

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

A Systematic Survey of Self-Protecting Software Systems

ERIC YUAN, George Mason University

NAEEM ESFAHANI, George Mason University

SAM MALEK, George Mason University

Self-protecting software systems are a class of autonomic systems capable of detecting and mitigating

security threats at runtime. They are growing in importance, as the stovepipe static methods of securing

software systems have shown inadequate for the challenges posed by modern software systems. Self-

protection, like other self-* properties, allows the system to adapt to the changing environment through

autonomic means without much human intervention, and can thereby be responsive, agile, and cost

effective. While existing research has made significant progress towards autonomic and adaptive security,

gaps and challenges remain. This paper presents a significant extension of our preliminary study in this

area. In particular, unlike our preliminary study, here we have followed a systematic literature review

process, which has broadened the scope of our study and strengthened the validity of our conclusions. By

proposing and applying a comprehensive taxonomy to classify and characterize the state-of-the-art

research in this area, we have identified key patterns, trends and challenges in the existing approaches,

which reveals a number of opportunities that will shape the focus of future research efforts.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures

General Terms: Algorithms, Design, Reliability, Security

Additional Key Words and Phrases: Self-protection, self-adaptive systems, self-* properties, autonomic

computing, adaptive security

ACM Reference Format:

Eric Yuan, Naeem Esfahani, and Sam Malek, 2013. A Systematic Survey of Self-Protecting Software

Systems. ACM Trans. Autono. Adapti. Syst. X, X, Article XX (March 2010), XX pages.   

DOI:http://dx.doi.org/10.1145/0000000.0000000

 INTRODUCTION 1.

Security is increasingly a principal concern for the design and construction of most

modern software systems. In spite of the significant progress over the past few

decades, the challenges posed by security are more prevalent than ever before. As the

awareness grows of the limitations of traditional, often static and rigid, security

models, research shifts to dynamic models, where security threats are detected and

mitigated at runtime, i.e., self-protection.

Self-protection has been identified as one of the essential traits of self-

management for autonomic computing systems. Kephart and Chess characterized

self-protection from two perspectives [Kephart and Chess 2003]: From a “reactive”

perspective, the system automatically defends against malicious attacks or cascading

failures, while from a “proactive” perspective, the system anticipates security

 This work is supported in part by awards CCF-1217503 from the National Science Foundation,

D11AP00282 from the Defense Advanced Research Projects Agency, and W911NF-09-1-0273 from the

Army Research Office.

Author’s addresses: Department of Computer Science, George Mason University, Fairfax, VA 22030.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with

credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any

component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,

fax +1 (212) 869-0481, or permissions@acm.org.

© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

39

39:2 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

problems in the future and takes steps to mitigate them. Self-protection is closely

related to the other self-* properties, such as self-configuration and self-optimization.

On one hand, a self-configuring and self-optimizing system relies on self-protection

functions to ensure the system security remains intact during dynamic changes. On

the other hand, the implementation of self-protection functions may also leverage the

same techniques used for system reconfiguration and optimization.

The past decade has seen extensive and systematic research being conducted

around self-adaptive and self-managing systems. Research that focuses on self-

protecting capabilities, however, has been relatively speaking less abundant.

Scattered efforts can be found in various application domains such as autonomic

computing, mobile and ad-hoc networks, sensor networks, fault tolerant systems,

trust management, and military domains like information survivability and tactical

systems.

The contributions of the paper include: (1) A proposed taxonomy for consistently

and comprehensively classifying self-protection mechanisms and research approaches;

(2) A systematic survey of the state of the art of self-protecting software systems

using the proposed taxonomy; (3) Observations and comparative analysis across

these self-protecting systems, to identify trends, patterns, and gaps; and (4) A set of

recommendations for future research directions for self-protecting systems.

This paper has significantly extended our preliminary study of self-protecting

software systems [Yuan and Malek 2012]. In particular, unlike our preliminary study,

here we have followed a systematic literature review process proposed by

Kitchenham [2004]. This has broadened the scope of our study and strengthened the

validity of our conclusions. In particular, we expanded our preliminary study of 32

publications to a systematic study of more than 1030 papers, from which 107

publications were deemed relevant (including a few that were published after the

previous study). Our taxonomy and observations have been refined, enriched with

more in-depth analysis, and in some cases altogether revised. To the best of our

knowledge, this study is the most comprehensive and elaborate investigation of the

literature in this area of research.

We begin by introducing our research problem (1.1), illustrating it using a

motivating example (1.2), and laying out the organization of the entire paper (1.3).

 Problem Description and Motivation 1.1

There is an unprecedented need for self-protection in today’s software systems,

driven by both external factors such as cyber threats as well as internal factors that

lie within the system architecture.

From Outside: Ever-Increasing Cyber Threats. As software systems become more

distributed, interactive and ubiquitous, networking services become an integral part

of the system architecture, making these systems more prone to malicious attacks.

Over the years the frequency, complexity, and sophistication of attacks are rapidly

increasing, causing severe disruptions of online systems with sometimes catastrophic

consequences. From some of the well-publicized recent incidents we can get a glimpse

of the characteristics of such threats. The Conficker worm, first detected in 2008,

caused the largest known computer infection in history and was able to assemble a

botnet of several million hosts — an attack network that, if activated, would be

capable of large-scale Distributed Denial of Service (DDoS) attacks. What is unique

about Conficker is not just the scale it achieved, but also its use of sophisticated

software techniques including peer-to-peer networking, self-defense through

adaptation, and advanced cryptography [Dittmann et al. 2010]. The Stuxnet worm,

discovered in 2010, is the first known malware to target and subvert industrial

A Systematic Survey of Self-Protecting Software Systems 39:3

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

control systems. In addition to being credited with damaging the Iranian nuclear

program, the malware demonstrates its ability to attack multiple architecture layers

of the target system — exploiting the network and host-level vulnerabilities is only a

stepping stone for malicious actions at the application level [Langner 2011]. The

Duqu worm, discovered in September 2011, is a reconnaissance worm that does no

harm to the infected systems but is tasked to collect and exfiltrate information such

as valid digital certificates that may be used in future attacks. It further illustrates

the deliberate and persistent nature of today’s cyber threats [Bencsáth et al. 2012].

What has become increasingly clear from examples like these is that to protect

today’s software systems, especially those that are mission critical, applying static

point security solutions (e.g., firewall and one-time password authentication) is no

longer sufficient. Rather, there is a need for dynamic approaches that actively

evaluate and reassess the overall security posture of the entire system architecture.

From Within: Dynamic Architectural Behaviors. An equally pressing need for

system self-protection arises from the fact that software systems are increasingly

designed to take on more dynamic behaviors at runtime. As dynamic architectural

styles (such as service-orientation) become more widely adopted, a system function

may, for example, be reassembled and provisioned with different components (e.g.,

using Service Component Architecture [Marino and Rowley 2010]). Similarly, a web

service orchestrator could be constructed to dynamically discover and access different

service providers (e.g., using a Business Process Execution Language (BPEL) engine).

Runtime architectural changes like these tend to be security-relevant. For example,

if a BPEL orchestrator switches a Partner Link from a non-responsive local service

provider to an alternative external provider, the new SOAP connection becomes an

additional source of vulnerability.

Therefore, as runtime system architectures become adaptive and dynamic, so

must their protection, as manual changes in security policies would simply be too

slow and too costly.

 A Simple Motivating Example 1.2

Self-protection mechanisms for a

software system can take many

diverse forms. As an example,

let us suppose an intruder,

through attempts such as

phishing, has gained access to

an online banking system and

starts to exfiltrate confidential

user information. A much-

simplified architecture of the

system is shown in Fig. 1.

Suppose shortly after the intruder breaks into the system, his access gets denied

and he can no longer gain access. To achieve this effect, the system could have taken

any of the following different measures:

— The router’s intrusion detection capability detects this intrusion at the network

level and automatically disables the connection from the source IP address;

— The firewall detects unusually large data transfer that exceeds the predefined

policy threshold and accordingly disables the HTTP connection;

— The ARchitecture Manager (ARM) monitors and protects the system by

implementing the Monitor, Analyze, Plan, Execute (MAPE) loop for self-

Fig. 1: Simple Online Banking System Example

39:4 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

adaptation [Kephart and Chess 2003]. Upon sensing an unusual data retrieval

pattern from the Windows server, the ARM shuts down the server and redirects

all requests to a backup server accordingly;

— Alternatively, the ARM deploys and manages multiple application server

instances on the Windows machine. By comparing the behavior from all server

instances (e.g., using a majority voting scheme), the ARM detects the anomaly

from the compromised application server instance and consequently shuts it down.

While the first two examples merely execute pre-determined actions using a

particular component, the latter two clearly exhibit self-adaptive and self-protecting

behavior at the system level. As the paper will show later, many other self-protecting

mechanisms are possible. How do these different approaches compare against one

another? Are some more effective than others? If so, under what conditions? To better

answer these questions, one must methodically evaluate the state of the art of the

self-protection approaches, architectures, and techniques, and assess how they

address the externally-driven and internally-driven security needs mentioned above.

This paper seeks to take a step toward this goal by proposing a comprehensive

taxonomy for self-protecting systems. The next section starts with a survey of

existing taxonomies and classification schemes that are relevant.

 Organization of the Paper 1.3

The rest of the paper is organized as follows. Section 2 provides a detailed definition

of the self-protection property, which serves to bound the scope of this survey. Section

3 lists the existing surveys that are directly or indirectly related to self-protection.

Section 4 summarizes the research method and underlying protocol of the survey

while leaving the process details to Appendix A. Section 5 surveys the existing

taxonomies and classification schemes related to system self-protection and adaptive

security, before proposing a coherent and comprehensive taxonomy that builds on top

of existing taxonomies. Section 6 classifies current and past self-protection research

initiatives against the proposed taxonomy. We present the analysis on the survey

results, offering observations on patterns, trends, gaps, and opportunities. Threats to

validity of the results are addressed in Section 7. Based on this analysis, Section 8

outlines a set of recommendations for future self-protecting system research. Section

9 presents the conclusions.

 SELF-PROTECTION DEFINED 2.

Before we delve into the study, it is important to establish a working definition of

self-protection property, given that our experience shows the term has been used

rather loosely in the literature. The goal of this definition is to clarify what we have

considered to be a self-protecting software system, which in turn has defined the

scope of this study. Our understanding of the self-protection property is consistent

with that laid out in FORMS [Weyns et al. 2012], a formal language for specifying

the properties and architectures of self-* (i.e., self-management, self-healing, self-

configuration, and self-protection) software systems. According to FORMS, a software

system exhibiting a self-* property is comprised of two subsystems: a meta-level

subsystem concerned with the self-* property that manages a base-level subsystem

concerned with the domain functionality.

Fig. 2 shows what we consider to be a self-protecting software system in light of

FORMS’ concepts. The meta-level subsystem is part of the software that is

responsible for protecting (i.e., securing) the base-level subsystem. The meta-level

subsystem would be organized in the form of feedback control loop, such as the

A Systematic Survey of Self-Protecting Software Systems 39:5

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

MAPE-K architecture depicted in the figure [Kephart and Chess 2003]. One should

not interpret this reference architecture to mean that the base level subsystem is

agnostic to security concerns. In fact, the base-level subsystem may incorporate

various security mechanisms, such as authentication, encryption, etc. It is only that

the decision of when and how those security mechanisms are employed that rests

with the meta-level subsystem. In the case of the online banking system introduced

in Section 1.2, the banking application logic corresponds to the base-level subsystem,

while the logic used for detecting an intruder and mitigating the threat through

changes in the system corresponds to the meta-level subsystem.

In addition to

the intricate

relationship

between the meta-

level and base-

level subsystems,

we make two

additional

observations. First,

we underline the

role of humans in

such systems.

Security objectives often have to be specified by human stakeholders, which are

either the system’s users or engineers. As we will see in the remainder of this paper,

the objectives can take on many different forms (e.g., access control policies, anomaly

thresholds). Second, we observe that for self-protection to be effective, it needs to be

able to observe the domain environment within which the software executes. The

domain environment is comprised of elements that could have an impact on the base-

level software, but are outside the realm of control exercised by the meta-level

subsystem. For instance, in the case of the online banking system, the domain could

be other banking systems, which could impact the security of the protected system,

but the meta-level subsystem has no control over them.

These concepts, although intuitive, have allowed us to define the scope of our

study. For instance, we were able to distinguish between an authentication algorithm

that periodically changes the key it uses for verifying the identities of users, and a

system that periodically changes the authentication algorithm it uses at runtime.

The former we classified to be an adaptive security algorithm, as the software used in

provisioning security does not change, and therefore outside the scope of this paper.

While the latter we classified to be a self-protecting software system, as it changes

the software elements used in provisioning security, and therefore within the scope of

our study. Though other reference frameworks exist (such as control theory-based

DYNAMICO [Villegas et al. 2013]), we will use the basic concepts introduced in this

section throughout the paper to illustrate the differences between the self-protection

approaches surveyed.

 RELATED SURVEYS 3.

Because self-protection mechanisms fall into the intersection of self-adaptive systems

and software security, we have sought survey papers from both research domains.

First, even though the research field of self-adaptive and self-managing systems is

a fertile research ground with rapidly advancing state of the art [Lemos et al. 2013;

Cheng et al. 2009], little endeavor has been devoted to security as an adaptation

Fig. 2: Self-Protection in Light of FORMS Reference Architecture

39:6 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

property. Nonetheless, a number of related surveys are worth noting. Villegas et al.

[2011] developed a control theory-based framework for surveying and evaluating self-

adaptive software systems, in which security is included as one of the observable

adaptation properties. None of their surveyed papers, however, covered security. A

taxonomy of compositional adaptation [McKinley et al. 2004] focuses on composition

as a key paradigm for adaptation, and describes a taxonomy based on how, when,

and where software composition takes place. A related survey can be found in

[Sadjadi 2003] with a stronger focus on adaptive middleware. Even though these two

surveys are not directly related to self-protection systems, our paper draws certain

taxonomy attributes for our purposes. Salehie and Tahvildari [2009] presented a

comprehensive survey on self-adaptive software in general. It offers a taxonomy of

self-adaptation that covers a variety of dimensions, some of which are security-

relevant such as adaptation layers (OS, middleware, etc.), realization approach (such

as static vs. dynamic decision making), and temporal characteristics (such as reactive

vs. proactive adaptation). Even though many of these dimensions are relevant for

self-protection, they need to be further defined in the specific context of security

before they become useful. A comprehensive survey of self-healing systems [Psaier

and Dustdar 2011] provides a taxonomy of system failure classes (security being one

of them) and catalogs self-healing approaches such as architecture-based, agent-

based, middleware-based, etc. Albeit not security-focused, the paper identified

approaches and techniques that overlap with the self-protection research especially

around the security goal of availability, as will be seen later in this paper.

Across these surveys, the profound influence of the IBM Autonomic Computing

(AC) vision as presented in [Kephart and Chess 2003] is clearly visible, specifically

around the adopted definitions of self-* properties and the MAPE-K (Monitor,

Analyze, Plan, Execute, and Knowledge) loop. A recent survey, for instance, further

expanded the MAPE-K concept with a “Degree of Autonomicity” dimension with four

progressive levels of maturity: Support, Core, Autonomous, and Autonomic

[Huebscher and McCann 2008].

