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Abstract: Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor
and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on
patient diaries and the neurologist’s subjective assessment of clinical scales. A significant amount
of recent research has explored new cost-effective and subjective assessment methods pertaining
to PD symptoms to address this challenge. This article analyzes the application areas and use of
mobile and wearable technology in PD research using the PRISMA methodology. Based on the
published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring,
predicting response to treatment, and rehabilitation. Between January 2008 and December 2021,
31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and
MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other
articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review.
Most of the articles (45%) were published during a recent four-year stretch (2018–2021), and 19%
of the articles were published in 2021 alone. This trend reflects the research community’s growing
interest in assessing PD with wearable devices, particularly in the last four years of the period under
study. We conclude that there is a substantial and steady growth in the use of mobile technology in
the PD contexts. We share our automated script and the detailed results with the public, making the
review reproducible for future publications.

Keywords: Parkinson’s disease; wearable devices; digital health; biopotential devices; diagnosis;
prognosis; taxonomy

1. Introduction

Parkinson’s disease (PD) is a complex neurodegenerative disorder that affects patients’
and their caregivers’ overall quality of life (QoL). Approximately 60,000 individuals in
the United States are diagnosed with PD each year, while more than 10 million people
are living with PD worldwide [1,2]. Many significant motor signs accompany PD, such as
tremors [3,4], rigidity [5], bradykinesia [6–9], hypokinesia [10], postural instability [11,12], and
gait difficulties [13–15]. While clinical diagnosis is usually based on these motor symptoms,
non-motor symptoms are also common and sometimes more disabling than motor symptoms.
Non-motor signs of PD include cognitive impairment [16,17], dementia [18], depression [19],
and emotional changes [19,20].

The current practice for assessing the motor and non-motor symptoms of PD patients is
a neurological examination, during which a neurologist watches the patient perform specific
tasks [21]. Neurologists assign scores to the tasks performed by the patient as described
by the Unified Parkinson’s Disease Rating Scale (UPDRS) [22] or its updated version,
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the Movement Disorder Society-sponsored revision of the UPDRS (MDS-UPDRS) [23].
Another rating scale, the Hoehn and Yahr scale (HY) [24] assigns patients an overall score
between 0 and 5 based on their clinical stage. Since clinical assessments rely on descriptions
of symptoms’ progression recorded in patient diaries, their credibility is limited by the
subjectivity and recall bias of the patient [25,26]. Imaging equipment, such as magnetic
resonance imaging (MRI), single-photon emission computed tomography (SPECT), and
positron emission tomography (PET), can assist the neurologist in making an objective and
more accurate diagnosis [27]. However, high equipment costs factor into the expenses,
increasing the total cost [28]. Medication alone can cost USD 2500 a year, while corrective
surgery, such as deep brain stimulation, costs up to USD 100,000 per person [1].

Advances in sensing and processing technologies facilitate the long-term objective mea-
surement of symptoms. Hence, new sensors, wearable devices, video capture/processing
systems, and mobile technologies enable a wide range of monitoring, diagnosis, and rehabil-
itation applications [29–39]. Indeed, the number of publications that report using wearable
and mobile technology for PD research increased by more than 20-fold from 2008 to 2021,
as discussed in Section 4. Popular devices include inertial measurement units (IMUs), force
and pressure plates, biopotential sensors, and optical motion capturing systems. This paper
analyzes the trends of technology use in the PD context by analyzing articles published
between 1 January 2008, and 31 December 2021. Starting with the keyword “Parkinson”, we
performed an electronic database search in PubMed Central, Science Direct, IEEE Xplore,
and MDPI to retrieve all articles related to PD. This search yielded 31,718 articles after we
removed surveys and articles written in a language other than English. After completing
the keyword-based automatic filtering of articles, we inspected the articles and classified
them manually so that we could better understand their relevance to (1) application areas
of the proposed solution, (2) symptoms measured for the application, and (3) devices and
sensors used for measuring the symptoms. Then, we reviewed each article by performing
four steps:

• Analyze the trends in use of technology for PD research. For example, we used the
available data to identify the most popular application areas and the areas receiving
increased attention (Section 2.2),

• Analyze the devices used in each application area (Section 2.3),
• Analyze the symptoms measured in each application area and identify the most com-

monly used devices for measuring the different traits (Section 4.1),
• Analyze the overall research trends in this field and how it progresses in the coming

years (Sections 4.2 and 4.3).

The potential benefits of this survey are threefold. First, it identifies the application
areas and technology used in these areas. This information is beneficial to researchers new
to PD and related diseases. Second, our trend analysis reveals the amount of attention
received by each application area, symptom, and technology. This information can help
researchers identify the gaps in the literature and determine the outstanding needs. Finally,
our analysis shows which technologies have been applied to each application area and
symptom. This information can guide researchers in choosing the best-known solutions
and exploring new techniques that have not been tried yet.

The rest of this paper is organized as follows. Section 2 presents the related and
background for our analysis. Section 3 describes our methodology, while Section 4 discusses
the analysis results. Finally, Section 5 concludes the paper and discusses future directions.

2. Background
2.1. Related Work

Wearable and mobile devices can be carried by a user or be placed on any part of
a subject’s body to collect relevant data using one or multiple embedded sensors. They
either transmit the raw data via some communication interface (e.g., Bluetooth or Zigbee)
to an external processing unit or process the data on a microcontroller in the devices
themselves. An assortment of sensors, ranging from accelerometers, gyroscopes, and
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magnetometers to temperature, force, and pressure sensors, can be used individually or in
various combinations for PD assessment [3,11,14,40–45].

Many recent studies have investigated the use of wearable sensors and other technolo-
gies to assess the symptoms presented by patients suffering from neurological disorders [46].
There is also a growing interest in performing unbiased analyses of the efficacy with which
technology-based devices contribute to scientific research on health monitoring and clinical
practices [47]. For example, Godinho et al. [47] reviewed 168 articles after searching the
PubMed database and grouped them based on the device type. They classified the devices
as recommended, suggested, or listed according to three criteria: (1) used in the assessment
of PD, (2) examined in published studies by people other than the developers, and (3) suc-
cessful clinimetric testing. The authors concluded that objective sensing technology is
gaining attention in the study of Parkinson’s Disease but that the clinimetric properties and
testing of the devices remain controversial. They surmised that the reviewed devices can
objectively measure PD symptoms, such as postural control, bradykinesia, tremor, gait, and
daily physical activity. Applications of wearable technology to assess PD symptoms have
also expanded in recent years [48]. It has shown promise in PD diagnosis and management
and other pathology [49–52]. An intriguing article on this topic by Daneault et al. [52]
discusses how wearable and, more generally, mobile technologies could improve efforts to
manage essential tremor, one of the most common movement disorders affecting millions
of people worldwide. The study (1) proposes seven areas in which wearable and mobile
technology can improve the clinical management of essential tremor, (2) reviews the current
state of research in these areas, and (3) concludes that, by working together to address
current knowledge gaps, various practitioners ranging from clinicians to engineers could
leverage wearable and mobile technology everywhere and thus improve patients’ QoL.

