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Abstract 

 

Differences in the expression of genes and their splice isoforms across 

human tissues are fundamental factors to consider for therapeutic target evaluation. 

To this end, we conducted a transcriptome-wide survey of tissue-specific gene 

expression and splicing events in the unprecedented collection of 8527 high-quality 

RNA-seq samples from the GTEx project, covering 36 human peripheral tissues and 

13 brain subregions. We derived a weighted tissue-specificity scoring scheme 

accounting for the similarity of related tissues and inherent variability across 

individual samples. We showed that ~50.6% of all annotated human genes show 

tissue-specific expression, including many low abundance transcripts vastly 

underestimated by previous array-based expression atlases. As utilities for drug 

discovery, we demonstrated that tissue-specificity is a highly desirable attribute of 

validated drug targets and tissue-specificity can be used to prioritize disease-

associated genes from genome-wide association studies (GWAS). Using brain 

striatum-specific gene expression as an example, we provided a template to 

leverage tissue-specific gene expression to identify novel therapeutic targets. Mining 

of tissue-specific splicing further reveals new opportunities for tissue-specific 

targeting. Thus, the high quality transcriptome atlas provided by the GTEx is an 

invaluable resource for drug discovery and systematic analysis anchored on the 

human tissue specific gene expression provides a promising avenue to identify 

novel therapeutic target hypotheses. 
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Introduction 

 

Tissue specific genes are those expressed at higher levels in a subset of 

tissues relative to the baseline expression across all tissues. They often play critical 

roles in the biological functions unique to those tissues. Identifications of tissue-

specific genes have provided a deeper molecular understanding of tissue functions 1-

4, led to discoveries of key genetic regulatory elements 5-8, and defined the molecular 

basis of human diseases 9,10. These studies and on-going gene expression profiling 

efforts also highlight the usefulness of defining tissue-specific transcriptomic 

signatures. Therapeutically, pharmacological modulation of tissue-specific genes is a 

promising avenue to maximize efficacy in target tissues while minimizing the safety 

risks of affecting unrelated tissues. The availability of a comprehensive catalog of 

tissue-specific gene expression will set a foundation for a plethora of utilities 

relevant to human physiology and disease.  

 

Previous efforts to develop a comprehensive transcriptome atlas across multiple 

human tissue types relied heavily on microarray platforms of limited sample size 11.  

Recent advances in next-generation sequencing technology have enabled a deeper 

interrogation of the human transcriptome using RNA-seq, with greatly improved 

sensitivity, accuracy, and a broad dynamic range 12,13. Additionally, RNA-seq 

technology has a unique advantage of allowing transcriptome-wide quantitative 

assessments of alternative splicing events.  The Genotype Tissue Expression (GTEx) 

project 14, an ongoing consortium project, has become the newest flagship of 

transcriptome atlases by generating the largest cohort of RNA-seq profiles on a 

broad range of human postmortem tissues. Here, we conducted a comprehensive 

transcriptome-wide survey to uncover tissue-specific and brain subregion-specific 

gene expression profiles and alternative splicing events from the GTEx v6 data 

release, covering 36 human peripheral tissues and 13 brain subregions. Besides a 

comprehensive characterization of tissue-specific gene expression patterns, we 

investigated the tissue-specific properties of known drug targets and further 

focused our analyses on demonstrating the utility of GTEx transcriptome atlas in 

therapeutic target identification and evaluation. By integrating with GWAS signals 

for human diseases, we also aimed to identify tissue-specific candidate genes 

associated with human diseases.  

 

 

Results: 

 

Genome-wide quantification of tissue-specificity and brain subregion-

specificity from the GTEx human transcriptome atlas  

We first sought to derive a comprehensive catalog of human tissue-specific 

gene expression using the gene-level expression quantification data from GTEx v6p 

release. After QC and filtering (see Methods), a total of 8527 samples covering 36 

peripheral tissues and 13 brain subregions were used for the tissue-specificity 

analysis. Hierarchical clustering of tissues by their overall gene expression patterns 

revealed multiple clusters of functionally related tissues with highly correlated gene 

expression (Figure 1A). In particular, brain sub-regions were highly correlated with 

each other (correlation coefficient>0.8) compared to other tissues (Figure 1A). 
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With a relatively stringent clustering threshold (see Methods for details), 49 tissues 

could be clustered into 30 tissue groups (Figure 1A). 

 

Several tissue-specificity metrics have been previously reported for 

microarray-based data 15-17. GTEx data, unprecedented in size and nature, required 

a customized tissue-specificity formula that accounts for transcriptome-wide tissue 

similarities, donor-to-donor variations, and RNA-seq read count-based statistics. 

Here we define tissue-specific genes as those showing enriched expression in a 

subset of tissues compared to typical expression in other tissues. In contrast, we 

refer to genes present only in a single tissue type as tissue-exclusive genes. Figure 

1B illustrates two examples of tissue-specific genes, HTR1A, an example of genes 

specifically expressed only in brain, and PCSK9, an example of genes specifically 

enriched in a number of tissues. The mathematical quantification of the tissue-

specificity score (TS_Score) is described in detail in the Methods section. Briefly, 

TS_Score contains three components: relative expression level in one tissue 

compared to other tissues, tissue-similarity weighting factor, and statistical 

significance for expression comparison between tissues. TS_Score associated with a 

gene for a target tissue can be simply interpreted as the average log ratio of 

expressions in a target tissue over other tissues across all donors. We define tissue-

specific genes as having TS_Score greater than 3. We chose the TS_Score>3 

threshold as it can be intuitively interpreted as having 8 times (23) the expression in 

one tissue over the weighted average of the rest of tissues. Statistically, the 

TS_Score>3 threshold is more than two standard deviations above the mean (μ=-

0.05, σ=1.28, see Supplementary Figure1 for the overall TS_Score distribution). 

For the downstream analyses of tissue-specific genes, we further verified our 

findings could be consistently observed even with a less stringent threshold. To 

account for the expression similarity among related tissues, we weighted the 

contribution of each tissue to the tissue-specificity score by how “similar” it is 

correlated with other tissues. This weighing scheme is particularly important for 

identifying brain-specific genes due to the overall highly correlated expression 

patterns across brain sub-regions. Finally, our TS_Score incorporates cross-donor 

variances to only include differential gene expressions that are statistically 

significant between the enriched tissue versus all other tissues. This avoids over-

estimating the tissue-specificity for genes with high variance, especially those 

expressed at a very low abundance level.  

 

Overall, 50.6% of all protein-coding genes, long noncoding RNA genes, and 

pseudogenes in the human genome (23569 out of 46508 genes in the GENCODE v19 

gene annotation) have TS_Score greater than 3 in at least one of 49 tissues (See the 

gene expression heatmap of TS genes in Supplementary Figure 1).  However, the 

distribution of these genes varies greatly among different tissues (Figure 1C, 

Supplemenary Table 1). Testis had by far the largest number of tissue-specific 

genes (28% of all genes) with 3923 protein coding genes, 5804 lncRNAs and 3299 

pseudogenes. Brain regions also had a higher than average number of tissue-specific 

genes (11% of all genes; collectively 2855 protein-coding genes, 2367 lncRNAs, and 

1225 pseudogenes) most likely reflecting specialized functions of the brain. On the 

opposite end of the spectrum, adipose, breast, heart, esophagus muscularis, and 

uterus tissues had the lowest number of tissue-specific genes (<300 protein-coding 
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genes). At the individual gene level, the majority (89.7%) of tissue-specific genes 

were enriched in less than 5 tissue groups (Figure 1D). Furthermore, only a small 

number of genes were exclusively enriched in a single tissue type with the highest 

number in testis.  

 

To verify the functional significance of these tissue-specific genes, we applied 

functional enrichment analysis on the tissue-specific genes (TS_Score>3) in each 

tissue type against the Gene-Ontology (GO) annotation. As expected, biological 

pathways and molecular functions relevant to the tissue were highly enriched in 

their corresponding tissue-specific genes. For example, genes annotated for “lipid 

metabolic process” are 5.8-fold enriched in liver-specific genes (pvalue=1.3E-38) 

and genes annotated for “synaptic signaling” are 5.9-fold enriched in brain cortex-

specific genes (Pvalue=3.4E-77).  

 

Given the large number of uniquely identified brain-specific genes, we 

further interrogated the 13 brain subregions to investigate spatial gene expression 

relationships. Globally, distinct gene expression patterns of individual brain 

subregions were observed among interrelated anatomical locations. For example, 

distinct gene expression clusters were observed among the three functional 

substructures of the basal ganglia (caudate, putamen and nucleus accumbens), for 

several areas of cerebral cortex and also cerebellar subregions (Figure 1E).  One 

interesting exception was the observation that genes expressed in the substantia 

nigra, a small mid-brain region, shared relative high correlation with spinal cord. 