Secondly, we have found quite a number of relevant surveys in the software

security domain. We recognize that computer security is a vast research domain, and

that our objective is not to advance the state of the art of security techniques but

rather to apply them to self-protecting systems. Consequently, we have limited our

search to high-level surveys and review papers from which we can draw useful

attributes for our self-protection taxonomy (described in Section 5). To that end, we

have found good sources that cover various security concepts:

— To have a better understanding of computer security threats and vulnerabilities,

we turned to [Igure and Williams 2008], which provides a state-of-the-art

“taxonomy of taxonomies” on types of attacks (general attacks, intrusion detection

system (IDS) signatures and anomalies, Denial of Service (DoS) related attacks,

web attacks and other specialized taxonomies) and vulnerabilities (software flaws,

network vulnerabilities). Similarly, Swiderski and Snyder [2004] presented

Microsoft’s threat model which classifies attacks along the STRIDE model

(spoofing, tampering, repudiation, information disclosure, DoS, and elevation of

privilege). A different attack taxonomy was introduced in [Bijani and Robertson

2012], which defined high-level categories, including Disclosure, Modification,

DoS, and Fake Identity. The same paper also organized the countermeasures in

terms of detection techniques (peer monitoring, information monitoring, policy

monitoring, activity monitoring, and attack modeling) and prevention approaches

A Systematic Survey of Self-Protecting Software Systems 39:7

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

(encryption, access control policies, behavior policies, agent-oriented software

engineering, and language-based security). Other related threat taxonomies

include the top 25 software vulnerabilities [MITRE 2011] and dependability

threats and failure types [Avižienis et al. 2004] that are a superset of security

threats and failures.

— In addition to understanding the attacks, it is equally important to understand the

objectives we would like to achieve when it comes to software self-protection. A

common “CIA” model from the security community defines Confidentiality,

Integrity, and Availability as the main security objectives for information systems,

as used in [Perrin 2008], [Hafiz et al. 2007], and [Cavalcante et al. 2012]).

— Software systems use a variety of techniques to mitigate security threats to

achieve the CIA objectives. In addition to those countermeasures catalogued in

[Bijani and Robertson 2012], Sundaram [1996] provided a good introduction and

categorization on intrusion detection techniques, an important research area

related to self-protection. Kumar et al. [2010] provided a good survey of Artificial

Intelligence (AI) techniques for intrusion detection.

— A number of surveys focused on organizing and classifying security patterns.

[Konrad et al. 2003], for example, uses metrics such as purpose (creational,

structural, and behavioral) and abstraction level (network, host, application). A

similar effort [Hafiz et al. 2007] proposed other ways to organize security patterns,

many of which are applicable to classifying self-protection approaches.

Even though these generic surveys on security attacks, objectives, techniques and

patterns are helpful, they do not specifically apply to software self-protection. Four

other surveys, however, offer more pertinent insight into how software systems adapt

to security threats: First, Elkhodary and Whittle [2007] provided a good survey on

adaptive security mechanisms. It builds on top of the taxonomy of computational

paradigms defined in [Sadjadi 2003], and adds additional dimensions such as

reconfiguration scale and conflict handling. These dimensions are certainly

applicable to self-protection systems in general; however, the paper’s focus is

primarily on the application layer. Secondly, Nguyen and Sood [2011] offered an up-

to-date survey on Intrusion Tolerant Systems (ITS), a class of self-protecting systems

that focus on continued system operations even in the presence of intrusion attacks.

ITS architectures are often based on fault tolerance techniques. Some research

efforts identified in this paper are also covered in our analysis in Section 6. As

correctly pointed out by the authors, these approaches are by no means mutually

exclusive and may be used together. Thirdly, Stakhanova et al. [2007a] and Shameli-

Sendi et al. [2012] surveyed a different class of systems called Intrusion Response

Systems (IRS) that focus on dynamic response mechanisms once an intrusion has

been detected. Both surveys proposed an IRS taxonomy that included dimensions

such as adjustment ability (adaptive vs. non-adaptive), response selection (static,

dynamic, or cost-sensitive), and response type (proactive vs. reactive), which overlap

to some extent with our self-protection taxonomy. Cost-sensitive response selection,

in particular, corroborated with a similar trend we have identified in our survey.

Even though ITS and IRS have moved beyond traditional static and human-

driven security mechanisms, they are still intrusion-centric and perimeter based and

as such do not yet constitute true self-protection. In fact, none of the four surveys

focused specifically on self-protection research in the AC context. Nor did any of them

follow the systematic literature review methodology.

39:8 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

 RESEARCH METHOD 4.

This survey follows the general guidelines for systematic literature review (SLR)

process proposed by Kitchenham [2004]. We have also taken into account the lessons

from [Brereton et al. 2007] on applying SLR to the software engineering domain. The

process includes three main phases: planning, conducting, and reporting the review.

Based on the guidelines, we have formulated the following research questions, which

serve as the basis for the systematic literature review:

— RQ1: How can existing research on self-protecting software systems be classified?

— RQ2: What is the current state of self-protection research w.r.t. this classification?

— RQ3: What patterns, gaps, and challenges could be inferred from the current

research efforts that will inform future research?

We have detailed our review process in Appendix A, including the methodology

and tasks that we used to answer the research questions (Section A.1) and the

detailed SLR protocol including key words, sources, and selection criteria (Section

A.2). As a result, we have included 107 papers published from 1991 to 2013, out of

the total of over 1037 papers found.

No survey can be entirely comprehensive. Our keywords-based search protocol

restricts us to papers that explicitly address the self-protection topic while potentially

leaving out relevant papers under different terms. Section 7 lists some of the

interesting areas that are not in the scope of the survey.

 TAXONOMY 5.

To define a self-protection taxonomy for RQ1, we started with selecting suitable

dimensions and properties found in existing surveys. The aforementioned taxonomies

described in Section 3, though relevant and useful, are not sufficiently specific and

systematic enough for classifying self-protection approaches in that they either focus

on adaptive systems in general, but not specifically on security, or focus on software

security in general, but not on autonomic and adaptive security. Many focus on only

certain architectural layers of software systems (such as middleware). Even when a

taxonomy dimension is appropriate for our purposes here, it is oftentimes too generic

(e.g., open vs. closed) and need to be further qualified in the self-protection context.

Furthermore, many of the taxonomies and classification schemes lean heavily

towards implementation tactics and techniques (such as those for implementation

patterns) but perhaps fall short on covering architectural strategies or styles (though

some exceptions do exist, such as [Nguyen and Sood 2011]).

For such reasons, we have defined our own taxonomy to help classify existing self-

protection and adaptive security research. The proposed taxonomy builds upon

existing work surveyed in Section 3, and is a refinement and substantial extension of

what we proposed in earlier work [Yuan and Malek 2012]. It consists of 14

dimensions that fall into three groups: Approach Positioning, Approach

Characterization, and Approach Quality. They are defined and illustrated in Fig. 3

and Fig. 4, and explained in the following subsections.

 Approach Positioning 5.1

The first part of the taxonomy, Approach Positioning, helps characterize the “WHAT”

aspects, that is, the objectives and intent of self-protection research. It includes five

dimensions, as depicted in the left part of Fig. 3:

(T1) Self-Protection Levels: This dimension classifies self-protection research

based on the level of sophistication of its meta-level subsystem (as defined in Section

A Systematic Survey of Self-Protecting Software Systems 39:9

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

2). “Monitor & Detect” is the most basic level, indicating the protecting subsystem is

equipped with the capability to constantly monitor for security threats and detect

anomalous or harmful activities from normal system operations. The next level is

“Respond & Protect”, which indicates the subsystem’s ability to take action against

the detected attack or anomaly. This implies the protecting subsystem can, ideally in

an autonomous fashion, (a) characterize and understand the nature/type of the

attacks, and (b) deploy the proper countermeasures to mitigate the security threat

and maintain normal system operations to the extent possible – a property often

called “graceful degradation”. The third level, “Plan & Prevent”, represents the

highest level of sophistication; a security approach reaching this level allows a

system to adapt and strengthen its security posture based on past events so that

known security faults are prevented. We illustrate this dimension using the

motivating example of Section 1.2:

— The online banking system is at the Monitor & Detect level if it is equipped with a

network based IDS device connected to the router, which can detect an intrusion

attempt based on known attack signatures (such as a DoS attack to the banking

server), and generate an appropriate alert to the ARM, which acts as the “meta-

level subsystem” for self-protection;

— The system is at the Respond & Protect level if, in addition to the previous level,

the ARM component responds to the router alert and changes the firewall policy to

block all traffic from the source domain;

— The system is at the Plan & Prevent level if, in addition to the previous level, the

ARM also reviews the history of such attacks and moves the web server to a

different IP address, so that future DoS attacks are rendered ineffective.

The three levels are consistent with (and in fact inspired by) Kramer and Magee’s

three-level reference architecture for self-managed systems [Kramer and Magee

2007]. It is easy to see the mapping from the self-protection levels to Component

Management, Change Management, and Goal Management, respectively. It may also

be envisioned that each self-protection level may have its own MAPE-K loop;

therefore this dimension is not in conflict with the IBM reference architecture.

(T2) Depths-of-Defense Layers: This dimension captures the renowned security

principle of Defense in Depth, which simply acknowledges the fact that no single

security countermeasure is perfectly effective and multiple layers of security

protections should be placed throughout the system. For self-protecting systems, the

following defensive layers are possible, starting with the outmost layer (please see

Section 6.1 for examples of security countermeasures at each layer):

— Network: Focuses on communication links, networking protocols, and data packets.

— Host: Involves the host environment on a machine, involving hardware/firmware,

OS, and in some occasions hypervisors that support virtual machines.

— Middleware: With the prevalence of component-based and service-oriented

systems, use of middleware such as application servers (e.g. JEE), object brokers

(e.g. CORBA) and service buses (e.g. JBoss ESB) are becoming a common practice

and as such may be used as an additional layer of defense.

— Applications: As the last line of defense, application level security is usually

concerned with programming language security and application-specific measures.

— Depth-Independent: This fifth layer is a special value to indicate any self-

protection research that is not specific to any architecture layers. One example

may be an approach that addresses self-protection in terms of software

39:10 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

architecture abstractions such as software components, connectors, configurations,

and architecture styles. A software architecture-based approach enjoys many

benefits such as generality, abstraction, and potential for scalability, as pointed

out by Kramer and Magee [2007].

The counter-intrusion example given earlier for dimension T1 is clearly a network

layer defense. The online banking system can also choose to have a host-level defense

such as a periodic patching mechanism to install OS patches that remediate

Windows OS vulnerabilities, a middleware level defense that configures a cluster of

redundant application servers under a Byzantine agreement protocol (as described by

Castro and Liskov [2002]), and an application-level defense where the ARM

component dynamically directs the web-based banking application to adopt different

levels of security policies.

Fig. 3: Proposed Taxonomy for Self-Protection

A Systematic Survey of Self-Protecting Software Systems 39:11

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

(T3) Protection Goals: This dimension classifies research approaches according

to the security goal(s) they intend to achieve. Here we follow the traditional CIA

model for its simplicity:

— Confidentiality: to protect against illegal access, spoofing, impersonation, etc.

— Integrity: to protect against system tampering, hijacking, defacing, and subversion

— Availability: to protect against degradation or denial of service

Other goals such as Accountability, Authenticity and Non-Repudiation may also be

considered as implicit sub-goals that fit under this model.

In some cases a security countermeasure may help meet multiple protection goals.

Suppose in the online banking example, the banking application is compiled using

the StackGuard compiler [Cowan et al. 1998] to safeguard against buffer overflow

attacks. This technique stops the intruder from obtaining user financial data stored

in memory (confidentiality) and from illegally gaining control of the banking

application (integrity) through buffer overflows. Note that in this case the technique

does not help with the availability goal; we will return to this point later in the paper.

(T4) Lifecycle Focus: This dimension indicates what part of the software

development lifecycle (SDLC) a self-protection approach is concerned with. For the

purposes of this paper we simply use two phases, Development Time and Runtime,

with the former encompassing also the design, testing, and deployment activities.

Security at runtime is undoubtedly the primary concern of self-protection.

Nonetheless, from the software engineering viewpoint it is also necessary to take into

account how to better design, develop, test, and deploy software systems for self-

protection.

As a concrete example, suppose all runtime system auditing data is made

available to the development team of the online banking system. By feeding data into

the automated testing process, the team can make sure all new code is regression-

tested against previously known vulnerabilities, or use the system logs to train the

meta-level self-protection mechanisms.

(T5) Meta-Level Separation: This dimension indicates how Separation of

Concerns as an architectural principle is applied in a self-protection approach.

Specifically, the FORMS reference architecture [Weyns et al. 2012] calls for the

separation between the meta-level subsystem and the base-level subsystem, logically

and/or physically. The degree of separation is useful as a telltale sign of the degree of

autonomicity of the system. In the security context it also takes on an added

significance, as the meta-level self-protection logic often becomes a high value target

for the adversary and thus needs special fortification. Three values are used here –

No Separation, Partial Separation, and Complete Separation. Continuing with the

online banking system example, complete separation of security concerns is achieved

when all self-protection logic is contained in the ARM component as illustrated in Fig.

1, and the component (along with communication channels to/from it) is deployed in

dedicated, trusted hardware. On the other hand, if the ARM runs in the same

application server as the banking application itself, or the security policy decisions

are embedded in the banking application code, the degree of separation is low.

 Approach Characterization 5.2

The second group of the taxonomy dimensions are concerned with classifying the

“HOW” aspects of self-protection research. It includes five dimensions shown in the

right half of Fig. 3:

(T6) Theoretical Foundation: As a self-protecting software system takes

autonomic and adaptive actions against malicious attacks, it often needs to consider

39:12 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

many factors from the runtime environment and choose the optimal or near-optimal

course of action out of a vast problem space. The theoretical foundation of the

approach, as captured in this dimension, is therefore critical and deserves close

examination. The following sub-categories are defined:

— Logic / formal models, which involve logic or other mathematically based

techniques for defining security related properties, as well as the implementation

and verification of these properties. The design of the online banking system, for

example, may include security policies formulated by finite state automata (such

as those defined in [Schneider 2003]), and formal proof of policy enforceability;

— Heuristics based, which include knowledge-based, policy-based, or rule-based

models whose parameters may change at runtime. For example, the online

banking system may implement a policy that disables a user account when

suspicious fund withdrawal patterns arise. In this case these patterns are based

on heuristic rules such as a maximum daily withdrawal threshold. The system

may further lower or increase the threshold according to security threat levels;

— Optimization, which employs analytical techniques that model security-related

system behavior through quantitative metrics that is used to select the optimal

adaptation strategy. For example, the banking system may use a utility function

to model a user’s preference between convenience/user-friendliness and strengths

of protection, and set security policies accordingly (e.g. username/password vs.

multi-factor authentication);

— Learning based models, including a rich variety of techniques that use historical or

simulated data sets to train the system’s autonomic defences. The learning process

could be based on cognitive, data mining, stochastic/probabilistic models, etc. The

banking system’s router, for instance, may use a neural net algorithm to

differentiate intrusions from normal network behavior [Kumar et al. 2010]).

