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Abstract: In this study, we synthesize high quality vertically aligned ZnO (VAZO) nanorods on silicon,
sapphire, and indium tin oxide (ITO) substrates by using pulsed laser deposition (PLD) technique at
high growth pressure (0.3 Torr). Systematic changes in structural and optical properties of VAZO
nanorods are studied by varying the substrate temperature (500–600 ◦C) and number of pulsed laser
shots during the deposition. ZnO nanoparticles deposited at high pressure act as nucleation sites,
eliminating requirement of catalyst to fabricate VAZO nanorods. Two sharp ZnO peaks with high
intensity correspond to the (0002) and (0004) planes in X-ray diffraction pattern confirm the growth
of ZnO nanorods, oriented along the c-axis. Scanning Electron Microscopy (SEM) images indicate a
regular arrangement of vertically aligned hexagonal closed pack nano-structures of ZnO. The vertical
alignment of ZnO nanorods is also supported by the presence of E2 (high) and A1 (LO) modes in
Raman spectra. We can tune the diameter of VAZO nanorods by changing growth temperature and
annealing environments. Photoluminescence spectroscopy illustrates reduction in defect level peak
intensities with increase in diameter of VAZO nanorods. This study signifies that high pressure PLD
technique can be used more efficiently for controlled and efficient growth of VAZO nanorods on
different substrates.

Keywords: ZnO nanostructures; Raman spectroscopy; oxide semiconductors; optoelectronics;
photoluminescence; defects; pulsed laser deposition

1. Introduction

ZnO has a direct band gap of 3.37 eV and exciton binding energy of 60 meV at room temperature,
having device applications [1,2]. It is transparent in the visible wavelength range and has optoelectronic
applications such as light emitting diodes (LEDs), transparent electrodes, and ultraviolet (UV)
lasers [3,4]. ZnO nanostructures with different morphologies have drawn interest over the years,
as having potential electronic applications and nano-structuring can improve performances of already
existing devices by increasing the surface or interface area while maintaining the constant volume [5,6].
Vertically aligned zinc oxide (VAZO) nanorods are potentially useful for vertical device fabrication
including light emitting diodes, solar cells, and nano piezoelectronics [7,8]. Numerous growth
processes, such as chemical vapor deposition [9,10] and various forms of physical vapor deposition
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techniques [11,12], have been used to synthesize VAZO nanorods in presence of a catalyst at high
temperature and following a vapor-liquid-solid (VLS) mechanism. However, it has been a big challenge
to find a controlled technique to grow well aligned ZnO nanorods. To gain control over the morphology,
density, and the orientation of the grown nanostructures, the essential growth and processing steps
of ZnO nanostructure formation need to be understood. In pulsed laser deposition (PLD) technique,
nanostructure growth via vapor-solid (VS) mechanism can be initiated by the gas phase formation of
nanoparticles at high pressures. The nanoparticles deposited on the substrate act as nucleation sites
and promote nanostructure growth [13]. In general, VS-grown nanostructures are catalyst free and no
additional steps are required for the removal of catalyst particles at the tips of the nanostructures in
order to fabricate efficient devices. The dimensions of the grown nanostructures, however, depend
only on the growth conditions and if employed on the nucleation layer. Therefore, the growth of
nanostructures by the VS mechanism as well as their locations and densities are often more difficult
to control than nanostructure formation by a catalyst. The present work involves growth of VAZO
nanostructures without a catalyst, which follows VS growth mechanism. Annealing studies were
performed to systematically analyze the properties of the VAZO nanorods. Different parameters
such as influence of substrates, growth temperature, number of pulsed laser shots, and annealing
temperature and environment—i.e., oxygen and forming gas (95% Ar and 5% H2)—were considered to
study the properties of VAZO nanorods. Moreover, the growth mechanism has been studied by varying
the substrates, which plays a major role in the formation of the nanorods and also on the alignment.
Varying the growth temperature and number of pulsed laser shots help to study the variation in
diameter, length, and structural properties, such as crystallinity and defects, in the structure of the
VAZO nanorods.

