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Abstract In the present study, we investigate the roles of fear, refuge and hunting cooperation on the dynamics of a predator–prey
system, where the predator population is subject to harvesting at a nonlinear rate. We also focus on the effects of seasonal forcing
by letting some of the model parameters to vary with time. We rigorously analyze the autonomous and nonautonomous models
mathematically as well as numerically. Our simulation results show that the birth rate of prey and the fear of predators causing decline
in it, and harvesting of predators first destabilize and then stabilize the system around the coexistence of prey and predator; if the
birth rate of prey is very low, both prey and predator populations extinct from the ecosystem, and for a range of this parameter, only
the prey population survive. The fear of predators responsible for increase in the intraspecific competition among the prey species
and the refuge behavior of prey have tendency to stabilize the system, whereas the cooperative behavior of predators during the
hunting time destroys stability in the ecosystem. Numerical investigations of the seasonally forced model showcase the appearances
of periodic solution, higher periodic solutions, bursting patterns and chaotic dynamics.

1 Introduction

One of the major driving forces behind evolution of species in the ecosystem is the interaction among its individuals. The interaction
between an organism and its natural enemies is termed as the predator–prey interaction that determines the mortality of prey and
the birth of a new predator, and plays a major role in the movement of energy through food chains. These interactions are one of the
central themes in mathematical ecology [1]. Differential equations have been extensively used to model real-life problems [2–4].
After the seminal works of [2, 3], a plethora of mathematical models on predator–prey interactions have been investigated with the
inclusion of various types of functional responses which depict realistic situations [5–10]. It is worthy to note that these functional
responses depict only the effect of the direct killing of prey by predator. However, the predators not only affect the ecology of prey
directly by consuming them, but they also inflict their behavior and physiology indirectly [11, 12]. In order to avoid the fear of
predation, the prey species opt to change their habitat to a safer place. This in turn increases the survivability of prey for a short
period of time, but has negative influence in the long-run. For instance, the fear of wolves alters the rate of reproduction of Elk to a
greater extent [13]. Indeed, manipulation of the fear factor plays a vital role in shaping the structure of ecological community [11,
14, 15]. In [11], authors have found that neither the high population density of Snowshoe hare nor food level is the main reason
behind the decreasing reproduction rate; this happens only due to the high level of fear of predators. Fear of predation can reduce the
reproduction of Song sparrows by 40% [14]. At first, Wang et al. [16] constructed a mathematical model by letting the fear factor
to suppress the reproduction of prey population. Many studies have demonstrated that the predator–prey systems with fear effect
exhibits comparatively a more complex dynamics [17–19]. Role of space in predator–prey models with fear effect is considered in
[20, 21]. In [22], authors have investigated the impact of media induced fear on the recent COVID-19 pandemic situation.

Fear-induced refuge is a fascinating key factor acquired by prey population in an ecological community. It greatly affects the
dynamics of a food web system and plays a crucial role in maintaining the ecological balance of prey and predator [23]. Firstly, the
effect of refuge was demonstrated by Gause [24] in his experiment with the protozoan, Didinium (predator) and Paramecium (prey).
The Snowshoe hare (prey) prefers the forested habitat with dense undercover, where they are comparatively safe from their predator
(e.g., Canada lynx) [25]. Mathematical models considering the effect of prey refuge have been investigated by many researchers
in the recent past [26–29]. Mondal et al. [30] have investigated the complex dynamics of a predator–prey system in the presence
of resource subsidy by considering the influence of nonlinear prey refuge and fear effect. Recently, authors have assumed that the
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proportion of prey taking refuge is a function of predator density [31, 32], a more realistic consideration. In these studies, stabilizing
role of prey refuge has been observed on the dynamics of predator–prey systems.

For many species, social communication is an integral part of the life history traits of a population and regulates the dynamics of
system, and also affects the population densities [33]. For instance, the cooperation within a population is a well-known important
phenomenon in ecological systems [34]. Nudds [35] observed a clear connection between wolf pack size and food acquired per
wolf, by using sparse data from the literature. Smaller packs acquired substantially less food per wolf than those of optimal size.
There are many other living organisms that cooperate among themselves for the hunting process. Males pursue less, though they
refrain more than females; refraining while a group hunt is more common during hunts of prey that seem to be easier to capture [36].
During hunts of wart hog, lions are more likely to refrain Phacochoerus aethiopicus and less likely to refrain at the hunting time of
zebra, Equus burchelli, and buffalo, Syncerus caffer. Aplomado falcons (Falco femoralis) sometimes hunt in pairs while chasing the
birds; in eastern Mexico, 29% of 349 hunts were observed involving mated pairs of falcons simultaneously chasing the same prey
animal; and 66% hunts of birds were tandem pursuits [37]. Some mathematical models have been investigated to explore the role
of hunting cooperation in predator–prey systems [31, 38, 39]. In [38], it was observed that the hunting cooperation destabilizes a
predator–prey system. Mondal et al. [40] explored complex dynamics such as bistability along with local and global bifurcations in
a predator–prey system where predators are generalist and also cooperate during hunting. Recently, Roy et al. [41] have investigated
the combined effects of fear, refuge and hunting cooperation in a seasonally forced eco-epidemic predator–prey system in which the
predators have the ability to detect between susceptible and infected prey. They found that hunting cooperation can induce chaos in
the ecological system.

Harvesting of the species is another major issue in a predator–prey system. Harvesting is very important for the conservation
of the resources and also for the social management, on the ecological as well as economical grounds. The over-exploitation of an
ecological system can be controlled by harvesting of its species. Several studies have explored the role of harvesting in ecological
systems [42–44]. Clark [43] proposed the optimal management on harvesting in shery system for the first time. An optimal harvesting
policy is explored by Zhang et al. [44], on a stage-structured two species model. Sahoo et al. [45] studied the role of alternative
resources on the dynamics of a harvested predator–prey system. They showed the capability of suitable alternative resources to
reduce the risk of extinction of predator species if the rate of harvesting is too high. Sk and Pal [46] have explored the dynamics
of an eco-epidemic system with infection in prey species by considering that the predators are generalist. In this study, they have
deeply investigated the effects of fear, refuge and harvesting. Further, they have seen the impact of stochasticity on the survival as
well as extinction of species in the ecological system. In [47], authors have explored the dynamics of a predator–prey system with
fear effect based state-dependent harvesting. Mondal et al. [48] explored different dynamical features of an imprecise predator–prey
system with fear effect and nonlinear harvesting of predator in an uncertain environment.

As many environmental factors affecting the survival of species in the ecological community are seasonally forced, considerations
of parameters in ecological models as periodic functions of time rather than constants would mimic comparatively more realistic
situations [49, 50]. For instance, seasonal variation appears in the birth rate of many species that is caused due to humidity,
temperature, rainfall, abundance of food, change in daylight period, etc., [51]. The seasonality in birth rate is also due to the fact
that some seasons being evolutionary beneficial and favorable for giving birth and raising the young. It has been well documented
that the level of fear varies due to change in predation pressure, intraspecific competition or distribution of resources among the
individuals of prey species [52, 53]. The study of Sk et al. [54] has documented the appearances of higher periodic solutions and
bursting patterns in a seasonally forced predator–prey system with fear, refuge and additional foods for predators. Periodic changes
of refuge and hunting cooperation in a predator–prey system were considered by Sk et al. [31]. In [32], authors have investigated
seasonal effects of fear, refuge and hunting cooperation in a predator–prey system. Tiwari et al. [55] have deeply investigated the
effects of fear, migration and switching in an ecological system with two prey and one predator. They have studied the dynamics of
the system in the absence as well as presence of the seasonal forcing in the costs of fear.

