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ABSTRACT

A systematic procedure is developed for solving the eigenvalue 

problem for a broad class of Hamiltonian operators containing no 

terms higher than quadratic in generalized coordinates and th e ir  

conjugate momenta. The development is oriented toward practica l  

applications in the area o f the many-body problem. The procedure 

accomplishes a canonical reduction of such a Hamiltonian to the 

form of the Hamiltonian fo r  a co llec tion  of non in teracting bosons, 

with the eigenvalues of the Hamiltonian expressed in terms of the 

solutions to a single secular equation.

Application of the resu lts  to systems o f in teracting identical 

bosons is discussed, including a presentation of a useful calcu latlonal  

technique. The procedures developed are i l lu s tra te d  by deta iled  

treatments o f two specific  problems o f in terest in physics.

The f i r s t  problem considered is an exactly  solvable separable 

potentia l model of p a r t ic le  f ie ld  theory. This problem consists of 

the description o f a co llec tio n  of l ig h t  bosons in teracting  with an 

in f in i t e ly  heavy boson v ia  a simple separable p o te n tia l .  In te res t  

in th is  problem centers on i ts  use as a test case for approximation 

techniques to be used on more complicated systems.

The second and more r e a l is t ic  problem investigated is the 

polaron problem of solid  s ta te  physics. This problem involves the

Iv



description of the motion of a single conduction electron within an 

ionic solid. The polaron consists of the conduction electron  

together with i ts self-induced polar izat ion f i e ld .  The polaron 

problem is oif interest not only because of i ts  value in solid state 

physics, but also because i t ,  too, is useful as a testing ground 

for approximation techniques.

F ina l ly ,  broad applicational aspects of the procedures 

developed are discussed.

v



CHAPTER 1

INTRODUCTION

(1,1)  Objectives

The behavior of many physical systems may be described or 

approximated by a (Hermitian) Hamiltonian operator which contains 

no terms of order higher than quadratic in generalized coordinates 

and the ir  canonically conjugate momenta. The general form of 

such a Hamiltonian is:

with

and
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0 ,1)

where j  and J* are Indices running l , 2 , 3 , . . . , N  ( In  some applications  

the l im it  N -* 00 Is taken .);  qj Is a generalized coordinate and Pj 

Is i ts  conjugate momentum; uj j i >  wj j ' »  an<* zj j ' are rea *̂ symmetric 

functions of j  and j ' ;  Cj and dj are real functions of j ;  and H0 Is 

a real constant. Consideration w i l l  be res tr ic ted  to treatment o f  

the broad class of physical systems which possess a ground state  

and whose Hamiltonian may be cast into the preceding form with  

> 0;

A t r i v ia l  example of (1 ,1 ;1 )  is a Hamiltonian o f the form

f e  i f  + T  mi “ f t f ] + H . ,
j  (1 ,1;! .)

where m. and tu. are real pos it ive  functions of j .  I f  H « 0, then 
J J o

'V t is of the form of the Hamiltonian for a set of N noninteracting

simple harmonic o s c il la to rs  for which the j  one has mass m. and 
• J

an angular frequency o>̂ . I f

H.
then has the form of the Hamiltonian o f a co llec tion  o f bosons of 

N types for which the j* *1 type has an energy of hojj. There are other 

in teresting physical systems whose Hamiltonians may be approximated

Notable examples, such as liq u id  h e liu m j this phonon

2 3f ie ld  of a polaron, and the n-meson f ie ld  o f a nucleon, may be

selected from various f ie ld s  o f physics.
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( 1,0

A centra] part  of a quantum mechanical description of a system is 

finding the eigenvalues and eigenfunctions of i ts  Hamiltonian. The 

primary object ive  of the present research is to prescribe a system

a t ic  and prac t ica l  procedure for finding the eigenvalues of the 

Hamiltonian (1 ,1 ;1 ) .  The secondary objective is to i l lu s t r a t e  the 

procedure with physically interesting examples. The f ina l  objective  

is to  indicate a powerful method of employing the procedure to 

systems whose Hamiltonian may be approximated by one of the form of

( i , i ; i ) .

( 1 ,2 )  Method

I t  turns out,  as w i l l  be demonstrated, that i t  is possible to 

define "new" generalized coordinates, Q.̂ . (j  = l , 2 , . . . , n ) ,  and correspond

ing conjugate momenta, P , as l inear  combinations of the "old" ones 

(the q .̂'s and the Pj 1 s) occurring in (1 ,1 ;  1) through (1 ,1;3)  in such 

a way that when H is expressed in terms of them, the result  is in 

the so ca l led "completely reduced" form

H '  z  Z - f c  + i T j Q j ]  +-

2 2 2where E and CL , CL , . . . ,  CL are real constants to be determined, o I * Z ’ N

In view of th is  resu lt ,  the eigenvalues of H are well known. Unless
2

a l l  of  the CL ‘ s are posit ive ,  H w i l l  not possess a ground state ,

J J ?contrary to  the previously stated re s t r ic t io n .  Hence CL s + iQ j  

(j  = l , 2 , . . . , N )  is posit ive; and the eigenvalues of H are given by
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( 1, 2)

\ * *
( I , 2 ; 2 )

where ru = 0 , 1 , 2 , . . .  . The eigenfunctions of H are s im i la r ly  wel1 

known functions of Q . ] ^ ,  • • *,0^, depending parametr ical ly  upon

Accordingly, the primary object ive may be reduced 

to finding a practical procedure fo r  determining the C^.'s and Eq .

The reduction of the Hamiltonian H to the completely reduced 

form (1,2;1) w i l l  be handled in two stages. In the f i r s t  stage, new 

coordinates, q . 1 ‘ s, and conjugate momenta, p . 1 ' s , w i l l  be defined, 

in terms of which H w i l l  have the form

H = i  Z  [ujy p/ R'+ vii' % $  ] + E0j
^  (1 ,2 ;3 )

where v . . .  and E are to be specified. The f i r s t  stage w i l l  involve 
JJ1 °  *

two steps. The f i r s t  one w i l l  e liminate from the Hamiltonian terms 

involving products of a coordinate and a momentum, called "mixed 

products." The second step w i l l  e liminate terms l inear  in coordinates 

and momenta. In the second stage, the " f in a l "  coordinates, Qj 's ,  

and conjugate momenta, P j 's ,  w i l l  be defined in terms of the qj 1 's 

and the p^1 's,  occurring in (1>2;3),  so that when H is wr i t ten in 

terms of them, the result is (1 ,2; 1), with f i j . . . , C^ determined.

The second stage w i l l  involve three steps. F i r s t ,  terms involving 

products of d i f fe re n t  momenta ("p-p cross terms") w i l l  be eliminated.
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( 1, 2)

Next, the coeff ic ients of terms proportional to the square of a 

momentum w i l l  be rendered a l l  equal to  unity by a simple, so called  

"scaling transformation." F ina l ly ,  terms containing products of 

d i f fe re n t  coordinates ("q-q cross' terms") w i l l  be el iminated. From 

the considerations involved in stage two, a single secular equation 

w i l l  be derived to determine ••

(1,3) Notation

The symbols j  and j 1 are reserved to denote indices running 

1,2 ,3 ,  * • *,N.

The following convention w i l l  be used. I f  Vj is a singly  

subscripted symbol, then, the symbol, v, obtained by dropping the' 

subscript is reserved to denote the matrix

I v, \
V h NI *U/. (,' 3;,)

Sim i lar ly ,  i f  t j ^ , is a doubly subscripted symbol, then

t s
I t„ t,x ■ • • t,N

t a x  ’ ‘ • t m

I  J  ' ' - J  j 0 > 3 ;2 )

The transpose of a matrix t  w i l l  be denoted by T. The unit  

NxN matrix w i l l  be denoted by e.



Square brackets with ex ter ior  subscripts are used to denote the 

set of a l l  quanti ties obtained by substituting a l l  possible values of 

the exter ior  subscript into the enclosed function of the ex ter ior  

subscript. (Example: I f  i has possible values 1 and 2,  then



CHAPTER 2

REDUCTION

(2,1) Elimination of Mixed Products and Linear Terms

Recall equations (1 ,1;1)  through (1 ,1 ;3 ) :

<2, 1; 1)

(2, 1;2)

Hr T  Z [% 5IJ.+w«' %%+2Jj'CPj y y ) ] .
\) J

(2 , 1 ; 3)

To eliminate mixed products, define canonically conjugate coordinates 

q" and momenta p" by the equations

__ _ / /  . „

J (2 , 1;4 )

where
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(2 , 1)

Substitution of (2 ,1;4)  into (2 ,1;1)  through (2,1;3) and use of  

(2 ,1 ;5) y ie ld

h =h . * h ; » h ;,

wi th

and

H f  Z 11 ] ;
JJ

where

f  = d + QC3

(2, 1; 6)

(2 ,1;  7)

(2, 1; 8)

(2 , 1;9 )

and v is the symmetric matrix

V = W + TLQ .
( 2 , 1 ; i o )

To el iminate l inear terms, define canonically conjugate coordinates 

q1 and momenta p* by
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(2,0

p * * p ' + *
C |"  =  < ] '  +  T O ,

where

£ = -2 U C  
TO = -2V-P.