Note that these models are not meant to be mutually exclusive. In fact, as we will see

in the survey results, many approaches leverage more than one model.

 (T7) Meta-Level Decision-Making: This dimension attempts to further

characterize self-protection research by examining its decision-making strategy and

“thought process”. Here we adopt the following rather coarsely grained values (again,

illustrated using the online banking system example):

— Single strategy, the simplest approach with a single objective, a single decision

model, or a single type of attacks/vulnerabilities in mind (many examples given

earlier fall into this category).

— Multi-strategy, involving multiple levels of decisions, metrics, and tactics. For

instance, consider a situation in which the banking system deploys two intrusion

detection sensors, one network-based and the other host-based on the application

server. Simple intrusions such as port scanning and buffer overflows are deterred

at the device level, but the ARM component also correlates the network and host

alerts to look for higher-level attack sequences.

— Cost-sensitive modeling, a special case in which security decisions involve trade-

offs with other non-security related factors, such as costs or Quality of Service

(QoS) requirements. For example, under certain situations, the banking

application may not shut itself down to cope with a user account breach because

many other legitimate users will be impacted, resulting in big loss of revenue.

(T8) Control Topology: More often than not, modern software-intensive systems

are logically decomposed into separate self-contained components and physically

A Systematic Survey of Self-Protecting Software Systems 39:13

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

deployed in distributed and networked environments. Self-protection functionality,

therefore, needs to be implemented and coordinated among different components and

machines. This dimension looks at whether a self-protection approach focuses on

controlling the local (i.e., a single host or node) or global scale of the system. For

those approaches at the global scale, this dimension also specifies whether they use

centralized or decentralized coordination and planning. Under a centralized topology,

system self-protection is controlled by a single component that acts as the “brain”,

whereas under a decentralized topology, the nodes often “federate” with one another

in a peer-to-peer fashion without relying on a central node. In the online banking

system, for instance, self-protection is globally centralized if the ARM component is

hosted on a dedicated server that monitors, controls, and adapts security

countermeasures on all other devices and servers. Alternatively, if the banking

system consists of multiple interconnected servers (possibly at different locations)

and each server hosts its own architecture manager component, the topology is

globally decentralized. In a more trivial situation, the topology would be “local only” if

the self-protection technique is used within a single server.

 (T9) Response Timing: This dimension indicates when and how often self-

protecting actions are executed, which in turn is dependent on whether the approach

is reactive or proactive. In reactive mode, these actions occur in response to detected

threats. In proactive mode, they may occur according to a predefined schedule, with

or without detected threats. Some systems may include both modes. The security

countermeasures illustrated earlier using the online banking example, such as

intrusion prevention or controlling access to a user account, all fall into the reactive

category. Alternatively, the banking system could use software rejuvenation

techniques (introduced by Huang et al. [1995]) to periodically restart the web

application instances to a pristine state, to limit damage from undetected attacks.

(T10) Enforcement Locale: This dimension indicates where in the entire system

self-protection is enforced. Here we adopt a metric from [Hafiz et al. 2007] and define

the values as System Boundary or System Internal. In the former case, self-protection

is enforced at the outside perimeter of the system (such as firewalls, network devices,

or hosts accessible from external IP addresses). In the latter case, self-protection

mechanisms cover internal system components. The distinction may be easily seen in

the online banking example: The router and the firewall represent the system

boundary that needs to be protected against intrusions, whereas the web application

and the middleware components represent system internals that may also be

protected by access control policies issued from the ARM component. Self-protection

approaches independent of enforcement locations are categorized as locale-neutral.

(T11) Self-Protection Patterns: This dimension indicates any recurring

architectural patterns that rise from the self-protection approaches. Many

architecture and design patterns exist, but as we can see in the next section several

interesting patterns have emerged in our research as being especially effective in

establishing self-protecting behavior. Here we simply mention them in two groupings

and describe their details in Section 6.7:

— Structural patterns that use certain architectural layouts to situate, connect, and

possibly reconnect system components to achieve better integrity, robustness, and

resiliency against attacks. These patterns include Protective Containment,

Agreement-based Redundancy, Implementation Diversity, Countermeasure

Broker, and Aspect-Orientation.

— Behavioral patterns that seek to reconfigure and adapt the runtime behavior of

existing system components and their connections without necessarily changing

39:14 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

the system architecture. These patterns

include Protective Recomposition,

Attack Containment, Software

Rejuvenation, Reconfiguration on

Reflex, and Artificial Immunization.

Please note that these patterns are not

mutually exclusive. It is conceivable that a

system may use a combination any

number of them to provide more vigorous

and flexible self-protection behavior.

 Approach Quality 5.3

The third and last section of the taxonomy

is concerned with the evaluation of self-

protection research. Dimensions in this

group, as depicted in Fig. 4, provide the

means to assess the quality of research

efforts included in the survey.

(T12) Validation Method: This

dimension captures how a paper validates

the effectiveness of its proposed approach,

such as empirical experimentation, formal

proof, computer simulation, or other methods. The selected sub-category for the

validation method is closely related to the selected sub-category for the theoretical

foundation (T6) of the proposed approach. When the approach is based on

logic/formal methods, validation is expected to be in the form of formal proof.

Approaches that are based on heuristics and optimization demand empirical

validation. Finally, simulation is a perfect fit for learning based models.

(T13) Repeatability: This dimension captures how a third party may reproduce

the validation results from a surveyed paper. This dimension classifies repeatability

of research approaches using a simplified measure:

— High repeatability, when the approach’s underlying platform, tools and/or case

studies are publicly available;

— Low repeatability, otherwise.

 (T14) Applicability: A self-protection approach or technique, though effective,

may or may not be easily applied in a broader problem setting. Similar to

repeatability, we use a simple “low” vs. “high” measure:

— Low applicability, when the approach is specific to a particular problem domain

(suppose the online banking system uses users’ income and spending patterns to

calculate their risk profile), is dependent upon a proprietary framework or

implementation, or requires extensive infrastructure support that may not be

generally available;

— High applicability, otherwise.

 SURVEY RESULTS AND ANALYSIS 6.

A large number of research efforts related to self-protecting systems and adaptive

security have been identified in this survey, and are then evaluated against the

proposed taxonomy. The detailed evaluation results are included in Appendix B.

Fig. 4: Taxonomy for Self-Protection (Cont.)

A Systematic Survey of Self-Protecting Software Systems 39:15

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Note that the classifications are meant to indicate the primary focus of a research

paper. For example, if a certain approach does not have a checkmark in the

“Availability” column under Protection Goals, it does not necessarily indicate that it

absolutely cannot help address availability issues. Rather, it simply means

availability is not its primary focus.

By using the proposed taxonomy as a consistent point of reference, many

insightful observations surface from the survey results. The number of the research

papers surveyed will not allow elaboration on each one of them in this paper. Rather,

we highlight some of them as examples in the observations and analysis below.

 Correlating Self-Protection Levels and Depths of Defense 6.1

Starting with the Self-Protection Levels (T1) dimension, we see that abundant

research approaches focus on the “Monitor & Detect” level, such as detecting

security-relevant events and enforcing security policies that respond to these events.

For example, Spanoudakis et al. [2007] used Event Calculus to specify security

monitoring patterns for detecting breaches in confidentiality, integrity and

availability. Liang and Sekar [2005] used forensic analysis of victim server’s memory

to generate attack message signatures. At the “Respond & Protect” level, research

efforts attempt to characterize and understand the nature of security events and

select the appropriate countermeasures. For example, He et al. [2010b] used policy-

aware OS kernels that can dynamically change device protection levels. Taddeo and

Ferrante [2009] used a multi-attribute utility function to rank the suitability of

cryptographic algorithms with respect to the runtime environment and then used a

knapsack problem solver to select optimal algorithm based on resource constraints.

At the highest “Plan & Prevent” level, research efforts are relatively speaking not as

abundant; such efforts seek to tackle the harder problem of planning for security

adaptation to counter existing and future threats. To that end, many approaches

offer a higher degree of autonomicity. Uribe and Cheung [2004], for instance, used a

formal network description language as the basis for modeling, reasoning, and auto-

generating Network-based Intrusion Detection System (NIDS) configurations. The

Self-Architecting Software SYstems (SASSY) framework, by contrast, achieves

architecture regeneration through the use of Quality of Service scenarios and service

activity schemas [Malek et al. 2009; Menasce et al. 2011].

Along the Depths-of-Defense Layers (T2) dimension, we see many self-adaptive

security approaches focusing on the “traditional” architecture layers, such as network,

host, middleware and application code. At the network level, abundant research can

be found in the field of intrusion-detection and intrusion-prevention. Examples

include Yu et al. [2007; 2008] who used fuzzy reasoning for predicting network

intrusions, and the Wireless Self-Protection System (WSPS) [Fayssal et al. 2008]

which uses both standard and training based anomaly behavior analysis that can

detect and deter wide range of network attack types. Because network vulnerabilities

are closely linked to the network topology and equipment configurations, devoted

research can also be found on adapting network security policies based on such

network characteristics [Burns et al. 2001]. At the host/node level, antivirus and

malware detection/prevention have been receiving a lot of attention from the

research community (a latest example on adaptive rule-based malware detection can

be found in [Blount et al. 2011]).

When we shift our focus to defense at the middleware level, self-protection

approaches start to focus and/or leverage distributed middleware platforms such as

Java Enterprise Edition or JEE (as in [De Palma et al. 2012]), object request brokers

(as in [Yau et al. 2006]), and message-oriented middleware (as in [Abie et al. 2008;

39:16 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Abie 2009]). More importantly, researchers started to recognize the benefit of a

robust middleware layer as an extra line of defense against host and application level

attacks (as seen in the QuO adaptive middleware example [Atighetchi et al. 2003;

Atighetchi et al. 2004]). More recent research has started to focus on adaptive

security for web services middleware in a SOA. Such research can be found, for

example, around service trust [Maximilien and Singh 2004] and service-level

assurance [Casola et al. 2008]. Research around the security behavior of a collection

of services (such as a BPEL orchestration or a composite service), however, seems to

be lacking.

As we move up to the application level, self-adaptive security research is more

concerned with programming language level vulnerabilities such as those concerning

pointers, memory buffers, and program execution points. Lorenzoli et al. [2007], for

example, presented a technique, called From Failures to Vaccine (FFTV), which

detects faults using code-level assertions and then analyzes the application to

identify relevant programming points that can mitigate the failures.

Research seems to be sparse on the adaptation of the software architecture as a

whole in dealing with security concerns. Nonetheless, the “Depth-Independent”

subcategory in this dimension does capture some interesting and sophisticated

approaches. The RAINBOW [Garlan et al. 2004; Cheng et al. 2006] and SASSY

frameworks are two examples that fit into this category, even though they are not

specifically focused on self-protection alone. Additionally, work by Morin et al. [2010]

and Mouelhi et al. [2008] represent a key example of applying “models@runtime”

thinking to security adaptation, which can be applied to all architecture layers.

To take a further look at the research trends, we use Self-Protection Levels and

Depths of Defense as two crosscutting dimensions to map out the existing self-

protection research approaches, as shown in Fig. 5. In the plot, the height of each

column represents the number of papers per each self-protection level and each line

of defense. We clearly see that abundant research exist at the network and host

levels for attack detection and response, fueled by decades of research in such fields

as Intrusion Detection / Intrusion Prevention (ID/IP), Antivirus / Malware, and

Mobile Adhoc Networks

(MANET) security. It

becomes apparent,

however, that existing

research start to “thin

out” as we move up the

two respective

dimensions. Autonomic

and adaptive security

approaches that apply to

attack prediction and

prevention, especially at

middleware, application,

or abstract architecture

levels, appear to be a

research gap to be filled.

 Run-time vs. Development-time 6.2

Along the Lifecycle Focus (T4) dimension, the vast majority of self-protection

research (96% to be exact) focuses on runtime. Indeed, it is a general consensus that

software components are never completely fault-free and vulnerability-free no matter

Fig. 5: Correlating Self-Protection Levels and Depths of Defense

A Systematic Survey of Self-Protecting Software Systems 39:17

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

how carefully they are designed and coded. Nonetheless, 18% of the papers also

involve development time activities. They generally fall under three cases:

— Runtime techniques that happen to need development time support. The FFTV

approach [Lorenzoli et al. 2007], for instance, complements runtime

healing/protection strategies with design-time construction of “oracles” and

analysis of relevant program points, and also with test-time generation of

reference data on successful executions. In [Hashii et al. 2000], the dynamically

reconfigurable security policies for mobile Java programs also rely on supporting

mechanisms put in at deployment time (such as policy class loaders).

— Programming language level protection approaches that focus primarily at

development time. They employ novel techniques such as fuzz testing [Abie et al.

2008], whitebox “data perturbation” techniques that involve static analysis [Ghosh

et al. 1998; Ghosh and Voas 1999], or software fault injection which merges

security enforcement code with the target code at compile time [Erlingsson and

Schneider 2000].

— Model-driven approaches that essentially blur the line between development time

and runtime. They achieve self-protection through incorporating security

requirements into architecture and design models, and relying on Model-Driven

Engineering (MDE) tool sets to instrument security related model changes at

runtime. In addition to [Morin et al. 2010; Morin et al. 2010], the Agent-oriented

Model-Driven Architecture (AMDA) effort [Xiao et al. 2007; Xiao 2008] also falls

into this category. Such approaches may hold some promise for future self-

protection research, although empirical results so far are far from convincing.

Because the philosophy, structure, and process through which software components

are constructed could have a significant impact on their quality of protection at

runtime, we believe that full lifecycle approaches combining development-time and

run-time techniques will result in the best self-protection of software systems –

another research opportunity.

 Balancing the Protection Goals 6.3

Along the Protection Goals (T3) dimension, the survey results revealed that most

research efforts seem to focus on either Confidentiality and Integrity or Availability,

but not all three goals. As shown in the Venn diagram in Fig. 6 (a), a large portion of

the survey papers focus on Confidentiality (68%) and Integrity (81%), but only 40% of

the papers address availability, and even fewer (20%) deal with all three goals. The

dichotomy between confidentiality and availability objectives is not surprising: the

former seeks mainly to protect the information within the system, but is not so much

concerned with keeping the system always available; the opposite is true for the

latter. For example, when a host-based intrusion is detected, the typical system

responses involve stopping/restarting a service, rebooting the server, disable user

logins, etc. [Strasburg et al. 2009] – system confidentiality and integrity are

preserved, whereas availability suffers.

Preserving system availability, on the other hand, goes beyond the security realm

and is closely related to system QoS, thus requiring different treatments. Intrusion

Tolerant Systems (e.g., [Sousa et al. 2007], [Reiser and Kapitza 2007b]) address

availability especially well by leveraging fault tolerance mechanisms, though they

tend to focus on the network and host levels rather than taking a broader

architectural approach.