Surprisingly, among all the brain subregions, the substantia nigra and spinal cord 

also show higher gene expression correlation with whole blood (Supplementary 

Figure 2), suggesting higher proportion of immune cell types in these regions. 

 

We then further categorized genes with subregion-specific profiles in all 13 

brain regions by applying tissue-specificity calculation to only these regions. The 

cerebellum had the highest number of specifically expressed genes when compared 

to the rest of the brain (609 protein coding genes and 707 long noncoding RNA 

genes with TS_Score >3 in cerebellum) with 97% of these genes exclusively enriched 

in cerebellum (Figure 1E,F, Supplementary Table 2). In contrast, less than 50 

protein-coding genes with TS_Score >3 were identified in amygdala, hippocampus 

and substantia nigra, indicating the number of specifically expressed genes in these 

regions are low and there are similar molecular features among these regions and 

the rest of the brain. For striatal subregions, hypothalamus, cerebral cortex, and 

spinal cord, a moderate number of tissue-specific genes (ranging from 50 to 300) 

were identified. 

 

Annotations of brain subregion-specific genes with biological processes and 

molecular functions derived from Gene Ontology suggested unique functional 

enrichment in each of the subregions. For example, cerebral cortex-specific genes 

were enriched for “synaptic transmission” and “transmission of nerve impulse” 

including many ion channels and membrane receptors known to regulate 

neurotransmission. In contrast, genes specifically expressed in the hypothalamus 

were enriched for “hormone activity”, including neuropeptide and receptor genes 

(e.g PMCH, HCRT, GHRH, TRH) known to play critical roles in neuroendocrine 
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regulation. Interestingly, genes annotated as “Sequence-specific DNA binding” are 

also significantly and uniquely enriched in the hypothalamus (enrichment 

Pvalue=1.3E-5).  12 out of 92 hypothalamus-specific protein-coding genes (e.g. SIX6, 

SIM1, OTP, HMX2, HMX3) are transcription regulators, suggesting distinct 

transcriptional regulation in this specialized brain region.  

 

 

GTEx transcriptome atlas greatly expands the catalog of tissue-specific gene 

expression  

GTEx, owing to its large sample size and deep sequencing coverage, presents 

an unprecedented opportunity to discover and annotate tissue-specific genes. Prior 

to the GTEx project, large-scale gene expression atlases were primarily generated 

using microarray technology. For comparison, we applied the TS_Score calculation 

on a highly cited microarray-based atlas, the Genomics Institute of the Novartis 

Research Foundation (GNF) dataset 11. A large number of tissue specific coding 

(2516) and noncoding genes (10770) were found to be unique in the GTEx dataset 

as they were not previously measured in the GNF atlas due to the lack of 

corresponding probes on the microarray platform. In addition, for the 14,891 

protein coding genes interrogated in both datasets, more tissue-specific genes were 

consistently quantified from GTEx as compared to the GNF dataset across all 

matched tissues. For most tissues, less than half of the tissue-specific genes 

identified from the GTEx data showed specificity in the GNF atlas (examples shown 

in Figure 2A). In a few tissues including brain cortex, pancreas, kidney, and testis, 

greater than 75% of tissue specific genes were found only in the GTEx dataset.  In 

contrast, for most tissues, >90% of tissue-specific genes identified from the GNF 

atlas were also found to be specific in using the GTEx data. It is unlikely that the 

GTEx-only tissue-specific genes are due to anatomical isolation differences as 

isolation or dissection differences would have resulted in the existence of 

comparable GNF-only tissue-specific genes, which was not observed. 

 

The GTEx-only tissue-specific genes showed a significant shift towards lower 

expression in all matched tissues (Figure 2B). In fact, the majority (53% on average 

across tissues) of tissue-specific genes identified in the GTEx data are in the mid-low 

abundance level (log2TPM<4) (Figure 2C), further demonstrating the superior 

sensitivity and expanded signal dynamic range of RNA-seq. The identification of 

these numerous low-abundance tissue-specific genes provides fundamental 

biological insights, as these previously undetected tissue-specific genes may be 

involved in critical functions within their respective tissues.  For example, as 

indicated by GO enrichment analyses (Figure 2C), “chemical synaptic transmission” 

is highly associated with low-abundance brain-specific genes (Pvalue=4e-31) while 

low abundance pancreas-specific genes exert functions towards “endocrine 

pancreas development” (Pvalue=3e-7). Independent to the literature-driven GO 

annotations, similar functional enrichment is observed when repeating the analyses 

using the experiment-driven MGI knockout mouse phenotype database, highlighting 

the transferability of the findings across species (Figure 2D).  

 

Tissue-specificity as a desirable attribute for therapeutic drug targets 
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With the expanded catalog of tissue-specific genes, we next sought to 

interrogate the tissue-specificity properties of therapeutic drug targets and assess 

whether tissue specific expression could be used as a criterion for therapeutic target 

discovery.  

 

We first curated a comprehensive list of drug targets in the different pre-

clinical and clinical phases based on its most advanced therapeutic program as 

documented in the Citeline pharmaproject module. When cross-referenced with our 

tissue-specificity scores (TS_Score), 68% of the PhIII+ targets (included “PhIII”, 

“Registered”, “Pre-registration”, “Launched”) were tissue-specific (TS_Score >3) 

comparing to 46% in all annotated protein coding genes, making PhIII targets 50% 

more likely to be tissue-specific and a significant enrichment (odds ratio = 2.5, 

Pvalue=3e-23, Figure 3A, Supplementary Table 3). Conversely, we confirmed the 

reciprocal enrichment that PhIII+ targets were recovered in significantly higher 

percentage of transcriptome-wide tissue-specific genes comparing to that of the 

non- tissue specific genes (Supplementary Figure 4). Interestingly, cross-sectional 

survey of targets in earlier drug development stages revealed a significant descend 

in enrichment for tissue-specificity comparing to PhIII+ targets (Figure 3B). 

 

We next investigated which “druggable” gene families were intrinsically tissue-

specific by nature. Gene families of the entire GTEx coding transcriptome were 

annotated according to Ingenuity IPA software. We calculated the median TS_Score 

based on all members from each gene family. We noted that most of the chemical 

tractability-aspired and empirically derived “druggable” classes 18,19 coincide with 

high tissue-specificity: GPCRs (median TS_Score=3.6), nuclear receptors (median 

TS_Score=3.5), ion channels (median TS_Score=4.3), kinases (median TS_Score=2.5), 

SLCs (median TS_Score=3.5). Further comparisons of the TS_Scores of PhIII+ targets 

to background within each gene family revealed the preference for even higher 

tissue specificity for several already highly tissue-specific gene families, including 

GPCRs (Fisher’s exact adj.p=4E-12), and serine hydrolases (adj.p=0.004) (Figure 

3C). To show that this observation was not dependent on the choice of specificity 

thresholds, we also performed rank-based tests (Mann-Whitney) to test for a shift in 

TS_Score distribution within gene families. This analysis confirmed the findings and 

showed a universal trend of upward TS_score shift towards specificity within the 

PhIII+ drug targets overall (Supplementary Figure 4C) and across families 

(Supplementary Table 4).  

 

We postulated that different classes of therapeutic indications likely would have 

different requirements for tissue-specificity. Figure 3D showed the level of 

enrichment for tissue-specificity across classes of indications. Of particular note, 

endocrine system diseases, driven by hormone-impaired indications, showed that 

PhIII+ targets were 10 times more likely to have a strong preference for tissue-

specificity through targeting the hormone receptors (GHRHR, PTH1R, SSTR family, 

etc). Psychiatric targets, as expected, were highly enriched for tissue-specificity 

(OR>5), and were dominated by brain-specific genes. Interestingly, Metabolic 

indications represent one of the larger collections of PhIII targets (spanning 147 

distinct targets), which collectively showed preference for high tissue-specificity 

(OR>4) concentrating in artery, heart, adipose, and lymphocytes. In contrast, 
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indications in skin and oncology showed the least preference for tissue-specific 

targets, perhaps owing to local delivery mechanism and lower toxicity hurdle, 

respectively. 