In most of the above-mentioned studies on predator–prey systems, the fear effect has been considered only on the birth rate of
prey population; a little bit attention has been paid on the effect of fear of predator on the death of prey species [41, 46, 56]. Here, we
investigate a predator–prey system where the birth rate of prey reduces due to fear of predator, while the fear of predators enhances
the intraspecific competition among the individuals of prey species. The prey population are assumed to take refuge; the proportion
of prey population taking refuge is a function of predator’s density. The predators are considered to cooperate each other at the time
of hunting. We also take into account the harvesting of predators to reduce the predation pressure and maintain the bio-diversity.
Later, we consider seasonal patterns of some of the ecologically important model parameters and investigate their impacts on the
dynamics of the system. Thus, the aim of this study is two folds: firstly, we see how the fear effects, prey refuge, hunting cooperation
and harvesting of predators regulate the dynamical interactions of prey and predator in an ecological community, and secondly, we
investigate how the seasonal influences on model parameters affect the dynamics of ecological systems.

The remaining parts of this paper are organized in the following way. We introduce our autonomous system for the combined
actions of fear, refuge, cooperation and harvesting in the next section and analyze the proposed model in the following section. In
Sect. 3, we extend our autonomous model by letting seasonal variations of some of the model parameters. The nonautonomous system
is analyzed in the following section. Numerical simulations are performed in Sect. 4, which explore rich dynamics of autonomous
as well as nonautonomous systems. We wrap up the paper with conclusion and discussion in Sect. 5.
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2 The autonomous model

Here, we consider an ecological community which consists of a single prey and a single predator populations. At any instant of time
t > 0, we denote the densities of prey and predator populations by N and P, respectively, that are measured in terms of number per
unit area. We construct our mathematical model for predator–prey system of an ecological community based upon the following
ecological facts.

1. The growth of prey is logistic with r0 as its birth rate and r2 as mortality due to intraspecific competition in the absence of
predation and fear effect; the prey population dies naturally at the rate r1.

2. Anti-predator behavior of prey population due to the fear effect causes reduction in the reproduction rate of the prey species.
Moreover, the fear of predators increases the intraspecies competition among the prey species [41, 46, 56]. Let k1 and k2 be the
levels of fear of predators causing a decline in the reproduction rate of prey population and incline in the intraspecies competition
among the individuals of prey species, respectively.

3. Refuge taken by prey to avoid the predation risk depends upon the frequency of encounter of prey by a predator and depends on
the densities of both prey and predator population in the ecological system. So, it is reasonable to consider the number of prey
taking refuge to be proportional to the direct interaction of prey and predator, i.e., NP. Thus, the available prey for predation is
given by N − mN P � (1 − mP)N , where 0 ≤ m ≤ 1, and must satisfy 0 ≤ 1 − mP ≤ 1 [32].

4. At the hunting time, predators cooperate, which in turn boosts up the predation rate. Thus, the attack rate is the linear increasing
function of density of predators in the ecological system [32]. Let c denotes the degree of hunting cooperation among the predator
species.

5. By considering Michaelis-Menten type harvesting, several researchers have showed that harvesting of species has a strong impact

on the population dynamics [57, 58]. Here, we introduce nonlinear harvesting of predators by the term
qE P

c1E + c2P
, where q is

the catching capability coefficient, E is the effort applied to harvest the predators, and c1 and c2 are positive constants.
6. The predator population is assumed to consume the prey items at a constant rate α following the Holling type-II response

function
αN P

a + N
. However, the predation term gets modified due to prey refuge and hunting cooperation of predators, and

becomes
α(1 − mP)(1 + cP)N P

a + (1 − mP)(1 + cP)N
.

7. The growth of the predator population depends on the consumption of prey items. Let α1 be the conversion efficiency of prey
biomass into the biomass of predator population. Natural death takes place for the predator population at the constant rate d1.

In view of the above said assumptions, we propose the following mathematical model for the interacting dynamics of prey and
predator populations in ecological system:

dN

dt
� r0N

1 + k1P
− r1N − r2(1 + k2P)N 2 − α(1 − mP)(1 + cP)N P

a + (1 − mP)(1 + cP)N
,

dP

dt
� α1α(1 − mP)(1 + cP)N P

a + (1 − mP)(1 + cP)N
− d1P − qE P

c1E + c2P
. (1)

Recently, Mondal and Samanta [59] explored the impacts of fear and its carry-over effect in a predator–prey system in which a
constant proportion of prey population are able to take refuge. Our model system (1) is different from the model studied by Mondal
and Samanta [59] in the following sense.

1. In [59], authors have considered the predator’s fear and its carry-over effects in the predator–prey model. But, here we focus
only on the effect of fear induced by predator and do not consider its carry-over effect in the modeling process.

2. In [59], authors have considered that the fear of predators suppresses the birth rate of prey species only. But, here we assume
that besides reducing the birth rate of prey, the fear of predators enhances the intraspecies competition among the individuals of
prey species.

3. In [59], authors have considered that a constant proportion of the prey species is taking refuge whereas in the present paper,
it is assumed that the portion of prey population that take refuge is in accordance with the predator’s density in the ecological
system, a more realistic assumption.

4. Here, we assume that the predator population cooperate with each other during hunting time while the cooperative behavior of
predators was not considered in [59].

5. In the present investigation, it is considered that the predator species are being harvested at a nonlinear rate to avoid the
exploitation of resources in the ecological system. But, in [59], harvesting of species was not considered.

6. In [59], authors have investigated the effects of environmental stochasticity on their proposed predator–prey system. Here, we
do not consider the impact of environmental fluctuations rather we focus on the seasonal variations of some the ecologically
important model parameters.

Further, our model system (1) is different from the model proposed and studied by Guin et al. [60]. In [60], authors have investigated
the dynamics of a predator–prey system in which the prey population are harvested at a linear rate, by considering ratio-dependent
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Table 1 Biological meanings of parameters present in system (1) and their numerical values used for simulations

Parameters Descriptions Values Units

r0 Birth rate of prey 1.1 1/time
r1 Natural death rate of prey 0.09 1/time
r2 Death rate of prey due to intraspecific competition 0.06 unit area/number/time
k1 Level of fear responsible for the reduction in the birth rate of prey 5 unit area/number
k2 Level of fear responsible for enhancement in the intraspecific competition among prey population 1.8 unit area/number
α Rate of consumption of prey by predators 0.9 1/time

m Coefficient of refuge 0.8 unit area/number

c Degree of hunting cooperation 0.5 unit area/number

a Saturation constant 1.2 number/unit area
α1 Conversion efficiency of prey biomass into that of predator 0.8 –
d1 Natural death rate of predator 0.01 1/time

q Catching capability 0.25 1/time

E Harvesting effort 1.5 number/unit area
c1 Saturation constant 1.1 –
c2 Proportionality constant 1.5 –

functional response. They have also assumed that the proportion of prey population taking refuge depends on the predator’s density.
The effects of fear factor and the hunting cooperation of predators were not considered in [60]. In [60], the main objective was to
investigate the effects of diffusion on the predator–prey system, and the generated spatial patterns.

All the parameters utilized in the model system (1) are assumed to be positive constants, and the model system (1) is to be analyzed
with initial conditions having non-negative values. In Table 1, we have mentioned the ecological meanings of all the parameters
appearing in the system (1).

On integrating both equations of the system (1) with the non-negative initial conditions, we get

N (t) � N (0) exp

(∫ t

0

[
r0

1 + k1P(s)
− r1 − r2(1 + k2P)N (s) − α(1 − mP(s))(1 + cP(s))P(s)

a + (1 − mP(s))(1 + cP(s))N (s)

]
ds

)
,

P(t) � P(0) exp

(∫ t

0

[
α1α(1 − mP(s))(1 + cP(s))N (s)

a + (1 − mP(s))(1 + cP(s))N (s)
− d1 − qE

c1E + c2P(s)

]
ds

)
.

Since N (0), P(0) > 0, we have N (t), P(t) > 0 for all t ≥ 0. Therefore, any solution of system (1) initiating in the positive quadrant
of R2 always remain in the same quadrant showing that the interior of the first quadrant of R2 is an invariant set.

2.1 Mathematical analysis of system (1)

2.2 Feasibility and stability of system’s equilibria

All the ecologically meaningful equilibria of the model system (1) are listed as follows.