Existing surveys focus on the technical contents of each proposed approach in the
literature. They typically summarize the contributions, strengths, and weaknesses of
particular methods [15,47,53]. In contrast, our analysis takes a holistic view to analyze
macroscopic research trends. Hence, it can help researchers understand the current trends
and identify the gaps in the literature. To our knowledge, this article presents the first
systematic study that analyzes the research trends in wearable and mobile usage for PD.
Our results summarize the use of wearable and mobile in terms of application areas, types
of devices, and their recent trends.

2.2. Application Areas

Wearable and mobile technology can help medical practitioners assess the progression
of PD patients by tracking their symptoms. These symptoms, referred to as cardinal PD
features, are divided into motor symptoms and non-motor symptoms, as shown in Table 1.
The motor symptoms are the movement impairments due to PD. They have traditionally
been associated with tremor, rigidity, bradykinesia, and postural instability. Additionally,
abnormalities in limb movements, such as hand rotation, finger tapping, and arm angle,
have been regarded as motor symptoms. In contrast, non-motor symptoms include a large
variety of cardinal features, such as sleep disturbance, cognitive activity, fatigue, dementia,
and psychiatric impairments, as listed in the second column of Table 1. Finally, mixed
symptoms, such as speech and swallowing difficulties, involve a combination of motor
and non-motor activities. To show the prominence of these symptoms and justify their
inclusion in our analysis, Figure 1 shows the number of articles that measure the different
motor and non-motor symptoms. Gait abnormalities, including FoG, are the most common
symptoms measured, followed by tremor. Movement problems, such as bradykinesia and
dyskinesia, are also common symptoms in PD patients. Many research articles use modern
measurement techniques to monitor these symptoms.

Our review and previous surveys of the PD literature [27,48] show that monitoring
motor and non-motor symptoms can be helpful in four primary application areas in the
PD research context: diagnosis, prognosis and monitoring, predicting response to treatment, and
rehabilitation. The rest of this section reviews these areas.
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Table 1. The signs and symptoms assessed by technology in the current literature.

Motor Signs and
Symptoms

Non-Motor Signs and
Symptoms Mixed Signs and Symptoms

Gait EEG abnormalities
Limb movements Cognitive activity

EMG abnormalities Depression
FoG Dementia

Tremor Heart rate Speech topics
Activities of Daily Living (ADL) Emotions Swallowing

Bradykinesia and Dyskinesia Fatigue
Posture Sleep topics
Balance Blinking

Nocturnal Hypokinesia Facial expression
Handwriting Breath

Saccades Cortical activity

Figure 1. The number of research publications between 2008 and 2021 that measure each sign
and symptom.

2.2.1. Diagnosis

PD diagnosis relies on neurologists’ clinical assessment of motor and non-motor
symptoms [54]. To this end, neurologists observe patients while they perform specific tasks
and assign them a score according to one of the standard scales: the previously mentioned
UPDRS [22], its updated version, the Movement Disorder Society-sponsored revision of
the UPDRS (MDS-UPDRS) [23], or the Hoehn and Yahr scale [24]. The clinical information
derived from these rating scales is subjective. Hence, it leads to inter-rate variability and
also intra-rate variability [27,48].

Moreover, as previously mentioned, the equipment used to supplement a clinical
assessment tends to consist of expensive imaging tools, including MRI, SPECT, and PET.
Because early and accurate diagnosis is essential, medical practitioners hope to augment
current techniques with objective and cost-effective alternatives enabled by wearable and
mobile technology. Therefore, recent research has examined the possibility of using wear-
able sensors and other portable technology to diagnose PD. These devices can provide
objective PD-diagnosis measures that help standardize assessments [55–57]. Many re-
searchers have also been able to use wearable sensors and other devices to distinguish PD
patients from healthy controls in lab experiments [55,56,58].



Sensors 2022, 22, 5491 5 of 28

In summary, wearable and mobile technology is used in the following sub-categories
of PD diagnosis:

• Early diagnosis of patients with PD;
• Detecting PD symptoms in people with untreated PD;
• Distinguishing PD patients from either healthy controls or patients with non-PD neuro-

logical disorders;
• Distinguishing PD-related symptoms from similar symptoms not caused by PD (e.g.,

distinguishing PD tremors from essential tremors).

2.2.2. Prognosis and Monitoring the Severity of Symptoms

Predicting the patient’s future condition (prognosis) and assessing the severity of the
disease, including current symptoms, are two activities that depend primarily on clinicians’
judgments and patients’ diary- or memory-based feedback. Clinicians’ judgments are
subjective [27,48], while patients’ diary entries and memories are limited by compliance and
recall bias [25,59,60]. Because clinical approaches that rely on these sources of information
may not be completely reliable, the objective remote monitoring of PD symptoms holds
immense promise for assessing the disease progression, evaluating symptom severity, and
monitoring PD patients in unsupervised environments. To address these issues, recent
work on PD prognosis and monitoring has focused on the following areas:

• Home-based or remote monitoring of PD patients;
• Evaluating the PD progression in a diagnosed patient;
• Evaluating the severity of PD symptoms for a diagnosed patient.

2.2.3. Predicting Response to Treatment

To measure the efficacy of a treatment, clinicians rely on patients’ diary entries and
unrecorded memories, both of which, as noted, can be subjective and unreliable. This
problem has motivated researchers to measure the effects of treatments, including the
effectiveness—and the side effects—with which medications suppress PD symptoms. To
this end, researchers studying the ability of practitioners to accurately predict a patient’s
response to treatment have been addressing the following issues:

• Measuring the effects of such treatments as deep brain stimulation on the suppression of
patients’ symptoms over time;

• Measuring the intended effects of medications on patient symptoms;
• Measuring the unintended effects (i.e., the side effects) of medications on patients (e.g.,

levodopa-induced dyskinesia).

2.2.4. Rehabilitation

Physiotherapy and other rehabilitation techniques are among the most common
treatments for PD and, indeed, for movement disorders in general. As with medications,
it is crucial to assess the efficacy of rehabilitation techniques. Additionally, it has been
observed that cues and feedback are beneficial in assisting a PD patient. A rehabilitation
system can provide auditory, visual, or haptic cues to facilitate a patient’s movement. Such
a system can be explicitly used for gait training and assessing limb movements. Vibration-
based actuators and audio feedback help patients suffering from rigidity, FoG, tremors,
and other symptoms. These approaches can also help patients break out of a freeze and
even suppress symptoms. Mobile technologies that target therapy and rehabilitation can
be divided into the following sub-categories:

• Audio, visual, or haptic cue for gait or movement training;
• Sensory feedback to suppress a symptom such as FoG or tremor.

