
A Systematic Survey of Program
Comprehension through Dynamic Analysis
Bas Cornelissen, Student Member, IEEE, Andy Zaidman, Member, IEEE Computer Society,

Arie van Deursen, Member, IEEE Computer Society, Leon Moonen, Member, IEEE Computer Society,

and Rainer Koschke, Member, IEEE Computer Society

Abstract—Program comprehension is an important activity in software maintenance, as software must be sufficiently understood

before it can be properly modified. The study of a program’s execution, known as dynamic analysis, has become a common technique

in this respect and has received substantial attention from the research community, particularly over the last decade. These efforts

have resulted in a large research body of which currently there exists no comprehensive overview. This paper reports on a systematic

literature survey aimed at the identification and structuring of research on program comprehension through dynamic analysis. From a

research body consisting of 4,795 articles published in 14 relevant venues between July 1999 and June 2008 and the references

therein, we have systematically selected 176 articles and characterized them in terms of four main facets: activity, target, method, and

evaluation. The resulting overview offers insight in what constitutes the main contributions of the field, supports the task of identifying

gaps and opportunities, and has motivated our discussion of several important research directions that merit additional consideration in

the near future.

Index Terms—Survey, program comprehension, dynamic analysis.

Ç

1 INTRODUCTION

ONE of the most important aspects of software main-
tenance is to understand the software at hand. Under-

standing a system’s inner workings implies studying such
artifacts as source code and documentation in order to gain
a sufficient level of understanding for a given maintenance
task. This program comprehension process is known to be
very time-consuming, and it is reported that up to
60 percent of the software engineering effort is spent on
understanding the software system at hand [1], [2].

Dynamic analysis, or the analysis of data gathered from a
running program, has the potential to provide an accurate
picture of a software system because it exposes the system’s
actual behavior. This picture can range from class-level
details up to high-level architectural views [3], [4], [5].
Among the benefits over static analysis are the availability
of runtime information and, in the context of object-oriented
software, the exposure of object identities and the actual
resolution of late binding. A drawback is that dynamic
analysis can only provide a partial picture of the system,
i.e., the results obtained are valid for the scenarios that were
exercised during the analysis.

Dynamic analyses typically comprise the analysis of a
system’s execution through interpretation (e.g., using the
Virtual Machine in Java) or instrumentation, after which the
resulting data are used for such purposes as reverse
engineering and debugging. Program comprehension con-
stitutes one such purpose and, over the years, numerous
dynamic analysis approaches have been proposed in this
context, with a broad spectrum of different techniques and
tools as a result.

The existence of such a large research body on program
comprehension and dynamic analysis necessitates a broad
overview of this topic. Through a characterization and
structuring of the research efforts to date, existing work can
be compared and one can be assisted in such tasks as
finding related work and identifying new research oppor-
tunities. This has motivated us to conduct a systematic
survey of research literature that concerns the use of
dynamic analysis in program comprehension contexts.

In order to characterize the articles of interest,wehave first
performed an exploratory study on the structure of several
articles on this topic. This study has led us to decompose
typical program comprehension articles into four facets.

. The activity describes what is being performed or
contributed (e.g., viewreconstructionor tool surveys).

. The target reflects the type of programming
language(s) or platform(s) to which the approach
is shown to be applicable (e.g., legacy or Web-
based systems).

. The method describes the dynamic analysis methods
that are used in conducting the activity (e.g., filtering
or concept analysis).

. The evaluation outlines the manner(s) in which the
approach is validated (e.g., industrial studies or
controlled experiments).

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

. B. Cornelissen, A. Zaidman, and A. van Deursen are with the Faculty of
Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology, Mekelweg 4, 2628CD Delft, The Netherlands.
E-mail: {s.g.m.cornelissen, a.e.zaidman, arie.vandeursen}@tudelft.nl.

. L. Moonen is with Simula Research Laboratory, PO Box 134, 1235
Lysaker, Norway. E-mail: leon.moonen@computer.org.

. R. Koschke is with Arbeitsgruppe Softwaretechnik, Universität Bremen,
Postfach 33 04 40, 28334 Bremen, Germany.
E-mail: koschke@informatik.uni-bremen.de.

Manuscript received 22 Oct. 2008; accepted 24 Mar. 2009; published online
3 Apr. 2009.
Recommended for acceptance by H. Muller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-10-0350.
Digital Object Identifier no. 10.1109/TSE.2009.28.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

Within each facet, one can distinguish a series of generic

attributes: The examples given above (in parentheses) are, in

fact, some of the attributes that we use in our framework.

With this attribute framework, the papers under study can

be characterized in a comprehensive fashion.
The goal of our survey is the systematic selection and

characterization of literature that concerns program com-

prehension through dynamic analysis. Based on the four

facets mentioned above, we derive attribute sets to

characterize the articles of interest by following a struc-

tured approach that involves four main phases and two

pilot studies. While our initial focus is on a selection of

14 relevant venues and on the last decade, we include

additional literature by following the references therein.

The resulting overview offers insight in what constitutes

the main contributions of the field and supports the task of

identifying gaps and opportunities. We discuss the im-

plications of our findings and provide recommendations

for future work. Specifically, we address the following

research questions:

1. Which generic attributes can we identify to char-
acterize the work on program comprehension
through dynamic analysis?

2. How is the attention for each of these attributes
distributed across the relevant literature?

3. How are each of the main activities typically
evaluated?

4. Which recommendations on future directions can
we distill from the survey results?

Section 2 presents an introduction ondynamic analysis for

program comprehension. The protocol that lies at the basis of

our survey is outlined in Fig. 1, which distinguishes four

phases that are described in Sections 3-6. Section 7 evaluates
our approach and findings and, in Section 8, we conclude
with a summary of the key contributions of this paper.

2 PROGRAM COMPREHENSION THROUGH DYNAMIC

ANALYSIS

To introduce the reader to the field of program
comprehension through dynamic analysis, we first pro-
vide definitions of program comprehension and dynamic
analysis. The benefits and limitations of dynamic analysis
are discussed. We then present a historical overview of
the literature in the field, in which we distinguish
between early literature and research conducted in the
last decade. Finally, we motivate the need to perform a
literature survey.

2.1 Definitions

Although we intuitively know that we need to understand a
software system before being able to maintain it, a general
definition of “program comprehension” should prove
useful in the context of this survey. The program compre-
hension definition as introduced by Biggerstaff et al. reflects
what constitutes software understanding: “A person under-
stands a program when he or she is able to explain the program, its
structure, its behavior, its effects on its operation context, and its
relationships to its application domain in terms that are
qualitatively different from the tokens used to construct the
source code of the program” [6]. Following this definition, one
should understand that int z ¼ xþ y actually corresponds
to the addition of two numbers.

The other central concept of this paper is dynamic
analysis, which Ball defines as “the analysis of the properties of
a running software system” [7]. Note that this definition

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 685

Fig. 1. Overview of the systematic survey process.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

remains purposely vague as it does not specify which
properties are analyzed. To allow the definition to serve in
multiple problem domains, the exact properties under
analysis are left open.

While the definition of dynamic analysis is rather
abstract, we can elaborate on the benefits and limitations
of using dynamic analysis in program comprehension
contexts. The benefits that we consider are:

. The precisionwith regard to the actual behavior of the
software system, for example, in the context of object-
oriented software with its late binding mechanism.

. The fact that a goal-oriented strategy can be used,
which entails the definition of an execution scenario
such that only the parts of interest of the software
system are analyzed.

The limitations that we distinguish are:

. The inherent incompleteness of dynamic analysis, as
the behaviors or traces under analysis capture only a
small fraction of the usually infinite execution
domain of the program under study. Note that the
same limitation applies to software testing.

. The difficulty of determining which scenarios to
execute in order to trigger the program elements of
interest. In practice, test suites can be used, or
recorded executions involving user interaction with
the system.

. The scalability of dynamic analysis due to the large
amounts of data that may be introduced in dynamic
analysis, affecting performance, storage, and the
cognitive load humans can deal with.

. The observer effect, i.e., the phenomenon in which
software acts differently when under observation,
might pose a problem in cases where timing issues
play a role. Examples include multithreaded and
multiprocess programs [8], real-time software, and
device drivers.

In order to deal with these limitations, many techniques
propose abstractions or heuristics, allowing grouping of
program points or execution points that share certain
properties. In such cases, a trade-off must be made between
recall (are we missing any relevant program points?) and
precision (are the program points we direct the user to
indeed relevant for his or her comprehension problem?).

2.2 Early Research

From a historical perspective, dynamic analysis was
initially used for debugging, testing, and profiling. While
the purpose of testing is the verification of correctness and
profiling is used to measure (and optimize) the perfor-
mance, debugging is not used to merely locate faults, but
also to understand the program at hand.

As programs became larger and more complex, the
need to understand software became increasingly impor-
tant. Originating from the discipline of debugging, the
use of dynamic analysis for program comprehension
purposes steadily gained more interest. As program
comprehension is concerned with conveying (large
amounts of) information to humans, the use of visualiza-
tion attracted considerable attention.

Our study of this field showed that the first paper that
can be labeled as “program comprehension through
dynamic analysis” can be traced back to as early as 1972,
when Biermann and Feldman synthesized finite-state
machines from execution traces [9]. Since then, this type
of research has steadily gained momentum, resulting in
several important contributions throughout the 1980s and
1990s, which we summarize below.

In 1988, Kleyn and Gingrich [10] proposed structural and
behavioral views of object-oriented programs. Their tool,
called TraceGraph, used trace information to animate views
of program structures.

Five years later, De Pauw et al. [11], [12], [13] started
their extensive (and still ongoing) research on program
visualization, introducing novel views that include matrix
visualizations, and the use of “execution pattern” notations
to visualize traces in a scalable manner. They were among
the first to reconstruct interaction diagrams [14] from
running programs, and their work has later resulted in
several well-known tools, most notably Jinsight and the
associated Eclipse plug-in, TPTP.1

Wilde and Scully [15] pioneered the field of feature
location in 1995 with their Software Reconnaissance tool.
Feature location concerns the establishment of relations
between concepts and source code and has proven a
popular research interest to the present day. Wilde et al.
continued the research in this area in the ensuing years,
with a strong focus on evaluation [16], [17], [18]. At the
same time, Lange and Nakamura [19], [20] integrated static
and dynamic information to create scalable views of object-
oriented software in their Program Explorer tool.

Another visualization was presented by Koskimies and
Mössenböck [21] in 1996, involving the reconstruction of
scenario diagrams from execution traces. The associated
tool, called Scene, offers several abstraction techniques to
handle the information overload. Sefika et al. [22] reasoned
from a higher level of abstraction in their efforts to generate
architecture-oriented visualizations.

In 1997, Jerding et al. [23], [24] proposed their well-
known ISVis tool to visualize large execution traces. Two
linked views were offered: a continuous sequence diagram
and the “information mural” [25]: a dense, navigable
representation of an entire trace.

Walker et al. [5] presented their AVID tool a year later,
which visualizes dynamic information at the architectural
level. It abstracts the number of runtime objects and their
interactions in terms of a user-defined, high-level architec-
tural view (cf. Reflexion [26]).