(2 ,  i;  1 1 )

Substitution o f (2 ,1 ;1 1 ) into (2 ,1 ;6 ) through (2 ,1 ;8 )  and use of 

(2 ,1 ;12 ) y ie ld  .

H = t  I I  [mu*## * ■ Xu* %  f t ] + Ee ,
^  (2 ,1 ;  13)

wi th

E = H + c i +?m + rtluH+Tnvm],
(2 ,1 ;  lit)

where equations ( 2 , 1 ;5 ) ,  ( 2 ,1 ;9 ) ,  (2 ,1 ;1 0 ) ,  and (2 ,1 ,1 2 )  express 

v, I f  m, and f  in terms of quantities  occurring in the o r ig ina l  

expression fo r  H, given by ( 2 , 1;1) through ( 2 , 1;3)»



(2, 2)

(2 ,2)  Completion of the Reduction

kSince the matrix u is real and symmetric, there exists an 

orthogonal matrix,  t ,  such that the matrix

u.' = u t
(2, 2; 1)

is diagonal; i . e . ,

I I  -
(2, 2;2)

where, since u is posit ive d e f in i te ,  s . .  = + /l s . . ^  must be real and 
' K ’ JJ 1 JJ

posit ive .  Define conjugate coordinates Q." and corresponding momenta

, *P" by

(2 ,2 ;3 )

Substitution of (2 ,2;3)  into (2 ,1;13) and use of (2 ,2 ;1 )  and (2 ,2 ;2 )  

give

(2,2;4)

“For proof that P" and Q," are conjugate, see Appendix ( A l , l ) .
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(2 ,2 )

where

/NJ
v ' =  t v t .

(2 ,2;5)

Notice that p-p cross terms have been eliminated from (2 ,2 ;4 ) .

Next, define canonically conjugate coordinates, Q.', and momenta

P1 by

r=r-tr]
Q = s j j  Q j  *

For reference, le t

and note that the unit  NxN matr ix , e, may be w r i t ten  as

e  = s"' u s'*.

Substitution of (2 ,2 ;6 )  into (2 ,2;4)  gives

J j #

(2, 2 ;6)

(2 ,2 ,7 )

(2, 2 ;8)

(2, 2 ;9)
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( 2 ,2 )

where

V " a S V'S = S V 'S .
(2,2; 10)

2 .Notice that the co e f f ic ien t  of P.' in (2 ,2 ;9 )  is unity for a l l  j .
J . 4

F ina l ly ,  since v" is real and symmetric, there exists an

orthogonal m a tr ix , r ,  such that the matrix rv"r  is diagonal. Thus

(2,2; 11)
i<

Define f ina l  coordinates Q, and corresponding momenta P by

p ' - . r P

Q “- r Q . J  (2 ,2 ; 12)

Substitution of (2 ,2;12)  into (2 ,2 ;9 )  and use of (2 ,2;11) y ie ld  the 

desired completely reduced form,

j  (2 ,1;13)

Notice that the der iv ia t ion  of th is  result  requires the res tr ic t ion

that u be posit ive  d e f in i te .  The further  re s t r ic t io n  that H possess a

2ground state w i l l  be met i f  and only i f  a l l  o f  the fi. 1 s are posit ive  

which in turn is equivalent to the requirement that v be positive  

d e f in i te .

For proof that P and Q, are conjugate, see Appendix ( A l , l ) .
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(2 ,2 )

A useful and convenient single secular equation fo r  the deter-  

2 2 2mination of Q1 , 0 2 , may now be derived from the preceeding

results. Let-

y = t s r
(2 ,2;14)

The equation

(2,2; 15)

2 2 2 2 clear ly  yields exactly the solutions ft = ,f i2  ̂ * This

equation may be reexpressed as follows by employing equations

(2,2; 11), (2 ,2;8)  (2 ,2; 10), ( 2 ,2 ;5 ) ,  (2 ,2; 1), and (2 ,2;  14) and by

recal l ing that s is diagonal and that r and t  are othogonal:

o-U[tf-n53
j  J

= Ir fe -e v '"  

= || He -  (r'erXr'v"r)l 

-  II f i t -(r 's ‘'u'S''r''Xrs v'5 r)ll 

= II f i e  - ( r ls ''t"u t5', rXr'’st',v tsr)||

y'1 [ if e - u v] y II

f t e  -  u v



(2 ,2 )

Thus, the solutions of the secular equation

Cte. -  uv
(2,2; 16)

2 2 2 2 are exactly Cl = ,C12 , • • • , 0 N •

(2,3) Resume of Results

A canonical l inear  transformation has been found which reduces 

a Hamiltonian of the form

H

to the form

Hs £ Z  Df + ■ft] Qj ] + E..
j

(2, 3; 2)

2 2 2In th is  result ,  the set }Cl2 } ' s the set of solutions of

the secular equation,

f t  e -  uv|| = O ,
(2, 3 ;3)

where v is given by
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(2,3)

V= W + 20
(2 ,3;4)

and

g= - u "2 .
(2 ,3;5)

Moreover, Eq is given by

E„= H0 + c l + i [ £ u i  + vnvm],
(2 ,3;6)

where

i  = -2 U C  'j 
m = -2vf I
f = d + gc J (2'3;7>

The results summarized in (2 ,3;1 )  through (2 ,3 ;3 )  are val id  i f  and 

only i f  e i ther  u or v is posit ive d e f in i te .  However, according to 

the or ig inal  statement of the problem, both u and v are posit ive  

d e f in i te .

(2,k)  Translation to Second Quantization Language

I t  is desirable fo r  applicational purposes to express the pre

ceding results for obtaining the eigenvalues of H in the language of 

second quantization. Such a reexpression of results w i l l  be accomplished
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(2 ,4 )

in a rather d irect  manner in the present section.

The Hamiltonian, H, given in terms of p and q by (2 ,3;1)  may be 

rewrit ten as

H= ho+ h, +h*
(2 ,4;  1)

wi th

(2 ,4;2)

and

h r  4-
2 JJ'

(2 ,4;3)

wherein

ti = c- ld
c* = w - a  

= W  + U

h0= Ho +-Z V, (2 ,4;4)
JJ

and

a - f i *  ( q + ip )  

a+ = -fH  ( q -<-'p) < (2 ,4 ;5 )



(2 ,4 )

+
In view of (2 ,4 ;5 ) ,  Qj and aj sa t is fy  the commutation rules,

 ̂ y  \
~ ^ j  i ^\j' ^ *" ^  •> J ' (2 ,4; 6)

appropriate fo r  creation and d istruct ion  operators respectively.

S imilar ly ,  H, given in terms of P and Q, by (2 ,3 ;2 ) ,  may be 

rewrit ten as

H= EttinjAjAj] + El,

where

and where, in view of (2 ,3 ;3 )  through (2 ,3 ;7 )  and (2 ,4 ;4 ) ,

2 2 2 2 
Q = Qj , 0 .2  are the roots ° f  the secular equation

II n a e -  u.vll= °

+ c Jl + + k \ . l \ x L  + fn v T n l,

(2 ,4;7)

(2, 4 ; 8)

(2 ,4;9)

(2 ,4;  10)



( 2 ,4 )

wherein

c = H ii+ f )
f - t  ft

V = "2 [(^+o0  " @
j e * - z  v - f
7 n = - 2  a c ,

*t*Since, according to (2 ,4 ;8 ) ,  the Aj 's and the Aj ' s  sa t is fy  

the creation and d istruct ion operator commutation rules,

(2 ,4:11)

[ A j , A j , ]  =  6 j j '

[ A j ,  A j , ]  =  [ A ] , A - , ]  =  °  } (2 ,4;  12)

then, the eigenvalues of a Hamiltonian of the form of (2 ,4 ;1 )  with 

(2 ,4;2)  and (2 ,4 ,3 )  are given d i re c t ly  in terms of the coeff ic ients  

occurring in i t  by

En „ = iL f i O :  yi; + E'0 ,ni , nl  j •• •, nM ; J d ■ '
(2 ,4;  13)

where n. = 0 ,1 ,2 ,3 ,  • • • Q- -  + /JQ .“ , and where E 1 and
J J I J

2 2 2,Q2 are determined by (2 ,4;9 )  through (2,4; 11).

These results hold i f  and only i f  both u and v are posit ive  

de f in i te .