2.3. Technology in Parkinson’s Disease Research

Our review and other surveys of the PD literature [27,48,61,62] reveal that researchers
use a number of device types and technologies in the application areas presented in the
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previous section. Using the current literature, we classify these devices into the following
eight categories based on the device form factor and sensing modalities.

2.3.1. Wearable Devices

Many recent PD-oriented approaches focus on wearable devices for health monitoring
since they help medical practitioners record patients’ activities and symptoms. Wearable
devices are ideal monitoring technologies for two main reasons: they are not limited to a
specific location and can be easily integrated into patients’ clothes [63]. The most commonly
used wearable devices contain sensors, such as IMUs. The outputs of these sensors can
facilitate analyses of body movement, gait, and symptoms, such as tremors. Our study
covers the following wearable technologies:

• IMUs with integrated accelerometers, gyroscopes, and magnetometer sensors;
• Insole force- or pressure-based sensors that can measure the ground reaction force (GRF);
• Wearable devices that use sensors such as EEG and EMG to measure neural responses

and muscle activities;
• Clothing-integrated sensors, such as strain or accelerometer sensors, that measure

hand tremors;
• Other wearable devices, including smart glasses and smart hats, that can record patients’

emotions and other specific parameters.

2.3.2. Biopotential Devices

These devices can measure the electrical signals (biopotentials) generated by our
body’s physiological processes. This category includes electroencephalogram, electro-
cardiogram, magnetoencephalogram, and electrooculogram devices. They can be either
standalone devices, such as a 16-lead EEG system, or wearable devices with a single-lead
EMG sensor. When a biopotential device is integrated into a wearable device, the resulting
device falls under both the wearable and biopotential-device categories.

2.3.3. Cueing Devices

Devices that give feedback or cues to patients to rectify their walk or assist with other
movements fall under this category. Headphones or speakers can deliver auditory cues,
and visual cues can appear on a screen, smart glass, or even in a virtual-reality environment.
Vibration sensors and electrical stimulators also can give sensory feedback to patients.

2.3.4. Optical Motion Tracker

These devices track user motion with either radio frequency or optical signals. For
example, motion-capturing systems such as Microsoft Kinect [64] and Vicon 3D [65] use
structured light for analysis. Similarly, radar-based systems use radio-frequency signals to
monitor the motion of subjects [32,37]. A system of multiple IMUs, even camera-based 3D
setups, can also capture a patient’s movement.

2.3.5. Audio Recording

Many PD patients experience issues with swallowing or speech, as shown in Table 1.
Audio recording devices can analyze and monitor symptoms related to swallowing and
speech. For instance, microphones and smartphones record speech tasks or patients’ voices
for the subsequent diagnostic analysis [58,66].

2.3.6. Video Recording

Video-recording devices are helpful for PD monitoring because gait and motor issues
are among the most common PD symptoms. For instance, video cameras record patients’
movements at home or during laboratory experiments, and practitioners can use the
recordings to spot symptoms or to corroborate or disprove predictions based on other
devices [6,20,67].
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2.3.7. Force/Pressure

Force or pressure plates measure the force exerted by the patients’ feet while walking.
Therefore, they help measure the gait quality of the patient. Force or pressure sensors are
also integrated into gait mats to measure the gait quality of a patient.

2.3.8. Smartphone

Researchers have used accelerometers, gyroscopes, magnetometers, GPS, and other
sensors on smartphones for various analytical objectives. Smartphone applications can
also record such matters as patients’ emotional displays and drug dosages. Additionally,
smartphone screens can record handwriting, microphones can record speech, and cameras
can record movement.

2.3.9. Other

Other devices have also helped practitioners assess PD patients. We classify these
devices that do not fall into the above categories as “other.” For example, digitized tablets
can serve as smart screens for handwriting assessment. PD patients can write on these
screens during spiralography exams. Likewise, smart pens can record hand movements
during writing. Solutions based on virtual or augmented reality have also started becoming
popular in PD applications.

3. Methodology for Article Selection and Classification
3.1. Search Methodology

The first step in our analysis was obtaining the original PD-related articles published
between 1 January 2008 and 31 December 2021, as shown in Figure 2. To this end, we per-
formed an electronic database search of articles published during this period in the PubMed
Central, Science Direct, IEEE Xplore, and MDPI databases. We chose these databases so
that our search process would cover both medical and engineering journals [15].

We performed our systematic searches by following the PRISMA guidelines [68]. To
make the search as broad as possible, the initial search query consisted of just one keyword,
“Parkinson”, in the title, abstract, and keyword (TAK). Table 2 lists our search queries and
the corresponding number of hits in each database. From the queries, we obtained a total
of 31,718 articles, of which 14,898 were from PubMed Central, 12,216 were from Science
Direct, 2564 were from IEEE Xplore, and 2040 articles were from MDPI.

Exclusion criteria during the initial search: From this pool of articles, we removed
the ones that were not written in English or that were review articles themselves. At
this point, we retrieved specific information from each article: namely, its title, authors,
publication title, year of publication (YOP), keywords, abstract, and DOI. Then, as discussed
in the next section, we put the resulting data through the filtering step to exclude articles
that fell outside the scope of our research.

Table 2. Search queries used for each database.

Database Query Years Hits

Pubmed
Central

parkinson [Body-Key Terms] OR
parkinson [Abstract] OR parkinson [Title]

2008–2021 14,898

Science Direct “parkinson” in Abstract OR Keyword OR Title 2008–2021 12,216
IEEE Xplore “parkinson” in Abstract OR Keyword OR Title 2008–2021 2564
MDPI “parkinson” in Abstract OR Keyword OR Title 2008–2021 2040
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Figure 2. Flow diagram of our systematic review process for PD-assessment research publications
(2008–2021).