Finally, in 1999, Ball [7] introduced the concept of
frequency spectrum analysis. He showed how the analysis
of frequencies of program entities in execution traces can
help software engineers decompose programs and identify
related computations. In the same year, Richner and
Ducasse [3] used static and dynamic information to
reconstruct architectural views. They continued this work
later on [27], with their focus shifting to the recovery of
collaboration diagrams with Prolog queries in their
Collaboration Browser tool.

686 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

1. The Eclipse Test and Performance Tools Platform Project, http://
www.eclipse.org/tptp/.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

2.3 Research in the Last Decade

Around the turn of the millennium, we witness an
increasing research effort in the field of program compre-
hension through dynamic analysis. The main activities in
existing literature were generally continued, i.e., there do
not seem to have emerged fundamentally new subfields.
Due to the sheer size of the research body of the last decade,
we limit ourselves to a selection of notable articles and
discuss them in terms of their activities.

As program comprehension is primarily concerned
with conveying information to humans, the use of
visualization techniques is a popular approach that cross-
cuts several subfields.

One such purpose is trace analysis. A popular visualiza-
tion technique in this respect is the UML sequence diagram,
used by, e.g., De Pauw et al. [28], Systä et al. [29], and
Briand et al. [30]. Most of these approaches offer certain
measures to address scalability issues, such as metrics and
pattern summarization. Popular trace compaction techni-
ques are offered by Reiss and Renieris [31] and Hamou-
Lhadj et al. [32], [33], [34].

From a higher level perspective, there have been several
approaches toward design and architecture recovery. Among
these efforts are influential articles by Heuzeroth et al. [35],
[36], who combine static and dynamic analyzes to detect
design patterns in legacy code. Also of interest is the work
on architecture reconstruction by Riva et al. [37], [38], and
DiscoTect, a tool by Schmerl et al. [4], [39] that constructs
state machines from event traces in order to generate
architectural views.

Another portion of the research body can be character-
ized as the study of behavioral aspects. The aforementioned
work by Heuzeroth et al. analyzes running software by
studying interaction patterns. Other notable approaches
include a technique by Koskinen et al. [40], who use
behavioral profiles to illustrate architecturally significant
behavioral rules, and an article by Cook and Du [41] in
which thread interactions are exposed in distributed
systems. Furthermore, recently, there has been considerable
effort in the recovery of protocols [42], specifications [43],
and grammars [44].

The final subfield that we distinguish is feature analysis.
While, in this context, there exist fundamental analyses of
program features such as those by Greevy et al. [45], [46]
and Kothari et al. [47], particularly the activity of feature
location has become increasingly popular since the afore-
mentioned work by Wilde and Scully [15]. Influential
examples include techniques by Wong et al. [48] (using
execution slices), Eisenbarth et al. [49] (using formal
concept analysis), Antoniol and Guéhéneuc [50] (through
statistical analyzes), and Poshyvanyk et al. [51] (using
complementary techniques).

2.4 Structuring the Field

The increasing research interest in program comprehension
and dynamic analysis has resulted in many techniques and
publications, particularly in the last decade. To keep track
of past and current developments and identify future
directions, there is a need for an overview that structures
the existing literature.

Currently, there exist several literature surveys on
subfields of the topic at hand. In 2004, Hamou-Lhadj and
Lethbridge [32] discussed eight trace exploration tools in
terms of three criteria: trace modeling, abstraction level, and
size reduction. In the same year, Pacione et al. [52]
evaluated five dynamic visualization tools on a series of
program comprehension tasks. Greevy’s PhD thesis [53]
from 2007 summarized several directions within program
comprehension, with an emphasis on feature analysis. Also
from 2007 is a study by Reiss [54], who described how
visualization techniques have evolved from concrete repre-
sentations of small programs to abstract representations of
larger systems.

However, the existing surveys have several character-
istics that limit their usability in structuring the entire
research body on program comprehension and dynamic
analysis. First, they do not constitute a systematic approach
because no explicit literature identification strategies and
selection criteria are involved, which hinders the reprodu-
cibility of the results. Second, the surveys do not utilize
common evaluation or characterization criteria, which
makes it difficult to structure their collective outcomes.
Third, their scopes are rather restricted and do not
represent a broad perspective (i.e., all types of program
comprehension activities).

These reasons have inspired us to conduct a systematic
literature survey on the use of dynamic analysis for program
comprehension. In doing so, we follow a structured process
consisting of four phases. Fig. 1 shows the tasks involved,
which are discussed in the following sections.

3 ARTICLE SELECTION

This section describes the first phase, which consists of a
pilot study, an initial article selection procedure, and a
reference checking phase.

3.1 Initial Article Selection

Since program comprehension is a broad subject that has
potential overlaps with such fields as debugging, a clear
definition of the scope of our survey is required.

3.1.1 Identification of Research

Search strategies in literature surveys often involve auto-
matic keyword searches (e.g., [55], [56]). However, Brereton
et al. [57] recently pointed out that: 1) Current software
engineering digital libraries do not provide good support
for the identification of relevant research and the selection
of primary studies and 2) in comparison to other dis-
ciplines, the standard of abstracts in software engineering
publications is poor. The former issue exists because, in
software engineering and computer science, keywords are
not consistent across different venues and organizations,
such as the ACM and the IEEE. Moreover, within the field
of program comprehension, there is no usable keyword
standard that we are aware of.

Similar to Sjøberg et al. [58], we, therefore, employ an
alternative search strategy that involves the manual selec-
tion of articles from a series of highly relevant venues.

Given our context, we consider the five journals and nine
conferences in Table 1 to be the most closely related to

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 687

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

program comprehension, software engineering, mainte-

nance, and reverse engineering. Our focus is primarily on

the period of July 1999 to June 2008; the initial research

body thus consists of 4,795 articles that were published in

any of the relevant venues as a full paper or a short paper.
It could be argued that the International Workshop on

Program Comprehension through Dynamic Analysis and

the International Workshop on Dynamic Analysis should

also be included for their relevance to the topic. However,

as most of the (influential) papers from these two work-

shops were republished later on, we will only consider

journals and conferences in this survey.

3.1.2 Selection Criteria

Against the background of our research questions, we

define two selection criteria in advance that are to be

satisfied by the surveyed articles.

1. The article exhibits a profound relation to program
comprehension. The author(s) must state program
comprehension to be a goal, and the evaluation must
demonstrate the purpose of the approach from a
program comprehension perspective. This excludes
such topics as debugging and performance analysis.

2. The article exhibits a strong focus on dynamic
analysis. For this criterion to be satisfied, the article
must utilize and evaluate one or more dynamic
analysis techniques, or concern an approach aimed
at the support of such techniques (e.g., surveys).

The suitability of the articles is determined on the basis of

these selection criteria, i.e., through a manual analysis of

the titles, abstracts, keywords, and (if in doubt) conclu-

sions [57]; borderline cases are resolved by discussion

among the authors.

3.2 Selection Pilot Study

While the selection criteria being used may be perfectly

understandable to the authors of this survey, they could be

unclear or ambiguous to others. Following the advice of

Kitchenham [59] and Brereton et al. [57], we therefore

conduct a pilot study in advance to validate our selection

approach against the opinion of domain experts. The

outcomes of this study are used to improve the actual
article selection procedure that is performed later on.

To conduct the pilot study, the first two authors
randomly preselected candidate articles, i.e., articles from
relevant venues and published between July 1999 and June
2008, of which the titles and abstracts loosely suggest that
they are relevant for the survey. Note that this selection also
includes articles that are beyond the scope of the survey and
should be rejected by the raters.2

The domain experts who serve as raters in the pilot are
the last three authors of this survey. Since these authors
were involved in neither the article selection procedure nor
in the design thereof, they are unbiased subjects with
respect to this study.

Each of the subjects is given the task of reading these
articles in detail and identifying, on the basis of the
selection criteria defined above, the articles that they feel
should be included.

Theoutcomes are then cross-checkedwith those of the first
two authors, who designed the selection procedure. Follow-
ing these results, any discrepancies are resolved by discus-
sion and the selection criteria are refined when necessary.

3.2.1 Pilot Study Results

The results of the pilot study were favorable: Out of the
30 article selections performed, 29 yielded the sameoutcomes
as those produced by the selection designers. These figures
suggest that our selection criteria are largely unambiguous.
The one article that was assessed differently by one of the
subjects concerned the field of impact analysis, which,
following a discussion on its relation to program comprehen-
sion, was considered beyond the scope of this survey.

3.3 Reference Checking

As previously mentioned, the initial focus of this survey is
on selected venues in the period of July 1999 to June 2008.
To cover articles of interest published before that time or in
alternative venues, we (nonrecursively) extend the initial
selection with relevant articles that have been cited therein,
regardless of publication date and venue but taking the

688 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

TABLE 1
Venues Involved in the Initial Article Selection

2. This latter characteristic intentionally makes the task more challenging
for the raters.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

selection criteria into account. This procedure minimizes
the chance of influential literature being missed and results
in a final article selection.

3.4 Article Selection Results

The initial selection procedure resulted in 127 relevant
articles that were published between July 1999 and June
2008 in any of the 14 venues in Table 1. The reference
checking yielded another 49 articles (and 17 additional
venues), which were subsequently included in the selection.
Interestingly, we also identified quite a number of papers
from the ACM Symposium on Software Visualization
(SOFTVIS); to avoid missing too many papers from this
venue, we decided to include it in our systematic process.

The end result is a research body that is comprised of
176 articles. The full listing of these articles is available
online3 and in a technical report [60]. Fig. 2 shows the
distribution of all surveyed articles across the venues from
which at least three articles were selected.

4 ATTRIBUTE FRAMEWORK

As shown in Fig. 1, the step after identifying the papers of
interest is the construction of an attribute framework that
can be used to characterize the selected papers. In this
section, we describe the process we used to arrive at such a
framework, as well as the resulting framework.

4.1 Attribute Identification

As stated in Section 1, our framework distinguishes four
facets of interest: the activity performed, the type of target
system analyzed, the method developed or used, and the
evaluation approach used. The goal of our attribute
identification step is to refine each of these four facets into
a number of specific attributes.

In a first pass, we study all papers and write down
words of interest that could be relevant for a particular facet
(e.g., “survey,” or “feature analysis” for the activity facet).

This data extraction task is performed by the first two
authors of this survey. The result after reading all articles is

a (large) set of initial attributes.
Note that, to reduce the reviewer bias, we do not assume

to know any attributes or keywords in advance.

4.2 Attribute Generalization

After the initial attribute sets have been identified, we
generalize them in order to render their number manage-

able and to improve their reusability. This is achieved
through a discussion between the first three authors of this

survey. Regarding the target facet, for example, the
attributes “Java” and “Smalltalk” can intuitively be general-
ized to “object-oriented languages.” After this data synth-

esis task, the resulting attribute sets are documented.