CHAPTER 3

APPLICATIONS

(3>0 Introduction and Orientation

Hitherto the discussion has centered about a systemization of 

procedures for canonically reducing a quadratic Hamiltonian. I t  

is the purpose of th is  chapter to i l lu s t r a t e  the application o f  these 

systematic procedures to specif ic  physically interesting problems.

The physical systems which w i l l  be used for i l lus tra t ion  are 

systems of ident ica l ,  interacting bosons. The discussion of these 

systems w i l l  be cast in the language of second quantization. The 

quantum mechanical states of such a system are to be described in 

terms of the single p a r t ic le  states given by

Y P ( r )  f y 1 e  , . .

where "r is the coordinate vector, V = L is a cubic normalization

volume, and k is the wavevector of a pa r t ic le  in the state \|f—*(*ir).
k

The imposition of periodic boundary conditions on the surface of the

thnormalization volume requires that the i rectangular component of 

k sa t is fy

19



where

and

1= I, 2 ,3 .

In the f ina l  analysis,  the l im i t  L -* « is taken so that k becomes a 

continuous variable and

In Chapters 1 and 2, the indices employed have a f i n i t e  domain 

of N elements. For the applications which fo l low, i t  w i l l  be assumed 

t a c i t l y  that the results are va l id  in the 1imit N -♦ «.  This point  

w i l l  not be belabored here.

(3,2) A Calculationa! Technique

\J^
d|l U-Spa-ce (3 ,1 ;2 )

Prior to focusing at tent ion on spec i f ic  physical systems, i t  

w i l l  be advantageous to investigate a caleulationa 1 method.** 

Suppose i t  is desired to evaluate
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( 3 , 2 )

f s Z- G(n)~ /L* G(co( \̂
^  k

(3 ,2;1)
where G is some function of a single complex va ria b le  and where the 

f i r s t  summation is over the set of a l i  solutions fo r  0  of the secular 

equation

(3,2; 2)
in equations (3 ,2 ;1 )  and ( 3 ,2 ;2 ) ,  k and k' are indices whose domain 

is given by (3 ,1 ; 1); cu(k) is a real function o f k; and

i

fad • f ad* Z f f fOHt f ) ,U r  '
(3 ,2;3)

wherein n is a f in i t e  (preferab ly small) po s it ive  integer and 

F j(k )  is a real function of Hi and i .  Since ^(kjfi-j^, + F (k ) *F (k ')  

is real and symmetric, the solutions fo r  ft o f equation (3 ,2 ;2 )  are 

re a l .  I t  w i l l  be assumed, moreover, that the greatest lower bound,

U)0 , o f^ h e  union o f [fi]^ with [uo(k)]£ is a po s it ive  number.

In a complex plane, z ,  consider a path, P, which encloses the 

locus, L, o f a i l  points, z ,  on the real axis such that z ^ u)Q.
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(3 ,2 )

Bra*nch cut 
of Log SL̂)

2 plaTie

L'. Re (502: cu0 , U (z) = o

I f  G(z) is ana ly t ic  everywhere within and on the closed contour 

P, then

-  y " 1 r ~  c > -f i -fe ) -  d 2 -  —  1) dig$ “  J ?"-a - ZlTl J 2-a> (k )

(3 ,2;4)

2 ttu

(3 ,2 ;5 )

For a l l  z not on the locus L indicated in the accompanying 

diagram, define
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J(2)s TT(i - iO
X L

J0(i)- TT Li - 6o(k)l
k

(3 ,2;6)

(3,2;7)

and

n ,  ' -  Jfe) _ I K ? ' 11)  .

1 ( 2 )  ”  T f [ i - W (U)]  
w

Thus from (3 ,2 ;5 )  and (3 ,2 ;8 ) ,  i t  follows that

(3, 2;8)

%
r  2 t tc  o C c m P l ^ j

J
P (3,2;9)



2k

( 3 ,2 )

where

&
(3, 2 ; 10)

“ TT < C L n p  Z  <  + T T .

(3, 2 ; 11)

Integration by parts once yields

~  T tn  °  G  f e )  T ( i t )

(3, 2 ; 12)

By de f in i t ion  of T(z)  in (3 ,2 ;8 ) ,  (3 ,2 ;7 ) ,  and (3 ,2 ;6 ) ,  one may 

write

i

Let

Qi(k) -

^  V  ■{ 5  -  co(k)' j  2  -  <*)(£'}

\ F ( k )

1V
Then, use of (3 ,2 ;3 )  yields
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or

(3 ,2;  13)

where i and P a r e  Indices running 1 , 2 , . . . , n .  (See Appendix (A l,2 )  

fo r  j u s t i f i c a t i o n  of the last step.)  Thus

r w - | |  v  v  Z

Using (3 ,1 ;2 ) ,  one may write

(3 ,2;  1*.)

I KtflfyUS
Z -  co(k)

W) -  T  
r  1  L i'

(4,2;15)

Hence, T(z) is a sum of a f i n i t e  number of terms; one being unity ,  

others being products of up to N intergals of the type l . | | t the inte

grands of  which involve only known functions.

Since G'(z)Log T(z) is ana ly t ic  above and below the real axis and 

on the real axis between 0 and u)Q, the path P may be allowed to 

approach the locus L. Let z *  x + ie.  Then, (3 ,2 ;12)  becomes

r--  jt u  J „ _ L
6 - * -0  j 2 t t l

.OP

)
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or

r -- JL
2ttI

00»

dx (q (x} ^  ^ © ( ^ r ( x - n e )  -  cCey r ( x - i € ) ]

ioa

(3 ,2;  16)

Let F(x + ie) = u(x) + iv ( x ) .  From ( 3 , 2 ; l 4 ) ,  i t  then follows that

T(x -  Je) -  u(x) -  i v (x ) .  By defining

f e  l n x t i d ) l -  m o o
and

R x t U ' i -  i  ©  0 0 ,
(3 ,2;  17)

one may w r i te

[ L r ( x « v ^ n * - u J = 2 1 ©  M

Hence, from (3 ,2 ;1 6 ) ,  one concludes that

r oo

a TT d* G'u) ® w ,
w/
U)0

(3, 2 ; 18)
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where, In summary, from (3 ,2 ;1 1 ) ,  (3 ,2 ,1 3 ) ,  (3 ,2 ;1 4 ) ,  (3 ,2 ;15) ,  and 

(3 ,2;17) ,  one has

This result  makes i t  possible to perform sums over solutions of a 

multidimensional secular equation without d i re c t ly  evaluating the 

density of the solutions, in the l im i t  as the dimensionality of the 

secular equation becomes i n f in i t e .

(3,3) A Separable Potential  Model in P a r t ic le  Field Theory

In the following, the procedures developed previously are 

applied to the investigation of a two-body separable potentia l ,  

f ie ld - th e o re t ic  model. This model is of in terest because i t  is an 

exactly soluble model and is useful for  test ing calculat ional

techniques. Previous studies of th is  model have been made by

6 7 8Urrechaga-Altuna and Childress, Henley and Th ir r ing ,  Kazes,

9 10Yamaguchi, and Yamguchi and Yamaguchi to mention but a few.

I  = 1 / ^ " '  

i '=  1,2., • •. • ,  n (3,2; 19)
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Consider the simple separable potentia l  model in which light  

neutral scalar bosons of rest mass, mQ, in teract  with a s t a t ic  heavy 

neutral boson of mass M in a manner described by the Hamiltonian,

H= H,'+ Hi'
(3 ,3 ;1 )

where

' " , T03 ( W  b j  b j  ,

(3 ,3 ;2 )

H"= Afi X  f MfftO bf., 
vif

(3 ,3 ;3 )

O j f k )  =  C. (  k* +  yU2)  ,

(3 ,3;^)

X is the interaction coupling constant, c is the speed of l ig h t  and

p. = mQc/h . The function f ( k )  is a function of the magnitude of the

wave vector £  and is assumed to have such ana ly t ic  properties as

may be necessary to guarantee the existence of any integrals encountered. 
+

The operators bj+ and b£ respectively designate creation and an

n ih i la t io n  operators fo r  l igh t  bosons of  momentum h k  and sa t is fy  the
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commutation relat ions

[  J =

[  b j , b j  = O .
For notational convenience the natural system of units

^ = 0 = 1 (3<3;5)

w i l l  be used in the following*

I t  may be noted that (3 ,3;1 )  is of the form of (2 ,4 ;1 )  through 

(2 ,4 ;3 )  wherein the following ident i f ica t ions  are made;

d \

V

(3 ,3;6)

Hence, i t  follows from the procedure outlined in (2,4) that,  i f  y is 

posit ive  d e f in i te ,  there exists a canonical transformation, which 

reduces (3 ,3;1)  to the form

H= L-Clv BvB,
( 3 , 3 ; 7 )
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with

[  By, Evl= Svv-

[  By, By-] = O  .