2. Results

2.1. Scanning Electron Microscope (SEM) Analysis

Figure 1a–c represent the field emission scanning electron microscope (FESEM) images of the
ZnO nanorods on silicon, sapphire, and indium tin oxide (ITO) substrates. Wurtzite structure of ZnO
can be confirmed from the FESEM images and the diameter of 1D nanostructure was measured to be
in between 300–500 nm. The vertical alignment of these nanorods is high when grown on the silicon
substrate, which mainly depends on the growth mechanism and surface energy of the Si substrate [14].
Figure 1d–f represents the SEM images of the VAZO nanorods grown on Si substrate at different
temperatures (500, 550, and 600 ◦C). The variation in the diameter of these nanorods is evident and
ranging from 50–500 nm were calculated by using ImageJ software. The increase in the substrate
temperature resulted in an increase in the diameter of the rods, which is mainly dependent on the
growth mechanism and stress between the substrate and nanorods formed [15]. From the SEM images
in Figure 1g–i, we observe an increase in length of the nanorods, varying from 400 nm–1 µm, with
increasing number of pulsed laser shots. From these SEM images, it is also evident that the nanorods
tend to bend as the number of pulsed laser shots increases, which mainly depends on the stability of
the nanorods [16]. The diameter and length of the nanorods has been varied as we change the process
parameters. The average diameter and length of the nanorods are shown in Table 1.

Table 1. Average diameter and lengths of VAZO nanorods grown by PLD technique.

Serial
No.

Number
of Shots

Temperature

Average
Diameter

of the
Nanorods

Average
Length of the

Nanorods

Standard
Deviation

(Diameter of
Nanorods)

Standard
Deviation
(Length of
Nanorods)

Average
Aspect
Ratio

1 5000 500 ◦C 79 nm 286 nm 2.5 nm 2.35 nm 3.43
2 5000 550 ◦C 185 nm 900 nm 2.6 nm 0.57 µm 8.44
3 10,000 550 ◦C 162 nm 1 µm 1.6 nm 0.36 µm 7.72
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Figure 1. SEM Images of ZnO nanorods (a) Vertically aligned on silicon substrate (60◦ titled view);
(b) Sapphire substrate (top view); (c) Indium tin oxide (ITO) substrate (top view), SEM images of
vertically aligned ZnO nano rods (5000 shots) grown at different temperatures on silicon substrate (60◦

titled view) (d) 500 ◦C, (e) 550 ◦C, (f) 600 ◦C and SEM images of the ZnO nanorods by varying the
number of pulsed laser shots at 550 ◦C temperature (g) 5000, (h) 10,000, and (i) 15,000.

2.2. X-Ray Diffraction Analysis (XRD)

Figure 2a–c represent the X-ray diffraction pattern of ZnO nanorods on Si substrate. In addition to
the substrate peak, VAZO nanostructures show strong peaks corresponding to (0002) and (0004) planes.
The strong peak associated with (0002) plane implies that the ZnO nanostructures were preferentially
oriented along the c-axis [17]. The preferred orientation of ZnO nanostructures along (0002) also
indicates that the as grown nanostructures have good epitaxial orientation with the Si substrate, which
can also be verified through SEM images shown previously. From Figure 2a,b it is evident that the
nanorods deposited at 500 ◦C and 550 ◦C are preferentially oriented along the (0002) plane.

Figure 2c represents the XRD pattern of sample deposited at 600 ◦C confirming the presence of
other ZnO planes. This implies that the orientation of ZnO nanorods has been changed with increasing
deposition temperature in the PLD system. Figure 2d–f represents the XRD spectrum of ZnO samples
grown by varying the number of pulsed laser shots from 5000 to 15,000 at 550 ◦C. The increased
number of pulsed laser shots led to the formation of bulk ZnO, which is confirmed through XRD
pattern. Full Width Half Maxima (FWHM) of (0002) plane of ZnO samples has been calculated by using
Labspec 5 software, which helps in determining the crystallinity in the samples. R. R. Reeber measured
lattice constants of ZnO wurtzite structure at room temperature, values of c, a being 5.2075 Å, 3.25 Å,
respectively, and resulting c

a ratio 1.633 [18]. Measured FWHM value of (0002) plane, interplanar
spacing (d), lattice parameters (c and a), and the c

a ratio calculated for ZnO nanorod samples deposited
on Si substrate are shown in Table 2.
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Figure 2. XRD spectrum of VAZO nanorods grown on Si substrate at (a) 500 ◦C, (b) 550 ◦C, (c) 600 ◦C
and XRD spectrum of VAZO nanorods grown on Si substrate at 550 ◦C by varying the number of shots
(d) 5000, (e) 10,000, (f) 15,000.

The following formula was used for calculating the lattice parameters.