4.3 Resulting Attribute Framework

Theuse of our attribute frameworkon the article selection has

resulted in seven different activities, six targets, 13 methods,
and seven evaluation types. Table 2 lists the attributes and

their descriptions.
The activity facet distinguishes between five established

subfields within program comprehension: design and archi-

tecture recovery, visualization, feature analysis, trace
analysis, and behavioral analysis. Each of these five
attributes encapsulates a series of closely related activities,

of which some were scarcely found: For example, very few
authors propose new dynamic slicing techniques4 and only
a handful of articles aim at the reconstruction of state

machines for program comprehension. In addition to the
five major subfields, we have defined attributes for surveys

and general purpose activities. The latter attribute denotes a
broad series of miscellaneous activities that are, otherwise,
difficult to generalize, e.g., solutions to the year 2000

problem, new dynamic slicing techniques, or visualizations
with no specific focus.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 689

Fig. 2. Distribution of the final article selection across the different venues. Dark bars denote journals; light bars denote conferences.

3. http://swerl.tudelft.nl/bin/view/Main/ProgCompSurvey.
4. There exist numerous papers on dynamic slicing, but we found only

two that use it in a program comprehension context.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

The target facet contains six different types of program-
ming platforms and languages. While we found it
interesting to distinguish “legacy” software, this turned
out to be difficult in practice as such a classification greatly
depends on one’s perspective. For instance, a legacy
system could have been written in Fortran or COBOL,
lack any documentation, or simply be over 20 years old; on
the other hand, it could also be a more modern system that
is simply difficult to maintain. Therefore, with respect to
the legacy attribute, we rely on the type of the target
platform as formulated by the authors of the papers at
hand. Other targets include procedural languages, object-
oriented languages, Web applications, distributed systems,
and software that relies heavily on multithreading.

The method facet is the most versatile of facets and
contains 13 different techniques. Note that we have chosen
to distinguish between standard and advanced visualiza-
tions: The former denotes ordinary, widely available
techniques that are simple in nature, whereas the latter
represents more elaborate approaches that are seldomly

used (e.g., OpenGL) or simply not publicly available (e.g.,

information murals [25]). The remaining attributes repre-

sent a variety of largely orthogonal techniques that are often

used in conjunction with others.
The evaluation facet distinguishes between seven types

of evaluations. The “preliminary” attribute refers to early

evaluations, e.g., on relatively small programs or traces;

in contrast, the “case study” predicate indicates a mature

validation that involves (reasonably) large systems or

answers actual research questions. Additionally, we have

defined an attribute used to express case studies of an

industrial nature. Furthermore, comparisons refer to

evaluation types in which an approach is compared to

existing solutions side by side; the involvement of human

subjects measures the impact of an approach from a

cognitive point of view; and quantitative evaluations are

aimed at the assessment of various quantifiable aspects of

an approach (e.g., the reduction potential of a trace

reduction technique).

690 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

TABLE 2
Attribute Framework

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

5 ARTICLE CHARACTERIZATION

The third phase is comprised of the assignment of attributes
to the surveyed articles and the use of the assignment
results to summarize the research body.

5.1 Attribute Assignment

Using our attribute framework from the previous section,
we process all articles and assign appropriate attribute sets
to them. These attributes effectively capture the essence of
the articles in terms of the four facets and allow for a clear
distinction between (and comparison of) the articles under
study. The assignment process is performed by the first two
authors of this survey.

When assigning attributes to an article, we do not
consider what the authors claim to contribute, but rather
attempt to judge for ourselves. For example, papers on
sequence diagram reconstruction are not likely to recover
high-level architectures; and we consider an approach to
target multithreaded systems if and only if this claim is
validated through an evaluation or, at the very least, a
plausible discussion. As we discuss later on, legacy systems
are an exception because their definition is rather vague.

5.2 Summarization of Similar Work

Certain articles might be extensions to prior work by the
same authors. Common examples are journal publications
that expand on earlier work published at conferences or
workshops, e.g., by providing extra case studies or by
employing an additional method, while maintaining the
original context. While, in our survey, all involved articles
are studied and characterized, in this report, they are
summarized to reduce duplication in frequency counts.

We summarize two or more articles (from the same
authors) if they concern similar contexts and (largely)
similar approaches. This is achieved by assigning the union
of their attribute subsets to the most recent article and
discarding the other articles at hand. The advantage of this
approach is that the number of articles remains manageable
with the loss of virtually no information. The listing and
characterization of the discarded articles are available in the
aforementioned technical report and Web site.

5.3 Characterization Pilot Study

As previously mentioned, the attributes were defined and
documented by the first two authors of this survey. Since
the actual attribute assignment procedure is performed by
the same authors, there is a need to verify the quality of the
framework because of reviewer bias: The resulting attri-
butes (and by extension, the resulting article characteriza-
tion) may not be proper and unambiguous. In other words,
since the process is subject to interpretation, different
reviewers may envision different attribute subsets for one
and the same article.

We therefore conduct another pilot study to assess the
quality of the attributes and the attribute assignment
procedure. The approach is similar to that of the first pilot.
From the final article selection, a subset of five articles is
randomly picked and given to the domain experts (the last
three authors of this survey), along with (an initial version
of) the attribute framework in Table 2.

The task involves the use of the given framework to
characterize each of the five articles. A comparison of the
results with those of the first two authors again yields a
measure of the interrater agreement, upon which we
discuss any flaws and strengthen the attribute sets and
their descriptions.

5.4 Characterization Pilot Results and Implications

The results of the characterization pilot resulted in generally
high agreement on the activity, target, and evaluation facets.
Most disagreement occurred for the method facet, which is
also the one with the most attributes. This disagreement can
be partly attributed to the fact that one rater tried to assign
the single most suitable attribute only, whereas the others
tried to assign as many attributes as possible. In the ultimate
attribute assignments (discussed in the next section), we
adopt the latter strategy: For each article, we select all
attributes that apply to the approach at hand.

In several cases, the action taken upon interrater
disagreement was to adjust the corresponding attributes
and their descriptions. These adjustments have already
been incorporated in Table 2.

As an example of some of the adjustments within the
activity facet, we renamed our original “communication”
attribute to “behavior” and decided to remove our original
“framework” attribute because determining whether an
article constitutes a framework often turned out to be
difficult. Within the method facet, we had some discussions
on trace comparisons and decided to call the attribute
“multiple traces” to make it more general. Furthermore, we
unified compression, merging, and clustering techniques
into “compression/summarization” and included selective
tracing into the “filtering” attribute, as the distinction
between the two is generally subtle and largely dependent
on the manner in which these techniques are described by
the authors. Within the evaluation facet, we decided to add
“open source” to the description of “case study” and
explicitly mention the use of questionnaires as an evalua-
tion approach.

A full listing and description of the changes made is
given in the technical report [60].

5.5 Measuring Attribute Coincidence

To further evaluate our attribute framework, we analyze the
degree to which the attributes in each facet coincide.
Against the background of our characterization results,
we examine if there are certain attributes that often occur
together, and whether such attributes, in fact, exhibit such
an overlap that they should be merged.

We measure this by determining for each attribute how
often it coincides with each of the other attributes in that
facet. This results in a fraction between 0 and 1 for each
attribute combination: 0 if they never coincide and 1 if each
article that has the one attribute also has the other.

5.6 Characterization Results

The characterization and summarization of the 176 selected
articles resulted in an overview of 114 articles, as shown in
Tables 3 and 4. The second column denotes the number of
underlying articles (if any) by the same author; the third
column indicates whether we could find a reference to a
publicly available tool in the article. In rare cases, none of our
attributes fitted a certain aspect of an article; in such cases, the

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 691

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

value for the facet at hand can be considered “other,”
“unknown,” or “none.” The characterization of all 176 articles
is available online and in the aforementioned technical report
[60]; in the remainder of this survey, however, we speak only
in terms of the 114 summarized articles because they constitute
unique contributions.

As previously mentioned, in each article, we have
focused on its achievements rather than its claims. On
several occasions, the titles and abstracts have proven quite
inaccurate or incomplete in this respect. However, such
occasions were not necessarily to the disadvantage of the
author(s) at hand: For example, occasionally the related

692 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

TABLE 3
Article Characterization Results

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

work section is of such quality that it constitutes a
respectable survey (e.g., [30], [61]).

The overview in Tables 3 and 4 serves as a useful
reference when seeking related work in particular sub-
fields. For example, when looking for literature on trace
visualization, one needs only to identify the articles that

have both the “views” and the “trace analysis” attributes.
In a similar fashion, one can find existing work on, e.g.,
the use of querying and filtering techniques for archi-
tecture reconstruction, or learn how fellow researchers
have assessed the quantitative aspects of state machine
recovery techniques.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 693

TABLE 4
Article Characterization Results (Continued)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

Our attribute coincidence measurements yielded no
extraordinary results: While certain high fractions were
found, none of these merited merges between the attributes
involved because these attributes were obviously different
in nature. The full results of this experiment are given in the
technical report.

Fig. 3 shows for each facet the distribution of the
attributes across the summarized articles, which we discuss
in the next section.

6 AVENUES FOR FUTURE RESEARCH

Given the article selection and attribute assignments of
Tables 3 and 4, our final survey step (see Fig. 1) consists of
interpreting our findings: What patterns can we recognize,
what explanations can we offer, which lessons can we learn,
and what avenues for further research can we identify? To
conduct this step, we analyze the tables, looking for the
most and least common attributes and interesting attribute
combinations. In this section, we offer a selection of the
most important outcomes of this analysis.

6.1 Most Common Attributes

Understanding the most common attributes (as displayed in
Fig. 3) gives an impression of the most widely investigated
topics in the field.

Starting with the first facet, the activity, we see that the
view attribute is the most common. This is not surprising as
program comprehension deals with conveying information
to humans, and particularly in the context of dynamic
analysis, the amounts of information are typically large [62].
We also found many articles to concern general activities,
i.e., miscellaneous purposes that could not be generalized to
any of the main subfields.

Moving on to the next facet, object-oriented software

turns out to be the most common target in the research
body: 79 out of the 114 articles propose techniques for, or

evaluate techniques on, systems written in (predominantly)

Java or Smalltalk. We are not sure why this is the case.
Reasons might include ease of instrumentation, the suit-

ability of certain behavioral visualizations (e.g., UML
sequence diagrams) for OO systems, the (perceived)

complexity of OO applications requiring dynamic analysis,

or simply the fact that many program comprehension
researchers have a strong interest in object orientation.

Regarding the third facet, the method, we observe that

standard visualizations occur more than twice as often as

advanced ones. This may be bacuse of several reasons,
among which are the accessibility of standard tools (for

graphs, sequence diagrams, and so forth) and possibly the

belief that traditional visualizations should suffice in
conjunction with efficient abstractions techniques (e.g.,

filtering). Furthermore, we observe that half of the surveyed
articles employ static information. This is in accordance

with Ernst’s plea for a hybrid approach in which static and

dynamic analyzes are combined [63].
Finally, within the evaluation facet, we note that case

studies (typically, using open-source systems) are the most

typical and that comparisons, industrial studies, and

involvements of human subjects (discussed later on) are
rather uncommon. Furthermore, while the assessment of a

technique’s quantitative aspects is not very commonplace,

this evaluation type does appear to be gaining momentum,
as more than half (18 out of 30) such evaluations were

carried out in the last two and half years. Interestingly,
more than half of these evaluations involved the feature

location activity; this is further discussed in Section 6.5.