 

 

 

Tissue-specificity of druggable target gene families and utilities in target 

identification  

 Historically, small molecule drug discovery efforts have been focusing on 

several major target gene families including G-protein coupled receptors (GPCRs), 

kinases, metabolic enzymes such as serine hydrolases (SHs), solute transporters 

(SLCs), and ion channels, as they are more amenable for small molecule intervention 
20,21. Interestingly, by overlaying the tissue specificity profiles with these druggable 

gene families, we observed distinct tissue-specific distribution patterns of the 

different drug target classes (Figure 4A, Supplementary Table 5). Brain tissues 

have the largest number of specifically expressed ion channels, GPCRs (best 

enrichment Pvalue =1.4e-16), ion channels (best enrichment Pvalue =2.8e-56, solute 

transporters (best enrichment Pvalue =1.1e-4), many of which are involved in 

neuronal signal transmission processes. In contrast, tissue-specific serine 

hydrolases are highly enriched in pancreas (Pvalue=7.4e-11), vagina (Pvalue=2.3e-

10), liver (Pvalue=5.8e-10), skin (Pvalue=1.6e-9), and esophagus (Pvalue=5.6e-9), 

but not in brain. For peripheral tissue types, tissue specific ion channels are also 

highly enriched in testis (Pvalue=1e-7), skeleton muscle (9.8e-7), heart (Pvalue=4.1-

6), colon (3e-6), tissue-specifc GPCRs highly enriched in spleen (Pvalue=6.9e-15), 

whole blood (Pvalue=2.2e-9) and tissue-specific solute transporters highly enriched 

in kidney (Pvalue=5.6e-23), liver (Pvalue=1.8e-11), small intestine (Pvalue=4.3e-8). 

In contrast, tissue-specific kinases are not significantly enriched in any central or 

peripheral tissue types. These distinct tissue specificity patterns reflect the 

specialized functions of the tissues, and could drive novel therapeutic target 

identification.  

 

Here, we took a closer examination of the tissue-specific GPCRs as an 

illustration of a tissue-specificity driven approach for target identification. 312 

(85%) out of a total of 369 non-olfactory GPCRs are tissue-specifically expressed 

(1.8 fold over the overall 46.8% tissue-specific genes in protein-coding genes) with 

the largest number of them and highest enrichment found in brain regions and 

immune systems, i.e. whole blood, lymphocytes, spleen (enrichment Pvalue<2e-9) 

Of these, 80 are annotated as orphan GPCRs (oGPCRs). The endogenous ligands for 

many of the oGPCRs are elusive and their biological functions are largely unknown. 

Yet, ~27% of all FDA-approved drugs are targeting only ~50 GPCRs with known 

ligands. Thus, oGPCRs represent many untapped opportunities for novel therapeutic 

targets. These tissue-specific oGPCRs are particularly interesting, as their tissue-

specific expression pattern provides additional context to elucidate their biological 

function and hypothesize their therapeutic potentials. An interesting case example 

can be derived from the striatum of the brain. The striatum is an evolutionarily 

conserved subcortical structure that performs important functions including 

movement control, regulation of attention, motivation and cognition, and the 

processing of rewarding and salient stimuli 22. Disruption of striatal function is 
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associated with many neurological and psychiatric diseases including Parkinson’s 

and Huntington’s disease, addiction, and psychosis 23. A deeper gene expression 

analysis on the three substructures of human striatum (caudate, putamen and 

nucleus accumbens) identified a total of 120 protein-coding genes, 168 long non-

coding RNAs and 69 pseudogenes specifically expressed in the striatum (Figure 

4B). Functional annotation of striatal specific protein-coding genes showed strong 

enrichment in dopamine neurotransmission and signaling  (e.g. DRD1, DRD2, DRD3, 

PDE1B, PDE10A, PPP1R1B, RGS14), consistent with the well-described function of 

the striatum to coordinate dopamine-dependent brain functions. Strikingly, a large 

number of GPCRs are highly specifically expressed in the human striatum (Figure 

4B). Out of the 120 protein coding genes identified as specifically expressed in 

striatum, 19 of them are GPCRs. Out of these GPCRs, 13 have known ligands 

including many established therapeutic or investigational drug targets (e.g. 

dopamine D1, D2, D3 receptors, serotonin 5-HT2C, 5-HT1D, 5-HT6 receptors, and 

others). Interestingly, 6 of the remaining GPCRs are all orphan receptors 

(Supplementary Figure 5), namely, GPR6, GPR52, GPR88, GPR101, GPR139 and 

GPR149 whose endogenous ligands and functions are unknown.  Given that many of 

the 13 striatum-specific GPCRs with known ligands play key roles in modulating 

striatal neurotransmission and striatal functions, the identification of these 6 

orphan GPCRs provides a new set of potential drug targets whose modulation may 

be therapeutic for treating striatal-related neurological diseases. 

 

Overlap of GWAS candidate genes associated with human diseases with tissue-

specific genes 

Recent progresses in GWAS studies of human diseases have enabled more 

human genetics driven therapeutic target discovery 24,25. Here we further examined 

the tissue-specificity profile of genes near the GWAS signals and determined 

whether GWAS candidate genes for human diseases are enriched in tissue-specific 

genes. We first curated the GWAS findings for 61 diverse human diseases, disease-

associated biomarkers, or human traits from the NHGRI catalog (See Method for the 

curation details). As a first approximation, for each GWAS locus, we assigned a 

single candidate gene as the one that is closest to the GWAS lead SNP (i.e. Single 

Nucleotide Polymorphism with the most significant GWAS Pvalue). Then for each 

tissue type, we assessed the overlap of tissue-specific genes with the GWAS 

candidate genes for each of the 61 diseases/traits. Remarkably, GWAS signals are 

often significantly enriched in tissue-specific genes in the tissue types that are 

directly relevant to the disease (Figure 5, Table 1). This enrichment pattern can be 

consistently observed even when less stringent TS_Score threshold was used to 

define tissue-specific genes (Supplementary Figure 6). For example, for Systemic 

Lupus Erythematosus (SLE), an autoimmune disease triggered by immune cells, 6.4-

fold enrichment (Pvalue=1.78E-6) of the GWAS candidate genes were observed only 

in lymphocyte-specific genes. In fact, one third of the GWAS candidate genes (10 of 

32) are specifically expressed in lymphocyte. In comparison, for abnormal heart 

rate, the strongest enrichments (~21-fold, Pvalue=2.62E-6) were observed in genes 

specifically expressed in heart tissues (e.g. heart atrial appendage). Interestingly, 

among the candidate genes associated with the levels of various metabolites, 

homocysteine, urate, cholesterols and triglycerides, most significant enrichments 

(9-12 folds, Pvalues range 5E-4 to 3E-10) were observed in genes specifically 
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expressed in liver and kidney, the two key organs responsible for the metabolic 

homeostasis. For Type-1-diabetes (T1D) and Type-2-diabetes (T2D) GWAS signals 

are distinctly enriched around tissue-specific genes from different tissues. For T1D, 

the strongest enrichment (4.5 fold, Pvalue=1E-4) was observed in lymphocyte-

specific genes.  In contrast, for T2D, moderate enrichments (~3.6-fold, 

Pvalue~0.006) were found in genes specifically expressed in pancreas, but no 

significant enrichment in whole blood or lymphocyte-specific genes. This matches 

remarkably well the difference of the etiology of the two diseases. T1D is considered 

an autoimmune disease where beta cells are attacked by the immune system, while 

T2D is likely due to dysfunctional metabolism.  Surprisingly, no strong enrichment 

was observed in any tissue type for any obesity related GWAS loci, with only 

marginally enriched signals among the tissue-specific genes in brain sub-regions.  

 

For neurological disorders, such as Parkinson’s disease and schizophrenia, 

the strongest enrichments of GWAS signals were observed in brain-specific genes. 

For schizophrenia in particular, GWAS signals from the recent Psychiatric Genomics 

Consortium study 26 were located near several brain enriched ion channels and 

receptors (CACNA1I, GRIN2A, HCN1, DRD2, GRM3), and synaptic proteins (SNAP91, 

NRGN, RGS6, RIMS1) that are known to play important roles of neurotransmission.  

Perhaps the most surprising enrichment was observed in the GWAS loci for late 

onset of Alzheimer’s disease (LOAD). Instead of enrichment in brain-specific genes, 

the strongest signal was observed for genes specifically expressed in the immune 

system (Table 1). Out of the 23 candidate genes from the AD GWAS loci, 11 of them 

(ABCA7, PTK2B, CD33, CR1, GPR141, INPP5D, MS4A6A, SLC24A4, SORL1, MEF2C, 

HLA-DQA1) are highly enriched in whole blood, lymphocyte, and spleen 

(Pvalue<6E-4), suggesting a causal link between immunity and the development of 

LOAD. 