39:18 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

This observation,

though a bit subtle,

shows that a self-

protecting system

may need to include

a “best of breed”

combination of

adaptive security

techniques rather

than relying on a

single mechanism, to

meet all protection

goals.

 Separation of Meta-level and Base-level Subsystems 6.4

As introduced in Section 5.1, the Meta-level Separation dimension (T5) intends to

show self-protection research separates the meta-level (“protecting”) components

from the base-level (“protected”) components. The survey results summarized in Fig.

6 (b) indicate that self-protection architectures from 83% of the papers show at least

partial separation, which serves as strong evidence that the meta-level separation

proposed in Section 2 has been indeed widely practiced in the research community.

Instantiations of the meta-level subsystem take on many interesting forms among

the surveyed papers, such as managerial nodes [Abie 2009], Security Manager [Ben

Mahmoud et al. 2010], guardians [Montangero and Semini 2004], Out-of-Band (OOB)

server [Reynolds et al. 2002], or control centers [Portokalidis and Bos 2007]. Those

approaches that have been put under “partial separation” either rely on certain

enforcement mechanisms that are an intrinsic part of the base-level subsystem (e.g.,

through library interposition with the protected application [Liang and Sekar 2005]),

or do not provide a clear architecture that depicts the separation boundary.

The remaining 17% papers that do not exhibit meta-level separation deserve

special attention. Closer examination reveals two contributing factors are the

primary “culprits”, with the first having to do with the domain environment and the

second pertaining to the nature of the research technique. First, for MANETs,

wireless sensor networks, or agent-based networks of a self-organizing nature,

because no central control typically exists within the system, self-protecting

mechanisms would have to be implemented within each network node or agent. This

is the case with [Adnane et al. 2008], [Alampalayam and Kumar 2003], [Chigan et al.

2005], and [Jean et al. 2007]. It is no coincidence that these papers also fall into the

“Global – Decentralized” subcategory of the “Control Topology” dimension (T8); see

Section 6.6 for more details. Since each node/agent is just as susceptible to attack and

subversion as any other node/agent, protecting the security mechanism itself

becomes a real challenge. Costa et al. [2008] used a mechanism called Self-Certifying

Alerts (SCA) that are broadcasted over an overlay network to overcome this problem,

but the challenge of “protecting the meta-level” in a globally decentralized topology is

largely unanswered in the surveyed papers.

The second contributing factor arises from those approaches that use code

generation and code injection techniques at the application level, because the

protection mechanism becomes part of the codebase, meta-level separation is

obviously lacking. It is quite revealing that most of the papers cited in Section 6.2 as

having a development time focus – such as FFTV [Lorenzoli et al. 2007], SASI

[Erlingsson and Schneider 2000], and AMDA [Xiao et al. 2007] – belong to this case!

Fig. 6: (a) Coverage of Protection Goals; (b) Meta-Level Separation

A Systematic Survey of Self-Protecting Software Systems 39:19

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Here, we see another research challenge, that is, to find ways to employ valuable

techniques (e.g., programming language analysis and model-driven engineering)

while staying true to the self-protection reference architecture with clear meta-level

vs. base-level separation.

 Foundations and Strategies for Self-Protection Decision-Making 6.5

When it comes to the “HOW” part of the taxonomy, we see the surveyed papers

employ a large variety of models, schemes, algorithms, and processes. First of all, a

simple analysis along the Theoretical Foundation dimension (T6) shows a

predominant use of heuristics-based methods, as shown in Fig. 7 (a), in such forms as

expert systems [Porras and Neumann 1997; Neumann and Porras 1999], policy

specification languages [Burns et al. 2001], event-condition-action rules [English et al.

2006], directed graphs [Balepin et al. 2003], genetic/evolutionary algorithms [Raissi

2006], structured decision analysis (such as Analytic Hierarchy Process or AHP, as in

[Ben Mahmoud et al. 2010]), or human input as a last resort [White et al. 1999].

Even when non-heuristics based methods are used, whether it is using formal

semantics [Dragoni et al. 2009] or utility function based optimization [Taddeo and

Ferrante 2009] or stochastic modeling [Sousa et al. 2006], they are more often than

not complemented by heuristics. Our analysis along this dimension has revealed the

following insights:

— Given the multitude of decision factors such as objectives, system properties,

resource constraints and domain-specific environment characteristics, the problem

space for self-protection decision making is usually too large for classic problem

solving methods (though they may still prove effective in solving a small,

narrowly-focused sub-problem, such as formalisms and proofs around software

rejuvenation [Ostrovsky and Yung 1991] or reinforcement based learning for

malware detection [Blount et al. 2011]);

— Because the entire system is at stake with regard to self-adaptive security

decisions, a wrong move may lead to severe consequences. As such, few approaches

in this survey leave such decisions (such as threat containment or deploying

countermeasures) solely to an algorithm without any heuristic input. Indeed, as

pointed out in a number of papers [Al-Nashif et al. 2008; Crosbie and Spafford

1995], autonomic responses often require near 100% accuracy in threat detection

and characterization (i.e. the rate of false positives at near zero). Many papers

went to great lengths to analyse and reduce the rate of false positives while

maintaining a high detection rate (i.e. low false negatives), with varying results.

Fig. 7: (a) Theoretical Foundation (b) Meta-level Decision-making

39:20 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

— The lack of non-heuristics based methods may also be explained by the daunting

challenge of quantitatively assessing the overall security posture of a complex

software system. Several papers proposed various metrics as attempts to this goal

– the Security Health Index comprised of a weighted basket of security metrics

from [Savola and Heinonen 2010] and the Compromise Confidence Index as a

measure to pinpoint attack location from [Foo et al. 2005a] are representative

examples. Empirical validation of these metrics, however, is far from sufficient

and convincing from the surveyed papers. This is definitely a pressing research

need, especially in today’s heated domain of cyber warfare.

The meta-level decision making dimension (T7) of our taxonomy offers an even more

interesting perspective on self-protection decision making. From Fig. 7 (b) we can see

two important opportunities in self-protection research:

From single-strategy to multi-strategy. Some researchers have come to the

realization that a single technique or a point solution is no longer enough to match

the ever increasing sophistication of today’s cyber-attacks, as described in Section 1.1.

Rather, self-protecting systems should be able to (1) detect higher-level attack

patterns and sequences from low-level events, (2) have an arsenal of

countermeasures and response mechanisms that can be selectively activated

depending on the type of attack, and (3) have a concerted strategy to guide the

selection and execution of the responses at multiple defense depths and resolve

conflicts if necessary. A number of research papers have started down this path. The

APOD initiative [Atighetchi et al. 2003; Atighetchi et al. 2004], for example, uses

higher level strategies (e.g. attack containment, continuous unpredictable changes,

etc.) to derive/direct lower-level sub-strategies and local tactics in responding to

attacks. Similarly, the AVPS approach [Sibai and Menasce 2011; Sibai and Menasce

2012] generates signatures (low level rules) based on high level rules; Tang and Yu

[2008] showed that high-level goal management can optimize the lower level policy

execution at the network security level. This is an encouraging trend, although the

survey shows the multi-strategy based papers are still a minority (at 33%).

From security-at-any-cost to cost-sensitive protection. Though earlier

attempts exist in quantifying the cost of intrusion detection and prevention (such as

[Lee et al. 2002]), an increasing number of recent research papers start to consciously

balance the cost (that is, penalization of other quality attributes) and benefits of

autonomic responses to security attacks. Stakhanova et al. [2007b; 2009], for

example, defined a set of cost metrics and performed quantitative trade-off analyses

between cost of response and cost of damage, and between the importance of early

pre-emptive responses (when there is a high cost of missed or late detections) vs. the

importance of detection accuracy (when there is a high cost of false positives).

Similarly, Nagarajan et al. [2011] developed cost models involving operational costs,

damage costs, and response costs, and implemented the model using Receiver

Operating Characteristic (ROC) curves. At 23%, the cost-sensitive strategies are a

minority but we believe they represent a promising and sensible direction for self-

protection research, especially in the larger picture of self-* systems.

 Spatial and Temporal Characteristics 6.6

Together, the three taxonomy dimensions Control Topology (T8), Response Timing

(T9), and Enforcement Locale (T10) expose interesting characteristics and trends

about the spatial and temporal aspects of self-protection approaches – that is, where

the “brain” of the self-protection is within the system and where the “action” takes

place, as well as when the adaptive actions are carried out.

A Systematic Survey of Self-Protecting Software Systems 39:21

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

First, as shown in Fig. 8, survey results along the Control Topology dimension

clearly shows that adaptive security approaches functioning at the global level are

predominantly centralized – about 57% of the papers. For example, many research

efforts (e.g., [He et al. 2010a] and [Abie et al. 2008]) recognize the need for

coordination between local and global security policies. In most cases, the

coordination is through a central controller (e.g., [Huang et al. 2006]). One of the

main reasons behind widespread adoption of centralized topology may be the fact

that using a central controller makes coordination and global optimization easier.

However, central controller runs the risk of becoming the single point of failure of the

system, prone to denial of service and subversion attacks. Some approaches put more

robust protection around the central controller, such as using hardened and trusted

hardware/software (as in the case of the Malicious-and Accidental-Fault Tolerance

for Internet Applications (MAFTIA) system [Verissimo et al. 2006]) or putting the

controller in dedicated network zones [Chong et al. 2005]. Another potential

disadvantage for the centralized approach is scalability. For pervasive systems with

highly distributed computing resources, it may be inefficient and costly to have all of

the resources communicate with a central controller. Accounting for only 8% of the

total papers, globally decentralized approaches appear to be an exception rather than

norm. As pointed out in section 6.4, self-protection efforts from the MANET and self-

organizing agent domains tend to fall into this category because the system topology

does not allow for a centralized component. The decentralized control topology is not

limited to these domain environments however. MAFTIA, for example, also uses local

middleware controllers (called “wormholes”) at each server that are interconnected

yet do not appear to require a central controller. Decentralized security approaches

hold more promise in their resilience and scalability. The fact that coordination and

global optimization is harder in a decentralized setting indicates the need for more

research attention. Indeed, decentralized control has been highlighted as a key

research topic on the roadmap of self-adaptive systems [Lemos et al. 2013].

Secondly, survey results along the Response Timing dimension indicate reactive

adaptation based on the “sense and respond” paradigm still seems to be the norm for

self-protection (79% of total papers). That being said, the survey results also show an

interesting trend that proactive security architectures are gaining ground in the past

decade, with 21% papers claiming some proactive tactics. By proactively “reviving”

the system to its “known good” state, one can limit the damage of undetected attacks,

though with a cost. The TALENT system [Okhravi et al. 2010; Okhravi et al. 2012],

for example, addresses

software security and

survivability using a “cyber

moving target” approach,

which proactively migrates

running applications across

different platforms on a

periodic basis while preserving

application state. The Self-

Cleansing Intrusion Tolerance

(SCIT) architecture

[Nagarajan et al. 2011] uses

redundant and diverse servers

to periodically “self-cleanse”

the system to pristine state.

Fig. 8: Temporal and Spatial Characteristics

39:22 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

The aforementioned R-Xen framework [Jansen et al. 2008] proactively instantiates

new VM instances to ensure system reliability, a technique much faster than

rebooting hardware servers thanks to hypervisor-based virtualization technology.

Thirdly, the Enforcement Locale dimension shows that over 52% of self-protection

approaches still rely on perimeter security, especially those that focus on intrusion

detection and intrusion prevention. Systems relying solely on perimeter security,

however, are often rendered helpless when the perimeter is breached; nor can they

effectively deal with threats that originate from inside of the system. To compensate

for this weakness, some approaches follow the “defense-in-depth” principle and

establish multiple layers of perimeters or security zones [Pal et al. 2007], but the

disadvantage still exists. In light of this, we feel there is a need to shift focus from

perimeter security to overall system protection, especially from monitoring the

system boundary to monitoring overall system behavior. For example, recent

research has started to focus on detecting and responding to insider threats based on

monitoring user-system interactions [Sibai and Menasce 2011; Sibai and Menasce

2012]. Another possible approach is to shift the focus from delimiting system

boundaries to identifying system assets under protection, as developed by Salehie et

al. [2012] and Pasquale et al. [2012].

Fig. 8 summarizes the statistics around the spatial and temporal traits of

surveyed approaches, highlighting the research gaps around (1) global self-protection

architectures that do not require a central controller, (2) combining reactive

protection tactics with proactive ones, and (3) protecting the overall system and not

just the perimeter.

 Repeatable Patterns and Tactics for Self-Protection 6.7

One of the most revealing findings from our survey is the emergence of repeatable

architectural patterns and design tactics that software systems employ specifically

for self-protection purposes (T11 of the taxonomy). Even though some of these

patterns bear similarity to the generic software architecture and design patterns,

their usage and semantics are quite different. As mentioned in Section 5.2, they can

be loosely categorized as structural and behavioral patterns. Their description,

examples, and perceived pros/cons are summarized in Table I.

These patterns cover 84% of the surveyed papers; therefore their use is quite

pervasive. Note that the patterns are by no means mutually exclusive. A system may

combine a number of complementary patterns to add to its depths of defense and

boost survivability. The TALENT system, for instance, employs OS-level and

programming language-level diversity and periodically moves running applications to

a clean platform. Though technical challenges remain, this “cyber moving target”

approach holds promise for defense against advanced, zero-day attacks. As another

example, the R-Xen framework [Jansen et al. 2008] used hypervisor-based Protective

Wrapper to provide application monitoring and protection. Fearing the protective

wrapper itself may become a weak link for the system, it also used software

rejuvenation to protect the hypervisor core.

We also found, not surprisingly, that the positioning and techniques employed by

a self-protection approach will to some extent determine the architectural patterns

being used. This observation, however, does point to a critical research opportunity,

that is, to further identify and catalogue such correlations, to codify them into

machine-readable forms, so that a system may dynamically re-architect itself using

repeatable patterns as requirements and environments change. This is a higher level

of self-protection and may only be enabled through an architecture-based approach.

A Systematic Survey of Self-Protecting Software Systems 39:23

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Table I. Catalog of Self-Protection Patterns

Pattern Definition Examples Evaluation

Structural Patterns

Protective Wrapper—Place

a security enforcement

proxy, wrapper, or

container around the

protected resource, so that

request to / response from

the resource may be

monitored and sanitized in

a manner transparent to

the resource.

The SITAR system [Wang et al. 2003]

protects COTS servers by deploying an

adaptive proxy server in the front, which

detects and reacts to intrusions. Invalid

requests trigger reconfiguration of the

COTS server. Virtualization techniques

are increasingly being used as an effective

protective wrapper platform. VASP [Zhu

et al. 2011], for example, is a hypervisor-

based monitor that provides a trusted

execution environment to monitor various

malicious behaviors in the OS.

Pros—Security adaptation is

transparent to the protected

resource; easy to implement.

Cons—Since the wrapper is

inherently intended for outside

threats, this pattern cannot

address security vulnerabilities

inside the protected component.

The wrapper, esp. when

externally visible, may itself

become an exploitation target.

Agreement-based

Redundancy —In addition

to reliability and

availability benefits

provided by the common

redundancy mechanism,

this pattern uses

agreement-based protocols

among the replicas to

detect anomalies and

ensure correct-ness of

results.