1. The population-free (trivial) equilibrium point E0 � (0, 0), which always exists. In this equilibrium condition, neither prey nor
predator population exists in the ecosystem.

2. The predator-free (axial) equilibrium point E1 �
(
r0 − r1

r2
, 0

)
, which exists if r0 > r1. Thus, for the feasibility of this

equilibrium point, the birth rate of prey population should always be greater than its natural death rate.
3. The coexistence (interior) equilibrium point E∗ � (N∗, P∗), where N∗ and P∗ are the positive solution(s) of the following

isoclines:

r0

1 + k1P
− r1 − r2(1 + k2P)N − α(1 − mP)(1 + cP)P

a + (1 − mP)(1 + cP)N
�0,

α1α(1 − mP)(1 + cP)N

a + (1 − mP)(1 + cP)N
− d1 − qE

c1E + c2P
�0.

This equilibrium is ecologically important as both prey and predator populations survive here.

We state the following theorem in respect of local stability of the three equilibria of the system (1).
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Theorem 1 1. The population-free equilibrium E0 always exists and is stable (unstable) whenever the predator-free equilibrium
E1 does not exist (exists).

2. The predator-free equilibrium E1 exists if r0 > r1 and is stable if the following conditions hold:

c1(d1 − αα1) − q > 0, (r0 − r1)[c1(d1 − αα1) − q] + ar2(c1d1 − q) > 0. (2)

3. The coexistence equilibrium E∗, if exists, is locally asymptotically stable if and only if the following conditions hold:

A1 > 0, A2 > 0, (3)

where A1 and A2 are defined in the proof.

Proof Jacobian matrix of system (1) is obtained as J � [Ji j ]2×2, where

J11 � r0

1 + k1P
− r1 − 2r2(1 + k2P)N − aα(1 − mP)(1 + cP)P

[a + (1 − mP)(1 + cP)N ]2 ,

J12 � − r0k1N

(1 + k1P)2 − r2k2N
2 − αN [(1 − mP)(1 + cP) + cP(1 − mP) − mP(1 + cP)]

a + (1 − mP)(1 + cP)N

+
α(1 − mP)(1 + cP)N P[cN (1 − mP) − mN (1 + cP)]

[a + (1 − mP)(1 + cP)N ]2 ,

J21 � aα1α(1 − mP)(1 + cP)P

[a + (1 − mP)(1 + cP)N ]2 ,

J22 � αα1N [(1 − mP)(1 + cP) + cP(1 − mP) − mP(1 + cP)]

a + (1 − mP)(1 + cP)N

− αα1(1 − mP)(1 + cP)N P[cN (1 − mP) − mN (1 + cP)]

[a + (1 − mP)(1 + cP)N ]2 − d1 − c1qE2

(c1E + c2P)2 .

1. Evaluating the Jacobian matrix J at the trivial equilibrium point E0 gives the two eigenvalues as r0 −r1 and −c1d1 + q

c1
. Note that

the second eigenvalue is always negative while the first one is negative if r0 < r1 and positive for r0 > r1. Thus, the equilibrium
E0 is stable if r0 < r1, which is opposite to the condition for the feasibility of the equilibrium E1. Therefore, the equilibrium
E0 is stable (unstable) if the equilibrium E1 does not exist (exists). This indicates that these two equilibria are linked via a
transcritical bifurcation. Biologically, it interprets that it is possible to observe population-free equilibrium in a predator–prey
system of an ecological community until the birth rate of prey population exceeds its natural mortality rate. However, if the
birth rate of prey population exceeds its natural mortality rate, then the population-free equilibrium becomes unstable and the
equilibrium with prey only appears in the ecosystem.

2. The two eigenvalues obtained after evaluating the Jacobian matrix J at the predator-free equilibrium E1 are −(r0 − r1) and

−c1[(ar2 + r0 − r1)d1 − αα1(r0 − r1)] + q(ar2 + r0 − r1)

c1(ar2 + r0 − r1)
. In view of feasibility of the equilibrium E1, one eigenvalue is always

negative whereas the other eigenvalue will be negative provided the inequality (2) holds. Thus, we can visualize the equilibrium
with prey only in some ecosystems.

3. Jacobian matrix J after evaluating at the equilibrium E∗ becomes JE∗ � [ai j ]3×3, where ai j are the entries Ji j evaluated at the
components of the equilibrium E∗. Characteristic equation of matrix JE∗ is obtained as follows:

ξ2 + A1ξ + A2 � 0, (4)

where A1 � −(a11 +a22) and A2 � a11a22 −a12a21. In view of conditions stated in (3) and employing Routh-Hurwitz criterion,
both the roots of Eq. (4) are either negative or have negative real parts. Thus, the equilibrium E∗, if exists, is locally asymptotically
stable if and only if A1, A2 > 0.

�

2.2.1 Existence of Hopf bifurcation

Here, we investigate the possibility of Hopf-bifurcation through the equilibrium point E∗ by taking the birth rate of prey population
(r0) as the bifurcation parameter and keeping other parameters fixed. In this regard, we present the following theorem.

Theorem 2 The necessary and sufficient conditions for the occurrence of Hopf-bifurcation through the equilibrium E∗ are that there
exists a critical value of r0, say r0 � rc0 such that

1. A1(rc0) � 0, A2(rc0) > 0.
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2.

[
dRe(ξ (r0))

dr0

]
r0�rc0

�� 0.

Proof To have an idea about the nature of equilibrium E∗, we determine the signs of the real parts of the roots of the characteristic
Eq. (4). Let λ(r0) � u(r0) + iv(r0) be a root of the characteristic Eq. (4). Putting this value in Eq. (4), and separating real and
imaginary parts, we get

u2 − v2 + A1u + A2 �0, (5)

2uv + A1v �0. (6)

Note that if the characteristic Eq. (4) has a pair of purely imaginary roots, the stability of the system changes through the equilibrium
E∗. Setting r0 � rc0 so u(rc0) � 0, and putting u � 0 in Eqs. (5) and (6), we get

− v2 + A2 � 0, (7)

A1v � 0, v �� 0. (8)

From Eqs. (7) and (8), we have A1(rc0) � 0 and v(rc0) � √
A2(rc0), which implies ξ (rc0) � i

√
A2(rc0).

The eigenvalues of the characteristic Eq. (4) are

ξ1,2 �
−A1 ±

√
A2

1 − 4A2

2
.

Note that both A1 and A2 are functions of the parameter r0, when the remaining parameters are assigned fixed values. Let there
exists some r0 � rc0 such that A1(rc0) � 0 and A2(rc0) > 0. Therefore, the positive real parts of these eigenvalues change their
sign whenever r0 passes through rc0 . As a consequence, system (1) switches its stability provided that the transversality condition is
satisfied.

Differentiating Eqs. (5) and (6) with respect to r0, we get the following after putting u � 0

A1
du

dr0
− 2v

dv

dr0
� − d A2

dr0
,

2v
du

dr0
+ A1

dv

dr0
� − v

d A1

dr0
.

From the above two equations, we get that
[
dRe(ξ (r0))

dr0

]
r0�rc0

�
[

2v2 d A1
dr0

+ A1
d A2
dr0

A2
1 + 4v2

]
r0�rc0

,

which is non-zero if

[
2v2 d A1

dr0
+ A1

d A2

dr0

]
r0�rc0

�� 0.

Now, we discuss the direction and stability of the bifurcating periodic solutions originating from the equilibrium point E∗ via
Hopf-bifurcation. For this, we calculate the first Lyapunov coefficient using the approach of [66].

At first, we shift the equilibrium point E∗ � (N∗, P∗) at the origin by introducing the new variables X � N−N∗ andY � P−P∗.
Then, system (1) gets the following form:

dX

dt
� r0(X + N∗)

1 + k1(Y + P∗)
− r1(X + N∗) − r2(1 + k2(Y + P∗))(X + N∗)2

− α(1 − m(Y + P∗))(1 + c(Y + P∗))(X + N∗)(Y + P∗)

a + (1 − m(Y + P∗))(1 + c(Y + P∗))(X + N∗)
,

dY

dt
�α1α(1 − m(Y + P∗))(1 + c(Y + P∗))(X + N∗)(Y + P∗)

a + (1 − m(Y + P∗))(1 + c(Y + P∗))(X + N∗)
− d1(Y + P∗) − qE(Y + P∗)

c1E + c2(Y + P∗)
.