694 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

Fig. 3. Distribution of the attributes in each facet across the summarized articles. From left to right: activity, target, method, and evaluation.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

Paraphrasing, one might say that the most popular line
of research has been to work on dynamic visualization of
open-source object-oriented systems. In the remainder of
this section, we will look at some of the less popular topics,
analyze what the underlying causes for their unpopularity
might be, and suggest areas for future research.

6.2 Least Common Activities

Within the activity facet, surveys and software architecture
reconstruction occurred least.

As discussed in Section 2.4, the fact that a satisfactory
survey of the field was not available was the starting point
for our research, so this did not come as a surprise.
Nevertheless, nine papers are labeled as survey, also since
we marked papers containing elaborate discussions of
related work as surveys (as explained in Section 5.6).

In our survey, there are 13 papers dealing with the use of
dynamic analysis to reconstruct software architectures and
designs. Some of these papers make use of fairly general
tracing techniques, e.g., registering method calls, from
which occurrences of design patterns such as the Observer
or Mediator can be identified [36].

Another line of research makes use of architecture-aware
probing and aims at visualizing system dynamics in terms
of architectural abstractions, such as connectors, locks,
dynamically loaded components, client-server configura-
tions, and so on [4], [22], [64]. While there are not many
papers addressing these topics, the initial results do suggest
that successful application is possible. We expect that the
importance of this field will grow: For complex adaptive
systems or dynamically orchestrated compositions of Web
services, dynamic information may be the only way to
understand the runtime architecture.

6.3 Least Common Targets

6.3.1 Web Applications

We were surprised to see that Web applications occurred
least frequently as target. While traditional Web sites
consisting of static HTML pages can be easily processed
using static analysis alone, modern Web applications offer
rich functionality for online banking, shopping, e-mailing,
document editing, and so on. The logic of these applications
is distributed across the browser and the Web server, and
written using a range of technologies (such as PHP,
Javascript, CSS, XSLT, etc.). While this severely complicates
static analysis, dynamic analysis might still be possible, for
example, by monitoring the HTTP traffic between the client
and the server.

One complicating factor might be that Web applications
require user interaction, and hence, user input. Several
solutions to this problem exist, such as the use of Web
server log files of actual usage or the use of capture and
playback tools for Web applications. Furthermore, techni-
ques have been developed to analyze Web forms and fill
them in automatically based on a small number of default
values provided by the software engineer [65].

The growing popularity of Javascript, in general, and
Ajax (Asynchronous Javascript and XML), in particular, is
another argument in favor of dynamic analysis of Web
applications. With Javascript, events can be programmati-
cally attached to any HTML element. In this setting, even

determining the seemingly simple navigation structure of
the Web application can no longer be done statically, as
argued by Mesbah et al. [66]. To deal with this problem,
they propose a “crawler” capable of executing Javascript,
identifying clickable elements, and triggering clicks auto-
matically, a solution that can also serve as the starting point
for dynamic analysis in which client-side logic is to be
executed automatically.

6.3.2 Distributed Systems

As it turns out, the understanding of distributed systems
has received little attention in literature: No more than
seven articles are concerned with this target type. Such
systems are, however, becoming increasingly popular, e.g.,
with the advent of service orientation. Gold et al.
paraphrase the core issue as follows: “Service-oriented
software lets organizations create new software applica-
tions dynamically to meet rapidly changing business needs.
As its construction becomes automated, however, software
understanding will become more difficult” [67]. Further-
more, distributed systems often behave differently than
intended, because of unanticipated usage patterns that are a
direct consequence of their dynamic configurability [68].
This increases the need to understand these systems, and
due to their heterogeneous nature, dynamic analysis
constitutes a viable approach.

6.3.3 Multithreaded Applications

In recent years, multicore CPUs have become mainstream
hardware and multithreading has become increasingly
important. The evolution toward multithreaded software
is in part evidenced by the foundation of the International
Workshop on Multicore Software Engineering (IWMSE),
first held at ICSE in 2008: In the proceedings of this
workshop, it is stated by Pankratius et al. [69] that, in the
near future, “every programmer will be confronted with
programming parallel systems” and that, in general,
“parallel components are poorly understood.”

The importance of understanding multithreading beha-
vior is not reflected by the current research body: A total of
12 articles are explicitly targeted at multithreaded applica-
tions. The use of dynamic analysis on such systems has the
important benefit that thread management and interaction
can be understood at runtime. A problematic issue in
multithreaded systems can be reproducing behavior: Ddoes
replaying the same scenario result in the same trace? An
interesting route to deal with this is to explore the use of
multiple traces and suitable trace comparison techniques to
highlight essential differences between traces. According to
our findings, this is largely unexplored territory: There are
only few papers combining the multithreading and trace
comparison attributes in our tables.

6.3.4 Legacy Systems

Legacy systems are often in need of a reverse engineering
effort, because their internals are poorly understood. Never-
theless, our survey shows that very few papers explicitly
mention legacy environments as their target, meaning that
dynamic analysis is rarely applied to legacy software
systems. This can be partly explained by: 1) The fact that
researchers do not have access to legacy systems; 2) a lack of

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 695

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

available instrumentation tools for legacy platforms; or 3) the
fact that instrumented versions of the application are
difficult to deploy and subsequently run. Another hindering
factor is the difficulty of integrating the instrumentation
mechanism into the legacy build process, which is often
heterogeneous, i.e., with several kinds of scripting languages
in use, and few conventions in place [70].

6.4 Least Common Evaluations

6.4.1 Industrial Studies

In our survey,wehave distinguished between evaluations on
industrial and open-source systems. Industrial systems may
differ from open-source systems in terms of the way of
working, size, complexity, and level of interaction with other
systems. Furthermore, industrial systemsmay share some of
the problems of legacy systems as just discussed [71].

We found industrial evaluations to be uncommon, with a
total of 11 articles involving industrial cases. Most of these
are conducted within the context of research projects with
industrial partners, in which the industrial partners have a
particular need for reverse engineering.

We have also observed that the degree to which
developers or maintainers are involved in the validation is
generally low, as their feedback is often limited to
answering several general questions, if given at all. This
may be a consequence of a lack of time on the part of the
developers, or because the industry is not fully aware of the
potential benefits of dynamic analysis. This may be resolved
by familiarizing practitioners with the benefits, e.g.,
through the development environment (IDE), as proposed
by Röthlisberger et al. [72] who provide dynamic informa-
tion during programming tasks.

Another impediment for industrial involvement in
publications can be fear of disclosing proprietary material.
Apart from open discussions with management about the
mutual interest, anonymizing traces or presenting aggre-
gated data only might be an option, although obfuscated
traces will be even harder to understand.

Finally, a more technical obstacle is the lack of
resources, be it memory or processor cycles for the tracing
mechanism or disk space for the storage of execution
traces. A potential solution to these problems is found in
lightweight tracing techniques (e.g., [73]) or capture/replay
techniques (e.g., [74], [75]).

6.4.2 Involvement of Human Subjects

In the field of program comprehension, an evaluation that
involves human subjects typically seeks to measure such
aspects as the usefulness and usability of a tool or technique
in practice. The involvement of human subjects is important
for program comprehension because this field has the task
of conveying information to humans. Moreover, dynamic
analyses are particularly notorious for producing more
information than can be comprehended directly [76].

In spite of its importance, this type of evaluation was
used in no more than six articles. Bennett et al. [77] use four
experts and five graduate students to assess the usefulness
of reverse engineered UML sequence diagrams in nine
specific comprehension tasks. Quante [78] reports on a
controlled experiment with 25 students that involves the

use of “object process graphs” in a program comprehension
context. Röthlisberger et al. [72] preliminarily assess the
added value of dynamic information in an IDE by having
six subjects conduct a series of tasks; the authors remain
unclear as to the background of the subjects and the nature
of the tasks at hand. Hamou-Lhadj and Lethbridge [33]
report on a questionnaire in which the quality of a
summarized execution trace is judged by nine domain
experts; however, no real comprehension tasks are in-
volved. Finally, Wilde et al. [16] and Simmons et al. [79]
conduct experiments to assess the practical usefulness of
different feature location techniques in legacy Fortran
software and a large 200 kLOC system, respectively.

The design and execution of a controlled experiment is
quite elaborate and requires a great deal of preparation and,
preferably, a substantial number of test subjects. None-
theless, such efforts constitute important contributions to the
field of program comprehension and must therefore be
encouraged, particularly in case of (novel) visualizations. On
a positive note, the fact that three out of the six experiments
mentioned above were conducted in 2008 could suggest that
this type of evaluation is already gaining momentum.

6.4.3 Comparisons

Comparisons (or comparative evaluations) are similar to
surveys in the sense that the article at hand involves one or
more existing approaches. The difference in terms of our
attribute framework is that the authors of side-by-side
comparisons do not merely discuss existing solutions, but
rather use them to evaluate their own. Such a comparison can
be more valuable than the evaluation of a technique by itself
through anecdotal evidence, as it helps to clarify where
there is an improvement over existing work.

Our survey has identified a total of 12 comparative
evaluations. The majority of these comparisons was con-
ducted in the context of feature location. As an example,
Eaddy et al. [80] discuss two recently proposed feature
location techniques, devise one of their own, and subject
combinations of the three techniques to a thorough
evaluation. Similar approaches are followed by Antoniol
and Guéhéneuc [50] and Poshyvanyk et al. [51]; in the same
context, Wilde et al. [16] offer a comparison between a static
and a dynamic technique.

Apart from the field of feature location, in which
complementary techniques have already proven to yield
the best results, the degree to which existing work is
compared against is generally low. One can think of several
causes (and solutions) in this context.

First, it must be noted that work on program compre-
hension cannot always be easily compared because the
human factor plays an important role. The aforementioned
feature location example is an exception since that activity
typically produces quantifiable results; evaluations of
qualitative nature, on the other hand, may require hard to
get domain experts or control groups, as well as possibly
subjective human interpretation and judgements.

Second, we have determined that only 14 out of the
114 articles offer publicly available tools. The lack of
available tooling is an important issue as it hinders the
evaluation (and comparison) of the associated approaches
by third party researchers. In our earlier work on the

696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

assessment of four existing trace reduction techniques [81],
for example, we had to resort to our own implementations,
which may have resulted in interpretation errors (thus
constituting a threat to the internal validity of the experi-
ments). We therefore encourage researchers to make their
tools available online and advocate the use of these tools to
compare new solutions against.

Third, the comparison of existing approaches is hindered
by the absence of common assessment frameworks and
benchmarks, which, as Sim et al. [82] observed, can stimulate
technical progress and community building. In the context of
program comprehension through dynamic analysis, one
could think of using common test sets, such as execution
trace repositories (e.g., [81]), and common evaluation
criteria, such as the precision and recall measures that are
often used in the field of feature location (e.g., [80]). Also of
importance in this respect is the use of open-source cases to
enable the reproducibility of experiments.

6.5 How Activities Are Evaluated

In the historical overview in Section 2, we identified five
main subfields in program comprehension: feature analysis,
visualization, trace analysis, design and architecture recov-
ery, and behavioral analysis, which correspond to the
activity facet of our attribute framework. Here, we consider
these fields from the perspective of the evaluation facet.