3.2. Filtering Methodology

We developed an automated script in Python to filter the information collected from
the four databases. Following the PICO strategy [69], our script uses four keyword blocks
adapted from [70] to implement the selection and exclusion criteria. The first keyword
block, which has 10 PD-related keywords, specifies the inclusion criteria in terms of the PD
terminology and symptoms. After selecting the articles with at least one of these keywords
in TAK, the second block, which has 7 keywords, was used to exclude the studies conducted
on non-human subjects, as shown by the first two blocks in Figure 3. Next, we filtered
the articles according to the type of device discussed with the next set of keyword blocks.
Specifically, the third keyword block has 66 terms for 66 technology devices commonly
used for PD assessment. This block is illustrated by the third block in Figure 3, while
the complete list of keywords is provided in Appendix C. Finally, we used the fourth
keyword block, which consists of 11 terms, to exclude 11 technologies that are currently
unsuitable for use outside the four walls of an actual clinic. Five such technologies are MRIs,
deep brain simulation, PET, neuroimaging, and SPECT. A complete list of all keywords is
provided in Appendix C.
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Figure 3. Keyword blocks constructed according to the PICO strategy to determine the relevance of
an article to this review.

The automated filtering process excluded 28,284 articles from the complete list of
31,718 articles. Specifically, the first keyword block included 9572 articles relevant to the
symptoms under review herein. From these 9572 articles, the second keyword block ex-
cluded 4982 articles because they used non-human subjects. This step thus left 4590 articles
for further filtering. Similarly, the third and fourth keyword blocks excluded 1156 articles,
as they involved studies about technologies that fell outside the scope of our current review.
Appendix C lists all of the keywords used in these keyword-block steps. Finally, the script
removed duplicate entries, leaving 3319 articles. The Python code used for filtering and
removing the duplicate articles will facilitate future studies, particularly those addressing
relevant articles published after 2021.

3.3. Classification Methodology

We manually analyzed the final set of filtered articles to classify them according to
application area and technology used. We first read the title, abstract, and keyword (i.e.,
TAK) sections to understand the main application area of each article. Specifically, we chose
one of the four application areas described in Section 2.2 and identified the symptoms
(Table 1) analyzed by the articles. When we were unable to extract the application area
or the addressed symptoms from our TAK review of an article, we read the entire article
to accurately classify it in relation to these two matters. Using a similar procedure, we
categorized the devices and the other technology addressed in each article.

As part of the manual classification, we also exclude articles that fell out of the scope of
our review. For example, despite falling outside this scope, some articles use specific terms,
such as “sensor” and “acceleration”, which initially led them to be included in our review,
hence the need for manual classification. Similarly, the script accidentally included some
articles because they featured the term “ECG”, which in these cases, was related not to PD
but “Wolff–Parkinson–White (WPW) syndrome”. We manually excluded such articles from
the final list of classified items. Overall, we identified that 1559 of the 31,718 articles were
relevant and classified according to their technology and application areas.

4. Results and Discussion

This section analyzes the research trends in the selected articles published between 2008
and 2021. Before describing the details of the research trends, we first present the publication
trends during this period in Figure 4. Overall, the total number of articles published yearly
increased steadily, with an accelerated rate in the last four years (2018 to 2021). Notably,
most of the articles (45%) were published in the last four years, while an impressive 19% of
the articles were published in 2021 alone. This trend shows the growing interest in finding
alternative objective ways of assessing Parkinson’s Disease, particularly in recent years. In
the following, we first analyze the number of articles published in each application area.
Then, we focus on the various PD symptoms studied in these articles. Finally, we describe
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the various wearable and mobile technologies used in these studies. Our analysis in this
section can help researchers understand the changes in PD research over the last few years
and identify future directions in this area.
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Figure 4. The yearly publication trends between 2008 and 2021 in each application area.

4.1. Application Areas

Wearable technology has varying levels of utility in each application area of PD, as
the pie chart in Figure 5 shows. Of the 1559 articles evaluated, 719 (46%) focus on PD
diagnosis (including diagnostic assistance) and 479 (31%) focus on PD prognosis and
monitoring. Furthermore, 236 articles (15%) address patient rehabilitation and patient
QoL, and 125 articles (8%) analyze the effects of medicine and other treatments on patient
symptoms. Figure 5 shows that the most frequently targeted application areas during
2008–2021 are diagnosis and prognosis/monitoring disease progression. The following
sections detail the trends in each application area.

Diagnosis 719 
 (46%)

Prognosis/Monitoring Disease Progression

479 
 (31%)

Rehabilitation

236 
 (15%)

Predicting Response to Treatment

125 
 (8%)

Figure 5. Percentage of publications (2008–2021) by application area.

4.1.1. Diagnosis

Being well aware that a correct diagnosis is of prime importance, many researchers
have proposed objective and inexpensive technology-based PD diagnostic techniques.
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Figure 6a shows that the number of articles on PD diagnosis increased steeply and sur-
passed 150 in the last two years. A more detailed investigation indicates that studies
analyzing both motor and non-motor symptoms contributed to this increase. For example,
Raethjen et al. [71] and Zhang et al. [72] used EEG and EMG data to characterize tremor
in PD patients. Similarly, gait analysis using smartphone accelerometers successfully
distinguished PD patients with gait disorder from healthy controls [55]. Muscle-activity
information obtained from EMG sensors has also proved helpful in PD diagnosis. For
example, Meigal et al. [56] employed surface EMG (sEMG) to distinguish between PD
subjects and healthy controls and analyzed the severity of the former subjects’ symptoms.
Studies focusing on non-motor symptoms analyzed sleep patterns and speech disorders as
PD biomarkers. With EMG data recorded from the chin of a sleeping PD patient, researchers
conducted a comparison between the rapid eye movement (REM) of PD patients with REM
sleep behavior disorder (RBD) and PD patients without RBD [57]. Similarly, Campos-Roca
et al. extracted various acoustic features from an acoustic data set of 40 healthy control
and 40 PD patients [58]. In another study, Tsanas et al. used four parsimonious subsets of
132 dysphonia features from an existing data set of 263 samples drawn from 43 subjects [66].
The authors showed that the classification with the new dysphonia features reached almost
99% accuracy. These studies show that recent technological advances combined with novel
algorithms can help clinicians develop objective measures for PD diagnosis. Table A4 in
Appendix B provides a comprehensive list of the articles focusing on diagnosis.

Figure 6. The number of research publications (2008–2021) divided by PD application area: (a) pub-
lications about diagnosis, (b) publications about prognosis and monitoring, (c) publications about
predicting patient responses to treatments, and (d) publications about rehabilitation.

4.1.2. Prognosis and Monitoring Disease Progression

Wearable and mobile technologies are well suited for accurate home-based prognosis
and monitoring because they can continuously record patients’ movements and symptoms.
Indeed, 479 (31%) studies included in our analysis deal with PD prognosis and monitoring,
as shown in Figure 5. The most commonly analyzed problems concern the tracking of
PD patients’ symptoms, assisted living for PD patients, the evaluation of PD-symptom
severity, and disease progression in general. Figure 6b presents the growth trends in these
prognosis-and-monitoring articles during the 2008–2021 period. The growth picked up a
considerable pace after 2014 and approached 75 papers per year. This growth is driven
mainly by improvements in wearable technologies. Table A3 in Appendix B provides a
comprehensive list of articles about prognosis and monitoring.