Taylor’s series expansion of the above system at the point (X, Y ) � (0, 0) up to terms of order 3, on neglecting higher-order terms,
gives

Ẋ � u10X + u01Y + u20X
2 + u02Y

2 + u11XY + u30X
3 + u21X

2Y + u12XY
2 + u03Y

3 + O(|Z |4),

Ẏ � v10X + v01Y + v20X
2 + v02Y

2 + v11XY + v30X
3 + v21X

2Y + v12XY
2 + v03Y

3 + O(|Z |4), (9)

where
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u10 � a11, u01 � a12, v10 � a21, v01 � a22, u20 � −r2(1 + k2P
∗) +

αl23 P
∗

l31
,

u02 � r0k2
1N

∗

(1 + k1P∗)3 +
mcαN∗P∗

l21
(l1 − l3N

∗) +
αl2N∗

l31

{
l1(l3 + l2P

∗)N∗ − l21 − l2l3N
∗2P∗},

u11 � − r0k1

(1 + k1P∗)2 − 2r2k2N
∗ +

α

l31

{
2l2l3N

∗P∗ − l1(l3 + l2P
∗)

}
, u30 � −αl33 P

∗

l41
,

u21 � −r2k2 − αl3(l3 + 2l2P∗)

l31
− 3αl2l23 N

∗P∗

l41
,

u12 � r0k2
1

(1 + k1P∗)2 − α(l2 − mcP∗)

l21

+
α

l31
{2l2l3N∗ + l22 N

∗P∗ + N∗P∗(l22 − 2mcl3)} − 3αl22 l3N
∗2P∗

l41
,

u03 � − r0k3
1N

∗

(1 + k1P∗)4 +
mcαN∗

l31
{l21 − l1l2N

∗P∗ − l1N
∗(l3 + l2P

∗) + 2l2l3P
∗}

+
αl22 N

∗2

3l41
{3l21 − 2l1N

∗(l3 + l2P
∗) + 3l2l3N

∗2P∗}, v20 � −αα1l23 P
∗

l31
,

v02 � αα1l2N∗

l31
{l21 − l1N

∗(l3 + l2P
∗) + l2l3N

∗2P∗} − mcαα1N∗P∗(l1 − l3N∗)

l21
− c1c2E2q

(c1E + c2P∗)3 ,

v11 � αα1

l31
{l1(l3 + l2P

∗) − 2l2l3N
∗P∗}, v30 � αα1l33 P

∗

l41
,

v21 � αα1l3
l41

{3l2l3N∗P∗ − l1(l3 + 2l2P
∗)},

v12 � αα1l2
l41

{l21 − l1N
∗(l3 + l2P

∗) − N∗(l3 + l2P
∗) + 3l2l3N

∗2P∗} − mcαα1P∗(l1 + 2l3N∗)

l31
,

v03 � −mcαα1N∗

l31
{l21 − l2N

∗P∗ + l1(l3 + l2P
∗) − 2l2l3N

∗2P∗}

− αα1l22 N
∗2

3l41
{3l21 − 2l1N

∗(l3 + l2P
∗) + 3l2l3N

∗2P∗} +
c1c2

2qE
2

(c1E + c2P∗)4

with

l1 � a + (1 − mP∗)(1 + cP∗)N∗, l2 � (1 − mP∗)c − (1 + cP∗)m, l3 � (1 − mP∗)(1 + cP∗).

After neglecting the higher-order terms of degree four and above, system (9) can be written as

Ż � JE∗ Z + Q(Z ), (10)

where

Z �
(
X
Y

)
,

Q �
(
Q1

Q2

)
�

(
u20X2 + u02Y 2 + u11XY + u30X3 + u21X2Y + u12XY 2 + u03Y 3

v20X2 + v02Y 2 + v11XY + v30X3 + v21X2Y + v12XY 2 + v03Y 3

)
.

The eigenvector V ∗ of the matrix JE∗ corresponding to the eigenvalue iγ0 at r0 � rc0 is V ∗ � (u01, iγ0−u10)T , where γ0 � √
A2(rc0).

Now, we define

S � (Re(V ∗),−Im(V ∗)) �
(

u01 0
−u10 − γ0

)
.

Let Z � SW and W � S−1Z , where W � (w1, w2)T . Under this transformation, system (10) becomes

Ẇ � (S−1 JE∗ S)W + S−1Q(SW ).
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This can be written as (
ẇ1

ẇ2

)
�

(
0 − γ0

γ0 0

)(
w1

w2

)
+

(
H1(w1, w2; r0 � rc0)

H2(w1, w2; r0 � rc0)

)
, (11)

where H1 and H2 are nonlinear in w1 and w2, and are given by

H1(w1, w2; r0 � rc0) � 1

u01
Q1, H2(w1, w2; r0 � rc0) � − 1

γ0u01
(u10Q1 + u01Q2)

with

Q1 � (u20u
2
01 − u11u01u10 + u02u

2
10)w2

1 + γ0(2u02u10 − u11u01)w1w2 + γ 2
0 u02w

2
2

+ (u12u01u
2
10 − u03u

3
10 + u30u

3
01 − u21u

2
01u10)w3

1

+ γ0(2u12u10u01 − u21u
2
01 − 3u03u

2
10)w2

1w2 + γ 2
0 (u12u01 − 3u03u10)w1w

2
2 − γ 3

0 u03w
3
2,

Q2 � (v20u
2
01 − v11u01u10 + v02u

2
10)w2

1 + γ0(2v02u10 − v11u01)w1w2 + γ 2
0 v02w

2
2

+ (v12u01u
2
10 − v03u

3
10 + v30u

3
01 − v21u

2
01u10)w3

1

+ γ0(2v12u10u01 − v21u
2
01 − 3v03u

2
10)w2

1w2 + γ 2
0 (v12u01 − 3v03u10)w1w

2
2 − γ 3

0 v03w
3
2 .

Now, based on the normal form (11), we determine the first Lyapunov coefficient as

L � 1

16

[
H1

w1w1w1
+ H1

w1w2w2
+ H2

w1w1w2
+ H2

w2w2w2

]

+
1

16γ0

[
H1

w1w2
(H1

w1w1
+ H1

w2w2
) − H2

w1w2
(H2

w1w1
+ H2

w2w2
) − H1

w1w1
H2

w1w1
+ H1

w2w2
H2

w2w2

]
,

where all the partial derivatives are evaluated at the bifurcation point, i.e., (w1, w2; r0) � (0, 0; rc0). According to [66], the Hopf-
bifurcation is supercritical if L < 0 and subcritical if L > 0. For L � 0, generalized Hopf-bifurcation occurs at which the Jacobian
matrix corresponding to the equilibrium E∗ has purely imaginary eigenvalues, and the bifurcation point separates branches of
subcritical and supercritical Hopf-bifurcation in the parametric plane. �

3 The nonautonomous model

In system (1), we have assumed that all the parameters describing the model equations are constant. However, in realistic scenarios,
parameters involved in ecological models are not constants rather they depend upon several ecological and environmental factors
that induce seasonality in the parameters. Here, we extend our autonomous system (1) by allowing the parameters representing the
growth rate of prey, fear of predators, refuge behavior of prey, cooperation for hunting and harvesting of predators to vary with time.
Thus, after considering the parameters r0, k1, k2, m, c and E as functions of time, the autonomous system (1) is changed into the
following nonautonomous form:

dN

dt
� r0(t)N

1 + k1(t)P
− r1N − r2(1 + k2(t)P)N 2 − α(1 − m(t)P)(1 + c(t)P)N P

a + (1 − m(t)P)(1 + c(t)P)N
,

dP

dt
� α1α(1 − m(t)P)(1 + c(t)P)N P

a + (1 − m(t)P)(1 + c(t)P)N
− d1P − qE(t)P

c1E(t) + c2P
. (12)

In system (12), the seasonally forced parameters r0(t), k1(t), k2(t), m(t), c(t) and E(t) are considered to be positive, continuous and
bounded functions having positive lower bounds. Also, these parameters are assumed to be ω−periodic. For simplicity, we ignore
the phase shifts and consider that these time-dependent parameters have a period of 365 days.

