - 2)

Co

=1 dy 2 o |
(/‘ Y’)[E-HY"-_/A‘ 2“1)“-/‘"]

(A211;7)
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(A2,1)

Llet y = u sec e(dy =y tan © sec 8 d8). Then,

ﬂ/z
tzmemede
J3dk = 2 | —=Z
%’.’.;’J M {ncte- l[/x.m.e - (- Z")]
v,
=7 couede
cou er[ 0d6) (H2-2 5]
A,
2 C»O'QBJO

[/* =~ (- 2%) cod” 9]

Let x = sin 8(dx = cos & dg). Then,

= J‘g Wk = j P ]

—Zf [Z + 2 Z)Xz]

L)

T %)J[x +Zz/()/- Z")]

.’ L a2
pet —t tkznn"(t—éi-:zi-) )
‘Z 1}4"--2"- Z

for 0 <z < p. (A2, 1;8)
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(A2,1)

The integration over the contour P has a contribution coming

from the single'simple pole at k= 4+ i pz-zz « Thus,

€—+o0 §<A k\dk anR

R—$<0

where

R{HW
° (kz (k'*“f* -zz) k= L{pb-22

) 2#0O.

]
PRy

Lo |
: — - 2
o gﬂ;§~$z(k)dk = M:r—z"’- , O<ESH.

If one substitutes (A2,1;9), (A2,1;8), and (A2,1;6) into

(A2,1;5), one obtains

—y

(A2,1;9)

._;Ii;zf:ﬂ
z,u[n-tm"( z -Trhf‘-z‘) o5z <u.

Tz = /“EW

(A2,1;10)
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(A2, 1)

Note that in (A2,1;10) 1(0) is indeterminant of the form'%. However,

‘L'Hospital's rule may be employed to obtain

2
I(O)'-‘-/';z"
(A2,1;11)
To evaluate 1(z) in (A2,1;1) for z 2 u, let
Z = l(%i-/.\?‘ , k,ZO.
(A2,1;12)

Consider the following contour P' in the complex k-plane.

’ R &% ¢~k €, . - +
P = ](:(Ka\/) Y=0 , or-k+€'¢xgk,-€’ UCRUCDUCPUC UC,

or kte’$X ¢ R

where

C-= {k l k=-k+e’e'®, ¢’>0, os.esn},

¥_ :
C '{klk:kue’e‘e, ero, osesrr},

and Cp, Cp, and Cu are as defined in (A2,1;4). The path P! is

R}

diagramed as:
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(A2, 1)

T k plane
CeR | (e,R)

-ko

Exactly as before,

Rmﬂ# (kYdk =

so that
ltz)= 222{56# (Vdk J:J(k)dk Pmak
v R—»00 ew
i fdz(k)dk i J:Aa(k)Jk} , 22 p,
< ¢t (A2,1;13)

In the same manner as done previously it may be shown that

. | ]T
Lo | 4 (1)dk = rih

a (A2, 1;14)
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(A2, 1)

To evaluate the integrals over the contours C and ¢t note

that

Sl Ko 4

\
ko “3;1'}‘1 (‘( T ko)
(A2,1;15)

From (A2,1;15) it follows that

Y. _ b | _dk
¢'—o Jﬁ(kwk ko{IE o L k- ko
J.

e 7=}
- ce'e de

"o h&ﬁ)@ €.'ele
rr .

"

LT
Loiki+vdl
‘and

dk

jJ (k)dk : k{ko-b-)u l<+ ko

te'e*®do

ko I<° J € e"e

- ——-—-_-l:TT »
B k;{k‘oﬂx"

Therefore,
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(A2,1)

{jJ (kYdk + .J) k}clk}

Now

gfy;JJ;(ksak = <

(A2,1;16)

f (¥ m’Xﬁ?_’ z)

tdy tdy

I

ez (i‘ YidypE-2)

fﬁ?[v o |

Let y = pu sec 8. Then,

Uz

mtameeodo

| §:’§J"o(k)dk~ f/*

m [ﬂz el + (.%2 73'3:] )

cowbde

L fvdz(m 2 f
R 00

Let x = sin 8, so that

[/M + (zz_/})mze] .