The literature on feature analysis mostly deals with
feature location, i.e., relating functionality to source code.
What is interesting is not only that this field has received
significant attention from 1995 to the present day, but also
that comparative evaluations are a common practice in this
field, as noticed in Section 6.4. The introduction of common
evaluation criteria (i.e., precision and recall) may have
contributed to this development. Furthermore, feature
analysis accounts for 7 out of the 11 industrial evaluations
identified in this survey, and for four out of the six
evaluations that involve human subjects.

Visualization is a rather different story: For reasons
mentioned earlier, the effectiveness of visualization techni-
ques is more difficult to assess, which hinders their
comparison and their involvement in industrial contexts.
Furthermore, there is still a lot of experimenting going on in
this field with both traditional techniques and more
advanced solutions. As an example of the former, consider
the reverse engineering of UML sequence diagrams: This
has been an important topic since the earliest of program
comprehension articles (e.g., [11], [21]) and has only
recently been subjected to a controlled experiment [77]. In
general, the evaluation of visualizations through empirical
studies is quite rare, as are industrial studies in this context.

Execution trace analysis, and trace reduction in particular,
has received substantial attention in the past decade. This has
seldomly resulted in industrial studies and never in con-
trolled experiments. Furthermore, while comparisons with
earlier approaches are not very common either, recently there
has been a first effort at (quantitatively) evaluating a series of
existing reduction techniques side by side [81].

Finally, behavioral analysis and architecture recovery are
somewhat difficult to assess: The latter has been treated in
only five articles, while the former is a rather heterogeneous
subfield that is comprised of various similar, but not equal,

disciplines. They are mostly small and involve limited
numbers of researchers and, generally, these areas of
specialization cannot be compared with each other. How-
ever, as a behavioral discipline receives more attention in
the literature, it may grow to become a subfield on its own:
The automaton-based recovery of protocols, for example, is
a recent development that is adopting common evaluation
criteria and thorough comparisons [42], [43].

7 EVALUATION

In the previous sections, we have presented a series of
findings based on our paper selection, attribute framework,
and attribute assignments. Since conducting a survey is a
largely manual task, most threats to validity relate to the
possibility of researcher bias and, thus, to the concern that
other researchers might come to different results and
conclusions. One remedy we adopted is to follow, where
possible, guidelines on conducting systematic reviews as
suggested by, e.g., Kitchenham [59] and Brereton et al. [57].
In particular, we documented and reviewed all steps we
made in advance (per pass), including selection criteria and
attribute definitions.

In the following sections, we successively describe
validity threats pertaining to the article selection, the
attribute framework, the article characterization, and the
results interpretation, and discuss the manners in which
we attempted to minimize their risk.

7.1 Article Selection

Program comprehension is a broad subject that, arguably,
has a certain overlap with related topics. Examples of such
topics are debugging and impact analysis. The question of
whether articles of the latter categories should be included in
a program comprehension survey is subject to debate. It is
our opinion that the topics covered in this survey are most
closely related to program comprehension because their
common goal is to provide a deeper understanding of the
inner workings of software. Following the advice of
Kitchenham [59] and Brereton et al. [57], we enforced this
criterion by utilizing predefined selection criteria that clearly
define the scope, and evaluated these criteria through a pilot
study that yielded positive results (Section 3.2).

In the process of collecting relevant articles, we chose not
to rely on keyword searches. This choice was motivated by
a recent paper from Brereton et al. [57], who state that
“current software engineering search engines are not
designed to support systematic literature reviews;” this
observation is confirmed by Staples and Niazi [83]. For this
reason, we have followed an alternative search strategy that
comprises the manual processing of relevant venues in a
certain period of time.

The venues in Table 1 were chosen because they are most
closely related to software engineering, maintenance, and
reverse engineering. While this presumption is largely
supported by the results (Fig. 2), our article selection is not
necessarily unbiased or representative of the targeted
research body. We have addressed the threat of selection
bias by utilizing the aforementioned selection criteria.
Furthermore, we have attempted to increase the representa-
tiveness of our selection by following the references in the

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 697

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

initial article selection and including the relevant ones in our
final selection. We found a nonrecursive approach sufficient,
as checking for citations within citations typically resulted in
no additional articles. As a result, we expect the number of
missed articles to be limited; particularly those that have
proven influential have almost certainly been included the
survey, as they are likely to have been cited often.

7.2 Attribute Framework

We acknowledge that the construction of the attribute
framework may be the most subjective step in our
approach. The resulting framework may depend on key-
words jotted down in the first pass, as well as on the
subsequent generalization step. However, the resulting
framework can be evaluated in terms of its usefulness:
Specifically, we have performed a second pilot study and
measured the degree to which the attributes in each facet
coincide. Both of these experiments yielded favorable
results and demonstrate the applicability of our framework.

7.3 Article Characterization

Similar to the construction of the attribute framework, the
process of applying the framework to the research body is
subjective and may be difficult to reproduce.

We have addressed this validity threat through a second
pilot study (Section 5.3), of which the results exposed some
discrepancies, mostly within the method facet. The out-
comes were discussed among the authors of this survey and
resulted in the refinement of several attributes and their
descriptions; a detailed description of these refinements is
given in the technical report [60].

In order to identify topics that have received little
attention in the literature, we counted the occurrences of
all attributes in the selected articles, as shown in Fig. 3. A
threat to validity in this respect is duplication among
articles and experiments: One and the same experiment
should not be taken into account twice, which is likely to
occur when considering both conference proceedings and
journals. We have addressed this threat by summarizing the
article selection and using the summarized articles for the
interpretation phase, while making the full selection
available in a technical report and on a Web site.

7.4 Results Interpretation

Apotential threat to thevalidity of the results interpretation is
researcher bias, as the interpretationmay seek for results that
the reviewerswere looking for.Our countermeasurehasbeen
a systematic approach toward the analysis of Tables 3 and 4:
In each facet, we have discussed the most common and least
common attributes. In addition, we have examined the
relation between activities and evaluations in particular, as
this combination pertains to one of our research questions.

8 CONCLUSION

In this paper, we have reported on a systematic literature
survey on program comprehension through dynamic
analysis. We have characterized the work on this topic on
the basis of four main facets: activity, target, method, and
evaluation. While our initial focus was on nine conferences
and five journals in the last decade, the use of reference

checking to include earlier articles and alternative venues
yielded a research body that is comprised of 31 venues and
relevant articles of up to 30 years old.

Out of 4,795 scanned papers published between July
1999 and June 2008 in 14 relevant venues, we selected the
literature that strongly emphasizes the use of dynamic
analysis in program comprehension contexts. The addition
of relevant articles that were referenced therein resulted in a
final selection of 176 papers. Through a detailed reading of
this research body, we derived an attribute framework that
was consequently used to characterize the articles under
study in a structured fashion. The resulting systematic
overview is useful as a reference work for researchers in the
field of program comprehension through dynamic analysis,
and helps them to identify both related work and new
research opportunities in their respective subfields.

In advance, we posed four research questions pertain-
ing to:

1. the identification of generic attributes;
2. the extent to which each of these attributes is

represented in the research body;
3. the relation between activities and evaluations;
4. the distillation of future directions.

The identified attributes are shown in Table 2. While
being generic in the sense that they characterize all of the
surveyed articles, they are sufficiently specific for research-
ers looking for related work on particular activities, target
system types, methods, and evaluation types.

The characterization of the surveyed articles is shown in
Tables 3 and 4. The frequencies of the attributes are
provided by Fig. 3, which clearly shows the distribution
of the attributes in each facet across the research body. We
discussed the results, highlighted research aspects that have
proven popular throughout the years, and studied the
manners in which the major subfields are evaluated.

Based on our analysis of the results, we report on three
lessons learned that we feel are the most significant. First,
we have observed that the feature location activity sets an
example in the way research results are evaluated: This
subfield exhibits a great deal of effort in comparing and
combining earlier techniques, which has led to significant
technical progress in the past decade (Section 6.5). Second,
we conclude that standard object-oriented systems may be
overemphasized in the literature at the cost of Web
applications, distributed software, and multithreaded sys-
tems, for which we have argued that dynamic analysis is
very suitable (Sections 6.1 and 6.3). Third, with regard to
evaluation, we have learned that comparisons and bench-
marking do not occur as often as they should, particularly
in activities other than feature location. To support this
process, we encourage researchers to make their tools
publicly available, and to conduct controlled experiments in
case of visualization techniques because these are otherwise
difficult to evaluate (Section 6.4).

In summary, the work described in this paper makes the
following contributions:

1. A historical overview of the field of program
comprehension through dynamic analysis.

698 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

2. A selection of key articles in the area of program
comprehension and dynamic analysis, based on
explicit selection criteria.

3. An attribute framework that can be used to
characterize papers in the area of program compre-
hension through dynamic analysis.

4. An actual characterization of all selected articles in
terms of the attributes in this framework.

5. A series of recommendations on future research
directions.

ACKNOWLEDGMENTS

Part of this work was conducted at Delft University of

Technology in the Reconstructor project, sponsored by

NWO/Jacquard.

REFERENCES

[1] T.A. Corbi, “Program Understanding: Challenge for the 1990s,”
IBM Systems J., vol. 28, no. 2, pp. 294-306, 1989.

[2] R.K. Fjeldstad and W.T. Hamlen, “Application Program Main-
tenance Study: Report to Our Respondents,” Proc. GUIDE, vol. 48,
1979.

[3] T. Richner and S. Ducasse, “Recovering High-Level Views of
Object-Oriented Applications from Static and Dynamic Informa-
tion,” Proc. 15th Int’l Conf. Software Maintenance, pp. 13-22, 1999.

[4] B.R. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan,
“Discovering Architectures from Running Systems,” IEEE Trans.
Software Eng., vol. 32, no. 7, pp. 454-466, July 2006.

[5] R.J. Walker, G.C. Murphy, B.N. Freeman-Benson, D. Wright, D.
Swanson, and J. Isaak, “Visualizing Dynamic Software System
Information through High-Level Models,” Proc. 13th Conf. Object-
Oriented Programming Systems, Languages and Applications, pp. 271-
283, 1998.

[6] T.J. Biggerstaff, B.G. Mitbander, and D. Webster, “The Concept
Assignment Problem in Program Understanding,” Proc. 15th Int’l
Conf. Software Eng., pp. 482-498, 1993.

[7] T. Ball, “The Concept of Dynamic Analysis,” Proc. Seventh
European Software Eng. Conf. and ACM SIGSOFT Symp. Foundations
of Software Eng., pp. 216-234, 1999.

[8] J. Andrews, “Testing Using Log File Analysis: Tools, Methods,
and Issues,” Proc. 13th Int’l Conf. Automated Software Eng., pp. 157-
166, 1997.

[9] A.W. Biermann, “On the Inference of Turing Machines from
Sample Computations,” Artificial Intelligence, vol. 3, nos. 1-3,
pp. 181-198, 1972.

[10] M.F. Kleyn and P.C. Gingrich, “Graphtrace—Understanding
Object-Oriented Systems Using Concurrently Animated Views,”
Proc. Third Conf. Object-Oriented Programming Systems, Languages,
and Applications, pp. 191-205, 1988.

[11] W. De Pauw, R. Helm, D. Kimelman, and J.M. Vlissides,
“Visualizing the Behavior of Object-Oriented Systems,” Proc.
Eighth Conf. Object-Oriented Programming Systems, Languages, and
Applications, pp. 326-337, 1993.