For a continuous ω-periodic function f (t) on R, we introduce the following notations:

f M � sup
t∈R

f (t), f L � inf
t∈R f (t), f � 1

ω

∫ ω

0
f (t)dt.

3.1 Permanence

Theorem 3 System (12) is permanent if the following conditions hold:

mLr0
L

mL + kM1
> r1 +

α

mL

(
1 +

cM

mL

)
, α1αm1 > (a + M1)

(
d1 +

q

c1

)
. (13)
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Proof From the first equation of the system (12), we get
dN

dt
≤ r0(t)N

1 + k1(t)P
− r1N − r2(1 + k2(t)P)N 2 ≤ (r0(t) − r1)N − r2N

2

≤(rM0 − r1)N − r2N
2.

By the comparison theorem, we have for some M1 > 0

lim sup
t→∞

N (t) ≤ rM0 − r1

r2
� M1.

From the second equation of the system (12), we have
dP

dt
≤α1α(1 − m(t)P)(1 + c(t)P)N P

a + (1 − m(t)P)(1 + c(t)P)N
≤ α1α

a
M1(1 − mL P)(1 + cM P)P.

Using differential inequality, we get

P(t) ≤ 1

mL
− 1

mL

P
mL + cM

mL

eλt m
L + cM

mL
(1 + cM P)

cM

mL

≤ 1

mL
− P

eλt (1 + cM P)cM
.

Thus, for some M2, we have

lim sup
t→∞

P(t) ≤ 1

mL
� M2.

Again, from the first equation of system (12), we obtain

dN

dt
≥ mLr L0 N

mL + kM1
− r1N − r2

(
1 +

kM2
mL

)
N 2 − α

mL

(
1 +

cM

mL

)
N

≥
[

mLr L0
mL + kM1

− r1 − α

mL

(
1 +

cM

mL

)]
N − r2

(
1 +

kM2
mL

)
N 2.

By the comparison theorem, we have for some m1 > 0

lim inf
t→∞ N (t) ≥

mLr L0
mL + kM1

− r1 − α

mL

(
1 +

cM

mL

)

r2

(
1 +

kM2
mL

) � m1.

Again, from the second equation of system (12), we get
dP

dt
≥α1α(1 − m(t)P)N P

a + (1 + c(t)P)N
− d1P − qE(t)P

c1E(t) + c2P

≥α1α(1 − mM P)N P

a + (1 + cM P)M1
− d1P − qP

c1

≥
α1αm1P − (a + M1)

(
d1 +

q

c1

)
P − (m1mMαα1 + cMM1)P2

a + (1 + cM )M1
.

Again, from comparison theorem, for some m2 > 0, we have

lim inf
t→∞ P(t) ≥

α1αm1 − (a + M1)
(
d1 + q

c1

)
m1mMαα1 + cMM1

� m2.

Obviously, m1 ≤ M1 and m2 ≤ M2. Now, we define

M
′ � max

{
rM0 − r1

r2
,

1

mL

}
,

m
′ � min

{ mLr L0
mL + kM1

− r1 − α

mL

(
1 +

cM

mL

)

r2

(
1 +

kM2
mL

) ,
1

mL
,
α1αm1P − (a + m1)

(
d1 + q

c1

)
m1mMαα1 + cMM1

}
.
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Thus, we have

min

{
lim inf
t→∞ N (t), lim inf

t→∞ P(t)

}
≥ m

′
, max

{
lim sup
t→∞

N (t), lim sup
t→∞

P(t)

}
≤ M

′
.

Therefore, the system (12) is permanent in view of inequalities in (13). �

3.2 Global attractivity of positive periodic solution

Lemma 1 For a real number κ , let f be a nonnegative function which is integrable and uniformly continuous on the interval [κ,∞),
then lim

t→∞ f (t) � 0 [61].

Theorem 4 A positive periodic solution of system (12) is globally attractive provided,

r2(1 + kL2 )μ1 > [μ1(1 − mLeρ3 )2(1 + cMeρ4 )2eρ4 + μ2α1αa({1 + (cM − mL )eρ4

+ cMmMe2ρ4}]/{a + (1 − mMeρ4 )(1 + cLeρ3 )eρ1}2, (14)

qELcL

(c1EM + c2eρ4 )2 > {a(cM − mL )(μ12eρ4 + αμ2α1e
ρ2 )

+ acMmM (3μ1e
2ρ4 + 2μ2αα1e

ρ2+ρ4 )

+ μ1(1 − mLeρ3 )2(1 + cMeρ4 )2eρ2}/{a + (1 − mMeρ4 )(1 + cLeρ3 )}2. (15)

Proof Let system (12) possesses at least one positive periodic solution (N (t), P(t)), and also we have

eρ1 ≤ N (t) ≤ eρ2 , eρ3 ≤ P(t) ≤ eρ4 .

Suppose (N(t), P(t)) be any positive periodic solution of system (12). Consider the following functional:

V (t) � μ1|ln N (t) − ln N (t)|+μ2|ln P(t) − ln P(t)|.
Calculating upper-right Dini’s derivative, we get

D+V (t) � μ1sgn(N (t) − N (t))

(
Ṅ (t)

N (t)
− Ṅ (t)

N (t)

)
+ μ2sgn(P(t) − P(t))

(
Ṗ(t)

P(t)
− Ṗ(t)

P(t)

)
.

We have,

μ1sgn(N (t) − N (t))

(
Ṅ (t)

N (t)
− Ṅ (t)

N (t)

)
≤ μ1

[{r0(t)k1(t)|P(t) − P(t)|−r2k2(t)|N (t) − N (t)|

+r2k2(t)|P(t) − P(t)|−r2|N (t) − N (t)|
+(a(|P(t) − P(t)|+(c(t) − m(t))(P(t) + P)|P(t) − P(t)|
+m(t)c(t)(P2(t) + P(t)P(t) + P

2
(t))|P(t) − P(t)|)

+(1 − m(t)P(t))(1 − m(t)P(t))(1 + c(t)P(t))(1 + c(t)P(t))(P(t)|N (t) − N (t)|
+N (t)|P(t) − P(t)|))}/{(a + (1 − m(t)P(t))(1 + c(t)P(t))N (t))

(a + (1 − m(t)P(t))(1 + c(t)P(t))N (t))}];
μ2sgn(P(t) − P(t))

(
Ṗ(t)

P(t)
− Ṗ(t)

P(t)

)
≤ μ2

[
− qE(t)c2|P(t) − P(t)|

(c1E(t) + c2P(t))(c1E(t) + c2P(t))

+[α1αa{|N (t) − N (t)|+(c(t) − m(t))(N (t)|P(t) − P(t)|+P(t)|N (t) − N (t)|)
+c(t)m(t)(P2(t)|N (t) − N (t)|+N (t)(P(t) + P(t))|P(t) − P(t)|)}]/
{(a + (1 − m(t)P(t))(1 + c(t)P(t))N (t))(a + (1 − m(t)P(t))(1 + c(t)P(t))N (t))}].