The seminal work by Castro and Liskov

[2002] described a Byzantine Fault

Tolerance (BFT) algorithm that can

effectively tolerate ƒ faulty nodes with 3ƒ

replicas. Similar agreement-based voting

protocols have been used in many other

systems such as SITAR and [Valdes et al.

2004]. The Ripley system [Vikram et al.

2009] implements a special kind of

agreement based technique by executing

a “known good” replica of a client-side

program on the server side.

Pros—Robust mechanism that

can meet both system integrity

and availability goals; effective

against unknown attacks.

Cons—Due to required number of

replicas, needs significant

hardware and software

investments, which can be costly.

Further, by compromising enough

replicas, the system will be

essentially shut down, resulting

in denial of service.

Implementation

Diversity— Deploy

different implementations

for the same software

specification, in the hope

that attacks to one impl.

may not affect others. This

may be achieved through

the use of diverse prog.

languages, OS, or H/W

platforms. To safely switch

requests from one instance

to another, checkpointing

is necessary to save the

current system state.

The HACQIT system [Reynolds et al.

2002; Reynolds et al. 2003] achieves

diversity by using two software

components with identical functional

specifications (such as a Microsoft IIS

web server and an Apache web server) for

error detection and failure recovery.

Similarly, the DPASA system [Chong et

al. 2005; Pal et al. 2007] included

controlled use of hardware and OS level

diversity among redundant environments

as part of a comprehensive survivable

architecture. A similar approach is

dubbed Architecture Hybridization in the

MAFTIA system [Verissimo et al. 2006].

Pros—Effective defense against

attacks based on platform-specific

vulnerabilities. Increases system

resilience since an exploited

weakness in one impl. is less

likely to kill the entire system.

Cons—Significant efforts required

to develop, test, and deploy

diverse program implementations.

Diverse languages / platforms

may give rise to more software

defects. Further, checkpointing to

preserve program state at

runtime may prove technically

challenging.

Countermeasure Broker—

The self-protecting system

includes a brokering

function that, based on the

type of an attack, performs

dynamic matching or

tradeoff analysis to select

the most appropriate

response or

countermeasure, often

from a pre-defined

repository.

Case-based Reasoning (CBR) techniques

are sometimes used to detect intrusions

and select responses. The SoSMART

system [Musman and Flesher 2000]

describes an agent-based approach where

the CBR “brain” picks the suitable

response agent. Alternatively, the

ADEPTS effort [Foo et al. 2005a; Wu et

al. 2007] uses attack graphs to identify

possible attack targets and consequently

suitable responses.

Pros—Flexibility and dynamic

nature of the response, when

implemented correctly, makes it

harder for an adversary to predict

and exploit the security defense.

Cons—Not effective against

unknown attacks. Static, “knee-

jerk” like responses are likely to

be predictable, thus lose

effectiveness in the long run. The

broker component may become a

high value target for adversaries.

Aspect-Orientation—

Following the Aspect

Oriented Programming

(AOP) principle, this

pattern deploys self-

protection mechanisms as

a separate aspect in the

system, transparent to

Morin et al. [2010], for example, showed

how a security access control metamodel

is defined and combined with the

business architecture metamodel; the

security aspect is “woven” into the overall

model using MDE tools such as the

Kermata language. A related effort

[Mouelhi et al. 2008] shows how the

Pros—Bringing AOP benefits to

self-protection, such as reuse,

separation of concerns, and

improved application quality.

Assisted with MDE techniques, it

also provides a way of expressing

security policies as models.

Cons—It is not yet known if self-

39:24 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Pattern Definition Examples Evaluation

application logic. This

pattern is often assisted by

Model Driven Engineering

(MDE) techniques, as

mentioned in Section 6.2.

security policies from the model are

generated in XACML and integrated into

the application using AOP. Xiao et al.

[2007; 2008] also used a similar model

driven approach to model security policy

rules and dynamically weave them into

the runtime application in an agent-based

environment.

protection as a cross-cutting

concern can be adequately

expressed in today’s modeling

languages and tools. Weaving in

the security aspect into the very

application it is protecting makes

security logic just as vulnerable.

Behavioral Patterns

Protective Recomposition—

Dynamically adapt

security behavior of a

system through altering

how security-enforcing

components are connected

and orchestrated. This

may include tuning of

security parameters,

changing authentication /

authorization methods,

switching to a different

crypto algorithm, or

regeneration of access

control policies.

The E2R Autonomic Security Framework

[Saxena et al. 2007; He and Lacoste

2008a], for example, allows nodes in a

wireless network to collect and derive

security context information from

neighboring nodes and reorganize upon

node failures. Other examples include

changes in contract negotiations between

security components [Feiertag et al.

2000], altered security service sequences

based on QoS objective changes [Malek et

al. 2009], or regenerating new concrete

policy instances from a generic policy

based on dynamic security context [Debar

et al. 2007].

Pros—A key pattern that touches

the very essence of self-adaptive

security: the ability to adapt

security posture based on

changing threats and real time

security contexts. Makes the

system more defendable and

harder to exploit.

Cons—Dynamic and sometimes

even non-deterministic security

behavior is difficult to test and

even harder to evaluate its

correctness and effectiveness.

Attack Containment—A

simple pattern that seeks

to isolate a compromised

component from the rest of

the system to minimize the

damage. Typical

techniques include

blocking access, denying

request, deactivating user

logins, and shutting down

the system component.

De Palma et al. [2012] developed an

approach for clustered distributed

systems that involves isolating a

compromised machine from the network.

Solitude uses file-system level isolation

and application sandboxing to limit

attack propagation [Jain et al. 2008].

SASI [Erlingsson and Schneider 2000], a

code-level containment approach, uses a

compile-time Software Fault Isolation

(SFI) method to enforce security policies.

Pros—Simple, fast, and effective

way to mitigate and contain

security compromises.

Cons—Often carried out at the

opportunity cost of (at least

temporary) unavailability of

system resources to legitimate

users.

Software Rejuvenation—

As defined by Huang et al.

[1995], this pattern

involves gracefully

terminating an application

and immediately

restarting it at a clean

internal state. Often done

proactively and

periodically.

In addition to the rejuvenation-based

SCIT system [Huang et al. 2006;

Nagarajan et al. 2011] and the

aforementioned HACQIT system, the

Proactive Resilience Wormhole (PRW)

effort [Sousa et al. 2006; Sousa et al.

2007; Sousa et al. 2010] also employs

proactive rejuvenation for intrusion

tolerance and high availability. Wang et

al. [2009] presented a special case of

rejuvenation involving software

hotswapping, i.e. swapping out infected

components at runtime, replaced with a

valid/more strongly protected equivalent.

Pros—Effective technique that

addresses both security and high

availability. Periodic software

rejuvenation limits the damage of

undetected attacks.

Cons—The rejuvenation process,

short as it may be, temporarily

reduces system reliability. Extra

care is needed to preserve

application state and transition

applications to a rejuvenated

replica. Extra investment is

needed for maintaining redundant

replicas.

Reconfiguration on

Reflex—A bio-inspired

pattern that reconfigures

the system to a higher

level of protection (which

may be more resource

consuming), and when

attack passes, returns to a

less restrictive mode.

The Security Adaptation Manager (SAM)

[Hinton et al. 1999] dynamically operates

the system at 3 levels of implementations

(calm, nervous, panic) depending on the

threat level. The DASAC approach [Jean

et al. 2007] uses a boosting-based

algorithm and heuristically defined

security levels that allow the agent

network to react to agent

trustworthiness.

Pros—A technique for balancing

competing goals of security and

performance, depending on the

ongoing threat level.

Cons—Ineffective in the case of

undetected threats. An attacker

can trick the system to always

run at heightened security levels

to sacrifice performance, therefore

not suitable for persistent threats

A Systematic Survey of Self-Protecting Software Systems 39:25

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Pattern Definition Examples Evaluation

Artificial Immunization—

Inspired by adaptive

immune systems in

vertebrates, this pattern

seeks to capture samples

of worms or viruses;

analyze the virus to derive

a signature that can be

used to detect and remove

it from infected resources;

and disseminate the

“antidote” to all vulnerable

systems.

Kephart et al. [1997] and White et al.

[1999] designed one of the first Digital

Immune Systems in response to early

virus epidemics, when it was realized that

automation was needed to spread the

cure faster than the virus itself. Later

approaches such as SweetBait

[Portokalidis and Bos 2007] use more

sophisticated “honeypot” techniques to

capture suspicious traffic and generate

worm signatures. A variant of this

pattern uses the so-called Danger Theory

to as the basis for autonomic attack

detection and defense [Swimmer 2007;

Rawat and Saxena 2009].

Pros— “Detect once, defend

anywhere”; the pattern proved to

be a successful approach for

defending against computer

viruses and helped creation of the

anti-virus industry.

Cons—Centralized and top-down

architecture is a challenge to

scalability and agility, esp. as

attacks become more localized

and targeted. Further, just like all

signature-based techniques, it is

not effective against unknown /

zero-day attacks.

 Quality Assessment of Surveyed Papers 6.8

We used reputable sites in our review protocol (recall Appendix A). This resulted in

the discovery of high quality refereed research papers from respectable venues. We

use Validation Method (T12), Repeatability (T13), and Applicability (T14), which are

the three Approach Quality dimensions in the taxonomy, to develop better insights

into the quality of the research papers surveyed. Fig. 9 summarizes some of our

findings. Fig. 9 (a) depicts the share of different Validation Methods in assessing the

quality of self-protection approaches. Most (70%) of the approaches have used

Empirical techniques to assess the validity of their ideas. The Empirical techniques

range from detailed assessment of full implementation of the approach (e.g., [Castro

and Liskov 2002]) to a proof-of-concept experimentation of a prototype (e.g., [Raissi

2006]). A limited number (6%) of approaches (e.g., Ostrovsky and Yung [1991]) have

provided mathematical Proof to validate their ideas. Some approaches (16%) have

relied on Simulation to validate their claims (e.g., [Taddeo and Ferrante 2009]).

Finally, there are approaches (14%) that have either not validated their ideas (e.g.,

[Valdes et al. 2004]) or validated aspects (such as performance) of their work other

than security (e.g., [Swimmer 2007]).

The evaluation of security research is generally known to be difficult. Making the

results of experiments repeatable is even more difficult. We can see this in Fig. 9 (b),

where only limited portions (12%) of approaches are highly repeatable. The rest have

not made their implementations, prototypes, tools, and experiments available to

other researchers. This has hampered their adoption in other relevant domains. As

we can see in Fig. 9 (c), many approaches (60%) are portable and have high potential

for being applicable to broad range of situations and domains. However, the fact that

their artifacts are not accessible outside the boundary of the same team/organization,

has limited their usage and prevented their potential applicability from becoming

actual applicability.

 THREATS TO VALIDITY 7.

As detailed in Appendix A, by carefully following the SLR process in conducting this

study, we have tried to minimize the threats to the validity of our results and

conclusions made in this paper. Nevertheless, there are three possible threats that

deserve additional discussion.

39:26 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

One important threat is the completeness of this study, i.e., whether all of the

appropriate papers in the literature were identified and included. This threat could

be due to two reasons: (1) some relevant papers were not picked up by the search

engines or did not match our keyword search, (2) some relevant papers that were

mistakenly omitted, and vice versa, some irrelevant papers that were mistakenly

included. To address these threats, we adopted multiple strategies. First, we used

multiple search engines of different types, including those targeted specifically at

scientific publications as well as general-purpose search engines. Second, we adopted

an iterative approach to keyword-list construction. As the study progressed, we

noticed different research communities refer to the same concepts using different

words. The iterative process allowed us to ensure proper list of keywords were used

in our search process. Nonetheless, the limited number of keyword phrases we used

(see Appendix A.2) in order to keep the study manageable has prevented the coverage

of some interesting areas, such as:

— Research pertaining to security assurance and security Service Level Agreements

(SLA) during the autonomic adaptation of services / components, such as the

ongoing work at EU projects ASSERT4SOA and Aniketos (see [Anisetti et al.

2012], [Foster et al. 2012] and other related publications)

— Risk-based self-protecting solutions, such as an approach by Cheng et al. [2007]

— Adaptive solutions addressing privacy, as introduced by Schaub et al. [2012]

It is our hope that these areas will be covered in our future research.

Another threat is the objectiveness of the study, i.e., whether the included papers

were classified without any bias. To avoid misclassification of papers, the authors

crosschecked papers reviewed by one another, such that no paper received only a

single reviewer. This allowed us to reduce the effect of bias in our review process.

Yet another threat is the validity of the proposed taxonomy, i.e., whether the

taxonomy is sufficiently rich to enable proper classification and analysis of the

literature in this area. To mitigate this threat, we adopted an iterative content

analysis method, whereby the taxonomy was continuously evolved to account for

every new concept encountered in the papers. While the changes to the taxonomy

were drastic toward the beginning of our study (roughly the first 30 papers that were

classified), toward the end (roughly the last 30 papers) resulted in almost no changes

to the taxonomy. This gives us confidence that the taxonomy provides a good

coverage for the variations and concepts that are encountered in this area of research.

Finally, the last threat is that synthesis of the results and conclusions made in

Section 6 could be biased or flawed. As mentioned earlier, we have tackled the

individual reviewer’s bias by crosschecking the papers, such that no paper received a

Fig. 9: (a) Validation Method (b) Repeatability (c) Applicability

A Systematic Survey of Self-Protecting Software Systems 39:27

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

single reviewer. We have also strived to base the conclusions on the collective

numbers obtained from the classification of papers, rather than individual reviewer’s

interpretation or general observations, thus minimizing the individual reviewer’s

bias. Lastly, we have made the classification of the papers available to the public,

which can be accessed at http://goo.gl/Ksy1u.

 RECOMMENDATIONS FOR FUTURE RESEARCH 8.

From systematically reviewing the self-protection related literature, we see some

important trends in software security research. Starting in the 1990s, dynamic and

automated security mechanisms started to emerge in the antivirus and anti-spam

communities. The late 1990s and early 2000s saw a research boom in the Intrusion

Detection (ID) / firewall communities, as online systems faced the onslaught of

network and host based attacks. We then see two important trends in the past

decade, as reflected by the observations in section 6: (a) from Intrusion Detection to

Intrusion Response (IR), as the increasing scale and speed of attacks showed the

acute need for dynamic and autonomic response mechanisms, as confirmed in recent

surveys ([Stakhanova et al. 2007a] and [Shameli-Sendi et al. 2012]); (b) from

Intrusion Detection to Intrusion Tolerance (IT), when both the industry and academia

came to the realization that security threats will persist and prevention mechanisms

will likely never be adequate, and began to give additional consideration to

maintaining system performance even in the presence of an intrusion [Nguyen and

Sood 2011].

Only in recent few years did we see an explicit focus on self-protection as a system

property in the autonomic computing context. Frincke et al. [2007] and Atighetchi

and Pal [2009], for example, see the pressing need for autonomic security approaches

and true self-protecting systems. From the break-down of papers across ID, IR, IT,

and Self-Protection (SP) communities, we see an encouraging sign of growing SP

research, yet we also see the continued influence of the intrusion-centric mindset.