[12] W. De Pauw, D. Kimelman, and J.M. Vlissides, “Modeling Object-
Oriented Program Execution,” Proc. European Object-Oriented
Programming Conf., pp. 163-182, 1994.

[13] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman, “Execution
Patterns in Object-Oriented Visualization,” Proc. Fourth USENIX
Conf. Object-Oriented Technologies and Systems, pp. 219-234, 1998.

[14] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, 1995.

[15] N. Wilde and M.C. Scully, “Software Reconnaissance: Mapping
Program Features to Code,” J. Software Maintenance: Research and
Practice, vol. 7, no. 1, pp. 49-62, 1995.

[16] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds, “A
Comparison of Methods for Locating Features in Legacy Soft-
ware,” J. Systems and Software, vol. 65, no. 2, pp. 105-114, 2003.

[17] N. Wilde, M. Buckellew, H. Page, and V. Rajlich, “A Case Study of
Feature Location in Unstructured Legacy Fortran Code,” Proc.
Fifth European Conf. Software Maintenance and Reeng., pp. 68-76,
2001.

[18] N. Wilde and C. Casey, “Early Field Experience with the Software
Reconnaissance Technique for Program Comprehension,” Proc.
Int’l Conf. Software Maintenance, pp. 312-318, 1996.

[19] D.B. Lange and Y. Nakamura, “Interactive Visualization of Design
Patterns Can Help in Framework Understanding,” Proc. 10th Conf.
Object-Oriented Programming Systems, Languages, and Applications,
pp. 342-357, 1995.

[20] D.B. Lange and Y. Nakamura, “Program Explorer: A Program
Visualizer for C++,” Proc. First USENIX Conf. Object-Oriented
Technologies and Systems, pp. 39-54, 1995.

[21] K. Koskimies and H. Mössenböck, “Scene: Using Scenario
Diagrams and Active Text for Illustrating Object-Oriented
Programs,” Proc. 18th Int’l Conf. Software Eng., pp. 366-375, 1996.

[22] M. Sefika, A. Sane, and R.H. Campbell, “Architecture-Oriented
Visualization,” Proc. 11th Conf. Object-Oriented Programming
Systems, Languages, and Applications, pp. 389-405, 1996.

[23] D.F. Jerding and S. Rugaber, “Using Visualization for Architectur-
al Localization and Extraction,” Proc. Fourth Working Conf. Reverse
Eng., pp. 56-65, 1997.

[24] D.F. Jerding, J.T. Stasko, and T. Ball, “Visualizing Interactions in
Program Executions,” Proc. 19th Int’l Conf. Software Eng., pp. 360-
370, 1997.

[25] D.F. Jerding and J.T. Stasko, “The Information Mural: A
Technique for Displaying and Navigating Large Information
Spaces,” IEEE Trans. Visualization and Computer Graphics, vol. 4,
no. 3, pp. 257-271, July-Sept. 1998.

[26] G.C. Murphy, D. Notkin, and K.J. Sullivan, “Software Reflexion
Models: Bridging the Gap between Design and Implementation,”
IEEE Trans. Software Eng., vol. 27, no. 4, pp. 364-380, Apr. 2001.

[27] T. Richner and S. Ducasse, “Using Dynamic Information for the
Iterative Recovery of Collaborations and Roles,” Proc. 18th Int’l
Conf. Software Maintenance, pp. 34-43, 2002.

[28] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J.M. Vlissides,
and J. Yang, “Visualizing the Execution of Java Programs,” Proc.
ACM 2001 Symp. Software Visualization, pp. 151-162, 2001.

[29] T. Systä, K. Koskimies, and H.A. Müller, “Shimba: An Environ-
ment for Reverse Engineering Java Software Systems,” Software,
Practice and Experience, vol. 31, no. 4, pp. 371-394, 2001.

[30] L.C. Briand, Y. Labiche, and J. Leduc, “Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed Java
Software,” IEEE Trans. Software Eng., vol. 32, no. 9, pp. 642-663,
Sept. 2006.

[31] S.P. Reiss and M. Renieris, “Encoding Program Executions,” Proc.
23rd Int’l Conf. Software Eng., pp. 221-230, 2001.

[32] A. Hamou-Lhadj and T.C. Lethbridge, “A Survey of Trace
Exploration Tools and Techniques,” Proc. 2004 Conf. the Centre
for Advanced Studies on Collaborative Research, pp. 42-55, 2004.

[33] A. Hamou-Lhadj and T.C. Lethbridge, “Summarizing the Content
of Large Traces to Facilitate the Understanding of the Behaviour of
a Software System,” Proc. 14th Int’l Conf. Program Comprehension,
pp. 181-190, 2006.

[34] A. Hamou-Lhadj, T.C. Lethbridge, and L. Fu, “Challenges and
Requirements for an Effective Trace Exploration Tool,” Proc. 12th
Int’l Workshop Program Comprehension, pp. 70-78, 2004.

[35] D. Heuzeroth, T. Holl, and W. Löwe, “Combining Static and
Dynamic Analyses to Detect Interaction Patterns,” Proc. Sixth Int’l
Conf. Integrated Design and Process Technology, 2002.

[36] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe, “Automatic
Design Pattern Detection,” Proc. 11th Int’l Workshop Program
Comprehension, pp. 94-103, 2003.

[37] C. Riva and J.V. Rodriguez, “Combining Static and Dynamic
Views for Architecture Reconstruction,” Proc. Sixth European Conf.
Software Maintenance and Reeng., pp. 47-55, 2002.

[38] C. Riva and Y. Yang, “Generation of Architectural Documentation
Using XML,” Proc. Ninth Working Conf. Reverse Eng., pp. 161-179,
2002.

[39] H. Yan, D. Garlan, B.R. Schmerl, J. Aldrich, and R. Kazman,
“Discotect: A System for Discovering Architectures from Running
Systems,” Proc. 26th Int’l Conf. Software Eng., pp. 470-479, 2004.

[40] J. Koskinen, M. Kettunen, and T. Systä, “Profile-Based Approach
to Support Comprehension of Software Behavior,” Proc. 14th Int’l
Conf. Program Comprehension, pp. 212-224, 2006.

[41] J.E. Cook and Z. Du, “Discovering Thread Interactions in a
Concurrent System,” J. Systems and Software, vol. 77, no. 3, pp. 285-
297, 2005.

[42] J. Quante and R. Koschke, “Dynamic Protocol Recovery,” Proc.
14th Working Conf. Reverse Eng., pp. 219-228, 2007.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 699

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

[43] D. Lo, S. Khoo, and C. Liu, “Mining Temporal Rules for Software
Maintenance,” J. Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 4, pp. 227-247, 2008.

[44] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin,
“Reverse Engineering State Machines by Interactive Grammar
Inference,” J. Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 4, pp. 269-290, 2008.

[45] O. Greevy, S. Ducasse, and T. Gı̂rba, “Analyzing Feature Traces to
Incorporate the Semantics of Change in Software Evolution
Analysis,” Proc. 21st Int’l Conf. Software Maintenance, pp. 347-356,
2005.

[46] O. Greevy, S. Ducasse, and T. Gı̂rba, “Analyzing Software
Evolution through Feature Views,” J. Software Maintenance and
Evolution: Research and Practice, vol. 18, no. 6, pp. 425-456, 2006.

[47] J. Kothari, T. Denton, A. Shokoufandeh, and S. Mancoridis,
“Reducing Program Comprehension Effort in Evolving Software
by Recognizing Feature Implementation Convergence,” Proc. 15th
Int’l Conf. Program Comprehension, pp. 17-26, 2007.

[48] W.E. Wong, S.S. Gokhale, and J.R. Horgan, “Quantifying the
Closeness between Program Components and Features,”
J. Systems and Software, vol. 54, no. 2, pp. 87-98, 2000.

[49] T. Eisenbarth, R. Koschke, and D. Simon, “Locating Features in
Source Code,” IEEE Trans. Software Eng., vol. 29, no. 3, pp. 210-224,
Mar. 2003.

[50] G. Antoniol and Y.-G. Guéhéneuc, “Feature Identification: An
Epidemiological Metaphor,” IEEE Trans. Software Eng., vol. 32,
no. 9, pp. 627-641, Sept. 2006.

[51] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V.
Rajlich, “Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval,” IEEE
Trans. Software Eng., vol. 33, no. 6, pp. 420-432, June 2007.

[52] M.J. Pacione, M. Roper, and M. Wood, “Comparative Evaluation
of Dynamic Visualisation Tools,” Proc. 10th Working Conf. Reverse
Eng., pp. 80-89, 2003.

[53] O. Greevy, “Enriching Reverse Engineering with Feature Analy-
sis,” PhD thesis, Univ. Bern, 2007.

[54] S.P. Reiss, “Visual Representations of Executing Programs,”
J. Visual Languages and Computing, vol. 18, no. 2, pp. 126-148, 2007.

[55] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in Software Engineering: A Systematic Literature
Review,” Information and Software Technology, vol. 50, nos. 9/10,
pp. 860-878, 2008.

[56] T. Dybå and T. Dingsøyr, “Empirical Studies of Agile Software
Development: A Systematic Review,” Information and Software
Technology, vol. 50, nos. 9/10, pp. 833-859, 2008.

[57] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, and M.
Khalil, “Lessons from Applying the Systematic Literature Review
Process within the Software Engineering Domain,” J. Systems and
Software, vol. 80, no. 4, pp. 571-583, 2007.

[58] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.
Karahasanovic, N.-K. Liborg, and A.C. Rekdal, “A Survey of
Controlled Experiments in Software Engineering,” IEEE Trans.
Software Eng., vol. 31, no. 9, pp. 733-753, Sept. 2005.

[59] B.A. Kitchenham, “Procedures for Performing Systematic Re-
views,” Technical Report TR/SE-0401, Keele Univ. and Technical
Report 0400011T.1, Nat’l ICT Australia, 2004.

[60] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R.
Koschke, “A Systematic Survey of Program Comprehension
through Dynamic Analysis,” Technical Report TUD-SERG-2008-
033, Delft Univ. of Technology, 2008.

[61] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature
Location via Information Retrieval Based Filtering of a Single
Scenario Execution Trace,” Proc. 22nd Int’l Conf. Automated
Software Eng., pp. 234-243, 2007.

[62] A. Zaidman and S. Demeyer, “Managing Trace Data Volume
through a Heuristical Clustering Process Based on Event Execu-
tion Frequency,” Proc. Eighth European Conf. Software Maintenance
and Reeng., pp. 329-338, 2004.

[63] M.D. Ernst, “Static and Dynamic Analysis: Synergy and Duality,”
Proc. First ICSE Int’l Workshop Dynamic Analysis, pp. 25-28, 2003.

[64] T. Israr, M. Woodside, and G. Franks, “Interaction Tree
Algorithms to Extract Effective Architecture and Layered Perfor-
mance Models from Traces,” J. Systems and Software, vol. 80, no. 4,
pp. 474-492, 2007.

[65] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb: Automatically
Testing Dynamic Web Sites,” Proc. 11th Int’l Conf. World Wide Web,
2002.

[66] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling Ajax by
Inferring User Interface State Changes,” Proc. Eighth Int’l Conf.
Web Eng., pp. 122-134, 2008.