Thus, we have

D+V (t) ≤ −
[
r2(1 + kL2 )μ1 − {(1 − mLeρ3 )2(1 + cMeρ4 )2eρ4μ1

+μ2α1αa(1 + (cM − mL )eρ4 + cMmMe2ρ4 )}/
{(a + (1 − mMeρ4 ))(1 + cLeρ3 )eρ1}2

]
|N (t) − N (t)|
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−
[

qELcL

(c1EM + c2eρ4 )2 − [a{(cM − mL )(μ12eρ4 + μ2αα1e
ρ4 )

+cMmM (3μ1e
2ρ4 + 2μ2αα1e

ρ2+ρ4 )} + μ1(1 − mLeρ3 )2(1 + cMeρ4 )2eρ2 ]/

{a + (1 − mMeρ4 )(1 + cLeρ3 )eρ1}2
]
|P(t) − P(t)|.

We can write,

D+V (t) ≤ −δ1|N (t) − N (t)|−δ2|P(t) − P(t)|,
where

δ1 � r2(1 + kL2 )μ1 − {(1 − mLeρ3 )2(1 + cMeρ4 )2eρ4μ1 + μ2α1αa(1 + (cM − mL )eρ4

+ cMmMe2ρ4 )}/{(a + (1 − mMeρ4 ))(1 + cLeρ3 )eρ1}2,

δ2 � qELcL

(c1EM + c2eρ4 )2 − [a{(cM − mL )(μ12eρ4 + μ2αα1e
ρ4 )

+ cMmM (3μ1e
2ρ4 + 2μ2αα1e

ρ2+ρ4 )} + μ1(1 − mLeρ3 )2(1 + cMeρ4 )2eρ2 ]/

{a + (1 − mMeρ4 )(1 + cLeρ3 )eρ1}2.

Clearly, the function V (t) is monotonic decreasing on the interval [0,∞). Integrating the above inequality over the interval [0, t],
we get

V (t) + δ1

∫ t

0
|N (t) − N (t)|dt + δ2

∫ t

0
|P(t) − P(t)|dt ≤ V (0) < ∞, ∀ t ≥ 0.

Hence, from Lemma 1, we have

lim
t→∞|N (t) − N (t)|� 0, lim

t→∞|P(t) − P(t)|� 0.

Thus, the positive periodic solution (N (t), P(t)) of system (12) is globally attractive.
Next, we show that the globally attractive periodic solution (N (t), P(t)) is unique. To this, we assume that (N 1(t), P1(t)) is

another globally attractive periodic solution of the system (12) with the same period. If this solution is different from the previous
one, then there exists at least one η0 ∈ [0, ω] such that N (η0) �� N 1(η0). This means that |N (η0) − N 1(η0)|� ε11 > 0. Thus, we
have

ε11 � lim
n→∞|N (η0 + n) − N 1(η0 + n)|

� lim
n→∞|N (t) − N 1(t)|> 0,

which contradicts global attractivity of the periodic solution (N (t), P(t)). Therefore, N (t) � N 1(t), ∀ t ∈ [0, ω]. Similar arguments
can be used for the component P(t) also. Hence, the system (12) has a unique positive ω−periodic solution that is globally attractive.

�

4 Numerical observations

Here, we report the simulations performed to investigate the behaviors of the autonomous system (1) and the associated nonau-
tonomous system (12) using the MATLAB variable step Runge–Kutta solver ode45. The numerical observations of systems (1) and
(12) will reinforce the analytical findings and provide some more insights into the dynamical properties of these systems. Unless
otherwise stated, the set of parameter values used for the numerical simulations will be the same as provided in Table 1.

4.1 Simulation results of system (1)

4.1.1 Sensitivity of parameters

Following [62], we employ two statistical approaches viz. Latin Hypercube Sampling (LHS) and the Partial Rank Correlation
Coefficients (PRCCs) to overcome the uncertainties involved in choosing the values of parameters in system (1). By considering a
uniform distribution of our parameters of interest, r0, k1, k2, c, m and E, we run 50 simulations of the model (1) per LHS. For this,
we use the baseline values of parameters as given in Table 1, and let them to deviate ±25% from their nominal values. The PRCC
values using the population of prey as response function are displayed in Fig. 1. It can be seen from the figure that the parameters
that have negative correlations with prey species in the ecosystem are k1 and c whereas the parameters with positive correlations are
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Fig. 1 Effect of uncertainty of the
model (1) on prey population (N).
The baseline values of parameters
are same as given in Table 1. In the
figure, parameters with significant
PRCCs with the prey population
are marked as ∗ (p-value< 0.05)

identified as r0, k2, m and E. The most influential parameters are coming out be r0, k1, m and E that have significant correlations
with the prey population of the ecological system.

In Fig. 2, we have plotted the abundances of prey and predator populations in the model system (1) by varying two parameters at a
time viz. (r0, k1), (m, c) and (E, k2). The figures show surfaces representing the values of the populations at a (dynamic) equilibrium,
i.e., the steady state or persistent oscillations. If two surfaces appear in the picture, they indicate the minimum and maximum values
that these state variables attain in the limit cycles. If the two surfaces collide, it depicts that a stable steady state is attained, while
when they differ, the solution shows oscillatory dynamics. On varying r0 and k1 simultaneously, we find that both prey and predator
populations increase in the ecological system as the value of r0 increased whereas increasing values of k1 cause decline in the prey
population (see Fig. 2a). The predator population is found to decrease with an increase in prey refuge while its density climb up
with increment in the degree of hunting cooperation (see Fig. 2b). The predator’s density also decreases if they are harvested at an
increased rate that can be observed in Fig. 2c.

4.1.2 Bifurcation results

Now, we see how the dynamics of system (1) changes on variations in the values of some of the ecologically important parameters.
We pick here r0, k1, k2, m, c and E as parameters of our interest. Figures 3 and 4 demonstrate phase plots of system (1) for different
parametric set ups. At first, we fix m � 0.95 and choose different values of r0. We observe that at r0 � 0.2, system (1) exhibits
stable focus (see Fig. 3a) while on increasing the value of r0 from 0.2 to 1, stability in the system is lost and it becomes unstable
by producing limit cycle oscillations (see Fig. 3b). But, the system (1) becomes stable again as the value of r0 increased to 1.5 (see
Fig. 3c). Now, we set m � 0.8, and pick different values of the parameters k1, k2, m and c for the phase plots. Again, we see changes
in stability behavior of the system (1) as the parameter k1 is varied. At k1 � 3, the system (1) exhibits stable focus (see Fig. 3d)
whereas the system shows unstable nature at k1 � 10 (see Fig. 3e). The system (1) again showcases stable nature for k1 � 30 (see
Fig. 3f). The effect of parameter k2 can be seen in Fig. 4a and b. We observe from the figures that the system (1) is in unstable
mode at k2 � 0.5, but stability is achieved by the system at k2 � 2.5. On increasing the value of refuge coefficient (m) from 0.6
to 0.9, the system (1) changes its behavior from unstable mode to stable state (see Fig. 4c and d). We observe unstable behavior of
system (1) at c � 0.7 while the system achieved stability on decreasing the value of c to 0.1 (see Fig. 4e and f). Finally, we see the
behavior of system (1) for different values of the parameter E (see Fig. 4g and h). Here, we have chosen m � 0.95 and kept rest of
the parameters at the same values as in Table 1. We observe stable nature of system (1) at E � 0.001 while instability appears in
the system at E � 0.5.