 

In total, 33 out of the 61 diseases/traits showed significant enrichment of 

GWAS signals (Pvalue<0.001) around tissue-specific genes, accounting for 31% of 

GWAS loci. The full list of tissue-specific GWAS candidate genes is included in Table 

1.  Taken together, our results strongly indicate that tissue-specific genes identified 

are highly relevant to human diseases, and tissue-specific gene expression provides 

an orthogonal criterion for mapping candidate disease genes for GWAS loci to 

uncover causal links between genes and human diseases, and developing potential 

therapeutic target hypotheses. 

 

Tissue-specific splicing provides novel opportunities for tissue-specific 

targeting 

It is well established that majority of the multi-exon genes in the human 

genome undergo alternative splicing. Translation of the different splice isoforms of 

the same gene often lead to different protein products that play important biological 

functions and exert different pharmacological effect in the various tissues and cell 

types. Prior to GTEx, resources for quantitative and comprehensive assessment of 

splice isoform distribution in human tissues are limited.  

 

To further assess alternative splicing, we applied a comprehensive workflow 

with a focus on quantifying all alternative splicing (AS) events including alternative 
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exons and exon skipping (AltEx), alternative 5’ and 3’ splice site (Alt5_3), and intron 

retention (IR) (see Methods for details, Supplementary Figure 7), as opposed to 

reconstruction and quantification of the full length isoform. AS event-based 

quantification is more robust against various confounding factors such as RNA 

degradation and fragment length biases, and is less affected by the incomplete 

annotation of alternative splice isoforms in the reference annotation 27.  We first 

identified and quantified all splicing events in each sample according to their types 

using the following metrics, PSI: percent spliced in (for AltEx events), PSU: percent 

splice site usage (for Alt5_3 events), PIR: percent intron retention (IR events) (See 

Methods for the analysis workflow and Supplementary Figure 7 for a schematic 

description of the different types of AS events and the formula). Then for each 

splicing event, the tissue PSI/PSU/PIR values were calculated as the median 

PSI/PSU/PIR values across the samples of each tissue type. The total set of AS 

events across all tissue types are defined as splicing events having tissue 

PSI/PSU/PIR<90% and >10% in any of the tissue types and/or having a range of 

tissue PSI/PSU/PIR values >25% across all tissues 28. Overall, 74890 AS events 

(20255 AltEx, 9401 Alt5_3, 39575 IR events, Figure 6A) were detected in 13,274 

genes in the 49 tissue types. As previously reported 29, we observed widespread 

intron-retention events across all tissue types, accounting for 60% of all AS events 

detected. Since GTEx RNAseq libraries were purified using a polyA enrichment 

method that enriches for mature polyadenylated mRNA and a large number of 

samples were profiled for each tissue type, we reasoned that these intron-retention 

events consistently observed across tissue samples were unlikely to be artifacts of 

pre-mRNA contamination. 

 

The number of genes with multiple AS isoforms simultaneously expressed in 

a tissue (i.e. genes having at least one AS event with 10%<PSI/PSU/PIR value<90% 

in the tissue) is rather comparable across the diverse tissue types (6778 genes on 

average ± 826 genes, Figure 6B). Despite the complex and higher order functions of 

the human brain, no substantial increase in the number of genes expressing multiple 

AS isoforms was observed in any of the brain regions. However, when clustering 

tissues based on the transcriptome-wide splicing patterns (i.e. using the 

PSI/PSU/PIR values), brain regions clustered separately from the peripheral tissues, 

indicating that the splicing patterns in brain regions are distinct from peripheral 

tissues (Supplementary Figure 8). Overall, anatomically related tissues generally 

show more similar splicing patterns in the clustering analysis (Supplementary 

Figure 8). 

 

Next, to identify tissue-specific AS events, we derived a AS event tissue-

specificity score (AS event TS_Score) using tissue PSI/PSU/PIR values for each AS 

events in each tissue (See Methods for details), also taking into account the overall 

similarities between tissues. In total, 6445 AS events (6.7% of all AS events) in 4177 

genes are tissue-specific (Supplementary Table 5), defined as having AS event 

TS_Score>2 (for tissue-specific inclusion events) or AS event TS_Score<-2 (for 

tissue-specific exclusion events) in at a subset of tissues. Biologically, AS event 

TS_Score>2 or <-2 can be interpreted as having the intron (in the case of intron 

retention) or exon at least 4 (i.e. 22) fold more included or excluded in the target 

tissue than the other tissues on average. Statistically, this threshold represents the 
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AS events of the top 1% TS_Scores. Supplementary Figure 9 provides a heatmap 

overview of the PSI/PSU/PIR values of these tissue-specific AS events. Interestingly, 

unlike the tissue-specific gene expression observed in a large number of tissue 

types, tissue-specific splicing is mostly observed in a handful of tissues including 

testis, brain subregions, heart, skeleton muscle, whole blood, these tissue types 

together accounting for 82% of the tissue-specific AS events identified (Figure 6C). 

The rest of the tissue types show much fewer genes with tissue-specific AS events. 

This biased distribution of tissue-specific AS event is consistently observed even 

when we vary the stringency of AS event TS_Score thresholds (Supplementary 

Figure 10). Furthermore, the majority of tissue-specific AS events appeared to be 

tissue-specific AltEx events (27.5%) and IR events (67%), and very few are tissue-

specific Alt5_3 events (4.5%).  

 

A survey of targets with drugs in experimental and different clinical stages 

showed 72% of drug targets (Supplementary Table 7) have at least one AS event 

observed in the tissues examined, further confirming the importance of evaluating 

the tissue distribution patterns of alternative splicing for drug targets. There are 

numerous examples of alternative splicing affecting the pharmacology of the drug 

targets. For example, AMPA receptors are ionotropic transmembrane receptors for 

glutamate that play important roles in synaptic signal transmission.  Drugs targeting 

AMPA receptors are being tested and used to treat a range of neurological diseases 

such as epilepsy and cognitive disorders 30,31. AMPA receptors consist of 

heterotetramers of four types of subunits (GRIA1-4). Alternative exon usage at the 

‘flip-flop’ exons has been reported to have profound effect on receptor function, 

membrane trafficking, and receptor affinity to small molecule drugs 32. In the GTEx 

datasets, the alternative splicing between the ‘flip-flop’ exons can be clearly 

observed in all four AMPAR subunit genes in brain, but the spatial distribution of the 

two isoforms in the different brain subregions widely vary (Supplementary Figure 

11).  The ‘flop’ isoforms of GRIA2-4 are primarily expressed in cortex, caudate, and 

putamen (mean PSI Ψ=57%), while the ‘flip’ isoforms dominate in amygdala, 

hypothalamus, hippocampus, substantia nigra, and spinal cord (mean PSI Ψ=82%). 

Cerebellum has a mixed expression of the ‘flip’ isoforms for GRIA1,3 and the ‘flop’ 

isoforms for GRIA2,4. Thus, drugs preferentially targeting one of the isoforms might 

have profoundly different pharmacological effects on the different neurocircuits. 

 

We are also particularly interested in leveraging the tissue-specific 

alternative splicing in therapeutic targets to uncover novel tissue specific targeting 

opportunities. A cross-examination of gene-level tissue specificity score and AS 

event tissue specificity score shows 1359 out of the 6445 (21%) tissue-specific AS 

events occur in the tissues where the genes are specifically expressed (gene 

TS_Score>3). The majority (79%) of tissue-specific AS events occur in tissues where 

genes not specifically expressed (Figure 6D), suggesting tissue-specific splicing 

could add a new dimension to tissue specific targeting. Here, we use CACNA1C gene 

as an interesting example of potentially leveraging tissue-specific splicing for tissue 

targeting. CACNA1C is subunit of L-type voltage-gated calcium channel (Cav1.2) 

responsible for the contractility of cardiomyocyte and vascular smooth muscles. 