[67] N. Gold, A. Mohan, C. Knight, and M. Munro, “Understanding
Service-Oriented Software,” IEEE Software, vol. 21, no. 2, pp. 71-77,
Mar./Apr. 2004.

[68] J. Moe and D.A. Carr, “Understanding Distributed Systems via
Execution Trace Data,” Proc. Ninth Int’l Workshop Program
Comprehension, pp. 60-67, 2001.

[69] V. Pankratius, C. Schaefer, A. Jannesari, and W.F. Tichy, “Soft-
ware Engineering for Multicore Systems: An Experience Report,”
Proc. First ICSE Int’l Workshop Multicore Software Eng., 2008.

[70] A. Zaidman, S. Demeyer, B. Adams, K. De Schutter, G. Hoffman,
and B. De Ruyck, “Regaining Lost Knowledge through Dynamic
Analysis and Aspect Orientation,” Proc. 10th European Conf.
Software Maintenance and Reeng., pp. 91-102, 2006.

[71] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

[72] D. Röthlisberger, O. Greevy, and O. Nierstrasz, “Exploiting
Runtime Information in the IDE,” Proc. 16th Int’l Conf. Program
Comprehension, pp. 63-72, 2008.

[73] S.P. Reiss, “Visualizing Java in Action,” Proc. ACM 2003 Symp.
Software Visualization, pp. 57-65, 2003.

[74] S. Joshi and A. Orso, “SCARPE: A Technique and Tool for
Selective Record and Replay of Program Executions,” Proc. 23rd
Int’l Conf. Software Maintenance, pp. 234-243, 2007.

[75] G. Xu, A. Rountev, Y. Tang, and F. Qin, “Efficient Checkpointing
of Java Software Using Context-Sensitive Capture and Replay,”
Proc. 15th European Software Eng. Conf. and ACM SIGSOFT Symp.
the Foundations of Software Eng., pp. 85-94, 2007.

[76] A. Zaidman, “Scalability Solutions for Program Comprehen-
sion through Dynamic Analysis,” PhD thesis, Univ. of
Antwerp, 2006.

[77] C. Bennett, D. Myers, D. Ouellet, M.-A. Storey, M. Salois, D.
German, and P. Charland, “A Survey and Evaluation of Tool
Features for Understanding Reverse Engineered Sequence Dia-
grams,” J. Software Maintenance and Evolution: Research and Practice,
vol. 20, no. 4, pp. 291-315, 2008.

[78] J. Quante, “Do Dynamic Object Process Graphs Support Program
Understanding?—A Controlled Experiment,” Proc. 16th Int’l Conf.
Program Comprehension, pp. 73-82, 2008.

[79] S. Simmons, D. Edwards, N. Wilde, J. Homan, and M. Groble,
“Industrial Tools for the Feature Location Problem: An Explora-
tory Study,” J. Software Maintenance and Evolution: Research and
Practice, vol. 18, no. 6, pp. 457-474, 2006.

[80] M. Eaddy, A.V. Aho, G. Antoniol, and Y.-G. Guéhéneuc,
“CERBERUS: Tracing Requirements to Source Code Using
Information Retrieval, Dynamic Analysis, and Program Analysis,”
Proc. 16th Int’l Conf. Program Comprehension, pp. 53-62, 2008.

[81] B. Cornelissen, L. Moonen, and A. Zaidman, “An Assessment
Methodology for Trace Reduction Techniques,” Proc. 24th Int’l
Conf. Software Maintenance, pp. 107-116, 2008.

[82] S.E. Sim, S.M. Easterbrook, and R.C. Holt, “Using Benchmarking
to Advance Research: A Challenge to Software Engineering,” Proc.
25th Int’l Conf. Software Eng., pp. 74-83, 2003.

[83] M. Staples and M. Niazi, “Experiences Using Systematic Review
Guidelines,” J. Systems and Software, vol. 80, no. 9, pp. 1425-1437,
2007.

[84] G. Antoniol and M. Di Penta, “A Distributed Architecture for
Dynamic Analyses on User-Profile Data,” Proc. Eighth European
Conf. Software Maintenance and Reeng., pp. 319-328, 2004.

[85] G. Antoniol, M. Di Penta, and M. Zazzara, “Understanding Web
Applications through Dynamic Analysis,” Proc. 12th Int’l Workshop
Program Comprehension, pp. 120-131, 2004.

[86] T. Ball, “Software Visualization in the Large,” Computer, vol. 29,
no. 4, pp. 33-43, Apr. 1996.

[87] J. Bohnet and J. Döllner, “Visual Exploration of Function Call
Graphs for Feature Location in Complex Software Systems,” Proc.
ACM 2006 Symp. Software Visualization, pp. 95-104, 2006.

[88] D. Bojic and D.M. Velasevic, “A Use-Case Driven Method of
Architecture Recovery for Program Understanding and Reuse
Reengineering,” Proc. Fourth European Conf. Software Maintenance
and Reeng., pp. 23-32, 2000.

[89] A. Chan, R. Holmes, G.C. Murphy, and A.T.T. Ying, “Scaling
an Object-Oriented System Execution Visualizer through
Sampling,” Proc. 11th Int’l Workshop Program Comprehension,
pp. 237-244, 2003.

700 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

[90] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman,
“Visualizing Testsuites to Aid in Software Understanding,” Proc.
11th European Conf. Software Maintenance and Reeng., pp. 213-222,
2007.

[91] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van
Deursen, and J.J. van Wijk, “Execution Trace Analysis through
Massive Sequence and Circular Bundle Views,” J. Systems and
Software, vol. 81, no. 11, pp. 2252-2268, 2008.

[92] A.R. Dalton and J.O. Hallstrom, “A Toolkit for Visualizing the
Runtime Behavior of TinyOS Applications,” Proc. 15th Int’l Conf.
Program Comprehension, pp. 43-52, 2008.

[93] J. Deprez and A. Lakhotia, “A Formalism to Automate Mapping
from Program Features to Code,” Proc. Eighth Int’l Workshop
Program Comprehension, pp. 69-78, 2000.

[94] S. Ducasse, M. Lanza, and R. Bertuli, “High-Level Polymetric
Views of Condensed Run-Time Information,” Proc. Eighth
European Conf. Software Maintenance and Reeng., pp. 309-318, 2004.

[95] D. Edwards, S. Simmons, and N. Wilde, “An Approach to Feature
Location in Distributed Systems,” J. Systems and Software, vol. 79,
no. 1, pp. 457-474, 2006.

[96] A.D. Eisenberg and K. De Volder, “Dynamic Feature Traces:
Finding Features in Unfamiliar Code,” Proc. 21st Int’l Conf.
Software Maintenance, pp. 337-346, 2005.

[97] M. El-Ramly, E. Stroulia, and P.G. Sorenson, “From Run-Time
Behavior to Usage Scenarios: An Interaction-Pattern Mining
Approach,” Proc. Eighth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, pp. 315-324, 2002.

[98] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind, “System
Evolution Tracking through Execution Trace Analysis,” Proc. 13th
Int’l Workshop Program Comprehension, pp. 237-246, 2005.

[99] M. Fisher II, S.G. Elbaum, and G. Rothermel, “Dynamic
Characterization of Web Application Interfaces,” Proc. 10th Int’l
Conf. Fundamental Approaches to Software Eng., pp. 260-275, 2007.

[100] J. Gargiulo and S. Mancoridis, “Gadget: A Tool for Extracting the
Dynamic Structure of Java Programs,” Proc. 13th Int’l Conf.
Software Eng. and Knowledge Eng., pp. 244-251, 2001.

[101] P.V. Gestwicki and B. Jayaraman, “Methodology and Architecture
of JIVE,” Proc. ACM 2005 Symp. Software Visualization, pp. 95-104,
2005.

[102]O. Greevy, M. Lanza, and C. Wysseier, “Visualizing Live Software
Systems in 3D,” Proc. ACM 2006 Symp. Software Visualization,
pp. 47-56, 2006.

[103] T. Gschwind, J. Oberleitner, and M. Pinzger, “Using Run-Time
Data for Program Comprehension,” Proc. 11th Int’l Workshop
Program Comprehension, pp. 245-250, 2003.

[104] Y.-G. Guéhéneuc, R. Douence, and N. Jussien, “No Java without
Caffeine: A Tool for Dynamic Analysis of Java Programs,” Proc.
17th Int’l Conf. Automated Software Eng., pp. 117-126, 2002.

[105] Y.-G. Guéhéneuc, “A Reverse Engineering Tool for Precise Class
Diagrams,” Proc. 2004 Conf. Centre for Advanced Studies on
Collaborative Research, pp. 28-41, 2004.

[106] S.A. Hendrickson, E.M. Dashofy, and R.N. Taylor, “An Archi-
tecture-Centric Approach for Tracing, Organizing, and Under-
standing Events in Event-Based Software Architectures,” Proc.
13th Int’l Workshop Program Comprehension, pp. 227-236, 2005.

[107]H. Huang, S. Zhang, J. Cao, and Y. Duan, “A Practical Pattern
Recovery Approach Based on Both Structural and Behavioral
Analysis,” J. Systems and Software, vol. 75, nos. 1/2, pp. 69-87, 2005.

[108] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, “Constructing
Usage Scenarios for API Redocumentation,” Proc. 15th Int’l Conf.
Program Comprehension, pp. 259-264, 2007.

[109]M. Jiang, M. Groble, S. Simmons, D. Edwards, and N. Wilde,
“Software Feature Understanding in an Industrial Setting,” Proc.
22nd Int’l Conf. Software Maintenance, pp. 66-67, 2006.

[110] Z.M. Jiang, A. Hassan, G. Hamann, and P. Flora, “An Automated
Approach for Abstracting Execution Logs to Execution Events,”
J. Software Maintenance and Evolution: Research and Practice, vol. 20,
no. 4, pp. 249-267, 2008.

[111] P. Kelsen, “A Simple Static Model for Understanding the Dynamic
Behavior of Programs,” Proc. 12th Int’l Workshop Program
Comprehension, pp. 46-51, 2004.

[112] R. Kollmann and M. Gogolla, “Capturing Dynamic Program
Behaviour with UML Collaboration Diagrams,” Proc. Fifth
European Conf. Software Maintenance and Reeng., pp. 58-67, 2001.

[113] B. Korel and J. Rilling, “Program Slicing in Understanding of
Large Programs,” Proc. Sixth Int’l Workshop Program Comprehen-
sion, pp. 145-152, 1998.

[114] R. Koschke and J. Quante, “On Dynamic Feature Location,” Proc.
20th Int’l Conf. Automated Software Eng., pp. 86-95, 2005.

[115]A. Kuhn and O. Greevy, “Exploiting the Analogy between Traces
and Signal Processing,” Proc. 22nd Int’l Conf. Software Maintenance,
pp. 320-329, 2006.

[116]D. Lange and Y. Nakamura, “Object-Oriented Program Tracing
and Visualization,” Computer, vol. 30, no. 5, pp. 63-70, May
1997.

[117]D.R. Licata, C.D. Harris, and S. Krishnamurthi, “The Feature
Signatures of Evolving Programs,” Proc. 18th Int’l Conf. Automated
Software Eng., pp. 281-285, 2003.