E—>o0 IJ (l()dk J‘
R0 (z- 2) | TZ3

(2 ”~) - X"]
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(A2, 1)

E+—l_;«:_—-‘
%::oj‘ﬁ)(k)d m%(zw>

(A2,1;17)
Since the path P' encloses no poles of the integrand of 1(z), it

follows that
§~q@;(k)dl< =0
. (A2,1;18)

Substitution of (A2,1;18), (A2,1;17), (A2,1;16), and (A2,1;1k)

into (A2,1;13) yields

__ | | 2+ 2t - 1.
L= [M% ' zwﬁq(z-fiﬁ) e

One may use L'Hospital's rule on the indeterminant form in (A2,1;19)

(AZ: 1; 19)

to obtain

I()=- {2

(A2, 1;20)
Combining (A2,1;20), (A2,1;19), (A2,1;11), and (A2,1;10) gives the

result quoted in (3,3;19).
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(A2,2)
(A2,2) Evaluation of g, in (3,4;39)

The method of (3,2) is to be applied to the evaluation of 9,

as given in (3,4;39), e

= %[ZQ Zw(k)]

(A2,2;1)
where
wlk)= |+ 12
0, = +{b}"y ) - | a2
and the 0 's are solutions for o of the secular equation,
“(ﬂ?-_ &0 &3 -4 Jolw®@ (K-EYSE, “ -5
(A2,2;3)
or N
(8- w0)6sz. - Fr-Fuma||= o
| (A2,2;14)
where

(AZ: 2; 5)



Following the procedure outlined in (3,2), one may write

1 |
jgd* 1£ z-nt ) Z_: 2 - WK
k

where

12 = +m 8.7:0)‘?E 5 -ﬁ'<0.n.3§$rr,

and P is the contour shown in the following diagram.

z Flo.'ne

Branch cuz)

SR -5 R
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(A2,2)
For all z not on L define
T = T (e = [l (z-08)8, |
= H(z (k»é“ - Flk)- F(ﬁ)“
J.@ = T @-wto) = | (z-w20) Sml\\,
” .
and
- ) | - o
r("ﬂ-“- g-;i) - W(.’:- w’(\«)) \\(Z—wz(kb&m.-F(E)'F(E’)\\
e - R
W fz- w0 Jr-wq 11 (2,2;6)
Then, ’
%7.:?:77. dzﬁ‘fgo\@;—?r‘(ﬂ,
P .
ﬁz-""g‘n',: dz——-o\fo?f"(%) |
P ‘ (A2:2;7)

In expression (A2,2;6) for T'(z) let



Then,

\ i QJL)Q (i)

or

2= H 5LJ - Zk‘ (0, (k) QJ;(D“.

Because of the symmetry of Qi(ﬁ),

O 3 if i;#j
Zk Z Q3(k§ Q?,(k) ) "F "zJ ¢

Thus,

(&) = r’@,

where

()= |- ;Q,,(b@m.

Hence,
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(A2,2)

' (A2,2;8)

(A2,2;9)

(A2,2;10)
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(A2,2)
Making the replacement

g>00 15‘
§: . '811'?"(d

k

s (D Ak
3w ) TE-(142F

where f, is given by (3,4;21) and (3,4;2) as

2y 2 | -

4-TTCL lk
fi* k(14 1d)

Let z = x + iy. . Since the integrand in (A2,2;10) is analytic
above and below the real axis, and on the real axis between O and 1,

let the path P approach the locus L. Then,

0

=3 (ge L o, B®
G2 557 [on i o0 203

\ (A2,2;11)

where

e (x) = 'fl"f’c‘; r(xstiy)

§—~ o0 L, Sv IRICAD N " §?O+kF)dk
== |+ T ( >ll<oJ[(m3) (xtty)](kdcld

or
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(A2,2) -

3

24 %
) =1+ 4‘0('3'_‘_‘(" jr-qﬂt(k)clk) | W

where

i 12 (1+12) )
- (B2 (2B )K-0%)

and

b = ’H-)_(—| +.|

] Y0
Ay = fxely - — a.=1x -1, (A2,2;12)

Hence, using the method of residues to calculate r(x) yields

ri(x)?l_%z’rrL[R.Jr thld,

. where

R | d k(1+18) }
| 2!‘ dk (k+’uk,)1<k1+bzX|<2-0~z) k= ik,

) 4G+ (BN ek k) ,
2 4 ko (B RY (4 1EY
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(A2,2)

R [ K (1+1&) ]
2L (e ) (ibX1E=a) ] it

b(1- 13)
| ZE (B (B |

11!