Calcium channel blocker drugs targeting CACNA1C have been commonly used to 

treat hypertension. In brain, Cav1.2 is believed to regulate long-term potentiation 
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(LTP). Recent human genetics studies have further implicated CACNA1C in 

psychiatric disorders such as schizophrenia and bipolar 25,26,33. Thus, there are 

strong interests to be able to specifically targeting CACNA1C in a brain in order to 

minimize potential cardiovascular safety liabilities. According to GTEx 

transcriptome altas, CACNA1C is highly expressed in all heart, artery, and brain 

tissues but not enriched in brain comparing to peripheral tissues (average gene 

TS_Score in brain regions is merely 0.02). However, a search for brain-specific AS 

event using our AS event TS_Score identified two AS events (exon8/8a, 

exon21/exon22) with varying degree of brain specificity. Among them, exon 21 and 

22 are mainly mutually exclusive of each other where exon22-spliced in isoform is 

predominately expressed in brain (median PSI Ψ=91%, AS event 

TS_Score=4.26±0.11 in brain subregions). Based on the transmembrane structure 

prediction 34, exon22 is believed to encode a section of the extracellular loop and the 

adjacent transmembrane domain and significantly different from exon21 in seven 

amino acid residues. In addition, this structural difference between the two 

CACNA1C isoforms may also affect the receptor voltage-dependent kinetics as 

structure-activity effect caused by mutations has been reported in other L-type 

calcium channels 35.  While it remains to be proven these structural differences 

could provide sufficient therapeutic window for brain-specific targeting, this 

exemplifies the potential utility of alternative splicing to derive for novel and 

testable hypothesis for tissue-specific targeting. 

 

Discussion 

 

Understanding the tissue distribution of therapeutic targets and their splice 

isoforms is fundamentally important to every drug discovery program. The 

quantitative and comprehensive analysis of the tissue specificity of human gene 

expression and alternative splicing enabled by the GTEx transcriptome atlas is a 

major contribution to drug discovery and research community.  

 

The GTEx transcriptome atlas is unprecedented in scale and quality, with 

deep RNA-seq profiling data generated on thousands of human tissue samples 

across a wide-range tissue types. Our analysis using a weighted tissue-specificity 

scoring metrics shows the GTEx transcriptome atlas vastly expanded the catalog of 

tissue-specific genes, and identified a large number of lowly expressed tissue-

specific genes previously underestimated by commonly used microarray-based 

atlas. The systematic capture and categorization of these lower abundance tissue-

specific genes is particularly important for studying tissues such as brain with 

diverse cell type compositions, where cell-type specific genes present in only a small 

fraction of cell populations are further diluted in expression and appear as low 

abundance at the tissue-level. From drug target discovery’s perspective, these low 

abundance tissue-specific genes could be particularly interesting. They are 

functionally important as indicated by our functional enrichment analysis, but may 

require much lower drug exposure to achieve full target occupancy and modulation, 

therefore, lowering the chance of off-target safety liabilities.  

 

With the use of next-generation sequencing technology, deep sequencing 

coverage, and large sample size per tissue type, GTEx transcriptome atlas also 
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enables a new dimension of tissue specificity analysis on alternative splicing. Our AS 

event-based splicing analysis of GTEx samples confirms previous observations that 

splicing is a universal phenomenon across human tissues. Examples like the 

differential splicing patterns in AMPA receptor subunits across brain tissues further 

highlight the importance of alternative splicing analysis of drug targets especially at 

the early stage of a drug discovery program.  

 

Our joint analysis of gene-based and junction-based tissue-specificity scores 

(Figure 6D) indicates a large number of tissue-specific splicing occurs in genes that 

are not specifically expressed in the same tissues. This further suggests that both 

would offer complementary opportunities for tissue targeting.  Particularly, the 

large number of tissue-specific splicing identified in brain, skeleton muscle, heart, 

and immune cells, could open up many more exciting new opportunities like the 

CACNA1C example for tissue-specific targeting. The unique tissue-specific splicing 

patterns in these tissues also suggest distinct regulatory mechanisms on alternative 

splicing, and the contribution of dys-regulated splicing to diseases relevant to these 

tissue types.   

 

Tissue-specific gene expression has been instrumental in providing clues to 

understanding the molecular mechanisms underlying normal biological processes 

and human diseases. Here, by empirically examining the tissue expression pattern of 

drug targets, we further established tissue specificity as a desirable attribute for 

therapeutic targets. It is worth noting that targets currently before PhIII displayed a 

significant drop off in enrichment for high tissue-specificity comparing to PhIII+ 

targets (Figure 3B). We speculate that the coincidental overlap with the expected 

attrition in drug development pipeline may call for more attentions to tissue 

specificity early on. One explanation for the benefit of choosing tissue-specificity 

targets is that it bodes strong pre-clinical confidence for avoiding potential 

undesirable toxicity concerns 36. In practical terms, the chance of finding validated 

drug targets would have been drastically increased based on tissue-specificity 

criteria alone comparing to random (OR=2.5, Pvalue=3E-24, Supplementary Figure 

4A,B). Furthermore, we compared the enrichment of PhIII+ targets when selecting 

based on “is this gene expressed in the disease tissue” vs. “is this gene preferentially 

expressed in the disease tissue”. As a broader first approximation, we assumed that 

the intended tissue for the target mechanism of action (MoA) is represented by the 

tissue with the highest TS_score for each drug target. The criteria to enforce tissue-

specificity has a drastic improvement in enriching for PhIII+ targets comparing to 

the one requiring mere target being expressed in the tissues (Supplementary 

Figure 12). To further confirm the finding, we focused on only CNS targets as their 

MoAs could be more confidently assigned to brain. We selected targets classified by 

SOC terms "psychiatric disorders" and "nervous system disorders" and 

subsequently removed “Multiple Sclerosis" targets for the emergent opinion that it 

is an immunological disease. As shown in Supplementary Figure 12B, requiring 

brain-specific expression results in further enrichment of validated CNS targets over 

brain-expressed genes 

 

In addition, we postulate that another explanation for the observed 

enrichment towards tissue-specificity could be the therapeutic availabilities of 
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wider range of targets, particularly those with low expression levels. Comparing 

PhIII+ targets to the background, we observed that even though the overall 

expression distributions mirror each other, lowly-expressed PhIII+ targets are often 

tissue-specific (96% comparing to only 61% in background, p=2.2E-29, 

Supplementary Figure 13A,B). Our findings suggest that consideration for tissue-

specificity may allow for the accessibility to wider range of targets (regardless of 

expression levels), an important consideration for target prioritization particularly 

in a subset of diseases (Supplementary Figure 13C).  

 

This expanded catalog of tissue-specific genes also opens up opportunities to 

discover novel tissue-specific therapeutic targets. Our study of brain striatum-

specific genes provides a useful template for mining human tissue specificity to 

identify potential therapeutic targets for human diseases.  Drug development efforts 

often focused on a few gene families amenable to small molecule intervention (e.g., 

kinases, transporters, enzymes and receptors). Overlaying tissue-specificity can help 

further identify and prioritize disease-relevant targets among these druggable gene 

families. As an example, for central nervous system disorders, the large number of 

GPCRs identified in the striatum could help elucidate striatum-specific druggable 

targets and potential molecular regulators of this important brain region. Among 

them, several of the dopamine receptors identified are the molecular targets of 

approved medications including antipsychotics to treat psychiatric diseases and 

dopaminergic agonists to treat Parkinson’s disease. Genetic variations in the D2 

receptor gene are also associated with schizophrenia risk in the recent meta-GWAS 

analyses 25,26.  Interestingly, six of the striatal-specific GPCRs are orphan receptors 

whose functions are largely unknown; however, their highly specific expression 

pattern provides new clues suggesting these orphans might regulate striatal 

neurotransmission and function, and could also be attractive drug targets for 

psychiatric and Parkinson’s diseases. Indeed, one of the orphan receptors identified 

as GPR88 also showed conserved striatal expression in other vertebrates including 

rodents and non-human primates 37.  Recent studies in mouse models indicate 

GPR88 negatively modulates the activity of striatal medium spiny neurons to affect 

memory and motor control 38 and small molecule agonists for GPR88 have been 

recently developed as potential therapeutics for diseases of the striatum/basal 

ganglia 39. 

 

GWAS and other large-scale sequencing studies have elucidated the genetic 

architecture underpinning complex diseases. While this provides a plethora of 

unbiased causal connections between genetic variations and disease, gaps still exists 

in identifying the true causal genes and actual functional variants in each of these 

genetic risk loci. By seeking relationships between risk loci and tissue-specific gene 

catalog derived from the GTEx transcriptome atlas, we demonstrated that the 

enrichment of GWAS signals around disease-relevant tissue-specific genes is a 

strikingly common phenomenon among complex diseases, consistent with previous 

observations that GWAS variants tend to be enriched in tissue-specific regulatory 

elements 40,41. Thus, our enrichment analysis of tissue-specific gene expression in 

the 61 GWAS studies provides orthogonal evidence for prioritizing disease causal 

genes in GWAS loci. 
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Furthermore, the tissue-specific disease candidate genes identified through 

the GWAS-GTEx integrative analysis provides the basis for defining a cellular 

context for further functional studies. For example, the observation that blood and 

lymphocyte-specific genes are highly enriched in the GWAS loci of not only 

inflammatory diseases (e.g. IBD, Crohn’s disease, rheumatoid arthritis) but also 

diseases for other organs (e.g. Multiple sclerosis, T1D, Alzheimer’s diseases) further 

reinforces the causal contribution of immunity and inflammation as drivers of these 

complex diseases. Our findings corroborate well with the recent reports of over-

representation of T cell–specific eQTLs among susceptibility alleles for multiple 

sclerosis and monocyte-specific eQTLs among Alzheimer’s disease variants42. 