1
d2 =

4
3

(

h2
+ hk + l2

a2

)

+
l2

c2 (1)

Table 2. XRD Peak positions of (0002) plane of ZnO nanorods deposited on Si substrate.

Serial
No.

Number of Pulsed
Laser Shots

Temperature
(◦C)

FWHM
(Degree) (0002)

Interplanar
Spacing (d) (Å) c (Å) a (Å) c

a

1 5000 500 0.268 2.583 5.166 3.31 1.56
2 5000 550 0.268 2.612 5.224 3.23 1.61
3 10,000 550 0.258 2.572 5.144 3.22 1.59
4 15,000 550 0.287 2.570 5.140 3.11 1.65
5 5000 600 0.242 2.577 5.154 3.22 1.60

2.3. Raman Spectra Analysis

Figure 3a–c represents the Raman spectra of the VAZO nanorods grown on Si substrates at
different temperatures. Wurtzite ZnO belongs to C4

6υ
(P 63 mc) space group. The primitive cell includes

two formula units with all atoms occupying 2b sites of symmetry. According to group theory, wurtzite
ZnO structure is expected to have A1 (z) + 2B1 + E1 (x, y) + 2E2 optical phonon modes at the Г point
of the Brillouin zone [19]. As a result, A1 and E1 phonon modes are infrared and Raman active.
Raman modes that can be observed in the spectrum mainly depend on the Raman selection rules and
geometry employed to attain the spectra. Backscattering (z) geometry was used to perform the Raman
spectroscopy. The c-axis of wurtzite ZnO structure is along the z direction, hence, Raman peaks of
A1 (LO) and E2 (high) are allowed according to Raman selection rules [20]. Raman spectra of different
ZnO nanorod samples shown in Figure 3 confirm the presence of E2 high mode. The peak position and
FWHM of the Raman E2 high mode of the ZnO nanorods were determined by LabSpec 5 software using
Lorentzian function. The position of E2 high peak varies from 436.16 cm−1 to 436.24 cm−1 for samples
grown at 500 ◦C and 550 ◦C, respectively. Since E2 high mode is more sensitive to stress, compressive
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stresses are responsible for the shift to a higher value [21] when the deposition temperature is increased
leading to increase in diameter of VAZO nanorods. The presence of quasi modes can also be seen
in the Raman spectra of Figure 3b, which is dependent on bending and alignment of the rods [22].
The amount of stress developed in the VAZO nanorod samples is less compared to the ZnO thin films,
which may be due to the relaxation effect of the ZnO nanorods. Figure 3d–f represents the Raman
spectra of ZnO nanorod samples grown at 550 ◦C with varying number of pulsed laser shots from 5000
to 15,000. The FWHM of the E2 high phonon mode changes with increasing number of pulsed laser
shots. This is due to the dependence of the FWHM of this peak on the crystallinity of ZnO nanorods.
FWHM of the ZnO sample grown by 15,000 pulsed laser shots increases and peak position matches
with that of ZnO thin film. A1 (LO) mode can only be seen in Raman spectra of aligned ZnO nanorod
samples as per Raman selection rules [23]. Figure 4a,b represent A1 (LO) mode present in aligned
ZnO nanorod samples. This mode has only been seen in samples grown at 500 ◦C and 550 ◦C and
alignment of ZnO nanorods can be verified through high resolution SEM images. The peak positions
of E2 high phonon mode are represented in Table 3.

Annealing experiments were performed in both oxygen and hydrogen medium at 500 ◦C for the
ZnO sample grown at the same temperature on Si substrate. A pressure of 0.3 mbar was maintained
during the annealing process. Figure 4c,d represents Raman spectra of samples annealed in oxygen
and hydrogen environments, respectively. A red shift in E2 high phonon mode was observed when
compared to the peak position of E2 high phonon mode of ZnO nanorods sample before annealing.
The peak position of E2 high phonon mode for samples annealed in oxygen atmosphere and hydrogen
atmosphere were found to be at 431.36 cm−1 and 431.05 cm−1, respectively. Peak positions in both
samples are in coherence with ZnO thin film, which implies that the alignment of the ZnO nanorods
has been changed. A decrease in the FWHM of this peak was observed after the annealing treatment.
It can also be inferred that a sharper E2 high mode signifies a greater crystallinity of ZnO nanorods.
Crystallinity of ZnO nanorod samples can also be confirmed from photoluminescence studies by
observing the change in defect levels.