In these equations v and v 1 are members of an index set whose elements 

may be put into one-to-one correspondence with the domain of ( 3 ,1 ;1 ) ,  

Qv and the C i^ 's  are the solutions for  of the secular

equation (2 ,4 ;9 ) j  i . e . ,

-0 .  S u ^  4  ^  ~  O  ,t*
or

O -I IZ  ~ 4  1
k"

-  I IX !  t  X I 2 A  >̂u"u*
Vc"

+ 2 A  1ffc*# ^  k ~ k" t̂c“ U* "i ^

*k"
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n S s t ' - T & f M n S s c
(3 ,3;  8)

Note that the solutions obtained by sett ing e i ther  one o f  the im

mediately preceding determinants equal to  zero are ju s t  the negatives

of the solutions got by sett ing the other to zero. Hence, a l l  the 
2

fiv 1 s may be obtained by solving the secular equation for  e i ther  

determinant. However, equation (3 ,3 ;8 )  is v a l id  only for  y  posit ive  

de f in i te ;  and one way to determine the po s i t ive  d e f in i te  character  

of y is to f ind i ts  eigenvalues. Hence, i f  the solutions to

- - o

are posit ive ,  then y is posit ive d e f in i te  and the solutions are the 

required ones; otherwise the system f a i l s  to have a ground state .  

Substituting (3 ,3 ;6 )  into th is  secular equation yie lds

Ikn-ô Si* -H(k)W)ll=TT (n-n,v o.
( 3 , 3;9)

To solve th is  equation, f i r s t  regard the normalization volume,

V, as f i n i t e  and consider the function D(z) of  a complex var iab le ,  z ,  

defined by

T J . ( i - u M ) ’

(3 ,3:10)
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D ( z ) =  ^ (k ) )S -kC. -  ) f a ' > f ( k ' ) ' i
i!

(3 ,3;11)

-  I L-  -

ki‘ - ) i - to ( l< ) ‘ ' ) z - ( jl) (U ' )1

(3 ,3;12)

., , y  __m _.
■ I A L  £ -W(k)

k

(3 ,3;13)

In the last step, use Is made of the theorem proved in Appendix (A l ,2 ) .  

By inspection of (3 ,3 ;1 0 ) ,  the values of  the O ! s are characterized  

as a l l  values of z for which D(z) vanishes together with the set of 

a l l  values of co(k) except perhaps for those values o f  cu(k) such that  

D(z) » °».

To investigate the character of D(z) in the l im i t  V -* «°, regard 

z as f ixed a t  any value remaining d i f fe ren t  from any of the (d iscrete)  

values of cu(k) as the l im i t  V -♦ 09 is taken so that the sum in (3 ,3 ;  13) 

remains well defined. Then, in view of ( 3 , 1 ; 2 ) ,  equation (3 ,3 ;  

approaches
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(3 ,3;14)

where PP stands fo r  "principal  part" .  In the l im i t  V -» «,  the set 

of a l l  values of (u(k) becomes the continuum of  real values ^ p. For 

s u f f ic ie n t ly  wel1 behaved functions f (k ) j  the integral in (3,3;1*0  

w il l  remain f i n i t e  for z ^ p. in which case the solutions to (3 ,3 ;9 )  

w i l l  be a l l  ( re a l )  values ^ p. together with the solutions for  z of  

the equation D(z) = 0.

Suppose, fo r  the sake o f  a more deta i led discussion of a 

specif ic  problem, that f (k )  is defined in the following way:

(3,3;15)

Substi tution of (3 ,3 ;  15), ( 3 ,3 ; * 0 ,  and (3 ,3; 5) into (3,351*0 yields

D(Z) = I
(3 ,3;16)

where

Ito=pp k
( 3 ,3 ; 1 7 )
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and

M ) - -
d V X ( i v ' - H )

(3,3;18)

Evaluation of (3,3;17) as a function of z yie lds

r

I ( i . >

2
7 ? '

E = 0 A

^  -I / - ? v

/“ A ; 0 4 2 .  < /

/ * y

-  f l T - ^

V. L'

2 = ^

y

(3 ,3;19)

(See Appendix (A2,1) for the d e ta i ls  of th is  evaluation.)

The analytical  form of (3 ,3 ;1 7 ) ,  (3 ,3 ;1 8 ) ,  and (3 ,3;19) leads to 

the qua l i ta t iv e  plot of I ( z )  versus z shown in the fo llowing diagram.
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jr-i

From (3,3;16)  and the above plot of l ( z ) ,  i t  follows that  D(z)

has no in f in i t i e s  fo r  z £ p,. Hence, the set of  single p a r t ic le

energy levels, [n ] , contains the set, [u)(k)]£, a l l  the elements
V V K

of which are posit ive .  For a given value of X a l l  other elements of 

[flv ] are  given by the values of z for which -1 /X  *= l ( z ) .  I f  the 

values of z obtained by sett ing -1 /X  equal to I ( z )  and solving for  

z are posit ive, then y  is posit ive d e f in i te .  I f  any of the values of  

z so obtained are nonpositive, then y is not posit ive  d e f in i te ,  

contrary to the requirement fo r  the v a l id i t y  of the procedures used 

to obtain the secular equation, (3 ,3 ;9 ) ,  and to the o r ig ina l  require

ment that the system possess a ground state .  Thus, any values of  X
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which lead to a nonpositive element of [Qv] v w' l l  excluded from

further consideration.

Consider the following four ranges of the coupling constant, X.

21. -1 /X  < -( ir -2)/p, . For X in th is  range there is no value of

z for which D(z) = 0. For lack of physically interesting results, this

case w i11 be given no fu r ther  consideration.
2

2. -(rr-2)/(jii £ - 1 /X  < 0. For X in th is  range there is a posit ive,

unique value of z for  which D(z) = 0. Denote that value of z by

Q . Note: Q ;> p..
23. 0 £ -1 /X  ^ 2/p< . For X is th is  range there is a nonpositive,

unique value of z such that D(z) = 0. This case is of no further

interest on the basis of the discussion in the previous paragraph.
2

k. 2/p, <  -1 /X .  For X in this  range there is a posit ive ,  

unique value of z for  which D(z) = 0. Denote that value of z by 

Qvo (0 <  Qvo < n ) .

For the two cases of in terest ;  namely, case 2 and case k, i t  

follows that

[n v]„= [n ju tu rfk
and

[ n j v= f n J u U d c  .

respectively.

These results may be given the fol lowing in terpretat ion:  in the 

presents of In teract ion ,  the l ight  bosons behave l ike  a col lection
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of noninteracting p a r t ic le s ,  or “quas i -part ic les" .  The ground state

of the system is the vacuum state |0 >, characterized by Bv |o > E |o ) ,
2with zero energy eigenvalue. I f  -  1/X >  2/p. , then the f i r s t  excited

j,
state is the single quasi -part ic le  state Bvo|0 ) with energy h Q p .

This state would be r e la t iv e ly  stable against external perturbative

influences because of separation in energy of th is  state from other

eigenstates of the system. The other single quasi -part ic le  states

77*2 1have the continuous band of  energy values ^ p. I f  - ( —j - )  ^ ^  < 0,
[X

the situat ion is s imilar  except that in place of B^o|0 ) ,  one-has 

instead the state Bv* |o  ) whose energy is embeded in the continuum 

band. Such a quasi -part ic le  state would be unstable.

(3 ,^) The Polaron Problem

In this section both the procedures of  Chapter 2 and the c a l -  

culational technique of section (3 ,2)  w i l l  be employed in an 

investigation of the ground state energy of the polaron.

The polaron problem orig inates from studies in sol id state  

physics. I ts  in t r ins ic  values, then, make th is  problem worthy of  

considerable in terest .  This in terest  is enhanced by the fact that  

the polaron is a r e la t iv e ly  simple, yet r e a l i s t i c  example of a large 

class of many body problems in various areas of physics. Hence, the 

polaron problem may be used as a tool to tes t  approximation methods 

which may be applied to more complicated problems.

The polaron problem consists of a n o n re la t iv is t ic  quantum mechani

cal description of a single conduction electron within  an ionic crystal  

such as NaCl. The en t i ty  consisting of the conduction electron with 

crystal mass, m, and i ts self- induced po lar iza t ion  f i e l d  is called  

the polaron.