Moreover, several blood-specific candidate genes in the Alzheimer GWAS loci (such 

as CD33, MS4A6A, INPP5D, CASS4) are specifically expressed at a high level in 

microglia, the brain resident immune cells 43-46. Overlap between genes specifically 

expressed in immune system and LOAD GWAS candidate genes supports the 

rationale to study their functional impact on microglia and mechanistically delineate 

the dys-regulated inflammatory pathways involved in the development of 

Alzheimer’s disease. 

 

In closing, our genome-wide quantitative survey of tissue-specific gene 

expression using the GTEx transcriptome atlas provides a valuable resource for 

drug discovery applications. Integrative analysis anchored on tissue-specificity is an 

effective strategy for therapeutic target identification and evaluation, and enables 

further functional characterization of disease-causing genes. 

 

Methods 

Datasets 

RNA-seq gene expression read counts and RPKM data were taken from GTEx 

consortium (http://www.gtexportal.org, v6p release). Detailed documentation of 

the sample collection, RNAseq data generation and processing, and gene expression 

quantification is available at the main consortium paper 47. A total of 8527 samples 

that passed QC filtering were used in the tissue-specificity analysis. Tissues with less 

than 10 samples were excluded. GENCODE v19 was used for gene types annotation 

and exon coordinates. Only protein-coding genes, long non-coding RNAs genes 

(lincRNA and antisense RNA) and pseudogenes (a total of 46508 genes) in the 

GENCODE v19 annotation were included in the gene expression TPM (Transcript 

Per Million) quantification and subsequent tissue-specificity calculation. We also 

assessed the impact of the inclusion of reads from highly abundant mitochondrial 

and globin genes on TS_Score calculation and downstream tissue-specificity 

analysis, as for a subset of tissues elevated levels of these abundant genes result in 

reduced gene expression values of other genes after TPM normalization. However, 

removing these reads from the calculations could also potentially remove factors 

biologically relevant to tissue-specificity assessment (e.g. coordination of 

mitochondria and nuclear gene expression). Here, we verified that the inclusion of 

these reads in our TS_Score calculations do not affect our main conclusions on the 

tissue-specific properties of drug targets and disease genes (Supplementary 

Figure 14). But as an additional resource, in Supplementary Table 8, we provided 

a version of TS_Scores where the read counts from mitochondria and globin genes 

were removed before the TPM and TS_Score calculations. 
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Clustering of tissue types based on global gene expression patterns 

First, gene read counts of each sample were normalized to TPM values (Transcript 

Per Million). For each gene, median TPM expression value was calculated for all 

samples in each tissue type to obtain the gene expression matrix Expm,n (m genes, n 

tissues). Then the Expm,n matrix is further log2 transformed and row median 

centered to obtain Exp’m,n, the relative gene expression value for each gene at each 

tissue. Pairwise Pearson correlation matrix between all tissues (Corn,n) was 

calculated on Exp’m,n and then Ward’s hierarchical clustering was applied to Corn,n to 

generate tissue groups using a tree-cutting threshold of 0.9. 

 

Tissue specificity calculation 

For a given gene g, its tissue-specificity in tissue t (TS_Scoreg,t) is calculated 

according the following formula.  ��_������,� �
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Expg,t is the median TPM gene expression value for gene g in the target tissue t 

Expg,i is the median TPM gene expression value for gene g in tissue i.  

log2(Expg,t/ Expg,I) is the log2 ratio of the TPM gene expression values for gene g 

between target tissue t and tissue i, and is limited to [-5,5] range.  

wi is the weight for tissue i to adjust for the global gene expression similarity 

between tissue i and other tissues on the panel. To calculate this weight, pairwise 

Pearson correlation coefficients between tissues (Corn,n) are first calculated using 

median centered gene expression matrix Exp’m,n. Then the weight for a given tissue i 

is calculated as one over the sum of the Pearson correlation coefficients between 

tissue i and other tissues i.e. 1 ∑ ����,�
�
�⁄ . Correlation coefficients (Cori,j) less than 0.4 

are set to 0 so that only highly correlated tissues contribute to the weight.  

Sg,i is a binary flag, set to 1 only when the log(Expg,t/Expg,i) value is statistically 

significant (FDR adjusted Pvalue<0.01). The significance is assessed using the linear 

model function ‘voom’ in the ‘limma’ package 48 designed for RNA-seq read counts 

and taking into account the variance among the samples.  

ni is also a binary flag to indicate whether tissue i is in tissue group different from 

the target tissue.(e.g. ni=0 when tissue i and tissue t are in the same tissue group). 

With the ni flag, tissues in the same group as the target tissue would not contribute 

to the tissue-specificity calculation for the target tissue.  

To calculate brain sub-region specificity scores, the same specificity score formula 

was applied to only the 13 brain tissues. Tissue-specific gene was defined 

statistically as TS_score greater than 3, (>2 times standard deviation from the mean. 

ts_score μ=-0.05 and σ=1.28,) and can be biologically interpreted as having the 

expression in the target tissue 8 times of the weighted average expression of the 

rest of the tissues. 

 

Comparison with microarray-based transcriptome atlas from GNF 

GNF data was downloaded from BioGPS. Gene expression values for the two array 

platforms (U133A, GNF1B) were combined. 25 tissue types on the GNF panel 

matched with the GTEx tissues based on their anatomical description. To calculate 

tissue-specificity score using the GNF panel, a modified formula was used with the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311563doi: bioRxiv preprint 

https://doi.org/10.1101/311563


 18

Sg,I always set to 1, as samples in GNF panel were pooled from multiple individuals, 

therefore, variance across samples is lost and the statistical significance of 

expression difference between tissues cannot be assessed. When comparing the 

GTEx and GNF datasets, tissue-specific genes were counted as unique in a dataset if 

they have TS_Score>3 in the dataset but TS_Score<1.5 in the other dataset. 

 

Functional annotation of tissue-specific genes 

Gene Ontology functional enrichment in tissue-specific genes and genes with tissue 

specific splicing were carried out using Panther from GO Consortium 49. For 

enrichment of KO mouse phenotypes, KO mouse phenotype data was downloaded 

from MGI and genes with the same KO mouse phenotypes were group into the 

phenotype genesets.  Then the enrichments of KO mouse phenotypes in the various 

tissue-specific genes were assessed using hypergeometric statistical tests in the R 

Package. 

 

Curation of drugs, targets, and disease ontology 

Therapeutic program information was obtained from theEcommercial Citeline 

Informa Pharmaprojects database (accessed March 2015). Programs with known 

human targets were parsed based on Entrez ID, which were then cross-referenced 

with Gencode 19 to ensure accuracy. Only unique targets are kept to exclude 

counting for statistics more than once. Clinical phases were assigned based on the 

furthest program across all documented indications. Disease indications from 

Citeline were mapped onto the Medical Dictionary for Regulatory Activities 

(MedDRA v17.1) Lowest-Level terms (LLTs), and output as the corresponding 

Primary System-Organ-Class (SOC) terms. The choice of PhIII+ targets (included 

“PhIII”, “Registered”, “Pre-registration”, “Launched”) for all statistical testing in this 

work ensured a conservative definition of “validated targets”. In the cases of 

comparisons by high-level ontology terms, choices were made to ensure that each 

target was assigned to only one disease term to avoid multiple-counting of the same 

target—the assignment tie-breaker was based on total number of PhIII+ drug 

programs followed by total number of all drug programs. In the cases of comparison 

of tissue-specificity scores, all genes (targets and background) were assigned the 

highest TS_Score across tissues.  