−

−

 

Figure 3. Raman spectra of ZnO nanorods at different temperatures (a) 500 ◦C, (b) 550 ◦C, (c) 600 ◦C
and Raman spectra of ZnO nanorods grown at 550 ◦C by varying the number of pulsed laser shots
(d) 5000, (e) 10,000, (f) 15,000.
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Figure 4. A1 (LO) mode in Raman spectra of aligned ZnO nanorods at (a) 500 ◦C (b) 550 ◦C and E2 high
mode of aligned ZnO nanorods grown at 500 ◦C, annealed in (c) O2 atmosphere (d) H2 atmosphere.

Table 3. Raman peak E2 high mode positions of VAZO nanorods.

Serial. No Number of Shots Temperature (◦C) E2 High (cm−1)
(Peak Position)

E2 High (cm−1)
(FWHM)

1 5000 500 436.1 16.5
2 5000 550 436.2 28.1
3 10,000 550 435.7 21.1
4 15,000 550 435.7 24.6
5 5000 600 431.94 18.8
6 5000 (annealed in O2) 500 431.36 22.9
7 5000 (annealed in H2) 500 431.05 24.6

2.4. Photoluminescence (PL) Spectra Analysis

Optical properties of the VAZO nanorods were investigated by performing the PL spectroscopy.
Figure 5a–c represents PL spectra of ZnO nanorods at temperatures 500, 550, and 600 ◦C, respectively.
All PL spectra show a luminescence emission in-between 3.23 eV and 3.24 eV, which is due to direct
recombination of the excitons [24]. Appearance of one UV peak for nanorods is an indication of
uniform distribution of the rod size [25]. ZnO samples in Figure 5a,c grown at 500 ◦C and 600 ◦C,
respectively, show a wide and strong deep level emission around 2.08 eV. This orange emission has
been found in oxygen rich ZnO films grown by PLD process and is attributed to oxygen interstitial
defects [26,27]. ZnO samples were grown in highly oxygen rich atmosphere and at high temperature;
hence, there is a possibility for the formation of oxygen interstitials in the structures. In the ZnO sample
grown at 550 ◦C, a shift in the deep-level green emission at ~2.23 eV has been observed as shown in
Figure 5b. This occurs due to the structural defects such as oxygen vacancies or zinc interstitials [28].
With increase in growth temperature from 500 ◦C to 600 ◦C, an increase in size of the VAZO nanorods
was observed from SEM image analysis. For ZnO nanostructures the effect of surface status on the PL
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intensity must be carefully considered [29]. Band bending creates an electron depletion layer around
the ZnO rod surface, which is more than 100 nm. This layer plays a key role as the photoemissions
occur deep from the surface [30]. Therefore, as the ZnO nanorods diameter is increasing, where the
depletion layer is not so important, the oxygen vacancies lead to stronger green emission compared to
the nanorods with smaller diameter reducing the green emission intensity [11]. With an increase in
the growth temperature (600 ◦C), in case of Figure 5c, we can see a decrease in deep level emission
intensity because of the improved crystallinity in the sample.

 

Figure 5. PL spectra of ZnO nanorods grown by using 5000 pulsed laser shots at different temperatures
(a) 500 ◦C, (b) 550 ◦C, (c) 600 ◦C and PL spectra of ZnO nanorods grown at 550 ◦C by varying the
number of pulse laser shots (d) 5000, (e) 10,000, (f) 15,000.

Figure 5d–f represents PL spectra of ZnO nanorods samples grown by 5000, 10,000 and 15,000
pulsed laser shots, respectively. Length of ZnO nanorods has been increased with the number of pulsed
laser shots, which was verified from SEM images. A reduction in the green emission level intensity was
observed in Figure 5e compared to that in Figure 5d. When the number of pulsed laser shots during
the deposition was increased to 15,000, bending of rods can be seen and the tendency to form thin films
is evident from SEM image. The tendency to form thin film can be seen in the presence of orange-red
defect level, which is mainly due to the presence of oxygen interstitials. This defect level is visible in
the PL spectra presented in Figure 5f. To confirm the origin of defect peaks from the PL analysis, VAZO
nanorods grown at 500 ◦C were annealed in both oxidizing and reducing atmosphere. After annealing
for 30 min in oxygen atmosphere at 500 ◦C, the defect peak intensity related to the oxygen interstitial
is reduced, which can be observed from Figure 6a. Improved crystallinity of VAZO nanorods can be
confirmed after annealing in oxygen atmosphere. Reduced oxygen interstitial concentration can be
attributed to oxygen desorption from ZnO nanorod structure, which occurs due to the annealing at
high temperature (500 ◦C) [31]. Similarly, annealing of ZnO nanorods was carried out in reducing
environment (H2) at 500 ◦C and the associated PL spectrum is shown in Figure 5b. Reduction of
peak intensity of oxygen interstitials was observed in PL spectra. Due to large surface area and small
diameter of ZnO nanorods, hydrogen diffuses readily into the crystal rods to further reduce oxygen
present in ZnO crystal, thus reducing the oxygen interstitials [32]. The shift in defect peaks by changing
the process parameters has been listed in the Table 4.
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Figure 6. PL spectra of ZnO nanorods grown at 500 ◦C and annealed in (a) O2 atmosphere (b) H2 atmosphere.