The Hamiltonian fo r  the polaron was derived by Fr’dhlich and may
2

be expressed in the language of second quantization as

H (K )= (K - Ik a W )
"k k

+ i &  Z  T . ( a . % -

U
(3,4;  1)

where H is wr i t ten  in terms of dimensionless variables,  and

where a  is the polaron coupling constant and S is the dimensionless 

normalization volume. In (3 ,4 ;1 ) ,K  is the total  wave vector of the 

system and is a constant of the motion. The index, £ ,  takes on the 

quantized values of the wave vectors of the polar izat ion  f i e l d  

quanta, as given by (3 ,1 ;1 ) .

represents the energy of the polar izat ion  f i e l d  in the absence of 

interaction with the conduction electron, and the operators a^ and

(3 ,4 ;2 )

The term

+
a-1* sa t is fy  the usual commutation rules, 

k
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L Q -k  ; o - p . l  •

and

C & k  , CLg*! “  O  .

The operator

k  £4 £
k

represents the to ta l  wave vector o f  the po lar izat ion f i e ld .  

The term

K  Z L .  I< a f  a p

represents the k ine t ic  energy of the conduction electron expressed 

in terms of po lar izat ion  f i e l d  quanti t ies .

The term

L & l l  I U l  - C L f )
k

represents the potentia l energy of interact ion of the polar izat ion  

f i e l d  with the electron.

Note that i f  K = 0 in (3 ,4 ;1 ) ,  then th is  expression becomes the 

Hamiltonian for  a polaron at  rest , i . e .
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H = ( Y L k o-t as ) + £  *  a,
t  k

u t  £  " k l a i - a c V
(3 jk;3)

The ground state energy of a polaron a t  r e s t . ( i n  other words, the 

self-energy of  the polaron) is ju s t  the least eigenvalue, Eq, of  

(3 j4 ;3 )*  Any eigenvalue of (3 j4 ;3 )  is c le a r ly  a function of the 

polaron coupling constant, or. In order to maintain a greater degree 

of general i ty ,  or w i l l  be regarded as an a rb i t ra ry  posit ive parameter, 

and Eq w i l l  be expressed as a function of a-

A great deal of work has been done to evaluate the self-energy  

of the polaron. As a re s u l t ,  the dependence of Eq upon a 

is f a i r l y  well known. I t  is advantageous, then, to review the research 

which bears d i re c t ly  on the development of  the approach to be taken 

here.

In the case of weak coupling, i . e .  a  0, i t  is possible to t rea t  

the interaction term,

k

2
as a perturbation of the remainder of the Hamiltonian, (3>4;3).  

The result  of  this treatment may be expressed as
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E l rt = ~oi -  o . o i b o a 2 + 0 * 3X
( 3 A -A )

2In th is  approximation the second order correction, -0.0160 or , is 

less than 2% of the f i r s t  order term, -or, a t  q? = 1, and is less than 

10% of the f i r s t  order term a t  a a 6.
2 11 12 13 14A weak coupling var ia t ional  method > > > ' * >  has been 

developed for evaluating Eq as a function of a* Basical ly, this  

method may be outlined in the fol lowing manner.

F i rs t ,  define a transformation, such as (2 ,1 ;11 ) ,  designed to 

eliminate linear terms in H, (3 ,4 ;3 ) •  Let

a.n  = b c + i.

4  = S r - f ; .
(3A -.5 )

Substituting (3 ,4;5)  into (3 ,4 ;3 ) ,  one obtains the following  

express ion;

H = Ho + H, +• H , + H , + H 4- s
(3,4 ; 6)

where

'0 _  
k

'k 'k

(3 ,4; 7)
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(3 ,4;8)

H,= "fg ̂ (k)]bp "[ k (̂k)! bp }
k

+ I L u * X]» V (fp bp ” fp b^ t

Hjf X- o>(k)bfb|? + £ u*X« k b̂bp
C k k

-  Z k ^ i b t b V ^ b U r  < £ w * ] } ,
" *' (3 ,4;9)

H3= 2. 1 X-! [(ir£')[.fp' bpbpbjj'“fp bpbp'b̂ ] },t k'
(3,^*; 10)

H+= Z  (k -^^b^b r^ .
k k'

(3 ,^ :1 ! )
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Co(k) " I + k2
(3 ,4;12)

and

U  '  4 . k t fit e
k

(3 ,4;13)

In the complete reduction scheme of Chapter 2, one would now set

*f* •the co eff ic ien ts  of b-̂  and b-̂  in (3 ,4 ;8 )  to zero, and thus define

the function, f-g . However, in the weak coupling varia tional approach, 

f.£ is le f t  unspecified at th is  po int. The next step is to con

struct a weak coupling t r i a l  ground s ta te , vector, |w .c.> . Then the

ground state expection value of H in (3 ,4 ;6 )  is calculated with

respect to th is  s ta te , Jw .c.). F in a l ly ,  the expectation value of H 

is minimized with respect to the function, f-^, to  obtain the 

varia tio na l ly optimal choice for f-g.

Suppose that one takes as a t r i a l  ground state  jw .c .)  = |0 ) ,  

the (normalized) state defined by

bfc I o> =^0.
( 3 ,^ 1 4 )

This approximation amounts to optim ally  accounting for the terms of 

the interaction Hamiltonian which are lin ear  in creation and de

struction operators, but neglects the quadratic and higher order

interaction terms generated in the elemination o f the linear terms.
2

This neglect is of order O' , in an expansion of Eq about or » 0.



44

(3 ,4 )

In th is  case one obtains the following results  fo r  the expectation 

value of H:

<w.c.| H lw .c>  = < o l H l o > =  H 0 .

O A i ' 5 )

Hence, the weak coupling varia tio na l approximation to the ground 

sta te  energy, Eq*°*> of the polaron a t  rest is given by (3 ,4 ;7 ) ,

(3 ,4 ;1 2 ) ,  and (3 ,4;13) as

E r = n w ; -  t (v o H  £ H f tT
k V*

(3 ,4;16)

Minimization of EW*C’ with respect to f-r* and f£  y ie lds
O K k

C C * -   ̂ \
= \  k \ l  + 2 u - E  4-15 / .

(3 ,4 ; 17)

I f  one substitutes (3 ,4 ;17) into (3 ,4 ;1 3 ) ,  one obtains the resu lt  

that Ii = 0. Hence, the expression fo r  f-£ becomes

rc k I  i + k1 A

(3 ,^;18)
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Substitution of (3 ,4 ;18) into ( 3 , 4 ; I 6) for E^'c * gives

(3 ,4 ;19)

Replacing yQ in (3 ,4 ; I9 )  by the expression in (3 ,4 ;2 )  and performing 

the in tegration resu lting  from the substitu tion ,

One may now consider an improvement on the weak coupling v a r ia -

transformation, such as (3 ,4 ;5 ) ,  on (3 ,4 ;3 ) ,  leaving the function f^  

unspecified. Next, a canonical transformation designed to reduce 

the quadratic p a r t ,  1^, of (3 ,4 ;6 )  is made. F in a lly ,  the expectation  

value of H with respect to the least energy eigenstate of 1^ is 

calcu lated, and the resu lt is minimized with respect to the f-g’ s.

one obtains

w.c.

o

(3 ,4 ;20)

tional method suggested by E. P. Gross^. I n i t i a l l y ,  one makes a
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The resu lting  equation obtained for determining f£  is too complicated 

for practica l use. Instead a specific  functional form is chosen for  

f £  involving varia tio na l parameters for the function, One

then minimizes with respect to these parameters in the f in a l analysis.

Following the procedure outlined in the previous paragraph, one 

makes a transformation o f  the form of (3 ,4 ;5 )  on H, (3 ,4 ;3 ) where 

i t  is assumed that

with \  and kQ to be treated as varia tio na l parameters. In th is  case 

H may be w ritte n  as

(3 .4 ;22 )

where

(3 .V .23)



h i

( I * 1*)

(-) - t 1 tcu>(k)fk ~ k](b£~b&)},
* I —*

k -

(3 ,h',2k)

H2; H  co(l<)l>rt>k + IZ fo -k ') -
k k k'

l f J k' ( t> i ;b V  + bi; b(?') +  2 - fk fk 'W  b c ' l  1  >

(3 ,^ ;2 5 )

(3 ,^; 26)

H* 5 II (£• kOb̂b̂b]: [>t< >
k k'

(3 ,^;27)
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and ou(k) is given by (3,4; 12).