 

 

Enrichment of GWAS signals around tissue-specific genes 

GWAS data were taken from NHGRI GWAS catalog Feb2014 version. In addition, 

recent meta-GWAS results for Alzheimer’s disease, Parkinson’s disease and 

schizophrenia were further added. Only GWAS lead SNPs with pvalue<5E-8 were 

included in the downstream analysis. GWAS SNPs of the same diseases or traits 

were further pruned by linkage disequilibrium (LD<0.8, LD derived from the 1000 

Genome Project) and genomic proximity (distance<100kb) to ensure that each lead 

SNP marks an independent locus.  61 GWAS phenotypes with at least 15 genome-

wide significant loci were selected to represent a diverse set of human diseases and 

traits. Genes located closest to the GWAS lead SNPs were identified based on the 

coordinates of the gene exons. For each human disease and traits, statistical 

significance of the overlap with genes closest to the GWAS lead SNPs against genes 
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specifically expressed in each tissue type (TS_Score>3) was assessed using 

hypergeometric statistical tests.  

 

 

Alternative splicing event quantification and tissue-specific score calculation 

We comprehensively quantified all major types of AS events involving alternative 

exons and exon skipping (AltEx), alternative 5’ and 3’ splice site selection (Alt5_3), 

and intron retention (IR) as previously described 28,29,50 and implemented in VAST-

TOOLS (https://github.com/vastgroup/vast-tools). Briefly, we used the ‘align’ 

module from VAST-TOOLS to align the RNA-seq reads obtained from GTEx tissue 

samples to a comprehensive set of predefined splice junction library that include 

both curated spliced junctions from EST, cDNA, RNAseq transcripts and all 

hypothetically possible exon-exon junction combinations from annotated and de 

novo splice sites 50. Then for each sample, VAST-TOOLS identifies all AS events and 

quantifies them according to their types using the following metrics PSI: percent 

spliced in (for AltEx events), PSU: percent splice site usage (for Alt5_3 events), PIR: 

percent intron retention (IR events). PSI/PSU/PIR were calculated using exon-exon 

junction and exon-intron junction read counts corrected for sequence mappability 

at the junctions 28. Supplementary Figure 7 shows schematic overview of the 

different types of AS events and the formula for the splicing metrics calculation. 

Each AS event is uniquely identified by the genomic coordinates of the exon-exon 

junctions and exon-intron junction involved. For each sample, AS events with 

insufficient read coverage using criteria defined in Irimia et al, 2014 were marked as 

non-quantifiable. Then, to quantify AS event in each tissue type, for each AS event, 

we calculated the tissue PSI/PSU/PIR value as the median PSI/PSU/PIR value across 

the samples with sufficient read coverage in each tissue type. AS events quantifiable 

in fewer than 5 samples of a tissue type were marked as non-quantifiable in that 

tissue. The total set of AS events across all tissues are defined as having 0.1< tissue 

PSI/PSU/PIR<0.9 in any of the tissues and/or having the range of tissue 

PSI/PSU/PIR values >0.25. And genes with multiple alternative spliced isoforms in 

individual tissue were defined as having at least one AS event with 0.1< tissue 

PSI/PSU/PIR<0.9 in the tissue. 

 

Tissue specificity score (AS event ts_score) for each AS event is then calculated using 

the following formula, similar to the gene-level ts_score calculation, taking into 

account the global similarity between tissue types. 

	� ���� ��_�����,� �

∑ ��,����
�
� ��	
,�,��
��

�
,�

�
,�
�

∑ ��,����
�
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ψe,t is the tissue PSI/PSU/PIR value for AS event e at target tissue t. A pseudovalue of 

0.02 is added. 

ψe,i is the tissue PSI/PSU/PIR value for AS event e at tissue I. A pseudovalue of 0.02 is 

added. 

wi is  the weight for tissue i to adjust for the global similarity of splicing patterns 

between tissue i and other tissues on the panel.  Pairwise Pearson correlation 

coefficients (Cori,j)of PSI/PSU/PIR values between tissues are first calculated. 

Correlation coefficients (Cori,j) less than 0.4 are set to 0 so that only highly 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311563doi: bioRxiv preprint 

https://doi.org/10.1101/311563


 20

correlated tissues contribute to the weight. Then the weight for a given tissue i (wi) 

is calculated as one over the sum of the Pearson correlation coefficients between 

tissue i and other tissues i.e. �� � 1 ∑ ����,�
�
�⁄ .  

Se,t,i is a binary flag, set to 1 only when PSI/PSU/PIR values for AS event e in samples 

of target tissue t is statistically significantly different from samples of tissue i (FDR 

adjusted Pvalue<0.01), as assessed using the empirical Bayes log-odds of differential 

PSI/PSU/PIRs (51) (as implemented in ‘‘ebayes,’’ from the limma package in R), i.e. 

ψe,t significantly different from ψe,i. Thus, this flag incorporates statistical 

significance assessment of the PSI/PSU/PIR value differences between tissues into 

the TS_Score calculation. 

Nt,i is a binary flag, set to 0 if tissue i is in same tissue group as the target tissue t. 

(e.g. ni=0 when tissue i and tissue t are in the same tissue group). With the nt,i flag, 

tissues in the same group as the target tissue would not be compared to the target 

tissue in the tissue-specificity calculation. For example, a brain tissue would not be 

compared to other highly similar brain tissues.  

N is the number of tissues that AS event e is quantifiable. 

 

Tissue-specific AS events are fined as having AS event TS_Score >2 or <-2, 

corresponding to top and bottom 1% of the TS_Scores and can be biologically 

interpreted as the PSI/PSU/PIR value in the target tissue being 4 (22) folds of the 

average of other tissues. Since the PSI/PSU/PIR metrics are anchored on 

exon/intron spliced in, AS events with TS_Score<-2 are also defined as tissue-

specific, as they represent cases where exon skipping or intron exclusion are tissue-

specific. While the choice of TS_Score threshold stringency could vary, we further 

verified that the use of less stringent thresholds does not change the distribution 

pattern of tissue-specific AS events across tissues (Supplementary Figure 10). 
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Figure Legends: 

Figure 1. Identification of tissue-specific genes across 49 human tissue types. 

(A) Clustering of tissues based on overall gene expression specificity patterns. 

Tissues in the same tissue groups, marked with the color-coded sidebar, show 

highly correlated global expression pattern. (B) Examples to illustrate the tissue-

specific genes identified using a weighted tissue-specificity score. The tissue-

specificity scoring method identifies genes specifically enriched in one tissue group 

as well as genes specifically enriched in a subset of tissue groups. The left panel 

shows the expression profile of HTR1A, an example gene specifically expressed only 

in brain. The right panel shows the expression profile of PCSK9, an example gene 

specifically enriched in a number of tissues. (C) Number of tissue-specific genes 

identified in each tissue, color-coded by gene type. Tissue-specific genes are defined 

as TS score>3. (D) Proportions of tissue-specific genes identified in each tissue 

color-coded by the tissue specificity, defined as the number of tissue groups with 

TS_Score>3. (E) Clustering of brain subregions based on global gene expression 

specificity patterns. Color-coded sidebar indicates subregions clustered together (F) 

Number of subregion-specific genes identified in each brain subregion, color-coded 

by the gene type. 

 

Figure 2. Comparison of tissue-specific genes identified from RNA-seq based 

GTEx transcriptome atlas with GNF microarray-based tissue expression atlas. 

Tissue-specific genes identified using GTEx dataset for pancreas, and brain cortex 

(BA9) were compared with those derived from GNF in the matching tissue types. (A) 

Overlap of the tissue-specific genes identified from the two datasets showing the 

large number of tissue-specific genes uniquely identified in the GTEx dataset. (B) 

Tissue-specific genes uniquely identified in the GTEx dataset have lower abundance 

than those identified by both datasets. (C) GO functional enrichment of low 

abundance (log2TPM<4) tissue-specific genes identified in GTEx dataset. (D) 

Knockout mouse phenotypes enriched in low abundance (log2TPM<4) tissue-

specific genes identified in GTEx dataset. 

 

Figure 3. Tissue-specificity and targets of PhIII+ drugs. A) 68% of the PhIII+ 

drug targets are tissue-specific, significantly more than 46% in the background. B) 

Targets currently in industry programs before PhIII+ are less enriched for high 

tissue-specificity (pvalues shown denotes to comparisons with all genes). All phases 

show significant tissue-specific enrichment comparing to background. Enrichment 

tissue-specific genes in drug targets of C) different disease indications and D) target 

class families. 

 

Figure 4. Identification of tissue-specific genes in drug target classes for 

potential therapeutic targets. (A) Number of tissue-specific genes in different 

drug target gene families. (B) A focused view of striatum-specific genes identified. 

Pie charts show the breakdown of striatum-specific genes by gene type and major 

gene family.  The gene table on the right shows the large number of striatum-

specific GPCR genes identified including several orphan GPCRs. 
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Figure 5. Tissue-specific genes are enriched for GWAS signals for human 

diseases and traits. Heatmap is colored by the significance (-log10Pvalue) of the 

overlap between tissue-specific genes (TS_Score>3) and the candidate genes closest 

to GWAS peak signals for 61 human diseases and traits. 