Therefore, our first and foremost recommendation is to increase attention,

convergence, and collaboration on self-protection research, and to leverage

this community for integrating a diverse set of strategies, technologies and

techniques from ID, IR, IT and other communities toward achieving a common goal.

More specifically, the survey using our proposed taxonomy has revealed some gaps

and needs for future research. To summarize, self-protection research needs to focus

on the following to stay ahead of today’s advancing cyber threats:

— Advance the sophistication at each self-protection level, that is, from automatically

monitoring and detecting threats and vulnerabilities to autonomously predict and

prevent attacks;

— Move beyond defending the network and host layers, towards developing

approaches that are independent of specific system architectures and that can

select suitable strategies and tactics at different architecture layers;

— Pursue integrated, “full lifecycle” approaches that span both development-time

and runtime;

— “Protect the protector”, that is, safeguard the meta-level self-protection module,

especially in a globally decentralized topology;

— Explore models@runtime and model-driven engineering techniques while

maintaining clear meta-level and base-level separation;

39:28 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

— Explore the definition and application of qualitative and quantitative metrics that

can be used to dynamically assess overall system security posture and make

autonomic response decisions;

— Continue to explore multi-level, multi-objective, as well as cost-sensitive security

decision-making strategies based on stakeholder requirements;

— Continue the paradigm shift from perimeter security to overall system protection

and monitoring, and from merely reactive responses to a combined use of both

reactive and proactive mechanisms;

— Catalog, implement, and evaluate self-protection patterns at the abstract

architecture level;

— Promote collaboration in the community by making research repeatable (such as

providing tools and case studies) and developing common evaluation

platforms/benchmarks.

 CONCLUSION 9.

Self-protection of software systems is becoming increasingly important as these

systems face increasing external threats from the outside and adopt more dynamic

architecture behavior from within. Self-protection, like other self-* properties, allows

the system to adapt to the changing environment through autonomic means without

much human intervention, and can thereby be responsive, agile, and cost effective.

Existing research has made significant progress towards software self-protection,

such as in intrusion tolerance systems and adaptive security mechanisms at the

application level. This paper proposes a comprehensive taxonomy to classify and

characterize research efforts in this arena. We have carefully followed the systematic

literature review process, resulting in the most comprehensive and elaborate

investigation of the literature in this area of research, comprised of 107 papers

published from 1991 to 2013. The research has revealed patterns, trends and gaps in

the existing literature and underlined key challenges and opportunities that will

shape the focus of future research efforts. In particular, the survey shows self-

protection research should advance from focusing primarily on the network and host

layers to layer-independent and architecture-based approaches; from single-

mechanism and single-objective to multi-strategy and cost-sensitive decision-making,

and from perimeter security to overall system protection. We believe the results of

our review will help to advance the much needed research in this area and hope the

taxonomy itself will become useful in the development and assessment of new

research.

REFERENCES

Abie, H. 2009. Adaptive security and trust management for autonomic message-oriented middleware.

Mobile Adhoc and Sensor Systems, 2009. MASS ’09. IEEE 6th International Conference on, 810–817.

Abie, H., Dattani, I., Novkovic, M., Bigham, J., Topham, S., and Savola, R. 2008. GEMOM - Significant

and Measurable Progress beyond the State of the Art. 3rd International Conference on Systems and

Networks Communications, 2008. ICSNC ’08, 191 –196.

Adnane, A., de Sousa,Jr., R.T., Bidan, C., and Mé, L. 2008. Autonomic trust reasoning enables misbehavior

detection in OLSR. Proceedings of the 2008 ACM symposium on Applied computing, ACM, 2006–2013.

Alampalayam, S.P. and Kumar, A. 2003. Security model for routing attacks in mobile ad hoc networks.

Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, 2122– 2126 Vol.3.

Alia, M. and Lacoste, M. 2008. A QoS and Security Adaptation Model for Autonomic Pervasive Systems.

Computer Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE International, 943 –

948.

Alia, M., Lacoste, M., He, R., and Eliassen, F. 2010. Putting together QoS and security in autonomic

pervasive systems. Proceedings of the 6th ACM workshop on QoS and security for wireless and mobile

A Systematic Survey of Self-Protecting Software Systems 39:29

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

networks, ACM, 19–28.

Al-Nashif, Y., Kumar, A.A., Hariri, S., Qu, G., Luo, Y., and Szidarovsky, F. 2008. Multi-Level Intrusion

Detection System (ML-IDS). International Conference on Autonomic Computing, 2008. ICAC ’08, 131

–140.

Anisetti, M., Ardagna, C. A., Damiani, E., Frati, F., Müller, H. A., and Pahlevan, A. 2012. Web service

assurance: The notion and the issues. Future Internet, 4(1), 92-109.

Atighetchi, M. and Pal, P. 2009. From Auto-adaptive to Survivable and Self-Regenerative Systems

Successes, Challenges, and Future. Eighth IEEE International Symposium on Network Computing

and Applications, 2009. NCA 2009, 98 –101.

Atighetchi, M., Pal, P., Webber, F., Schantz, R., Jones, C., and Loyall, J. 2004. Adaptive cyberdefense for

survival and intrusion tolerance. IEEE Internet Computing 8, 6, 25 – 33.

Atighetchi, M., Pal, P.P., Jones, C.C. et al. 2003. Building auto-adaptive distributed applications: the QuO-

APOD experience. 23rd International Conference on Distributed Computing Systems Workshops, 2003.

Proceedings, 104 – 109.

Avižienis, A., Laprie, J.-C., and Randell, B. 2004. Dependability and Its Threats: A Taxonomy. In: R.

Jacquart, ed., Building the Information Society. Springer Boston, 91–120.

Balepin, I., Maltsev, S., Rowe, J., and Levitt, K. 2003. Using Specification-Based Intrusion Detection for

Automated Response. In: G. Vigna, C. Kruegel and E. Jonsson, eds., Recent Advances in Intrusion

Detection. Springer Berlin / Heidelberg, 136–154.

Ben Mahmoud, M.S., Larrieu, N., Pirovano, A., and Varet, A. 2010. An adaptive security architecture for

future aircraft communications. Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th,

3.E.2–1–3.E.2–16.

Bencsáth, B., Pék, G., Buttyán, L., and Félegyházi, M. 2012. Duqu: Analysis, Detection, and Lessons

Learned. ACM European Workshop on System Security (EuroSec).

Benjamin, D.P., Pal, P., Webber, F., Rubel, P., and Atigetchi, M. 2008. Using a Cognitive Architecture to

Automate Cyberdefense Reasoning. ECSIS Symposium on Bio-inspired Learning and Intelligent

Systems for Security, 2008. BLISS ’08, 58 –63.

Bijani, S. and Robertson, D. 2012. A review of attacks and security approaches in open multi-agent

systems. Artificial Intelligence Review, 1–30.

Blount, J.J., Tauritz, D.R., and Mulder, S.A. 2011. Adaptive Rule-Based Malware Detection Employing

Learning Classifier Systems: A Proof of Concept. Computer Software and Applications Conference

Workshops (COMPSACW), 2011 IEEE 35th Annual, 110 –115.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., and Khalil, M. 2007. Lessons from applying the

systematic literature review process within the software engineering domain. Journal of Systems and

Software 80, 4, 571–583.

Burns, J., Cheng, A., Gurung, P. et al. 2001. Automatic management of network security policy. DARPA

Information Survivability Conference Exposition II, 2001. DISCEX ’01. Proceedings, 12 –26 vol.2.

Casola, V., Mancini, E.P., Mazzocca, N., Rak, M., and Villano, U. 2008. Self-optimization of secure web

services. Computer Communications 31, 18, 4312–4323.

Castro, M. and Liskov, B. 2002. Practical byzantine fault tolerance and proactive recovery. ACM Trans.

Comput. Syst. 20, 4, 398–461.

Cavalcante, R.C., Bittencourt, I.I., da Silva, A.P., Silva, M., Costa, E., and Santos, R. 2012. A survey of

security in multi-agent systems. Expert Systems with Applications 39, 5, 4835–4846.

Cheng, B.H.C., Lemos, R., Giese, H. et al. 2009. Software Engineering for Self-Adaptive Systems: A

Research Roadmap. In: B.H.C. Cheng, R. Lemos, H. Giese, P. Inverardi and J. Magee, eds., Software

Engineering for Self-Adaptive Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–26.

Cheng, P. C., Rohatgi, P., Keser, C., et al. 2007. Fuzzy multi-level security: An experiment on quantified

risk-adaptive access control. In IEEE Symposium on Security and Privacy, 2007. SP'07. (pp. 222-230).

Cheng, S.-W., Garlan, D., and Schmerl, B. 2006. Architecture-based self-adaptation in the presence of

multiple objectives. Proceedings of the 2006 international workshop on Self-adaptation and self-

managing systems, ACM, 2–8.

Chess, D.M., Palmer, C.C., and White, S.R. 2003. Security in an autonomic computing environment. IBM

Systems Journal 42, 1, 107 –118.

Chigan, C., Li, L., and Ye, Y. 2005. Resource-aware self-adaptive security provisioning in mobile ad hoc

networks. Wireless Communications and Networking Conference, 2005 IEEE, 2118– 2124 Vol. 4.

Chong, J., Pal, P., Atigetchi, M., Rubel, P., and Webber, F. 2005. Survivability architecture of a mission

critical system: the DPASA example. Computer Security Applications Conference, 21st Annual, 10 pp.

–504.

Costa, M., Crowcroft, J., Castro, M. et al. 2008. Vigilante: End-to-end containment of Internet worm

epidemics. ACM Trans. Comput. Syst. 26, 4, 9:1–9:68.

Cowan, C., Pu, C., Maier, D. et al. 1998. StackGuard: automatic adaptive detection and prevention of

buffer-overflow attacks. Proceedings of the 7th conference on USENIX Security Symposium - Volume 7,

USENIX Association, 5–5.

39:30 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Cox, D.P., Al-Nashif, Y., and Hariri, S. 2007. Application of autonomic agents for global information grid

management and security. Proceedings of the 2007 summer computer simulation conference, Society

for Computer Simulation International, 1147–1154.

Crosbie, M. and Spafford, G. 1995. Active Defense of a Computer System Using Autonomous Agents. .

Debar, H., Thomas, Y., Cuppens, F., and Cuppens-Boulahia, N. 2007. Enabling automated threat response

through the use of a dynamic security policy. Journal in Computer Virology 3, 3, 195–210.

Dittmann, J., Karpuschewski, B., Fruth, J., Petzel, M., and M"under, R. 2010. An exemplary attack

scenario: threats to production engineering inspired by the Conficker worm. Proceedings of the First

International Workshop on Digital Engineering, ACM, 25–32.

Dragoni, N., Massacci, F., and Saidane, A. 2009. A self-protecting and self-healing framework for

negotiating services and trust in autonomic communication systems. Computer Networks 53, 10,

1628–1648.

Elkhodary, A. and Whittle, J. 2007. A Survey of Approaches to Adaptive Application Security. Software

Engineering for Adaptive and Self-Managing Systems, 2007. ICSE Workshops SEAMS ’07.

International Workshop on, 16.

English, C., Terzis, S., and Nixon, P. 2006. Towards self-protecting ubiquitous systems: monitoring trust-

based interactions. Personal and Ubiquitous Computing 10, 1, 50–54.

Erlingsson, U. and Schneider, F.B. 2000. SASI enforcement of security policies: a retrospective. DARPA

Information Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings, 287 –295 vol.2.

Fayssal, S., Alnashif, Y., Kim, B., and Hariri, S. 2008. A proactive wireless self-protection system.

Proceedings of the 5th international conference on Pervasive services, ACM, 11–20.

Feiertag, R., Rho, S., Benzinger, L. et al. 2000. Intrusion detection inter-component adaptive negotiation.

Computer Networks 34, 4, 605–621.

Foo, B., Wu, Y.S., Mao, Y.C., Bagchi, S., and Spafford, E. 2005a. ADEPTS: Adaptive intrusion response

using attack graphs in an e-commerce environment. Dependable Systems and Networks, 2005. DSN

2005. Proceedings. International Conference on, 508–517.

Foo, B., Wu, Y.-S., Mao, Y.-C., Bagchi, S., and Spafford, E. 2005b. ADEPTS: adaptive intrusion response

using attack graphs in an e-commerce environment. International Conference on Dependable Systems

and Networks, 2005. DSN 2005. Proceedings, 508 – 517.

Foster, H., Spanoudakis, G., & Mahbub, K. 2012. Formal Certification and Compliance for Run-Time

Service Environments. In Services Computing (SCC), 2012 IEEE Ninth International Conference on

(pp. 17-24).

Frincke, D., Wespi, A., and Zamboni, D. 2007. From intrusion detection to self-protection. Computer

Networks 51, 5, 1233–1238.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. 2004. Rainbow: architecture-based

self-adaptation with reusable infrastructure. Computer 37, 10, 46 – 54.

Gelenbe, E. and Loukas, G. 2007. A self-aware approach to denial of service defence. Computer Networks

51, 5, 1299–1314.

Ghosh, A.K., O’Connor, T., and McGraw, G. 1998. An automated approach for identifying potential

vulnerabilities in software. 1998 IEEE Symposium on Security and Privacy, 1998. Proceedings, 104 –

114.

Ghosh, A.K. and Voas, J.M. 1999. Inoculating software for survivability. Commun. ACM 42, 7, 38–44.

Goel, A., Po, K., Farhadi, K., Li, Z., and de Lara, E. 2005. The taser intrusion recovery system. SIGOPS

Oper. Syst. Rev. 39, 5, 163–176.

Guttman, J.D. and Herzog, A.L. 2005. Rigorous automated network security management. International

Journal of Information Security 4, 1, 29–48.

Hafiz, M., Adamczyk, P., and Johnson, R.E. 2007. Organizing Security Patterns. IEEE Software 24, 4, 52 –

60.

Hashii, B., Malabarba, S., Pandey, R., and Bishop, M. 2000. Supporting reconfigurable security policies for

mobile programs. Computer Networks 33, 1–6, 77–93.

He, R. and Lacoste, M. 2008a. Applying component-based design to self-protection of ubiquitous systems.

Proceedings of the 3rd ACM workshop on Software engineering for pervasive services, ACM, 9–14.

He, R. and Lacoste, M. 2008b. Applying component-based design to self-protection of ubiquitous systems.

Proceedings of the 3rd ACM workshop on Software engineering for pervasive services, 9–14.

He, R., Lacoste, M., and Leneutre, J. 2010a. A Policy Management Framework for Self-Protection of

Pervasive Systems. 2010 Sixth International Conference on Autonomic and Autonomous Systems

(ICAS), 104 –109.

He, R., Lacoste, M., and Leneutre, J. 2010b. Virtual Security Kernel: A Component-Based OS Architecture

for Self-Protection. 2010 IEEE 10th International Conference on Computer and Information

Technology (CIT), 851 –858.

Hinton, H., Cowan, C., Delcambre, L., and Bowers, S. 1999. SAM: Security Adaptation Manager.