Now H2, (3>4;25), may be put into the form of (2 ,4 ;1 ) by making 

the following replacements:

Using (3 ,4 ;2 8 ),  (3 ,4 ;2 1 ),  and the fa c t that a  is po s it ive , one 

may observe that u and v as given in (2 ,4;11) are both pos it ive  

d e f in i te .  Hence, the procedures developed in Chapter 2 are va lid  

for the reduction of H2<

Thus, there exists a canonical transformation that completely 

reduces H2 to the form of (2 ,4 ;7 ) .  This transformation may be 

w ritte n  as

(3 ,4 ; 28)



( 3 . * 0

k f  =Z  CPc,»lc<>t,y By + $ t (y B t  J

<3,&;29)

where [<p£,v]v is a complete orthonormal set o f functions o f k,

orthonormal in the sense that g  v 9 j*  v i “  6vvi 9 and a k  v anc*
k

v are given by

- Q »  + a>(k) _  X l y - o i > ( ^

where [n ]  and the'rn^ , are chosen to  reduce H„.v v Yk ,v 's  2 -

Substitu tion  o f (3,**;29) and 3,^»28) in to  H y ie lds

h =h; * h ; ‘ h: * h; * h; * h;',

(3 ,4 j30)

where

H I= Z  L a r f  - t  fk ] + i  E  n v
X v

" Z  "altoM +2k*fk],
■ A  — -  *

k .

(3,4}30
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H i =  2 _ .  x i „  b J  ,

(3,<*;32)

H j" is a quadratic term that resu lts  from substitu ting  (3 ,4 ;2 9 ) in to H^,

H . ' ,  H , ' ,  and H^' are lin e a r , cubic, and q u artic , resp ective ly , in

t  T  o 2 2
B^'and B^, 0^ “ + i^ v * ant* t îe *s are t 1̂e solutions fo r  fl

to s e c u la r  equation, (2 ,4 ;9 ) ,  w ith (2 ,4 ;U )  and (3 ,4 ;2 8 ):

O  = 4  w (k ) [k k ']  II

Therefore,

Win2- atfk-)) Sij. - 44^coOO (k-k')fufh-11= o.
(3 ,4 ;33 )

One may take as a t r i a l  ground s ta te  o f ,the system the exact 

ground s ta te  o f H^1, i * e . ,  the s ta te , | 0 ) ,  such that

B „lo>5 o.
(3,4;3<*)



51

(3 ,4 )

Using the completeness o f  the set [9^ V3V and symmetry arguments,
12 15one may show ' *  that

(  o| H,'+ K .+ H j+ H > H »  = o.

(3 ,'t;35)

Hence, the ground s ta te  energy of a polaron a t  re s t, EQ, may be . 

approximated by

E 0-  HI  o>  = Ho .
<3 ,*;36 )

S ubstitu tion  of (3 ,4 ;3 1 ) , (3 ,4 ;2 8 ), and (3 ,4 ;1 2 ) Into (3 ,4 ;36) 

yie lds

*/

E o = + ,

; (3 ,4 ;3 7 )

where

(3 ,‘ti38)



52

(3 ,4 )

and

t [  E n „  -  E o ) ( k ) ] .

(3 ,4; 39)

To evaluate (3 ,4 ;3 8 ) ,  one uses' (3 ,4 ;2 1 ) ,  (3 ,4 ;2 ) ,  and the 

replacement

L
s

8 ttj
dak ,

integrating f i r s t  over angles and then, by the method of residues, 

over the magnitude of k, to obtain

q o =  - a k 0[zX " \

The expression for g ( 3 , 4 ; 39) ,  may be evaluated by the procedure 

described in section (3 ,2 ) .  (See Appendix (A2,2 ) . )  The resu lt  of 

th is  evaluation is

ca

dw  w ©Cw)}

o (3 ,M O
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(3,4)

where

© M  = (Xĥ . Xm+1 Ym] ,

i d g r
xX H41<20 (l - kffi- fekV iXŵ  2" t<Z«)Cŵ  k^ - kô wM1 (wVlQ

(wl+z- ko)Z(v/1+ ko)*

( 3 , 4 * 3 )

and

Y m --
4

w

. (w2-+ kV)1

(3 ,4;44)

Expansion of g£ in the weak coupling l im it ,  a  — 0, and evaluation  

of the resulting integrals to f i r s t  order in a  y ie lds

n  <* Id i 2 .

r ~

( 3 * * 5 )
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(3 ,4 )

(See Appendix (A2,3 )* )

I f  one now substitutes (3 ,4 ;4 5 ) and (3 ,4 ;40) into the approxi

mation for the ground sta te  energy of a poiaron a t  rest, (3 ,4 ;3 6 ),  

he obtains, to f i r s t  order in a,

(3 ,4;46)

Minimizing EQ with respect to kQ and X, one finds that the optimum

choice fo r k and X is o

lc* X- I. '

Hence, (3,4;46) becomes

E0=-<* + 0 («l ).
(3 ,4 ; 48)

Thus, to f i r s t  order in the coupling constant, a , the approximation

for Eq given by (3 ,4;37) is exactly  equal to the Lee-Low-Pines weak

i • i , _w• c#coupling resu lt, Eq
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( 3 ,4 )

One may evaluate EQ in (3 ,4 ;37 ) to second order In of and obtain 

the resu lt ,

E0= “  0 . 0 i2.6oi* + O ( o } ) .

(See Appendix (A 2 ,3 ) .)

This result compares favorably with the second order re s u lt ,  

(3 ,4 ;4 ) ,  given by perturbation theory, the c o e ff ic ie n t  of the 

second order term in the former being approximately 80% of that  

of the la t te r .

Hence, the resu lt of th is  approximation in the weak coupling 

l im it  is superior to the Lee-Low-Pines weak coupling resu lt and 

s l ig h t ly  in fe r io r  to the perturbation theory re s u lt .  However, i t  

has the d is t in c t advantage over the perturbation approximation 

that i t  is varia tional ly  correct for a l l  values o f of; i . e . ,  the 

exact self-energy of the polaron is less than or equal to the 

resu lt of th is  approximation.
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CONCLUSION

I t  is shown that the quadratic Hamiltonian fo r  a broad class 

of systems may be reduced to the form of the Hamiltonian for a 

co llec tion  o f non interacting bosons by means o f a succession of  

canonical lin ear transformations. The reduction procedure leads 

to a single secular equation, the solutions o f which determine the 

eigenvalues of the Hamiltonian. The application  o f  the procedure 

is i l lu s tra te d  by two problems o f  physical in te res t; namely, a 

simple separable potentia l model from p a r t ic le  f i e l d  theory and 

the polaron problem of solid  s tate  physics. In th is  way the primary 

and secondary objectives of th is  research are accomplished. I t  

remains to a t ta in  the f in a l ob jective , to indicate a method of 

employing the procedure herein developed to systems whose Hamil

tonians may be approximated by quadratic ones of the class treated .

Consider such a system, and denote the exact and quadratic, 

approximate Hamiltonians by H and H2 , resp ective ly . ,H2 may or may 

not be the quadratic part of H, depending on the s p ec if ic  physical 

system of in terest.

A varia tio na l approximation to a given eigenvalue o f  H may be 

obtained in the following way. Examine H2 to determine the form 

of the canonical ,transfprmation which would reduce i t  in the l ig h t

56
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of the procedure developed. However, instead of determining the 

matrix elements of th is  transformation to reduce H^, aPPly the 

transformation to H, leaving these matrix elements unspecified. 

Calculate the expectation value of H with respect to the appropriate  

eigenstate of H£ in its  reduced form and minimize the resu lt with  

respect to the matrix elements of the transformation. In th is  way 

one may obtain v a r ia t io n a lly  correct results for the expectation  

values of the fu l l  Hamiltonian, H, with respect to states, which, i f  

H2  is a good approximation to H, should be good f i r s t  approximations 

to the eigenstates of H.

I f  H2 is f a i r l y  complicated, the v a r ia t io n a lly  optimal choices 

fo r  the matrix elements of the transformation may be too complex 

to allow computation of expectation values of H. In th is  case the 

q u a li ta t iv e  character of these optimal choices might be imitated  

by constructing re la t iv e ly  simple an a ly tica l forms containing  

varia tio na l parameters to  be determined by the va r ia t io n a l  

p r in c ip le .

The previous discussion b r ie f ly  outlines a v a r ia t io n a l method 

fo r  obtaining approximate eigenvalues of a Hamiltonian which may 

be q u a li ta t iv e ly  simulated by a quadratic one of the type treated  

here and thereby accomplishes the f in a l  objective of th is  work.
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APPEXDIX 1
i

MATHEMATICAL DEVELOPMENTS

(A1,1) Canonical Linear Coordinate Transformations.

Let q j ,q 2. . . , q j , . . . ,q^ be a set o f generalized coordinates 

fo r  some physical system. Let the set of linear equations

N

£ C j i i '

(A 1 ,1;1)

I I  I
define N l in e a r ly  independent coordinates q̂  ^  • Let

Pj p2 - - . , PN be momenta conjugate to q ] »q2*• • * respect ively and le t

N

p '= £  dJJ' R•j 0-1 J *

(A1,1;2)

Then

59
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(A l-,1)

and

M m

N N

n=i n'd v *

N

^ j n  ^ j ' n  •

n=i n'ci

Therefore, p̂  , p2 , . . . , p ^  w i l l  be canonically conjugate to qj ,q2

i . e . ,  the matrices c and d are inverse transposes of one another.