and

FR - Lim K410 ] _ o (140%)
3 YO (RS (BB kv as) ke 2 (a4 12V (024 ) .
Using (A2,2;12) and the replacement,

w=1{x -1 |

yields

i (w)= Xw) i Y(w)

where

Kewa= |+ 2ukd [ikf(l-k’s>z+(3k’s-f)<w’+z- I - kefwia (Wi EY ]
3

(W52-i2) (wre &Y

and

(W it)

Y(W): 2.d-k:f [ W ]
3

(A2,2;13)
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(A2, 2)
Hence, _
I = %j&w w ®(wW)
where i} ,
() (w) = 0»7 [ Xw) +LY(w3], |
(A2,2;14)

and X(w) and Y(w) are given in (A2,2;13). This is the result for

9, given in (3,4;41) through (3,4;L44).
(A2,3) Expansion of 9, in (3,4;41) for Weak Coupling

Referring to (A2,2;13) and (A2,2;14) for gz, one may write to

first order in «,

YW a-o .Zock‘flz[ w ]

2, 1.2\?
R | 3 [0k (A2,3;1)

Hence

@(w) Lo Ml(Y(W)) 420 2061;:12[( W z}’

X 3 W4 )
[ o]
? _ Zd.ktf w2 dw ,
2 L) (w2 1)
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(A2,3)
or
0o
2
o - okeX w2 dw
gz T (w2 k2)®
%)
(A2:3;2)
Evaluation of (A2,3;2) by the method of residues yields
4 A2 '
d.l(02 N l A / Wz j '
2= (?—"">‘ 1 \&
pe2Ehent) 2 e,
or
3 12
9, - dko A,
2 d ‘ .
(A2,3;3)
Using (A2,2;13) one may write to second order in « .
YY) o-o. ba |
X(w) J+aad
= ba =abwa? + O@?), (A2,3;1)
where .
2
t)_ 2 gt:l w -
3 (W + B
and

q= 28T [41& (-1 + (a2 Ko Xote k) -k T2 (w’;k’;)z]

> (w2 (v )
(A2,3;5)
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(A2,3)
Using (A2,3;4) and (A2,2;14), one may expfess g, as
)
_3 | -1/ Y(w)
?z-—FF' dw w tan (.}c(w}>
00
= %— dww[boc -ab &? +O(o¢”)],
or
P )
Gr = %fdw whio - -%— dwwab|oas O(d-?"),
Q ) (A2:3;6)

where a and b are given by (A2,3;5).
The first term in (A2,3;6) is the one just previously evaluated

and is thus-given by (A2,3;3). Therefore,

% ,(3120(‘_ ’ 2 3
2 5 | ﬁ}z o +O Gx“)J

(A2,3;7)
where

(2<]

g;-%fabwdw,

o

(A2,3;8)
a and b given by (A2,3;5).
i
In (A2,3;7), g, Is needed only to zeroth order in a,

Hence, it is sufficient to calculate gz' using the zeroth order



optimum values of k_ and A, i.e.,

ko=2=1.

Then

g =L b

where

1=

and

1= 3

&0

4 w*dw
3T | (wrai)

0o

oo
7.‘7.‘ -
4 W W’*Zdw‘

(WZ+|)4'
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(A2,3)

(A2, 3;9)

(A2:3; ]0)

(A2;3;”)

Evaluation of (A2,3;10) by the method of residues yields

1=

In (A2,3;11) let w = 127 tan o.

=

\

o

Then,

(A2,3;12)

3

o

T,
16 | awnm®e co®e do

=

™ .
4 f 24-(:4,,39 'ltam,zeﬂ aec’e de

[zta,,}e + J] *
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(A2,3)

Lz
ﬁ . |6 z,&,nzs (i-—m?‘e\ coeBde
{

T 3w | | [‘+M29]+

o

Let x = sin 8. Then,

I
J X2 (1-x%) dx
‘3w | (x2+l)4
16 x>
3T | 30X,
pedef 1 ). 2
} 3w 3..23 q T
Substituting (A2,3;13) énd (A2,3;12) into (A2,3;10), one obtains

oL _ 2
%3"<|2 qn)’

1

or’

(A2,3;13)

or

9,= 0.0126. |
(A2,3;14)

Hence, combining (A2,3;14) and (A2,3;7) yields

k312 :
Je= =5~ ~0.0126a" + O(2?),
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(A2, 3)

Substitution of this result into equation (3,4;37) for E, and
minimization of the result with respect to'ko and A still yield

ko.= A =1, Hence, to second order in a, 9, is given by

v/
%,* 7. 00126 + O,

(A2,3;7)
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