Table 4. Defect peak positions of VAZO nanorods from PL spectra.

Serial. No Number of Shots Temperature (◦C) Defect Peak Position (eV)

1 5000 500 2.08
2 5000 550 2.23
3 10,000 550 2.18
4 15,000 550 2.01
5 5000 600 2.08
6 5000 (annealed in O2) 500 2.13
7 5000 (annealed in H2) 500 2.14

3. Discussion

Several parameters are responsible for the change in alignment, structural and optical properties
of ZnO nanorods grown by PLD technique. Among these substrate types, growth temperature, number
of pulsed laser shots, and annealing environment play important roles. XRD analysis explains about
the crystallinity and the preferred orientation of the ZnO nanorods, which is not sufficient to confirm
the vertical alignment of the rods. SEM and Raman analysis help to verify the vertical alignment
of ZnO nanorods. SEM analysis helps in determining the average length and diameter of the ZnO
nanorods. The diameter varies from 50 nm to 500 nm as the growth parameters are changed. Vertical
alignment is visible from SEM images. The presence of E2 high and A1 (LO) modes in Raman spectra
also supports this. Alignment is also dependent on the substrate used, which follows Volmer-Weber
model for formation of the ZnO nanorods. Growth of ZnO nanorods follows VS mechanism, i.e.,
formation of the nanorods without a catalyst through PLD technique.

ZnO nanoparticles ablated from the target at high pressure act as nucleation sites and help in the
formation of nanorods. Alignment of ZnO nanorods, which mainly depends on surface energies, was
found to be more efficient on Si substrate. Smaller FWHM of the E2 high phonon mode signifies better
alignment of the ZnO nanorods. Change in growth temperature during the pulsed laser deposition of
ZnO samples helped in determining apt parameters for fabricating VAZO nanorods with desirable
properties. An increase in the diameter of ZnO nanorods was observed as the temperature was
increased, which is evident from the SEM analysis and form the shift in E2 high mode in Raman
spectroscopy. The change in defect levels was seen in PL spectra due to increase in diameter of VAZO
nanorods. Band bending and formation of the depletion layer played key roles in shift of defect levels
of VAZO nanorods. A change in length of the rods was detected from SEM images as the number
of pulsed laser shots was changed. As the number of laser shots was increased from 5000 to 15,000,
a shift in E2 high mode was detected and absence of A1 (LO) mode, which mainly explains about the
vertical alignment of the ZnO nanorods, was observed. In PL spectra, a change in UV band emission
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has been observed for ZnO nanorods sample grown at 15,000 shots, which coincides with bulk ZnO.
The reduced intensity of defect levels also explains the crystallinity of the ZnO sample.

Annealing treatment was performed to analyze the defect levels of VAZO nanorods in both
oxidizing and reducing atmosphere. Annealing in the presence of oxygen atmosphere led to a decrease
in intensity of defect level as seen in PL spectra and a shift in E2 high Raman mode. Absence of A1 (LO)
phonon mode and peak position of E2 high mode coincides with the bulk ZnO, which proves that
the alignment of nanorods has been changed. Decreased intensity of the defect levels associated with
the oxygen interstitials can also be attributed to the temperature (500 ◦C) used during the annealing
treatment, which helped the oxygen atoms to move away from the ZnO wurtzite structure. Annealing
in the presence of reducing atmosphere led to reduced intensity of the defect levels. Large surface
area and smaller diameter of VAZO rods might help hydrogen atoms to diffuse easily through the
surface and reduce the oxygen interstitials present in the structure. A shift in the Raman mode is
also observed, which signifies better alignment of the ZnO nanorods. Figure 7 represents Pulse laser
deposition (PLD) setup used for synthesis of vertically aligned ZnO nanorods. Figure 8 represents the
schematic diagram of growth of VAZO nano rods starting from the deposition of ZnO nanoparticles
during initial stage, and then formation of VAZO nanorods after entire deposition process. Bending of
the VAZO nanorods has also been shown as we increase in number of pulsed laser shots.