As the birth rate of prey species has a major role in shaping the structure of an ecological community, we further explore the
impact of parameter r0 on the dynamics of system (1). In Fig. 5, we draw bifurcation diagram of system (1) by varying the parameter
r0 in the interval [0, 1.5]. We plot only the equilibrium value of the predator population and explore stability nature of the system’s
equilibria. In the figure, regions divided by vertical dashed lines represent different stability behavior of the system. The figure
shows that for lower ranges of r0, the system settles at the stable population-free equilibrium point E0. As the value of r0 increases,
we observe that the population-free equilibrium E0 becomes unstable and a stable predator-free axial equilibrium E1 appears in
the ecological system. This shows the existence of a transcritical bifurcation between equilibria E0 and E1 at the critical point
r t10 � 0.09. We further increase the value of parameter r0, and noted that after a certain value of r0, the equilibrium E1 loses its
stability and the stable coexistence equilibrium E∗ comes into the picture. Here, again a transcritical bifurcation occurs between
equilibria E1 and E∗ at the threshold value r t20 � 0.1254. We see that after this critical value of r0, the trivial and axial equilibria
remain unstable for all values of r0. We keep on increasing the value of r0 and find that there is again a critical value of r0 at which
the dynamics of system (1) changes drastically. We find that the system experiences supercritical Hopf bifurcation at rh1

0 � 0.4233;
the coexistence equilibrium E∗ becomes unstable and limit cycle oscillations appear around it. But, these limit cycle oscillations do
not appear if the parameter r0 exceed another critical value rh2

0 � 0.9697 at which the system undergoes another Hopf bifurcation
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Fig. 2 Variations in the equilibrium abundances of prey and predator populations in system (1) as functions of (a) r0 and k1, b m and c, and (c) E and k2.
Rest of the parameters are the same values as in Table 1, and the initial conditions are chosen as (1, 1)

that is subcritical in nature. At this point, the persistent oscillations are killed out and the system manifests a stable coexistence of
prey and predator. Thus, we find that lower or higher growth rate of prey population might be beneficial for stability in the ecological
system whereas very low (intermediate) growth rate of prey species causes extinct of species (unstable coexistence of prey and
predator).

In Figs. 6 and 7, we have drawn the bifurcation diagrams of system (1) with respect to the parameters k1, k2, m, c and E by varying
them one-by-one in a fixed interval. The effect of fear parameter k1 can be seen in Fig. 6a. This figure depicts stable coexistence of
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Fig. 3 Phase portraits of system
(1) for different parametric set
ups: a m � 0.95, r0 � 0.2,
b m � 0.95, r0 � 1, c m � 0.95,
r0 � 1.5, d k1 � 3, e k1 � 10 and
f k1 � 30. The remaining
parameters have the same values
as in Table 1
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prey and predator for lower ranges of k1. It is apparent from the figure that the system destabilizes on increasing the value of k1,
but for larger values of k1, the system gets back to a stable state. The critical values of k1 at which the behavior of system changes
from stable to unstable to stable are obtained as kh1

1 � 6.0086 and kh2
1 � 21.7860, respectively. The fear parameter k2 potentially

suppresses the persistent oscillations and drives the system to a stable state as apparent from Fig. 6b. The change in stability is
observed at kh2 � 1.2711. Figure 7a exhibits that on gradually increasing the values of parameter m, the dynamics of system (1)
changes from unstable state to stable state at mh � 0.774. In contrast, the cooperative behavior of predator population during the
hunting time has tendency to destabilize the system by inducing persistent oscillations as apparent from Fig. 7b. We obtain the
critical value of c at which the dynamics of system (1) changes from stable state to unstable mode as ch � 0.5696. Our simulation
results show interesting effect of the harvesting of predator species on the dynamics of system (1), Fig. 7c. The figure demonstrates
the stable coexistence of prey and predator populations if the latter are harvested at a lower rate, while the system exhibits limit
cycle oscillations for intermediate ranges of the harvesting effort. However, if the predators are harvested at a higher rate, then the
existing oscillations are killed out and the system returns to a stable state. In this case also, we obtain the threshold values of the
parameter E at which the dynamics of system (1) changes from stable to unstable and unstable to stable modes as Eh1 � 0.0416
and Eh2 � 0.3955, respectively.
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Fig. 4 Phase portraits of system
(1) for different parametric set
ups: a k2 � 0.5, b k2 � 2.5,
c m � 0.6, d m � 0.9, e c � 0.7,
f c � 0.1, g m � 0.95, E � 0.001
and h m � 0.95, E � 0.5. The
values of other parameters are the
same as mentioned in Table 1
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Instead of varying one parameter at a time, simultaneous variations of two parameters will provide more information about
the behavior of a dynamical system. Thus, we vary two parameters of system (1) at a time, viz. (r0, k1) and (m, c), and draw
two-parameter bifurcation diagrams in Fig. 8. In the figures, cyan and magenta regions correspond to the domains for stable and
unstable coexistence equilibrium of the system (1), respectively. It is evident from Fig. 8a that for lower values of r0, the system is
at stable state for all values of k1. We also observe that fixing the value of k1 and increasing the value of r0, the system’s dynamics
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Fig. 5 Bifurcation diagram of
system (1) with respect to the
growth rate of prey population
(r0). Rest of the parameters are at
the same values as in Table 1

Fig. 6 Bifurcation diagrams of
system (1) with respect to (a) k1
and (b) k2. Rest of the parameters
are at the same values as in Table
1. Here, green and black dots
represent the upper and lower
limits of the oscillation cycles,
respectively
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changes from stable to unstable to stable modes. Further, it is apparent from the figure that simultaneous increments in the values
of parameters r0 and k1 lead to increase in the region of instability of the system around the coexistence of prey and predator. From
Fig. 8b, it is clear that there is a range of the parameter m for which the system is in unstable mode irrespective of the values of
c. Also, we find a range of the parameter c for which the system (1) changes its dynamics from unstable mode to a stable state on
increment in the coefficient of refuge m.
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Fig. 7 Bifurcation diagrams of
system (1) with respect to a m,
b c and c E. Rest of the parameters
are at the same values as in Table
1 except in c m � 0.95. Here,
green and black dots represent the
upper and lower limits of the
oscillation cycles, respectively
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4.2 Simulation results of system (12)

Now, we study a wide spectrum of the dynamical behaviors of the nonautonomous system (12), in which some of the model
parameters are seasonally forced. By considering periodicity of the rate parameters in an ecological model, we actually incorporate
the seasonality of the environment. For our case, we consider that the following model parameters have sinusoidal forms while the
others have constant values:

r0(t) � r0 + r01 sin(ωt), k1(t) � k1 + k11 sin(ωt), k2(t) � k2 + k22 sin(ωt),

m(t) � m + m11 sin(ωt), c(t) � c + c11 sin(ωt), E(t) � E + E11 sin(ωt).

The reason behind considering these forms of time-dependent parameters is that by doing so, the functions in time encompass both
high and low seasons, that correspond to the periods in which sin(ωt) is positive and negative, respectively. Here, the parameters
r01 (0 < r01 < r0), k11 (0 < k11 < k1), k22 (0 < k22 < k2), m11 (0 < m11 < m), c11 (0 < c11 < c) and E11 (0 < E11 < E),
control the strength of the seasonal forcing in the respective parameter. For simplicity, we neglect the phase shift and assume that
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Fig. 8 Two-parameter bifurcation diagrams of system (1) in (a) (k1, r0) and (b) (m, c) planes. Here, cyan and magenta regions correspond to the domains
for stable and unstable coexistence equilibrium of the system (1), respectively. Rest of the parameters are at the same values as in Table 1

these seasonal parameters have period of 365 days. Unless otherwise mentioned, the seasonal forcing terms, r01, k11, k22, m11, c11

and E11, are assumed to have zero values throughout the numerical simulations.
We set the autonomous system (1) at stable and unstable states, and plot the solution trajectory of the corresponding nonautonomous

system (12) for the predator population only (see Fig. 9). We see that if the autonomous system (1) is in unstable mode, then the
seasonal variation of the parameter r0 induces higher periodic solutions for r01 � 0.07, as depicted in Fig. 9a. Now, we keep system
(1) at stable state and let the parameter r0 to vary seasonally. We observe that at r01 � 0.1 and r01 � 0.9, the nonautonomous
system (12) exhibits 1−periodic and 2−periodic solutions, respectively (see Fig. 9b and c). We find that if the autonomous system
(1) is in oscillatory state, then seasonality in the fear effect responsible for reduction in the birth rate of prey population causes the
appearance of bursting patterns in the nonautonomous system (see Fig. 9d). On the other hand, if the autonomous system is at stable
state, consideration of the seasonal pattern in the parameter k1 leads to the existence of positive periodic solution (see Fig. 9e).