The articles on prognosis-and-monitoring applications have focused on enabling
clinical tests outside the clinic. In many cases, these applications are helpful for both pre-
prognosis monitoring and post-prognosis monitoring. For example, the “Timed Up and Go”
test (TUG) is a commonly used clinical test to evaluate balance and mobility. Salarian et al.
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proposed an instrumented TUG called iTUG using portable inertial sensors [73]. PD
monitoring is an essential contributor to the development of accurate prognoses and post-
prognosis assessments. Thus, many studies focus on the monitoring of gait parameters.
For instance, Zwartjes et al. [6] presented an ambulatory monitoring system that provides
a complete motor assessment of PD patients by simultaneously analyzing their motor
activities and the severity of several symptoms, including tremor, bradykinesia, and hy-
pokinesia. Another study in 2016 proposed that smartwatches can help quantify tremors in
PD patients [4]. Similarly, Bächlin et al. [74] proposed a wearable assistant to detect FoG
events during ambulatory movements. Researchers have recently focused on non-motor
symptoms, such as emotions and fatigue, to assess PD progression. One study recorded
the facial expressions of 40 PD patients to investigate the relationship between reduced
facial expressiveness and altered emotion recognition in PD [20]. Overall, these studies
demonstrate the growing potential of technology to enable increasingly precise and accu-
rate monitoring of PD patients. Hence, the growth trend evident in Figure 6b is likely to
continue in the coming years.

4.1.3. Predicting Response to Treatment

About 8% of 1559 studies in our analysis measured the efficacy of PD treatment in
patients. Figure 6c illustrates trends in the number of articles published annually between
2008 and 2021 regarding clinicians’ ability to predict patients’ responses to therapy. The
growth in this application area was steady throughout the period, except for an outlier
jump in 2019. In general, this steady growth suggests that the focus on using wearable
and mobile technology to predict PD treatment responses did not experience a massive
shift during the period. Table A1 shows a summary of the papers that focus on predicting
response to treatment, while the rest of this section highlights the notable therapies for PD
and technology for predicting the response.

Wearable and mobile technology may help predict patients’ responses to several pow-
erful, frequently used PD treatments. Levodopa medication is the most popular treatment
for motor and non-motor PD symptoms. It helps alleviate important symptoms, such
as bradykinesia, rigidity, and tremors. Another conventional treatment methodology is
deep brain stimulation of the subthalamic nucleus. The stimulation helps alleviate mo-
tor symptoms and, thus, reduces the dosage of dopaminergic medication. Measuring
the efficacy of such treatments in PD patients is essential since the mechanism through
which the treatments improve cognitive or motor operations is not well understood. Re-
cent studies have proposed EEG, EMG, and other biopotential methods to measure the
effects of levodopa medication on PD patients [7,75,76]. In contrast, Rigas et al. [77] and
Pelicioni et al. [78] proposed new symptom-assessment methods for PD patients using
wearable sensors. Other research articles have proposed wearable-sensor approaches to
measuring the effectiveness of deep brain stimulation in PD patients [10,79].

In summary, most of the articles whose focus is on predicting response to treatment
have analyzed the severity of PD symptoms before, during, and after treatment. Some
studies have also focused on understanding how a given medication alleviates PD symp-
toms. Further research in this domain will help health professionals fine-tune treatment for
individual patients according to their individual responses to specific treatments.

4.1.4. Rehabilitation

Developing an efficient rehabilitation plan for PD patients is crucial to managing their
symptoms. Rehabilitation techniques may use assistive cues to help the patients with daily
movement or activities. Between 2008 and 2021, 236 articles were published regarding
rehabilitation techniques. Significant research also focused on developing methods to
alleviate motor symptoms, such as FoG and tremors, by using auditory and haptic (e.g.,
vibratory) cues. Table A2 lists the articles related to rehabilitation. Below, we summarize
recent approaches to rehabilitation.
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The decline in motor and cognitive functionalities can significantly increase the risk
of falling and the incidence of FoG while reducing QoL [15,80]. To counter the decline in
motor functions, clinicians often employ the rehabilitation technique known as stepping-in-
place training [81]. Sensory cuing can facilitate stepping-in-place for PD patients. Audio
recordings of specific tasks can effectively reduce gait variability in PD patients but not
reduce FoG. Young et al. studied the efficacy of such auditory cues in PD patients with
FoG [82]. Similarly, haptic cues have been used in various studies whose objective is to
unfreeze a PD patient’s gait during an episode of FoG [83,84]. Vidya et al. [85] combined
pulse-width modulation with a coin-type vibration motor on patients’ wrists and a micro-
controller to generate random vibration patterns to help PD patients cope with hand
tremors. In summary, the interest on improving rehabilitation strategies for PD patients
steadily increased between 2008 and 2021, as shown in Figure 6d. The growth was linear,
with the number of papers increasing from about two in 2008 to around 25 in 2021.

4.2. Trends in Symptoms Measured by PD Research Papers

During the period under examination, much research explored how clinicians should
assess motor symptoms since they are often the most visible symptoms in PD patients.
Inertial data collected by wearable devices are broadly used to monitor gait parameters,
tremors, motor activities, FoG events, bradykinesia, and dyskinesia (the on-off stages).
Force and pressure sensors placed under the shoe or in an insole can measure the ground
reaction force, a popular parameter for analyzing gait. EMG sensors can monitor the
muscular response of a person. More sophisticated instruments, ranging from digitized
tablets to smartpens, help clinicians analyze the hand movement and pressure experienced
by PD patients engaged in hand-writing. The heat-map in Figure 7 shows the number of
times a specific type of motor symptom was the basis for an article’s proposed solution
for a particular PD application area. Gait abnormality is the most frequently cited motor
symptom in PD assessment across all application areas except for the “Predicting Response
to Treatment” area. In that area, bradykinesia and dyskinesia are the motor symptoms that
articles most commonly monitor. These articles primarily monitored the on-off stages and
evaluated muscle activities. Tremor and FoG are common motor symptoms in PD patients
and biomarkers for objective assessments of PD. Analyzing the balance and posture of PD
patients is a common strategy used in prognosis, monitoring, and rehabilitation.

Figure 7. The heat-map presenting the number of research publications (2008–2021) that address the
measuring of motor PD symptoms (the darker the color, the higher the number).