Computer Security Applications Conference, 1999. (ACSAC ’99) Proceedings. 15th Annual, 361–370.

Huang, Y., Arsenault, D., and Sood, A. 2006. Closing cluster attack windows through server redundancy

A Systematic Survey of Self-Protecting Software Systems 39:31

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

and rotations. Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006.

CCGRID 06, 12 pp. –21.

Huang, Y., Kintala, C., Kolettis, N., and Fulton, N.D. 1995. Software rejuvenation: analysis, module and

applications. , Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995. FTCS-25.

Digest of Papers, 381 –390.

Huebscher, M.C. and McCann, J.A. 2008. A survey of autonomic computing - degrees, models, and

applications. ACM Comput. Surv. 40, 3, 7:1–7:28.

Igure, V. and Williams, R. 2008. Taxonomies of attacks and vulnerabilities in computer systems. IEEE

Communications Surveys Tutorials 10, 1, 6 –19.

Jabbour, G. and Menasce, D.A. 2009. The Insider Threat Security Architecture: A framework for an

integrated, inseparable, and uninterrupted self-protection mechanism. Computational Science and

Engineering, 2009. CSE’09. International Conference on, 244–251.

Jabbour, G.G. and Menasee, D.A. 2008. Policy-Based Enforcement of Database Security Configuration

through Autonomic Capabilities. Autonomic and Autonomous Systems, 2008. ICAS 2008. Fourth

International Conference on, 188–197.

Jain, S., Shafique, F., Djeric, V., and Goel, A. 2008. Application-level isolation and recovery with solitude.

Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, ACM,

95–107.

Jansen, B., Ramasamy, H., Schunter, M., and Tanner, A. 2008. Architecting Dependable and Secure

Systems Using Virtualization. In: R. de Lemos, F. Di Giandomenico, C. Gacek, H. Muccini and M.

Vieira, eds., Architecting Dependable Systems V. Springer Berlin / Heidelberg, 124–149.

Jean, E., Jiao, Y., Hurson, A.R., and Potok, T.E. 2007. Boosting-Based Distributed and Adaptive Security-

Monitoring through Agent Collaboration. Web Intelligence and Intelligent Agent Technology

Workshops, 2007 IEEE/WIC/ACM International Conferences on, 516–520.

Kephart, J.O. and Chess, D.M. 2003. The vision of autonomic computing. Computer 36, 1, 41–50.

Kephart, J.O., Sorkin, G.B., Swimmer, M., and White, S.R. 1997. Blueprint for a computer immune system.

Proceedings of the Virus Bulletin International Conference, San Francisco, California.

Kitchenham, B. 2004. Procedures for performing systematic reviews. Keele, UK, Keele University 33, 2004.

Klein, C., Schmid, R., Leuxner, C., Sitou, W., and Spanfelner, B. 2008. A survey of context adaptation in

autonomic computing. Autonomic and Autonomous Systems, 2008. ICAS 2008. Fourth International

Conference on, 106–111.

Konrad, S., Cheng, B.H.C., Campbell, L.A., and Wassermann, R. 2003. Using security patterns to model

and analyze security requirements. Requirements Engineering for High Assurance Systems (RHAS’03),

11.

Kramer, J. and Magee, J. 2007. Self-Managed Systems: an Architectural Challenge. Future of Software

Engineering, 2007. FOSE ’07, 259 –268.

Kumar, G., Kumar, K., and Sachdeva, M. 2010. The use of artificial intelligence based techniques for

intrusion detection: a review. Artificial Intelligence Review 34, 4, 369–387.

Labraoui, N., Gueroui, M., Aliouat, M., and Petit, J. 2010. Adaptive security level for data aggregation in

Wireless Sensor Networks. Wireless Pervasive Computing (ISWPC), 2010 5th IEEE International

Symposium on, 325–330.

Lamprecht, C.J. and van Moorsel, A.P.A. 2007. Adaptive SSL: Design, Implementation and Overhead

Analysis. Self-Adaptive and Self-Organizing Systems, 2007. SASO ’07. First International Conference

on, 289–294.

Lamprecht, C.J. and van Moorsel, A.P.A. 2008. Runtime Security Adaptation Using Adaptive SSL.

Dependable Computing, 2008. PRDC ’08. 14th IEEE Pacific Rim International Symposium on, 305–

312.

Langner, R. 2011. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security Privacy 9, 3, 49 –51.

Laureano, M., Maziero, C., and Jamhour, E. 2007. Protecting host-based intrusion detectors through

virtual machines. Computer Networks 51, 5, 1275–1283.

Lee, W., Miller, M., Stolfo, S.J., Fan, W., and Zadok, E. 2002. Toward cost-sensitive modeling for intrusion

detection and response. Journal of Computer Security 10, 2002.

Lemos, R., Giese, H., Müller, H.A., et al. 2013. Software Engineering for Self-Adaptive Systems: A Second

Research Roadmap. In: R. Lemos, H. Giese, H.A. Müller and M. Shaw, eds., Software Engineering for

Self-Adaptive Systems II. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–32.

Liang, Z. and Sekar, R. 2005. Fast and automated generation of attack signatures: A basis for building

self-protecting servers. Proceedings of the 12th ACM conference on Computer and communications

security, 213–222.

Lim, Y.T., Cheng, P.-C., Rohatgi, P., and Clark, J.A. 2009. Dynamic security policy learning. Proceedings

of the first ACM workshop on Information security governance, ACM, 39–48.

Lorenzoli, D., Mariani, L., and Pezze, M. 2007. Towards Self-Protecting Enterprise Applications. The 18th

IEEE International Symposium on Software Reliability, 2007. ISSRE ’07, 39 –48.

Malek, S., Esfahani, N., Menasce, D.A., Sousa, J.P., and Gomaa, H. 2009. Self-Architecting Software

39:32 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

SYstems (SASSY) from QoS-annotated activity models. ICSE Workshop on Principles of Engineering

Service Oriented Systems, 2009. PESOS 2009, 62 –69.

Marino, J. and Rowley, M. 2010. Understanding SCA (Service Component Architecture). Pearson

Education.

Maximilien, E.M. and Singh, M.P. 2004. Toward autonomic web services trust and selection. Proceedings

of the 2nd international conference on Service oriented computing, ACM, 212–221.

McKinley, P.K., Sadjadi, S.M., Kasten, E.P., and Cheng, B.H.C. 2004. A Taxonomy of Compositional

Adaptation. Michigan State University Report MSU-CSE-04-17.

Menasce, D., Gomaa, H., Malek, S., and Sousa, J. 2011. SASSY: A Framework for Self-Architecting

Service-Oriented Systems. IEEE Software 28, 6, 78 –85.

MITRE. 2011. CWE - 2011 CWE/SANS Top 25 Most Dangerous Software Errors. 2011 CWE/SANS Top 25

Most Dangerous Software Errors. http://cwe.mitre.org/top25/.

Montangero, C. and Semini, L. 2004. Formalizing an Adaptive Security Infrastructure in Mobadtl. FCS’04,

301.

Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., and Jézéquel, J.-M. 2010. Security-driven

model-based dynamic adaptation. Proceedings of the IEEE/ACM international conference on

Automated software engineering, ACM, 205–214.

Mouelhi, T., Fleurey, F., Baudry, B., and Le Traon, Y. 2008. A Model-Based Framework for Security Policy

Specification, Deployment and Testing. In: K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl and M. Völter,

eds., Model Driven Engineering Languages and Systems. Springer Berlin / Heidelberg, 537–552.

Musman, S. and Flesher, P. 2000. System or security managers adaptive response tool. DARPA

Information Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings, 56 –68 vol.2.

Nagarajan, A., Nguyen, Q., Banks, R., and Sood, A. 2011. Combining intrusion detection and recovery for

enhancing system dependability. 2011 IEEE/IFIP 41st International Conference on Dependable

Systems and Networks Workshops (DSN-W), 25 –30.

Neumann, P.G. and Porras, P.A. 1999. Experience with EMERALD to Date. In 1st USENIX Workshop on

Intrusion Detection and Network Monitoring, 73–80.

Nguyen, Q.L. and Sood, A. 2011. A Comparison of Intrusion-Tolerant System Architectures. IEEE Security

Privacy 9, 4, 24 –31.

Okhravi, H., Comella, A., Robinson, E., and Haines, J. 2012. Creating a cyber moving target for critical

infrastructure applications using platform diversity. International Journal of Critical Infrastructure

Protection 5, 1, 30–39.

Okhravi, H., Robinson, E.I., Yannalfo, S., Michaleas, P.W., Haines, J., and Comella, A. 2010. TALENT:

Dynamic Platform Heterogeneity for Cyber Survivability of Mission Critical Applications. .

de Oliveira, T.R., de Oliveira, S., Macedo, D.F., and Nogueira, J.M. 2011. An adaptive security

management model for emergency networks. Network Operations and Management Symposium

(LANOMS), 2011 7th Latin American, 1–4.

Ostrovsky, R. and Yung, M. 1991. How to withstand mobile virus attacks (extended abstract). Proceedings

of the tenth annual ACM symposium on Principles of distributed computing, ACM, 51–59.

Pal, P., Webber, F., and Schantz, R. 2007. The DPASA survivable JBI-a high-water mark in intrusion-

tolerant systems. WRAITS 2007.

De Palma, N., Hagimont, D., Boyer, F., and Broto, L. 2012. Self-Protection in a Clustered Distributed

System. Parallel and Distributed Systems, IEEE Transactions on 23, 2, 330–336.

Pasquale, L., Salehie, M., Ali, R., Omoronyia, I., and Nuseibeh, B. 2012. On the role of primary and

secondary assets in adaptive security: An application in smart grids. 2012 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), 165–170.

Perrin, C. 2008. The CIA Triad. http://www.techrepublic.com/blog/security/the-cia-triad/488.

Porras, P.A. and Neumann, P.G. 1997. EMERALD: Event monitoring enabling responses to anomalous

live disturbances. In Proceedings of the 20th National Information Systems Security Conference, 353–

365.

Portokalidis, G. and Bos, H. 2007. SweetBait: Zero-hour worm detection and containment using low- and

high-interaction honeypots. Computer Networks 51, 5, 1256–1274.

Psaier, H. and Dustdar, S. 2011. A survey on self-healing systems: approaches and systems. Computing 91,

1, 43–73.

Raissi, J. 2006. Dynamic Selection of Optimal Cryptographic Algorithms in a Runtime Environment.

Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 184–191.

Rawat, S. and Saxena, A. 2009. Danger theory based SYN flood attack detection in autonomic network.

Proceedings of the 2nd international conference on Security of information and networks, ACM, 213–

218.

Reiser, H.P. and Kapitza, R. 2007a. VM-FIT: Supporting intrusion tolerance with virtualisation technology.

Proceedings of the 1st Workshop on Recent Advances on Intrusion-Tolerant Systems (in conjunction

with Eurosys 2007, Lisbon, Portugal.

Reiser, H.P. and Kapitza, R. 2007b. Hypervisor-Based Efficient Proactive Recovery. 26th IEEE

A Systematic Survey of Self-Protecting Software Systems 39:33

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

International Symposium on Reliable Distributed Systems, 2007. SRDS 2007, 83 –92.

Reynolds, J., Just, J., Lawson, E., Clough, L., Maglich, R., and Levitt, K. 2002. The design and

implementation of an intrusion tolerant system. International Conference on Dependable Systems and

Networks, 2002. DSN 2002. Proceedings, 285 – 290.

Reynolds, J.C., Just, J., Clough, L., and Maglich, R. 2003. On-line intrusion detection and attack

prevention using diversity, generate-and-test, and generalization. Proceedings of the 36th Annual

Hawaii International Conference on System Sciences, 2003, 8 pp.

Sadjadi, S.M. 2003. A Survey of Adaptive Middleware. Michigan State University Report MSU-CSE-03-35.

Salehie, M., Pasquale, L., Omoronyia, I., Ali, R., & Nuseibeh, B. 2012. Requirements-driven adaptive

security: Protecting variable assets at runtime. In Requirements Engineering Conference (RE), 2012

20th IEEE International (pp. 111-120). IEEE.

Salehie, M. and Tahvildari, L. 2009. Self-adaptive software: Landscape and research challenges. ACM

Trans. Auton. Adapt. Syst. 4, 2, 14:1–14:42.

Savola, R.M. and Heinonen, P. 2010. Security-measurability-enhancing mechanisms for a distributed

adaptive security monitoring system. Emerging Security Information Systems and Technologies

(SECURWARE), 2010 Fourth International Conference on, 25–34.

Saxena, A., Lacoste, M., Jarboui, T., Lücking, U., and Steinke, B. 2007. A Software Framework for

Autonomic Security in Pervasive Environments. In: P. McDaniel and S. Gupta, eds., Information

Systems Security. Springer Berlin / Heidelberg, 91–109.

Schaub, F., Konings, B., Weber, M., and Kargl, F. 2012. Towards context adaptive privacy decisions in

ubiquitous computing. In Pervasive Computing and Communications Workshops (PERCOM

Workshops), 2012 IEEE International Conference on (pp. 407-410).

Schneider, F.B. 2003. Enforceable security policies. Foundations of Intrusion Tolerant Systems, 2003

[Organically Assured and Survivable Information Systems], 117 – 137.

Shameli-Sendi, A., Ezzati-Jivan, N., Jabbarifar, M., and Dagenais, M. 2012. Intrusion response systems:

survey and taxonomy. Int J Comput Sci Network Secur (IJCSNS). v12 i1, 1–14.

Sibai, F.M. and Menasce, D.A. 2011. Defeating the insider threat via autonomic network capabilities. 2011

Third International Conference on Communication Systems and Networks (COMSNETS), 1 –10.

Sibai, F.M. and Menasce, D.A. 2012. Countering Network-Centric Insider Threats through Self-Protective

Autonomic Rule Generation. Software Security and Reliability (SERE), 2012 IEEE Sixth International

Conference on, 273–282.

Sousa, P., Bessani, A.N., Correia, M., Neves, N.F., and Verissimo, P. 2007. Resilient Intrusion Tolerance

through Proactive and Reactive Recovery. 13th Pacific Rim International Symposium on Dependable

Computing, 2007. PRDC 2007, 373 –380.

Sousa, P., Bessani, A.N., Correia, M., Neves, N.F., and Verissimo, P. 2010. Highly Available Intrusion-

Tolerant Services with Proactive-Reactive Recovery. IEEE Transactions on Parallel and Distributed

Systems 21, 4, 452 –465.

Sousa, P., Neves, N.F., Verissimo, P., and Sanders, W.H. 2006. Proactive Resilience Revisited: The

Delicate Balance Between Resisting Intrusions and Remaining Available. 25th IEEE Symposium on

Reliable Distributed Systems, 2006. SRDS ’06, 71 –82.

Sowa, J.F. and Zachman, J.A. 1992. Extending and formalizing the framework for information systems

architecture. IBM Systems Journal 31, 3, 590 –616.

Spanoudakis, G., Kloukinas, C., and Androutsopoulos, K. 2007. Towards security monitoring patterns.

Proceedings of the 2007 ACM symposium on Applied computing, ACM, 1518–1525.