That c and d are inverse transposes of each other implies and is

implied by the fa c t that the inverses of c and d are inverse transposes

of each other. Hence, i f  the transformation described by ( A l , l ; l )
«*

and (A1,1;2) is canonical, then (and only then) w i l l  i ts inverse 

be canonical. Also, i f  th is  transformation is canonical, and i f  c 

(or d) is orthogonal, then c = d since the inverse of an orthogonal 

matrix is i ts  transpose; and conversely, i f  c = d so that the coordinates  

and momenta transform a l ik e ,  then c must be orthogonal i f  the trans

formation is to be canonical.

q̂ l respectively i f  and only i f

N

(A1,1;*0
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(A l,2 ) Reduction of the Order of a Determinant 

I t  is required to show that

Dyw< lN ' II Dujj ,

where

0 k M  Q i . ( v O  j

( A l ,2 )

D i j= S ij" Z ,  Oi.(v) Oj(v') •,
(A1,2;2)

lower case Greek symbols take on the values 1 , 2 , . . . , N ;  lower case 

Latin symbols take on the values 1 , 2 , . . . , J  ^ N; and are

arb itra ry  functions of the indicated indices. Here, j j  | 

represents the M x. M determinant of the enclosed M x H matrix. One 

may regard an N x N m atrix as representing a lin ear transformation of  

an N-dimensional vector space, V, and a J x J m atrix , a linear  

transformation of a J-dimensional subspace V1 of V.

Let A (v) be the vth component of the (xth element of any
r1

complete orthonormal set of vectors in V chosen so that



Q.(v) A v m (v )

and
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( A l , 2 )

(A l,2 ;3 )

Using (A l,2 ;3 )  and (A l ,2 ;4 ) ,  one may w rite

Z o ^ Q W - I  & L , I <  &j>k •

(A l,2 ;4 )

(A1,2; 5)

Since the determinate of a matrix is invariant under an 

orthogonal transformation, i t  follows that

I Dyy' w " H A^(V) Dyy' Â > (v')Hn *
Use of (A1,2;2) and (A1,2;3). yields

I D w '  IIN ~ 11 ̂  A/v) ^

k mmrf yv'
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( A l , 2 )

lOyv'llw ll (Sua' Z_j &ro,U kxn'u! 1̂N
'  kmm*

Substitution of (A l,2 ;5 )  into the above expression yie lds the 

desired results; namely,

Dyy „ " ll Dij Hj- .



APPENDIX 2

MISCELLANEOUS CALCULATIONS

(A2,1) Evaluation of I ( z )  in (3 ,3;17)

The following is an evaluation of l ( z ) ,  where 

co

1 (2 ) =  PPj ,

-  PO

where

(A 2 , l ; l )

(A 2 ,l;2 )

In order to use the method of residues to evaluate (A 2,1;1), 

i t  is necessary to specify a branch of the square root function in 

( A l , l ; 2 ) .  Wri te

and define the branch of that function as follows:
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(A 2 , l )

(k-i/*WrTe

where

37T>  ̂ TT
f ;> o  , ij >o   ̂ '  a 4 ©,* a , 2 '  - z

with respect to the following diagram.

(A 2 ,l;3 )

_



I -
Note that ^  (k) has poles at k = ± ip, and k = ±  i A  p, -z

2  nJ 2 2 ’fo r 0 s: z < j i  and at k = ±  ip, and k *= ± 1 z -|i fo r z £ |x.

Consider the following path, P, of in tegration in the complex 

k-plane for 0 £ z < p..

66

( A 2 , l )

A

j k pla-ne.

K R )I  (€,R)
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( A 2 , l )

P= [k=Cx,y)l y=o, - R r }  [J CR U C0 U Cr  ,

where

C Rr {k=Cx,y) X ^ y ^ R ^ o S y S R ^ x S R  or -Rix<-e]^

Crf * = ±€ > /L+e - y-R}

and

(A 2 ,1 ;4)

Then,

I  (2)- 6-+o  ̂
R -* o o

L p c

•L f iO d k ' m j k

j
cf

(A 2 , l;5 )

fo r  0 s£ z |x.

Note that

Jksm
R -* ° °

-^L (k>c3U = 0 .

CR
Now,
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( A 2 , l )

£ - * ■ 0
$ J s rn j 
£ —  0

dk

9 .
J

<r

r 3 %

(i<V2X {i? 7 ^ )

or
" 'i

I € e t&<ie 
(2

h 4 0 j

Hum *
£-> O

Kf
9 *

J / k ) J l <  z  j E -  ^ i f o ,  
/ J £ .

Consider the integration over the contour, C .̂

r

i L ( k ) d k  =  ̂ dl<
fosms
e - * o e - r o

(A 2 ,1 ;6)

r / 4
td y

J

i J y

= l

r R
dy

A

1

z  + i f y ^ 2

= Z
dy

o
/A

(A 2 ,l;7 )
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Let

Let

(A 2 , l )

y = |jl sec 0(dy = |j, tan 0 sec 0 d0 ). Then,

J J k ) J k  = 2Jbsfr^.
£ —  O

Ve
Cxya Q dl&

Jo

co-c © d e

x = sin 0(dx = cos 0 d0 ). Then,

jhsnu 
G-*o  
R-*oo

c/x

= 2

I
d x

 ̂I
J X

■6
j> * zVĉ -z1)]

2  *  - , / i ^

z - j T ^ i 5
t o m "

f o r  0 <  z <  |x« ( A 2 , 1;8)
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( A 2 , l )

The integration over the contour P has a contribution coming
J~2 ?from the single simple pole at k = + i *]p. - z  . Thus,

R->«>

where

h + J E Z

i Z *| ̂  -  j *

J h rro
£  -—*■ o
R~* 0 0

O A ( k ) J k  =
Z n

J
P

r , 0  < /

(A 2 ,1;9)

I f  one substitutes (A2, \ \ S ) ,  (A 2,1;8 ), and (A2,1;6) into 

(A 2,1;5 ), one obtains

Id) -
-  T f j/A 2- 2^

,  0 < Z < y u ,

(A 2 ,1;10)
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( A 2 , l )

Note that in (A2,1; 10) 1(0) is indeterminant o f the form However, 

L1Hospital's rule may be employed to obtain

1 ( 0 ) =

To evaluate i (z) in (A2,1; 1) fo r z £ (a, l et

Consider the following contour P‘ in the complex k-plane«

(A2,1;11)

(A2,1; 12)

P ' -

r
-R i  x £

)/~o j  or - ko+€' <kf c- f i 7 7ucRuc#uc,,ucrucfJ
or ko+67 $X £ R

where

C"=fklk= - k + e ' e 10, £ ' > o ,  0 < B  < r \ \

C "[k 11< = e/e.1,0) e*>oj o60<>rr\)
and CQ, C_, and C are as defined in (A 2 ,1 ;4 ). The path P1 is K L) |1

diagramed as;
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( A 2 , l )

^ K plcrne

— ->
-R

Exactly as before

R->oo = o ,

so that

!(?)=
M styu 
g -*<o 
g'-> o
R->°°

H ^ d k - J ^ M d k -

< - V
9 1

-  I ^ a d k  - >$a(k)<lk f  ) 22:^4.

C- J  (A 2 ,l;13 )

In the same manner as done previously i t  may be shown that

r
JLLyA*
& O A W * s jk  •

(A 2 ,1 ;14 )
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( A 2 , l )

To evaluate the in tegrals over the contours C*" and C+ note

that

M U ) ±

From (A2,1;15) i t  follows that

« . . .  W W l

and

Jb s m j
€ ' - > O

s /3 ( k ) d i<  :

-1
r

d\<

M k o V ^ .. k - k o

"1

k o - f k V / J e ' e 18
n

L tt

V0"\ k* +-/iZ

1 f  d k

M fe -K M * ' J  k + l<o
c+

I f °c < s 'e is d©

e e L&

(A2,l;15)

- iT T

Therefore,
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( A 2 , l )

C’

=  o .