Figure 8 presents the trends in the research community’s focus on gait, tremor, and
other PD symptoms during the 2008–2021 period. Following 2012, more articles focused on
gait than on tremor, even though the annual number of articles addressing one or the other
of these symptoms kept growing. With the development and popularity of new wearables
and advanced IMUs, measuring gait parameters became easier.
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Figure 8. The number of research publications (2008–2021) examining the application of new tech-
nologies to specific types of PD symptoms (e.g., FoG, and tremor).

By 2021, many researchers focused on non-motor symptoms such as cognitive im-
pairment, dementia, and depression. Since these symptoms can be more disabling for a
patient, an objective assessment is required. Analyzing neural response measurements is a
common strategy used to improve their diagnosis, monitoring, and analysis of responses
to treatment, as shown in Figure 9. Analyzing the cognitive activity of PD patients is also
a strategy used in various PD application areas. However, it is evident from the Figure 8
heat-map that the amount of research focusing on severe and disabling symptoms, such as
dementia, depression, and fatigue, is far smaller than the amount of research focusing on
motor symptoms.

Figure 9. The heat-map presenting the number of research publications (2008–2021) that address the
measuring of non-motor PD symptoms (the darker the color, the higher the number).

4.3. Trends in Device Usage from 2008 to 2021

This section evaluates the types of technology employed by the selected articles under
review. Of the 1559 reviewed articles, 40% used wearable devices, 18% used biopotential
devices, 13% used audio-recording devices, 5% used smartphones, and 3% examined
auditory, haptic, or visual cuing devices, as summarized in Figure 10. This figure shows
that wearable and biopotential devices are the most common technologies.
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Figure 10. Number of research publications (2008–2021) examining the application of specific types
of new technologies to PD areas.

Biopotential devices applying EEG, ECG, EMG, EOG, and similar technologies to
PD-stage assessment were common topics. Several articles examine EEG recordings for
the measurement of patients’ neural activity, which is a popular PD biomarker [71,86–88].
Other articles examine EEG data for clinical assessments of non-motor symptoms, such as
sleep, dementia, and cognitive activity, and of mixed symptoms, such as saccades [16,89–93].
Similarly, EMG recordings are used for muscle activity, which is a factor instrumental in
PD diagnoses and prognoses [94–98]. Many articles discuss how ECG and EOG technology
can enhance clinicians’ study of heart rates and optical movements for assessing PD in
patients [99–101]. Figure 11a,b illustrate the growth in the number of articles devoted
to wearables or biopotentials. Figure 11a shows that the number of articles examining
biopotential devices for the evaluation of PD symptoms grew at a constant rate during the
2008–2021 period. With ongoing advances in portable biopotential devices and wearable
devices featuring built-in biopotential sensors, it is reasonable to anticipate that PD research
using this technology will continue to grow.

Figure 11. The number of research publications between 2008 and 2021. (a) Studies that use biopoten-
tial devices for PD assessment, (b) studies that use wearable devices for PD assessment. The solid
lines shows the trend of the publications in the last 14 years.

Section 2.3.1 elaborates the different devices categorized as “Wearable”. Any wire-
less device placed on any part of a subject’s body to collect relevant data can be called a
wearable device. Different types of sensors, such as the accelerometer, gyroscope, mag-
netometer, temperature, force, and pressure, have been used individually or together for
PD assessment [3,11,14,38–45]. Some articles examined the incorporation of EMG and
other biopotential sensors into wearable devices to collect data about PD patients’ muscle
activity [72,76,102–105]. Several other articles evaluated sensors, including insole force
(i.e., pressure) sensors, which generate data on the vertical ground reaction force generated
when a subject is walking: using these data, clinicians can assess the subject’s gait, balance,
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or posture, all of which are critical factors for PD patients [106–112]. Figure 11b shows that
the number of articles using wearable devices increased significantly during the period
under examination.

Device Usage Trend: The heat map in Figure 12 tracks the number of articles using
at least one of the cited devices during the 2008–2021 period. We see that research on
all the devices continued to grow. The growth, which was significantly pronounced for
wearable and biopotential devices, can be attributed to advances in sensor technology. As
with wearable and biopotential devices, the last several years of the period under review
witnessed a growing number of articles using motion-capturing systems, audio-recording
devices, and smartphones).

Figure 12. The heat-map presenting the number of research publications (2008–2021) that address PD
assessment using modern technology (the darker the color, the higher the number.

Device Usage by Application Area: Figure 13 shows the distribution of device
categories across the four primary application areas. Almost all device categories, except
cuing, were used predominantly in diagnosis, prognosis, and monitoring. This trend
was expected because most articles in our review focused on one or the other of these
two application areas. We also discovered that wearable devices were primarily used
in the prognosis-and-monitoring application area because these devices can effectively
monitor patients in a free-living environment. For similar reasons, motion tracking and
video recording were extensively examined with prognosis objectives. Biopotential devices
were one of the most heavily studied devices in predicting response to therapy. In the
articles, audio-recording devices were prominently studied regarding their potential to aid
in diagnosis but were seldom studied to help predict response to treatment. Interestingly,
not a single article examined smartphones for their potential application in predicting
response to treatment.
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Figure 13. The distribution of articles published between 2008 and 2021 related to the assessment of
Parkinson’s disease using wearable and mobile technology.
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We also observe that cuing devices are used almost exclusively for rehabilitation.
Specifically, about 90% of the articles focusing on cuing systems did so in the context of
rehabilitation. Researchers used active cuing such as vibration and auditory feedback to
suppress symptoms such as FoG and tremor. Various scientific studies used visual cues to
facilitate walking among PD patients [13,113,114]. Wireless headphones were also studied
to give patients auditory feedback that would improve their motor activity, gait training,
and balance training, all of which are forms of rehabilitation [13,115–117]. Moreover, several
articles centered on auditory and vibratory cues for their possible contribution to the FoG-
or tremor-related rehabilitation applications [74,83,85,118–122].

5. Conclusions, Gaps in Literature, and Future Directions

This paper presents a comprehensive overview of the technological solutions currently
being used for their potential contributions to the objective assessment of PD. After review-
ing 1559 relevant articles published between 2008 and 2021, we identified four primary
application areas addressed by researchers as diagnosis, prognosis and monitoring, predict-
ing response to treatment, and rehabilitation. Our analysis also showed the most commonly
measured symptoms, including gait, tremor, limb movements, and FoG. Moreover, our
analysis revealed the most commonly used technologies, led by wearable devices, biopoten-
tial sensors, and audio recording. The publication trends show that the number of studies in
each application area and technology use has increased steadily, with a larger rate in recent
years. We also note that novel contributions made by the papers included in the survey
are important to understanding the use of technology in PD. For instance, analyzing the
contributions of each study can help us understand if any particular symptoms are more
challenging to monitor than other symptoms. At the same time, judging the contributions
of different approaches is difficult since it is subjective. Therefore, we did not include such
an analysis in this paper and leave it for future work.