[118]A. Lienhard, O. Greevy, and O. Nierstrasz, “Tracking Objects to
Detect Feature Dependencies,” Proc. 15th Int’l Conf. Program
Comprehension, pp. 59-68, 2007.

[119]D. Lo and S. Khoo, “QUARK: Empirical Assessment of Auto-
maton-Based Specification Miners,” Proc. 13th Working Conf.
Reverse Eng., pp. 51-60, 2006.

[120]D. Lo and S. Khoo, “SMArTIC: Towards Building an Accurate,
Robust and Scalable Specification Miner,” Proc. 14th European
Software Eng. Conf. and ACM SIGSOFT Symp. the Foundations of
Software Eng., pp. 265-275, 2006.

[121]G.A. Di Lucca, A.R. Fasolino, P. Tramontana, and U.
de Carlini, “Abstracting Business Level UML Diagrams from
Web Applications,” Proc. Fifth Int’l Workshop Web Site Evolu-
tion, pp. 12-19, 2003.

[122]K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey, “TraceGraph:
Immediate Visual Location of Software Features,” Proc. 16th Int’l
Conf. Software Maintenance, pp. 33-39, 2000.

[123] B.A. Malloy and J.F. Power, “Exploiting UML Dynamic Object
Modeling for the Visualization of C++ Programs,” Proc. ACM 2005
Symp. Software Visualization, pp. 105-114, 2005.

[124] L. Martin, A. Giesl, and J. Martin, “Dynamic Component Program
Visualization,” Proc. Ninth Working Conf. Reverse Eng., pp. 289-298,
2002.

[125] J. Moe and K. Sandahl, “Using Execution Trace Data to Improve
Distributed Systems,” Proc. 18th Int’l Conf. Software Maintenance,
pp. 640-648, 2002.

[126] R. Oechsle and T. Schmitt, “JAVAVIS: Automatic Program
Visualization with Object and Sequence Diagrams Using the Java
Debug Interface (JDI),” Proc. ACM 2001 Symp. Software Visualiza-
tion, pp. 176-190, 2001.

[127]A. Orso, J.A. Jones, and M.J. Harrold, “Visualization of Program-
Execution Data for Deployed Software,” Proc. ACM 2003 Symp.
Software Visualization, pp. 67-76, 2003.

[128]M.J. Pacione, M. Roper, and M. Wood, “A Novel Software
Visualisation Model to Support Software Comprehension,” Proc.
11th Working Conf. Reverse Eng., pp. 70-79, 2004.

[129]W. De Pauw, S. Krasikov, and J.F. Morar, “Execution Patterns for
Visualizing Web Services,” Proc. ACM 2006 Symp. Software
Visualization, pp. 37-45, 2006.

[130] S. Pheng and C. Verbrugge, “Dynamic Data Structure Analysis for
Java Programs,” Proc. 14th Int’l Conf. Program Comprehension,
pp. 191-201, 2006.

[131] L. Qingshan, H. Chu, S. Hu, P. Chen, and Z. Yun, “Architecture
Recovery and Abstraction from the Perspective of Processes,”
Proc. 12th Working Conf. Reverse Eng., pp. 57-66, 2005.

[132] S.P. Reiss, “Event-Based Performance Analysis,” Proc. 11th Int’l
Workshop Program Comprehension, pp. 74-83, 2003.

[133] S.P. Reiss, “Visualizing Program Execution Using User Abstrac-
tions,” Proc. ACM 2006 Symp. Software Visualization, pp. 125-134,
2006.

[134]M. Renieris and S.P. Reiss, “Almost: Exploring Program Traces,”
Proc. 1999 Workshop New Paradigms in Information Visualization and
Manipulation, pp. 70-77, 1999.

[135] J. Rilling, “Maximizing Functional Cohesion of Comprehension
Environments by Integrating User and Task Knowledge,” Proc.
Eighth Working Conf. Reverse Eng., pp. 157-165, 2001.

[136]H. Ritsch and H.M. Sneed, “Reverse Engineering Programs via
Dynamic Analysis,” Proc. First Working Conf. Reverse Eng., pp. 192-
201, 1993.

[137]C. Riva, “Reverse Architecting: An Industrial Experience Report,”
Proc. Seventh Working Conf. Reverse Eng., pp. 42-50, 2000.

[138]A. Rohatgi, A. Hamou-Lhadj, and J. Rilling, “An Approach for
Mapping Features to Code Based on Static and Dynamic
Analysis,” Proc. 16th Int’l Conf. Program Comprehension, pp. 236-
241, 2008.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 701

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

[139] C. De Roover, I. Michiels, K. Gybels, K. Gybels, and T. D’Hondt,
“An Approach to High-Level Behavioral Program Documentation
Allowing Lightweight Verification,” Proc. 14th Int’l Conf. Program
Comprehension, pp. 202-211, 2006.

[140]H. Safyallah and K. Sartipi, “Dynamic Analysis of Software
Systems Using Execution Pattern Mining,” Proc. 14th Int’l Conf.
Program Comprehension, pp. 84-88, 2006.

[141]M. Salah and S. Mancoridis, “Toward an Environment for
Comprehending Distributed Systems,” Proc. 10th Working Conf.
Reverse Eng., pp. 238-247, 2003.

[142]M. Salah and S. Mancoridis, “A Hierarchy of Dynamic Software
Views: From Object-Interactions to Feature-Interactions,” Proc.
20th Int’l Conf. Software Maintenance, pp. 72-81, 2004.

[143]M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta, “Scenario-
Driven Dynamic Analysis for Comprehending Large Software
Systems,” Proc. 10th European Conf. Software Maintenance and
Reeng., pp. 71-80, 2006.

[144]K. Sartipi and N. Dezhkam, “An Amalgamated Dynamic and
Static Architecture Reconstruction Framework to Control Compo-
nent Interactions,” Proc. 14th Working Conf. Reverse Eng., pp. 259-
268, 2007.

[145]M. Shevertalov and S. Mancoridis, “A Reverse Engineering Tool
for Extracting Protocols of Networked Applications,” Proc. 14th
Working Conf. Reverse Eng., pp. 229-238, 2007.

[146]M. Smit, E. Stroulia, and K. Wong, “Use Case Redocumentation
from Gui Event Traces,” Proc. 12th European Conf. Software
Maintenance and Reeng., pp. 263-268, 2008.

[147] T.S. Souder, S. Mancoridis, and M. Salah, “Form: A Framework for
Creating Views of Program Executions,” Proc. 17th Int’l Conf.
Software Maintenance, pp. 612-620, 2001.

[148] F.C. de Sousa, N.C. Mendonça, S. Uchitel, and J. Kramer,
“Detecting Implied Scenarios from Execution Traces,” Proc. 14th
Working Conf. Reverse Eng., pp. 50-59, 2007.

[149] E. Stroulia, M. El-Ramly, L. Kong, P.G. Sorenson, and B. Matichuk,
“Reverse Engineering Legacy Interfaces: An Interaction-Driven
Approach,” Proc. Sixth Working Conf. Reverse Eng., pp. 292-302,
1999.

[150] P. Tonella and A. Potrich, “Static and Dynamic C++ Code
Analysis for the Recovery of the Object Diagram,” Proc. 18th Int’l
Conf. Software Maintenance, pp. 54-63, 2002.

[151] R.J. Walker, G.C. Murphy, J. Steinbok, and M.P. Robillard,
“Efficient Mapping of Software System Traces to Architectural
Views,” Proc. 2000 Conf. the Centre for Advanced Studies on
Collaborative Research, pp. 12-21, 2000.

[152] L. Wang, J.R. Cordy, and T.R. Dean, “Enhancing Security Using
Legality Assertions,” Proc. 12th Working Conf. Reverse Eng., pp. 35-
44, 2005.

[153]W.E. Wong and S.S. Gokhale, “Static and Dynamic Distance
Metrics for Feature-Based Code Analysis,” J. Systems and Software,
vol. 74, no. 3, pp. 283-295, 2005.

[154]A. Zaidman and S. Demeyer, “Automatic Identification of Key
Classes in a Software System Using Webmining Techniques,”
J. Software Maintenance and Evolution: Research and Practice, vol. 20,
no. 6, pp. 387-417, 2008.

Bas Cornelissen received the MSc degree in
computer science from the University of
Amsterdam in 2005. Since June 2005, he
has been working as a graduate student at
the Delft University of Technology. His re-
search interests include program comprehen-
sion and reverse engineering, with a strong
emphasis on the use of dynamic analysis. He
is a student member of the IEEE and the IEEE
Computer Society.

Andy Zaidman received the MSc and PhD
degrees in computer science from the University
of Antwerp, Belgium, in 2002 and 2006, respec-
tively, after which he became a postdoctoral
researcher at the Delft University of Technology,
where he is now an assistant professor. His
main research interests are reverse engineering
with the help of dynamic analysis, program
comprehension, software repository mining,
and software testing. He is the founder and an

organizer of the International Workshop on Program Comprehension
through Dynamic Analysis (PCODA) series which started in 2005. He
was the general chair of the 15th Working Conference on Reverse
Engineering (WCRE ’08) held in Antwerp, Belgium, and will be the
program cochair for WCRE ’09. He is a member of the IEEE Computer
Society.

Arie van Deursen received the MSc degree in
computer science from the Vrije Universiteit,
Amsterdam, in 1990, and the PhD degree from
the University of Amsterdam in 1994. He is a full
professor at the Delft University of Technology,
where he heads the Software Engineering
Research Group. From 1996 to 2006, he was
a research leader at CWI, the Dutch National
Institute for Research in Mathematics and
Computer Science. His research interests in-

clude reverse engineering, program comprehension, and software
architecture. He was a program chair of the Working Conference on
Reverse Engineering (WCRE) in 2002 and 2003, and served on
numerous program committees in the areas of software evolution,
maintenance, and software engineering in general. He is a member of
the editorial board of the Empirical Software Engineering Journal. He is
a member of the IEEE Computer Society.

Leon Moonen received the MSc degree (cum
laude) in computer science and the PhD degree
in computer science from the University of
Amsterdam in 1996 and 2002, respectively. He
is a research scientist at the Simula Research
Laboratory, Norway. His research focuses on
the design and development of techniques and
tools for the exploration, evolution, and assess-
ment of industrial-size software systems. His
research interests include automated software

inspection, software repository mining, reverse engineering, program
analysis, and program comprehension. He publishes regularly and
serves on organizing, steering, and program committees of international
conferences and workshops on reverse engineering, source code
analysis, software maintenance, program understanding, aspect mining,
and software security. He is a member of the IEEE Computer Society
and the ACM.

Rainer Koschke received the doctoral degree in
computer science from the University of Stutt-
gart, Germany. He is a full professor of software
engineering at the University of Bremen in
Germany. His research interests are primarily
in the fields of software evolution and main-
tenance and program analyzes. His current
research includes architecture recovery, feature
location, program analyzes, software clone
detection, and reverse engineering. He is a

member of the IEEE Computer Society and the Gesellschaft für
Informatik e.V. (GI; German Society of Computer Science).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

702 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 2009

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 11:27:31 UTC from IEEE Xplore. Restrictions apply.