(A 2 ,1; 16)

Now

H um ,e-*o
J
Co

4 ^  - i z j
c„

c d y -  +

.R £dy

-  z
d y

j v z- / [ y z*

Let y = ^ sec 0. Then,

Jbsnxi 
6 •*■*•o
R-> Oo J

s 2

or

&~fo j y*£ 
R-*oo

c

Let x = sin 0, so that

R-»do (z 2V )
d y

[Z/fzV ) " X1]
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( A 2 , 0

JU/YA.
£ —> o 
R —>oo J

(A2,1; 17)

Since the path P1 encloses no poles.of the integrand of l ( z ) ,  i t  

follows that

— O

P
(A 2 , I ;18)

Substitution of (A 2 ,1 ; I8 ) ,  (A2,1;17)> (A2,1;16), and (A 2 , I ; l4 )  

into (A2,1;13) yie lds

1(E)= ■
rr 1

^  1  \  2 -  -Is2- / 1
(A 2,l;19 )

One may use [.‘ Hospita l's  rule on the indeterminant form in (A2,1; 19) 

to obtain

I M -  -  ^  •
(A 2,l;20 )

Combining (A2,1;20), (A 2 , l ;1 9 ) ,  ( A 2 , l ; l l ) ,  and (A 2,l;10 ) gives the 

resu lt quoted in (3>3">19)*
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(A2,2)

(A2,2) Evaluation of g2 in (3 ,k ;33 )

The method of (3,2) is to be applied to the evaluation of g2 

as given in (3 ,^ ;3 9 ),  i«e.

a = T  [  Z !  “  .Z* ojCk)],
V ^  (A 2 ,2 ;l)

where

col k )= l  + l7,

X l y = + - 0 ? , ,  ’ <A2’ 2>2>

2 2 and the ‘ s are solutions fo r  Q of the secular equation,

(ft* - o?(ui) -  4 H6j(ki(0(k7 ( k*k | |  s
(A2,2;3)

or

(A2,2;4)

where

F ( i ; w t a - F u.
(A2 ,2 ;5 )
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(A2,2)

Following the procedure outlined in (3>2), one may w rite

Tin f I  E  I7n* " 11

where

iz  = J - t t  < (h ^ iz  i  t t ,

and P is the contour shown in the fo llowing diagram.

Branch cut
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For a l l  z not on L define

J ( 2 ) 5 T T ( S - A ^  l l ( 2 - i l V ) £ > v y l i

( 2 - w 2(k ))& cc. - F ( G

J o ( * 0  =  T T ( i - i o 2l J  = I | |mJk 0

and

Then,

c FftVFfih
u1* '  -jz-ui^kV zT-oi^U)

1 r  O  J? o f i x j  r W ;4TTL

or

$ z ~ ~ Srrt. °  ^  r f e ) .

In expression (A2,2;6) fo r  r ( z )  le t

(A2,2)

(A2,2;6)

(A 2 ,2 ;7 )
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0 ^ 0 =
RC)

'  £  -  002(W)

Then,

r t e - I U » -  L Q i to Q iML'l

or

R e )- II R '  Z  Qi(i)Qfi) \\.

Because of the symmetry of Q. (k) ,

C o  ,  a  i * j

2 _ ,  Q i l i t )  Q j ( k )  -  ) R  Q3( a  Q , / i ) ,  >t i » j

Thus,

r fo  = r % \
where

Hence,

r>
\

(A2,2)

(A2,2; 8)

(A2,2;9)

(A 2 ,2 ;10 )
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(A2,2)

Making the replacement

 S

L S i t 3

3 TT1

k* (I+k2)ft« <ll<
W l + k * ?  '

-00

where is given by (3 ,4 ;2 1 ) and ( 3 , J+;2) as

4-Tret llu
s k (1? + k1.)

Let z = x + iy. . Since the integrand in (A2,2;10) is ana ly tic  

above and below the real ax is , and on the real axis between 0 and 1, 

le t  the path P approach the locus L. Then,

do

“ Shrl C(x)
(A 2 ,2 ; l l )

where

f±U) * y^o  r (x±  ly )

S'* <*> i JLvyn> J L  / 4-TT<A \ 2 L4 ----
+ y+o iFM S JAko [(u

-C O

or



81

1 |4

r±(xi = i + 3 t t
(k^ d k ;

sj—tx>

where

and

b =-H7 T 71

0 *  C L - W ^  . j

(A2,2)

(A2,2; 12)

Hence,, using the method of residues to ca lcu late  ^ ( x )  y ie lds

K M  =  I + 2 r r L  [ R , +  R 2 t  R  ]

where

R.--TT l i fks lk£
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(A2,2)

K ' -

b(l-b^
z i O f - l W (•? ♦!? )

k = lb

and
S

’
O

s +

.1

< 2 .( l+ a ^

( # + $ { ) <
- k=0.± . Z ( a J+ a V * b z ) .

D  -  Iava 
r \ 3-  y+o

Using (A2,2;12) and the replacement,

W - - R T H  ,

yie lds

rt  m  = X m  t  i Y m

where

Xfw): i+
4k«((-i£) 4(3ko' /X^+ 2“ k * l £ )  - k.'/wVl (w \k *T

(w%2-«nw+©z

and

y m  .
w

O M 1. ?

(A2 ,2 ;13 )
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(A2,2)

Hence,

r oo

2 “
J .
TT

d w  w  © M

where

(A 2,2;l4 )

and X(w) and Y(w) are given in (A2,2;13)* This is the resu lt fo r  

g2 given in (3 ,^ ;^ 0  through ( 3 ^ ; ^ ) *

(A2,3) Expansion of g„ in ( 3 ^ i ^ 0  fo r  Weak Coupling

Referring to (A2,2;13) and (A2,2;l*f) fo r g^, one may w rite  to 

f  i rst order i n a,

Y h
x w

- z c i . t r Vy

(A 2 ,3 ; l)

Hence

® ( W )
X H

w

.00

dw

TT



8k

(A2,3)

or
DO

4- ~2
o  -  ^  I w *  d \V

rr. J (w M £ f ‘
(A2,3;2)

Evaluation of (A2,3;2) by the method of residues yields

or

f c  =
<l £ 7 z

rr
d f w2, 

dw \ ( w  4-LUj?,
w-* £ k0 ^

f t -  — T “

Using (A2,2;13) one may w rite  to second order in a,

Y w  j t  -> o bet
i+ aoi<

(A2,3;3)

(A2,3;k-)

where

b- Z & f w

3  (w *  v k ! f

and

a- z k ! f k̂»ri-k')V(3k̂ lXwV24!X«Vk*)-k.llA2(v̂ )clY
J

(A 2 ,3 ;5 )



(A2,3)

Using (A2,3;*0 and (A 2 ,2 ; l^ ) ,  one may express as
.00

dw w tasn
\  X M  /t/O

f ° *
- ~^r- jd w  w [  b <£ - <3 b oC2, + O W * \ ] ;

or

a*

_3
rr dw wt> ob — 3

rr dw w
0 v>L c1 a (A2,3;6)

where a and b are given by (A2,3;5)*

The f i r s t  term in (A2,3;6) is the one ju s t  previously evaluated 

and is thus given by (A2,3;3)* Therefore,

(A2,3;7)

where

t.
r

(A2 ,3 ;8 )

a and b given by (A2,3 J5)*

In (A 2 ,3 ;7 ), gg is needed only to zeroth order in a. 

Hence, i t  is s u f f ic ie n t  to ca lcu late  9 ^ ‘ using the zeroth order
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optimum values of kQ and X, i . e . ,

k
Then

% = i 0 - i , ,
where

I - Jr_
3 T T

and

(A2,3)

(A2,3;9)

(A2,3;10)

Oo

I - j L
3rr

W fâ )wz42  

( w H i ) 4-
Iw

(A 2 ,3 ; l1)

Evaluation of (A2,3;10) by the method of residues yie lds

1 -
_ I

I Z (A2,3;12)

In (A 2 ,3 ;11) le t  w = -IT1 tan 0. Then,

I ' -
-  4-

» 3 tt

4- t c u ^ e  ’j t i y y v e + ao* ? e  d e  

JVfcfluru Q + IJ

_  I 6  6 cou^ o d e

~  ”̂ 1  ^ T jT ^ iT r r 4
3  L, c r f - 0  u



(A2,3)

l r -
-  1 6

3 tt

6 ~ 'ki'rt-2’&) co^lQ  d©

£ I +■ At/ft? ©J

Let x = sin 0. Then,

_ 16 f  xz(\-y})Ax
I

-  16

d r r j  ( # + f f

v3

3TT [ 3 ( 1 4 - x ^ | a J

I "S

or'

H = iiL _
1 3 M  3 - 2 3

_2_
S tt

(A2,3;13)

Substituting (A2,3;13) and (A2,3;12) into (A2,3;10), one obtains

f t = \ Z  ' ^TT

or

■ O. O  I 2 6  .

Hence, combining (A2,3;1^0 and (A2,3;7) yields

$2 = < * ■  - o. o 12 6 vOt f ) ,

(A2,3; l 1*)
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(A2.3)

Substitution of th is  resu lt into equation (3 ,^;37) for Eq and 

minimization of the resu lt with respect to kQ and \  s t i l l  y i e l d  

kQ.= X = 1. Hence, to second order in a,  g^ is given by

= T  ~ o .  O  I 2 6  +  O ( ^ ) -

(A2,3;7)
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