We concluded that the scientific community undertaking these studies has generally
sought to use unobtrusive systems to monitor PD progression, beginning in its nascent
stage. Diagnosis has received the most significant attention due to its intuitive importance,
although it is arguably one of the two most challenging problems along with treatment
of PD. Therefore, a notable gap in the literature is the insufficient attention to prognosis,
monitoring, and response to treatment. Progress in these fields can both directly benefit
PD patients and pave the way for established diagnostic assistance. Regarding technology,
most studies employ a single modality, such as wearable inertial sensors. This trend can
be attributed to the nontrivial expertise required for using a specific technology as well as
integrating multiple sensing modalities. However, significant capability and quality im-
provements are possible with multi-modal techniques that combine different technologies,
such as wearable devices with audio and video recording. Few studies take advantage
of multiple modalities, but a systematic combination of carefully fused devices remains a
significant gap in the literature. We hope that this survey will catalyze research in using
technology for PD monitoring and treatment to close the gaps. Our future work includes
developing algorithms for the automatic classification of papers to minimize the need
for manual inspection of papers. This automation will also enable new surveys targeting
different movements and neurological disorders, such as Alzheimer’s.
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Appendix A. Data Collection

The methodologies used for downloading the data from the four online databases are
also different. The documents were exported in comma-separated values (CSV) format
from IEEE Xplore, tab-delimited format from MDPI and BibTex format from Science Direct.
For PubMed Central, we used a Python-based API, Metapub [123], for automated search.
The information extracted from all of the databases were accumulated and stored together
in a .CSV file.

Appendix B. List of Papers in Each Application Area

Tables A1–A4 below list the papers in each application area discussed in Section 4.1.

Appendix C. Keywords Used for Automated Filtering

The first keyword block has 10 keywords related to the disease: ‘Parkinson’, ‘Parkin-
son’s Disease’, ‘Bradykinesia’, ‘Dyskinesia’, ‘Levodopa’, ‘Freezing of gait’, ‘Tremor’, ‘ON-OFF
states’, ‘FOG’, ‘L-DOPA’.

The second block is made of 7 keywords to exclude non-human studies from the
study: ‘Rats’, ‘Primates’, ‘Marmoset’, ‘Monkeys’, ‘Mice’, ‘Mouse’, ‘Animal’.

The third keyword block has 66 technology terms related to Parkinson’s disease
assessment: (i.e., ‘Acceleration’, ‘Accelerometer’, ‘Gyroscope’, ‘Magnetometer’, ‘Gyro’, ‘Acc’,
‘Exoskeleton device’, ‘Inertial sensor’, ‘Video recording’, ‘Video camera’, ‘Camera’, ‘EHealth’,
‘Technology’, ‘Remote monitoring’, ‘Home monitoring’, ‘Telemedicine’, ‘Mobile phone’, ‘Mobile
application’, ‘Precision medicine’, ‘Digital health’, ‘Inertial Measurement Unit’, ‘IMU’, ‘Wearable’,
‘Magneto inertial sensor’, ‘Sensor’, ‘Force plate’, ‘Force sensor’, ‘Pressure sensor’, ‘Gait mat’,
‘Smartphone’, ‘Augmented reality’, ‘Kinect’, ‘VICON’, ‘ECG’, ‘EEG’, ‘EMG’, ‘EOG’, ‘MEG’,
‘Electrocardiography’, ‘Electroencephalography’, ‘Electromyography’, ‘Electrooculography’, ‘Magne-
toencephalography’, ‘Machine learning’, ‘Classification’, ‘Auditory cue’, ‘Auditory cueing’, ‘Visual
cue’, ‘Ha[tic cue’, ‘Vibration’, ‘Gait classification’, ‘Insole sensors’, ‘Leap motion’, ‘Computer vision’,
‘Supervised learning’, ‘Neural networks’, ‘Speech disorder’, ‘Music therapy’, ‘Smart application’,
‘Smartphone application’, ‘Smart watch’, ‘Smart pen’, ‘Touchscreen’, ‘Digitized tablet’, ‘Fitness
band’, ‘Optical motion capturing system’).

The last keyword block has 11 technology terms related to Parkinson’s disease
treatment, which we excluded from our review (i.e., ‘Positron emission tomography’, ‘Single-
photon emission computed tomography’, ‘Magnetic Resonance Imaging’, ‘Deep Brain Stimulation’,
‘Transcranial’, ‘Neuroimaging’, ‘Brain imaging’, ‘fmri’, ‘SPECT’, ‘PET’, ‘MRI’). The keyword
blocks were used based on an earlier review [70].

https://github.com/SizheAn/Parkinson-s-Disease-Survey
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Table A1. Papers about predicting response to treatment.

Reference Year Application Aspect Area Device Additional Device Sensors No. of Subjects (n)

Jobi S. George et al. [7] 2013 Predicting Response
to treatment

Bradykinesia and
Dyskinesia Biopotential EEG 10 < n ≤ 20

Damian M. Herz et al. [75] 2014 Predicting Response
to treatment EEG Signals Biopotential EEG 10 < n ≤ 20

Verneri Ruonala et al. [76] 2018 Predicting Response
to treatment Muscle activity Wearable Biopotential EMG 10 < n ≤ 20

George Rigas et al. [77] 2010 Predicting Response
to treatment EEG Signals Biopotential EEG u/k

Paulo H. S Pelicioni et al. [78] 2018 Predicting Response
to treatment Gait, Posture, Balance Wearable Accelerometer >30

Samer D. Tabbal et al. [124] 2008 Predicting Response
to treatment Limb movements Wearable Force sensor,

Gyroscope >30

Y. Rakhshani Fatmehsari et al. [79] 2011 Predicting Response
to treatment Gait Wearable Gyroscope,

Accelerometer ≤10

Roongroj Bhidayasiri et al. [10] 2016 Predicting Response
to treatment

Nocturnal
Hypokinesia Wearable Accelerometer,

Gyroscope ≤10

Verneri Ruonala et al. [76] 2018 Predicting Response
to treatment EMG Signal Wearable Biopotential EMG

Saara M. Rissanen et al. [125] 2015 Predicting Response
to treatment EMG Signal Wearable Biopotential EMG, Accelerometer

Wesley JE Teskey et al. [8] 2012 Predicting Response
to treatment

Bradykinesia and
Dyskinesia Wearable Accelerometer,

Gyroscope 20 < n ≤ 30

Table A2. Papers about rehabilitation.