 

Figure 6. Alternative splicing events across human tissue types, their tissue-

specificity and utility for tissue-specific targeting. A) Number of different types 

of AS events and tissue-specific AS events identified across GTEx tissues. AltEx: 

alternative exon and exon/microexon skipping events, Alt5’_3’: alternative 5’ or 3’ 

splice site, IR: intron retention B) Number of genes with multiple AS isoforms 

expressed in same tissue. C) Number of tissue-specific AS events identified in each 

tissue, color-coded by the type of alternative splicing. D) Distribution of gene-level 

tissue specificity score (gene TS_Score) for genes with tissue-specific AS events. For 

clarity, only those with AS event TS_Score>2 were shown. E) Brain specific 

alternative splicing in CACNA1C exon21 and exon22, as an example of considering 

alternative splicing in a non-brain-specific gene enables brain-specific targeting of 

drug targets. 

 

 

Table 1. List of tissue-specific genes enriched in the GWAS loci for human 

diseases and traits. For each human disease and trait that showed significant 

enrichment of tissue-specific genes in the corresponding GWAS risk loci, the table 

shows the tissue with the strongest enrichment, the enrichment statistics, and the 

list of tissue-specific genes located adjacent to the GWAS peak signals.  
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Tissue 
GWAS 
Traits/Diseases 

# of 
tissue-
specific 
genes 

# of GWAS 
candidate 
genes (closest 
gene to the 
GWAS peak 
SNPs) 

Ove
rlap 

Enrichm
ent     
P-value Overlap Genes 

Cells - EBV-transformed 
lymphocytes 

Alzheimers disease 977 23 7 8.0E-05 MEF2C,CR1,SORL1,GPR141,INPP5D,PTK2B,HLA-DQA1 

Spleen Alzheimers disease 1154 23 8 2.7E-05 SLC24A4,CR1,ABCA7,GPR141,MS4A6A,INPP5D,CD33,H
LA-DQA1 

Skin - Not Sun Exposed 
(Suprapubic) 

Atopic dermatitis 872 15 5 3.2E-04 FLG,OVOL1,CYP24A1,LCE5A,OR10A3 

Liver C-reactive protein 635 18 6 1.3E-05 CRP,GCKR,HNF1A,SALL1,HNF4A,APOC1 

Cells - EBV-transformed 
lymphocytes 

Celiac disease 977 26 8 2.2E-05 PLEK,RGS1,IL12A,C1orf106,HLA-
DQA1,ICOSLG,RMI2,RUNX3 

Liver Cholesterol, total 635 50 14 3.0E-10 PCSK9,LIPC,HNF4A,LIPG,ABCG8,HNF1A,SLC22A1,HPR
,CYP7A1,NPC1L1,APOB,GCKR,NAT2,APOC1 

Kidney - Cortex Chronic kidney 
disease(eGFRcrea) 

549 21 7 9.4E-07 SLC22A2,SLC34A1,SLC6A13,UMOD,WDR72,NAT8,SLC7
A9 

Cells - EBV-transformed 
lymphocytes 

Chronic lymphocytic 
leukemia 

977 16 8 2.9E-07 ODF1,SP140,ACOXL,IRF4,BCL2,IRF8,PMAIP1,HLA-
DQA1 

Cells - EBV-transformed 
lymphocytes 

Crohns disease 977 96 17 3.6E-06 IL23R,GPR65,TNFSF11,IL12B,KIF21B,ICOSLG,IL10,HLA-
F,ZPBP2,LTA,B3GNT2,SP140,NOD2,RASGRP1,HLA-
DQA2,MUC19,IL2RA 

Liver Fasting glucose-
related traits 
(interaction with BMI) 

635 19 5 2.6E-04 GCKR,PDX1,SLC2A2,PROX1,FOXA2 

Pancreas Fasting glucose-
related traits 
(interaction with BMI) 

364 19 6 7.7E-07 SLC30A8,PDX1,SLC2A2,C2CD4A,G6PC2,FOXA2 

Liver HDL cholesterol 635 45 7 5.0E-04 LIPC,HNF4A,LIPG,APOB,F2,APOC1,LPA 

Heart - Left Ventricle Heart rate 259 18 5 2.6E-06 CHRM2,HCN4,CCDC141,NKX2-5,MYH6 
Liver Homocysteine levels 635 13 5 3.3E-05 HNF1A,CPS1,CBS,SLC17A3,FGF21 

Cells - EBV-transformed 
lymphocytes 

Inflammatory bowel 
disease 

977 102 23 5.6E-10 IL23R,GPR65,IKZF1,IKZF3,IL12B,ICOSLG,PRKCB,CD22
6,LPXN,MUC19,GPR183,   HLA-
DRB1,CD40,FEN1,LSP1,IL10,RNASET2,IFNG,IRF8,CXC
R5,NOD2,C1orf106,IL2RA 

Liver LDL cholesterol 635 36 9 1.4E-06 SLC22A1,PCSK9,HPR,CYP7A1,NPC1L1,APOB,ABCG8,H
NF1A,APOC1 

Liver Metabolite levels 635 30 11 9.6E-10 SERPINA1,TAT,HPR,LIPC,GC,APOB,GCKR,F12,TM4SF5
,APOC1,KLKB1 

Cells - EBV-transformed 
lymphocytes 

Multiple sclerosis 977 50 16 9.6E-10 CD86,GPR65,PLEK,RGS1,IL12B,HLA-
F,IRF8,SP140,CLECL1,CD58,C1orf106,HLA-
DQA1,TNFSF14,BATF,IL2RA,HLA-DRA 

Cells - EBV-transformed 
lymphocytes 

Primary biliary 
cirrhosis 

977 24 7 1.1E-04 CXCR5,IKZF3,SPIB,POU2AF1,IRF8,IL12RB2,HLA-DQB1 

Prostate Prostate cancer 471 51 10 2.6E-07 SALL3,MSMB,NKX3-
1,MMP7,HNF1B,KLK3,BIK,IRX4,GRHL1,MLPH 

Heart - Atrial Appendage QT interval 310 11 3 5.5E-04 KCNH2,SCN5A,SLC8A1 
Brain - Cortex Refractive error 1545 20 10 6.6E-07 PTPRR,RBFOX1,RASGRF1,RORB,SHISA6,GJD2,CYP26

A1,ZMAT4,KCNQ5,GRIA4 
Cells - EBV-transformed 
lymphocytes 

Rheumatoid arthritis 977 34 13 3.0E-09 BLK,CD40,CD83,CSF2,PLD4,PTPN22,CCR6,TRAF1,IL2R
A,B3GNT2,HLA-DRA, NFKBIE,HLA-DQB1 

Brain - Putamen (basal 
ganglia) 

Schizophrenia 1119 109 18 3.3E-05 RIMS1,PPP1R16B,DGKI,GRIA1,GPM6A,CACNA1I,GRIN2
A,FUT9,DRD2,BCL11B, 
SNAP91,ZNF536,NRGN,GRM3,C11orf87,CSMD1,ANKRD
63,HCN1 

Cells - EBV-transformed 
lymphocytes 

Systemic lupus 
erythematosus 

977 32 10 1.8E-06 LRRC18,CD80,TNFAIP3,IKZF1,RASGRP3,TNFSF4,IRF5,
HLA-DQB2,HLA-DRB1,GPR19 

Liver Triglycerides 635 33 6 5.3E-04 LIPC,APOE,APOB,GCKR,CYP26A1,NAT2 

Cells - EBV-transformed 
lymphocytes 

Type 1 diabetes 977 41 9 1.3E-04 PTPN22,IFIH1,CTSH,HLA-DQA1,IL10,CENPW,HLA-
DRA,CD226,CD69 

Cells - EBV-transformed 
lymphocytes 

Ulcerative colitis 977 55 13 1.8E-06 IL23R,LSP1,ITGAL,IL12B,ICOSLG,IL10,IFNG,ZPBP2,IRF
8,IRF5,C1orf106,HLA-DQA1, HLA-DRA 

Kidney - Cortex Urate levels 549 28 8 5.9E-07 HNF4G,LRP2,SLC17A1,SLC22A11,TMEM171,PDZK1,OV
OL1,A1CF 

Heart - Left Ventricle Ventricular conduction 259 20 4 1.1E-04 TBX5,HAND1,TBX20,CASQ2 
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A. Number of Tissue−Specific Genes by Drug Target Gene Family
Figure 4.
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