Next, we introduce seasonality in the fear parameter k2, keeping the autonomous system (1) at stable/unstable mode. We observe
the appearances of higher periodic solutions and simple periodic solution in the nonautonomous system if the corresponding
autonomous system is at unstable and stable states, respectively (see Fig. 9f and g). Next, we see the effect of seasonal forcing in the
pattern of refuge taken by the prey population. We observe that in the unstable scenario, time varying refuge by prey species induces
bursting patterns in the nonautonomous system (see Fig. 9h); in the stable case, seasonal forcing of refuge causes appearance of
2−periodic solutions (see Fig. 9i); the higher strength of seasonality leads to bursting patterns (see Fig. 9j). The nonautonomous
system (12) exhibits higher periodic solutions and a simple periodic solution due to periodicity in the hunting cooperation if the
autonomous system is at unstable and stable states, respectively. In Fig. 9m, we see that if the autonomous system (1) is already
in oscillatory state, then harvesting of predators in a periodic manner induces chaos in the ecological system. The occurrence of
chaotic oscillations may be explained through incommensurate limit cycles [65]. A simple periodic solution is observed in the
nonautonomous system (12) due to seasonal harvesting of predator species if the system without seasonality is at stable state (see
Fig. 9n).

The maximum Lyapunov exponent has been identified as an instrumental for the estimation of stability of a nonlinear dynamical
system. The main idea is to calculate the average logarithmic rate of separation of two nearby orbits. If the two orbits get too far apart,
one of them has to be shifted back to the vicinity of the another one along the line of separation. It has been documented that a chaotic
attractor has a positive maximum Lyapunov exponent; a zero maximum Lyapunov exponent corresponds to a bifurcation point; a
negative maximum Lyapunov exponent represents a fixed point or a periodic attractor [63, 64]. Here, we compute the Lyapunov
exponents by simulating the seasonally forced model (12), and considering the time series solutions of each of the component.
Corresponding to Fig. 9m, the maximum Lyapunov exponent of the nonautonomous system (12) is computed and constructed in
Fig. 10. The figure confirms chaotic nature of the nonautonomous system (12) as the maximum Lyapunov exponent is positive here.

Figure 11 illustrates the global asymptotic stability of the coexistence equilibrium point E∗ of the autonomous system (1) and
that the positive periodic solution of the nonautonomous system (12) is globally attractive. We can observe in Fig. 11a that the
solution trajectories of system (1) starting from four different initial values ultimately converge to the components of the coexistence
equilibrium point E∗. This shows that the equilibrium E∗ is globally asymptotically stable. Further, the global attractivity of positive
periodic solution is apparent from Fig. 11b as the solution trajectories of system (12) originating from four different initial starts
ultimately merge with a single positive periodic solution. Thus, Theorem 4 is numerically illustrated in Fig. 11b.
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Fig. 9 Time series solutions of system (12) for different parametric setups: a m � 0.6, r01 � 0.07, b m � 0.8, r01 � 0.1, c m � 0.8, r01 � 0.9, d m � 0.6,
k11 � 4.5, e m � 0.8, k11 � 1, f m � 0.6, k22 � 1.78, g m � 0.8, k22 � 1, h m � 0.6, m11 � 0.55, i m � 0.8, m11 � 0.1, j m � 0.8, m11 � 0.5,
k m � 0.6, c11 � 0.11, l m � 0.8, c11 � 0.4, m m � 0.6, E11 � 1.2, and n m � 0.8, E11 � 1. Other parameters are at the same values as in Table 1
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Fig. 10 Maximum Lyapunov
exponent of the nonautonomous
system (12) for the parameter
values in Fig. 9m. In the figure,
positive values of the maximum
Lyapunov exponents indicate that
the system is in chaotic state

Fig. 11 a Global stability of the
coexistence equilibrium E∗ of the
autonomous system (1), and
b global attractivity of the positive
periodic solution of the
nonautonomous system (12).
Parameters are at the same values
as in Table 1 except in a r0 � 2
and b r0 � 2, r01 � 0.5

a b

5 Conclusion

In the present work, we have investigated the combined effects of fear of predators, prey refuge, hunting cooperation and harvesting
of predators on the dynamics of a predator–prey system of an ecological community. We have analyzed the proposed model
mathematically, and performed some numerical simulations to explore different dynamical features of the system. Our sensitivity
results suggested that a strategy that reduces (enhances) the parameters with negative PRCC values (i.e., k1 and c) will adequately
enhance (reduce) the density of prey population in the ecosystem. Simultaneously, a strategy that increases (decreases) the parameters
with positive PRCC values (i.e., r0, k2,m andE) will be effective in boosting up (lowering down) the density of prey population in the
ecological community. Thus, by increasing the refuge tendency of prey and harvesting of predators, the density of prey population
can be maintained. Instead, reduction in the fear of predators affecting the growth rate of prey and hunting cooperation of predators
can increase the prey’s density in the ecological system.

Our simulation results showed that the birth rate of prey population has potential to regulate the behavior of system around
the extinction of species, survival of prey only, and coexistence of prey and predator populations. The fear effects of predators
causing reduction in the birth rate and enhancement in the intraspecific competition of prey population have capability to stabilize
the system. The property of prey population to take refuge can alter the behavior of system by bringing it back to a stable state from
an unstable one. The cooperative behavior of predators has tendency to destroy stability and induce instability in the system. Our
results also indicate that harvesting of predator species may play an important role in maintaining stability of the ecological system
by terminating persistent oscillations. Since cooperation by predators and refuge by prey are self-adjusted behaviors, manipulating
fear by artificial vocalization (or reinforcing predators) and harvesting of predators could be useful for conserving the biodiversity
in the ecological system [15].

As seasonal changes of parameters make the system more realistic, we have also studied the behavior of system by letting the
parameters standing for the birth rate of prey, fear effects causing decrease (increase) in the birth rate (intraspecific competition)
of prey population, prey refuge, hunting cooperation and harvesting of predators to vary with time. The nonautonomous system is
analyzed mathematically, and numerical investigations explored the effects of seasonal forcing on the system’s behavior. Note that
the presence of positive periodic solution in an ecological model describes an equilibrium situation consistent with the environmental
conditions such that the interacting populations survive. We observed that if the autonomous system is in unstable mode, then the
seasonal variation of the growth rate of prey induces higher periodic solutions whereas in the stable case, 1−periodic and 2−periodic
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solutions were seen. We found that if the autonomous system is in oscillatory state, then seasonality in the fear effect responsible
for the reduction in the birth rate of prey population causes the appearance of bursting patterns; in the stable scenario, only a simple
periodic solution is observed. Seasonal variation in the level of fear responsible for the increase in intraspecific competition of
prey species induces higher periodic solutions and simple periodic solution if the autonomous system is at unstable and stable
states, respectively. We observed that in the unstable scenario, time varying refuge by prey species induces bursting patterns in the
system while in the stable case, seasonal forcing of refuge causes appearance of 2−periodic solutions whereas higher strength of
seasonality leads to bursting patterns. Our nonautonomous system exhibited higher periodic solution and a simple periodic solution
due to strength of seasonal forcing in the hunting cooperation if the autonomous system is at unstable and stable states, respectively.
We have seen that if the autonomous system is already in oscillatory state, then harvesting of predators in a periodic manner induces
chaotic dynamics in the system, which is explained through the appearance of incommensurate limit cycles. A simple periodic
solution is observed in the nonautonomous system due to seasonal pattern in the harvesting of predators if the autonomous system
is at stable state.

The chaotic nature of nonautonomous system is confirmed by the positivity of the maximum Lyapunov exponent. We also
illustrate the global stability of the coexistence equilibrium (in autonomous case) and positive periodic solution (in nonautonomous
case). Overall, we observed that our autonomous as well as nonautonomous systems exhibited complex dynamics due to changes in
some model parameters, which can be managed by regulating the strengths of seasonal forcing in the respective parameters. Overall,
our findings demonstrated that the combined effects of fear of predators, prey refuge, hunting cooperation and harvesting of the
predator species together with seasonal patterns of the parameters can play an important role in preserving the biodivesrity in the
ecological system.
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