Reference Year Application Aspect Area Device Additional Device Sensor/Actuator No. of Subjects

Taylor Chomiak et al. [81] 2017 Rehabilitation Limb movements Cueing Wearable Audio cue 10 < n ≤ 20
William R. Young et al. [82] 2016 Rehabilitation Freezing of Gait Cueing Audio cue 10 < n ≤ 20

E. Jovanov et al. [83] 2009 Rehabilitation Freezing of Gait Wearable Cueing Audio cue, Accelerometer,
Gyroscope ≤10

Steven T. Moore et al. [84] 2008 Rehabilitation Gait, Freezing
of Gait Wearable Accelerometer 10 < n ≤ 20
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Table A2. Cont.

Reference Year Application Aspect Area Device Additional Device Sensor/Actuator No. of Subjects

M.E. Jenkins et al. [5] 2009 Rehabilitation Muscle activity Biopotential EMG >30
Vishnu Vidya et al. [85] 2017 Rehabilitation Tremor Cueing Vibration cue u/k
Pieter Ginis et al. [126] 2017 Rehabilitation Gait Motion Tracker Motion capture ≤10

Juan Camilo Vasquez-Correa et al. [127] 2018 Rehabilitation Gait, Speech topics,
Handwriting Wearable Audio Recording,

Other
Touchscreen, Microphone,
Accelerometer, Gyroscope

Syed Haidar Shah et al. [128] 2018 Rehabilitation Freezing of Gait Wearable Accelerometer, Gyroscope
W Nanhoe-Mahabier et al. [129] 2012 Rehabilitation Balance Wearable Cueing Gyroscope,

Vibration cue
10 < n ≤ 20

EEH van Wegen et al. [130] 2018 Rehabilitation Posture, Balance Wearable Cueing Accelerometer,
Vibration cue

William Omar Contreras Lopez et al. [131] 2014 Rehabilitation Gait Wearable Cueing Audio cue, Accelerometer

Filippo Casamassima et al. [115] 2014 Rehabilitation Gait Wearable Smartphone, Cueing
Accelerometer,

Gyroscope,
Magnetometer, Audio cue

Table A3. Papers about prognosis or monitoring of disease progression and severity of symptoms.

Reference Year Application Aspect Area Device Additional Device Sensor/Actuator No. of Subjects

Daphne G. M. Zwartjes et al. [6] 2010 Prognosis/Monitoring
Disease Progression

Limb movements,
Tremor, Movement

disorder
Wearable Video Recording Accelerometer,

Gyroscope, Video camera 10 < n ≤ 20

R. Contreras et al. [4] 2016 Prognosis/Monitoring
Disease Progression Tremor Wearable Smartphone Accelerometer, Gyroscope 10 < n ≤ 20

Shaohua Wan et al. [132] 2018 Prognosis/Monitoring
Disease Progression Speech topics,ADL Smartphone Accelerometer,Microphone u/k

Luis A. Sanchez-Perez et al. [133] 2018 Prognosis/Monitoring
Disease Progression Tremor Wearable

Accelerometer,
Gyroscope,

Magnetometer
>30

M Bächlin et al. [74] 2010 Prognosis/Monitoring
Disease Progression

Gait, Freezing
of Gait Wearable Cueing Accelerometer, Audio cue ≤10

Àngels Bayés et al. [9] 2018 Prognosis/Monitoring
Disease Progression

Bradykinesia and
Dyskinesia Wearable Smartphone Accelerometer u/k
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Table A3. Cont.

Reference Year Application Aspect Area Device Additional Device Sensor/Actuator No. of Subjects

Arash Salarian et al. [126] 2010 Prognosis/Monitoring
Disease Progression Posture, Gait Wearable Accelerometer, Gyroscope 10 < n ≤ 20

JA Robichaud et al. [134] 2009 Prognosis/Monitoring
Disease Progression EMG Signal Biopotential EMG 20 < n ≤ 30

Mevludin Memedi et al. [135] 2015 Prognosis/Monitoring
Disease Progression Handwriting Other Touchscreen >30

J Dietz et al. [19] 2013 Prognosis/Monitoring
Disease Progression

Emotions,
Depression Biopotential EEG 10 < n ≤ 20

Lucia Ricciardi et al. [20] 2015 Prognosis/Monitoring
Disease Progression Emotions Video Recording Video camera >30

Shyamal Patel et al. [67] 2009 Prognosis/Monitoring
Disease Progression

Tremor,
Bradykinesia and

Dyskinesia
Wearable Video Recording Accelerometer, Video

camera 10 < n ≤ 20

Table A4. Papers about diagnosis, early diagnosis and differential diagnosis.

Reference Year Applicaton Aspect Area Device Additional Device Sensors No. of Subjects (n)

Jan Raethjen et al. [71] 2009 Diagnosis EEG signals, EMG signals Biopotential EEG, EMG 20 < n ≤ 30
Mitsuru Yoneyama et al. [55] 2013 Diagnosis Gait Wearable Accelerometer ≤10

Srivani Padma G et al. [136] 2015 Diagnosis Tremor Other Fiber Bragg Grating Tremor
Measurement (FBGTM) u/k

Bin Zhang et al. [72] 2018 Diagnosis Tremor Biopotential Wearable Accelerometer, EMG >30
VF Annese et al. [137] 2018 Diagnosis Gait, EMG Signal Biopotential EMG ≤10
A.Iu Meigal et al. [56] 2009 Diagnosis EMG Signal Biopotential EMG 10 < n ≤ 20

Johannes C Ayena et al. [138] 2015 Diagnosis Balance Biopotential Smartphone Force sensor 20 < n ≤ 30
R Soubra et al. [139] 2018 Diagnosis Gait Wearable Force sensor u/k

Raffaele Ferri et al. [57] 2012 Diagnosis Sleep Topics Biopotential EMG 20 < n ≤ 30
Heinrich Garn et al. [18] 2017 Diagnosis Dementia Biopotential EEG >30

Yolanda Camnos-Roca et al. [58] 2018 Diagnosis Speech Topics Audio Recording Microphone >30
Athanasios Tsanas et al. [66] 2012 Diagnosis Speech Topics Audio Recording Microphone >30
Kotsavasiloglou C et al. [140] 2017 Diagnosis Handwriting Other Touch screen 20 < n ≤ 30



Sensors 2022, 22, 5491 22 of 28

Table A4. Cont.

Reference Year Applicaton Aspect Area Device Additional Device Sensors No. of Subjects (n)

Lidia Ghosh et al. [17] 2017 Diagnosis Cognitive Activity Biopotential EEG 20 < n ≤ 30

Dung Phan et al. [12] 2018 Diagnosis Bradykinesia and
Dyskinesia Wearable Accelerometer, Gyroscope

M. Yokoe et al. [141] 2009 Diagnosis Limb movements Wearable Accelerometer, Touch sensor
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