 
Figure 7. Pulsed laser deposition (PLD) setup used for synthesis of vertically aligned ZnO nanorods (VAZO).

 

α λ

θ

Figure 8. Schematic diagram of growth of vertically aligned ZnO nanorods (VAZO) by using high
pressure assisted pulse laser deposition (PLD) process.
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4. Materials and Methods

VAZO nanorods were synthesized from a highly dense and pure ZnO target by using PLD
technique (Excel Instrument, PLD-STD-18). Laser source used was Lambda Physik, COMPEX201 high
energy UV KrF excimer laser. The fabricated nanorods were grown at an average laser energy density
in between 3–4 J/cm2. During the deposition process, the pulsed laser frequency was maintained at
10 Hz with a pulse duration of 20 ns. The laser was focused on to a 1.9 cm diameter ZnO target prepared
by 99.9% pure micron sized ZnO powder. The distance between the target and the substrate was ~3 cm
during deposition of VAZO nanorods. Figure 7 represents the pulse laser deposition (PLD) setup used
for synthesis of vertically aligned ZnO nanorods. The substrates used were n-doped 400 µm Si (111)
purchased from Siltronic Ag, ITO coated on glass and Al2O3 substrates purchased from Aldrich (St.
Louis, MO, USA). The chamber was maintained at high pressure, 0.3 mbar of oxygen gas throughout
the deposition and the growth temperature was changed in between 500 ◦C and 600 ◦C. After the
completion of the deposition, the VAZO nanorod samples were cooled down in the same chamber
pressure as maintained before. Annealing studies of VAZO nanorods has been done in oxygen and
forming gas (95% Ar and 5% H2) atmospheres at a pressure of 0.3 mbar and a temperature of 500 ◦C
for 30 min. FEI Quanta 200 S field emission secondary electron microscope (FESEM, Waltham, MA,
USA) was used to collect high resolution images of VAZO nanorods. As the nanorods were vertically
aligned, it was difficult to collect the images under normal operating conditions. Better quality images
were obtained by tilting the specimen stage at an angle of 60◦. The diameter and length of the VAZO
nanorods were obtained using FESEM images through ImageJ software. We used Bruker D8 Discover
X-ray diffractometer (Woodlands, TX, USA) coupled with a Cu Kα emission source (λ = 1.518 Å) to
investigate the crystal structure of the VAZO nanorods. Operating current and voltage was maintained
at 40 mA and 40 KV, respectively, during the XRD measurements. The 2θ value was maintained in
the range between 20◦ and 80◦. We used a Horiba Labram PL-Raman system (Irvine, CA, USA) for
the Raman and photoluminescence (PL) measurements on the VAZO nanorods. A green laser with a
wavelength of 532 nm was used to perform Raman spectroscopy on the as grown VAZO nanorods.
Calibration was performed with a standard Si sample prior to all the measurements. PL spectroscopy
was performed by using a 325 nm wavelength laser source. Peak fitting and analysis of the Raman and
PL spectra were conducted by using Labspec 5 software.

5. Conclusions

VAZO nanorods on Si substrate have been fabricated by a catalyst free high pressure PLD
technique. Effects of the substrate type, growth temperature and number of pulsed laser shots have
been studied to analyze the crystalline properties of the VAZO nanorods. Factors responsible for
alignment of ZnO nanorods have been investigated, which mainly depend on growth parameters.
Temperature and number of pulsed laser shots during the deposition play key roles in the alignment
of the ZnO rods, which was verified from the E2 high mode of VAZO nanorod structures. A way to
tune the defect levels is established by changing the diameter of the nanorods, which was performed
by changing the growth temperature. Changes in the UV band emissions have been achieved by
increasing the number of pulsed laser shots. Annealing studies helped in analyzing defect levels
with the help of PL spectroscopy. PL spectroscopy also helped to interpret the reasons behind the
observed decrease in defect levels and shift in Raman modes of annealed VAZO nanorod samples. In a
nutshell, this research on VAZO nanorods would be helpful for fabrication of optoelectronic devices
with improved efficiency.
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