Stakhanova, N., Basu, S., and Wong, J. 2007a. A taxonomy of intrusion response systems. International

Journal of Information and Computer Security 1, 1, 169–184.

Stakhanova, N., Basu, S., and Wong, J. 2007b. A Cost-Sensitive Model for Preemptive Intrusion Response

Systems. 21st International Conference on Advanced Information Networking and Applications, 2007.

AINA ’07, 428 –435.

Strasburg, C., Stakhanova, N., Basu, S., and Wong, J.S. 2009. A Framework for Cost Sensitive Assessment

of Intrusion Response Selection. Computer Software and Applications Conference, 2009.

COMPSAC ’09. 33rd Annual IEEE International, 355 –360.

Sundaram, A. 1996. An introduction to intrusion detection. Crossroads 2, 4, 3–7.

Swiderski, F. and Snyder, W. 2004. Threat Modeling. Microsoft Press, Redmond, WA, USA.

Swimmer, M. 2007. Using the danger model of immune systems for distributed defense in modern data

networks. Computer Networks 51, 5, 1315–1333.

Taddeo, A.V. and Ferrante, A. 2009. Run-time selection of security algorithms for networked devices.

Proceedings of the 5th ACM symposium on QoS and security for wireless and mobile networks, ACM,

92–96.

Tan, L., Zhang, X., Ma, X., Xiong, W., and Zhou, Y. 2008. AutoISES: Automatically inferring security

specifications and detecting violations. Proceedings of the 17th conference on Security symposium,

379–394.

Tang, C. and Yu, S. 2008. A Dynamic and Self-Adaptive Network Security Policy Realization Mechanism.

39:34 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Network and Parallel Computing, 2008. NPC 2008. IFIP International Conference on, 88–95.

Uribe, T.E. and Cheung, S. 2004. Automatic analysis of firewall and network intrusion detection system

configurations. Proceedings of the 2004 ACM workshop on Formal methods in security engineering,

ACM, 66–74.

Valdes, A., Almgren, M., Cheung, S. et al. 2004. An Architecture for an Adaptive Intrusion-Tolerant Server.

In: B. Christianson, B. Crispo, J. Malcolm and M. Roe, eds., Security Protocols. Springer Berlin /

Heidelberg, 569–574.

Verissimo, P.E., Neves, N.F., Cachin, C. et al. 2006. Intrusion-tolerant middleware: the road to automatic

security. IEEE Security Privacy 4, 4, 54 –62.

Vikram, K., Prateek, A., and Livshits, B. 2009. Ripley: automatically securing web 2.0 applications

through replicated execution. Proceedings of the 16th ACM conference on Computer and

communications security, ACM, 173–186.

Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., and Casallas, R. 2011. A framework for evaluating

quality-driven self-adaptive software systems. Proceedings of the 6th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, ACM, 80–89.

Villegas, N.M., Tamura, G., Müller, H.A., Duchien, L., and Casallas, R. 2013. DYNAMICO: A reference

model for governing control objectives and context relevance in self-adaptive software systems. In: R.

Lemos, H. Giese, H.A. Müller and M. Shaw, eds., Software Engineering for Self-Adaptive Systems II.

Springer Berlin Heidelberg, Berlin, Heidelberg, 265-293.

Wang, F., Jou, F., Gong, F., Sargor, C., Goseva-Popstojanova, K., and Trivedi, K. 2003. SITAR: a scalable

intrusion-tolerant architecture for distributed services. Foundations of Intrusion Tolerant Systems,

2003 [Organically Assured and Survivable Information Systems], 359 – 367.

Wang, H., Dong, X., and Wang, H. 2009. A Method for Software Security Growth Based on the Real-Time

Monitor Algorithm and Software Hot-Swapping. Dependable, Autonomic and Secure Computing, 2009.

DASC ’09. Eighth IEEE International Conference on, 137–142.

Weyns, D., Malek, S., and Andersson, J. 2012. FORMS: Unifying Reference Model for Formal Specification

of Distributed Self-Adaptive Systems. ACM Transactions on Autonomous and Adaptive Systems 7, 1,

1–61.

White, S.R., Swimmer, M., Pring, E.J., Arnold, W.C., Chess, D.M., and Morar, J.F. 1999. Anatomy of a

commercial-grade immune system. IBM Research White Paper.

Wu, Y.-S., Foo, B., Mao, Y.-C., Bagchi, S., and Spafford, E.H. 2007. Automated adaptive intrusion

containment in systems of interacting services. Computer Networks 51, 5, 1334–1360.

Xiao, L. 2008. An adaptive security model using agent-oriented MDA. Information and Software

Technology 51, 5, 933–955.

Xiao, L., Peet, A., Lewis, P. et al. 2007. An Adaptive Security Model for Multi-agent Systems and

Application to a Clinical Trials Environment. Computer Software and Applications Conference, 2007.

COMPSAC 2007. 31st Annual International, 261–268.

Yau, S.S., Yao, Y., and Yan, M. 2006. Development and runtime support for situation-aware security in

autonomic computing. Proceedings of the Third international conference on Autonomic and Trusted

Computing, Springer-Verlag, 173–182.

Yu, Z., Tsai, J.J.P., and Weigert, T. 2007. An Automatically Tuning Intrusion Detection System. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37, 2, 373 –384.

Yu, Z., Tsai, J.J.P., and Weigert, T. 2008. An adaptive automatically tuning intrusion detection system.

ACM Trans. Auton. Adapt. Syst. 3, 3, 10:1–10:25.

Yuan, E. and Malek, S. 2012. A taxonomy and survey of self-protecting software systems. 2012 ICSE

Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 109 –118.

Zhang, Z., Naït-Abdesselam, F., Ho, P.-H., and Kadobayashi, Y. 2011. Toward cost-sensitive self-

optimizing anomaly detection and response in autonomic networks. Computers & Security 30, 6–7,

525–537.

Zhang, Z. and Shen, H. 2009. M-AID: An adaptive middleware built upon anomaly detectors for intrusion

detection and rational response. ACM Trans. Auton. Adapt. Syst. 4, 4, 24:1–24:35.

Zhu, M., Yu, M., Xia, M. et al. 2011. VASP: virtualization assisted security monitor for cross-platform

protection. Proceedings of the 2011 ACM Symposium on Applied Computing, ACM, 554–559.

Zou, J., Lu, K., and Jin, Z. 2002. Architecture and fuzzy adaptive security algorithm in intelligent firewall.

MILCOM 2002. Proceedings, 1145– 1149 vol.2.

Received December 2012; revised April 2013; accepted June 2013

A Systematic Survey of Self-Protecting Software Systems 39:35

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

APPENDIX A

A.1 Research Tasks

To answer these research questions, we organized our tasks into a process flow

tailored to our specific objectives, yet still adhering to the three-phase SLR process.

The overall process flow is outlined in Fig. 10 and briefly described below.

First, in the planning phase, we defined the review protocol that includes

selection of the search engines, the initial selection of the keywords pertaining to self-

protecting software systems, and the inclusion/exclusion criteria for the candidate

papers. The protocol is described in detail in Section A.2.

The initial keyword-based selection of the papers is an iterative process that

involves exporting the candidate papers to a “research catalog” and applying the pre-

defined inclusion/exclusion criteria on them. In the process, the keyword search

expressions and the inclusion/exclusion criteria themselves may also need to be fine-

tuned, which would in turn trigger new searches. Once the review protocol and the

resulting paper collection were stabilized, our research team also conducted peer-

reviews to validate the selections.

For RQ1, in order to define a comprehensive taxonomy suitable for classifying

self-protection research, we first started with a quick “survey of surveys” on related

taxonomies. Since our research topic straddles both the autonomic/adaptive systems

and computer security

domains, we identified

some classification

schemes and

taxonomies from both

domains, as described

in Section 3. After an

initial taxonomy was

formulated, we then

used the initial paper

review process

(focusing on abstracts,

introduction,

contribution, and

conclusions sections) to

identify new concepts

and approaches to

augment and refine

our taxonomy. The

resulting taxonomy is

presented in Section 5.

For the second

research question

(RQ2), we used the

validated paper

collection and the

consolidated taxonomy

to conduct a more

detailed review on the

Fig. 10: Research Process Flow and Tasks

39:36 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

papers. Each paper was classified using every dimension in the taxonomy, and the

results were again captured in the research catalog. The catalog, consisting of a set of

spreadsheets, allowed us to perform qualitative and quantitative analysis not only in

a single dimension, but also across different dimensions in the taxonomy. The

analysis and findings are documented in Section 6.

To answer the third research question (RQ3), we analyzed the results from RQ2

and attempted to identify the gaps and trends, again using the taxonomy as a critical

aid. The possible research directions are henceforth identified and presented in

Section 8.

A.2 Literature Review Protocol

The first part of our review protocol was concerned with the selection of search

engines. As correctly pointed out in [Brereton et al. 2007], no single search engine in

the software engineering domain is sufficient to find all of the primary studies,

therefore multiple search engines are needed. We selected the following search sites

to have a broad coverage: IEEE Explore, ACM Digital Library, Springer Digital

Library, Elsevier ScienceDirect (Computer Science collection), Google Scholar.

For these search engines we used a targeted set of keywords, including: Software

Self-Protection, Self-Protecting Software, Self-Securing Software, Adaptive Security,

and Autonomous Security. It is worth noting that the exact search expression had to

be fine-tuned for each search engine due to its unique search interface (e.g. basic

search vs. advanced search screens, the use of double quotes, and the AND/OR

expressions). In each case we tried to broaden the search as much as possible while

maintaining a manageable result set. For example, because Google Scholar

invariably returns thousands of hits, we limited our search to the first 200 results.

We also used the following inclusion and exclusion criteria to further filter the

candidate papers:

— Only refereed journal and conference publications were included.

— Based on our definition of self-protection in Section 2, we included autonomic and

adaptive software research that is directly relevant to the self-protecting and self-

securing properties. Other properties such as self-healing and self-optimization are

out of the scope of this survey.

— Our review focuses on software systems only, therefore does not include self-

protection pertaining to hardware systems.

— Software security research that doesn’t exhibit any self-adaptive/autonomic traits

is excluded.

— Our definition of self-protection pertains to protecting the software system against

malicious threats and attacks. Sometimes other connotations of self-protection

may be possible. For example, protecting a system from entering into an

inconsistent state (from a version consistency perspective), or protecting a wireless

sensor network (from the field-of-view perspective) may also be viewed as self-

protection. Such papers are excluded in this review.

— Position papers or research proposals not yet implemented or evaluated are

excluded.

When reviewing a candidate paper, we have in many occasions further extended the

collection with additional papers that appear in its citations or those that are citing it

(backward and forward citation search).

A Systematic Survey of Self-Protecting Software Systems 39:37

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

APPENDIX B

The evaluation matrix below contains the detailed survey results.

Monitor & Detect

Respond & Protect

Plan & Prevent

Network

Host

Middleware

Application

Depth-Ind.

Dev Time

Runtime

Confidentiality

Integrity

Availability

No Separation

Partial Sep.

Complete Sep.

Formal Models

Heuristic Rules

Optimization

Prob. Models

Machine Learning

Single Strategy

Multi-Strategy

Cost-sensitive

Local Only

Globally Centr.

Globally Decentr.

Reactive

Proactive

Timing-Neutral

System Boundary

System Internals

Locale-neutral

Protective Wrapper

Agmt-based Redund

Impl. Diversity

S/W Rejuvenation

Protective Recomp.

Attack Containment

Reconfig on Reflex

Ctr-measure Broker

Aspect-Orientation

Artificial Immun.

Empirical

Proof

Simulation

None

High

Low

High

Low

[A
bi

e
et

 a
l.

 2
0

0
8

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[A
bi

e
2

0
0

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[S

av
o

la
 a

n
d

H
ei

n
o

n
en

 2
0

1
0

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[A
dn

an
e

et
 a

l.
 2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[A
la

m
p

al
ay

am
 a

n
d

K
um

ar
 2

0
0

3
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[A

li
a

an
d

L
ac

o
st

e
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[A
li

a
et

 a
l.

 2
0

1
0

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[A

l-
N

as
h

if
 e

t
al

.
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[A

ti
gh

et
ch

i
et

 a
l.

 2
0

0
3

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[A
ti

gh
et

ch
i

et
 a

l.
 2

0
0

4
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[B

al
ep

in
 e

t
al

.
2

0
0

3
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[B

en
 M

ah
m

o
ud

 e
t

al
.

2
0

1
0

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[B
en

ja
m

in
 e

t
al

.
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[B
lo

un
t

et
 a

l.
 2

0
1

1
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[B
ur

n
s

et
 a

l.
 2

0
0

1
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[C

as
o

la
 e

t
al

.
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[C

as
tr

o
 a

n
d

L
is

k
o

v
 2

0
0

2
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[C
h

ig
an

 e
t

al
.

2
0

0
5

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[C

h
o

n
g

et
 a

l.
 2

0
0

5
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[P
al

 e
t

al
.

2
0

0
7

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[C

o
st

a
et

 a
l.

 2
0

0
8

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[C

o
x

 e
t

al
.

2
0

0
7

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[C
ro

sb
ie

 a
n

d
Sp

af
fo

rd
 1

9
9

5
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[d

e
O

li
v

ei
ra

 e
t

al
.

2
0

1
1

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[D
e

P
al

m
a

et
 a

l.
 2

0
1

2
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[D

eb
ar

 e
t

al
.

2
0

0
7

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[D

ra
go

n
i

et
 a

l.
 2

0
0

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[E
n

gl
is

h
 e

t
al

.
2

0
0

6
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[E

rl
in

gs
so

n
 a

n
d

Sc
h

n
ei

de
r

2
0

0
0

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[F
ay

ss
al

 e
t

al
.

2
0

0
8

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[F
ei

er
ta

g
et

 a
l.

 2
0

0
0

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[F
o

o
 e

t
al

.
2

0
0

5
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[W
u

et
 a

l.
 2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[G
ar

la
n

 e
t

al
.

2
0

0
4

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[C
h

en
g

et
 a

l.
 2

0
0

6
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[G

el
en

be
 a

n
d

L
o

uc
as

 2
0

0
7

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[G

h
o

sh
 e

t
al

.
1

9
9

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
[G

h
o

sh
 a

n
d

V
o

as
 1

9
9

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x

V
a

li
d

a
ti

o
n

M
e

th
o

d
A

p
p

.
R

e
p

.

S
e

lf
-

P
ro

t.

L
e

ve
ls

D
e

p
th

s
o

f

D
e

fe
n

se

L
if

e

cy
cl

e

F
o

cu

S
e

cu
ri

t

y
 G

o
a

ls

M
e

ta
-

L
e

ve
l

S
e

p
.

T
h

e
o

re
ti

ca
l

F
o

u
n

d
a

ti
o

n

M
e

ta
-

L
e

ve
l

D
M

S
o

u
rc

e

C
o

n
tr

o
l

T
o

p
o

lo
g

y

R
e

sp
o

n
s

e

T
im

in
g

E
n

fo
rc

e
.

L
o

ca
le

S
e

lf
-P

ro
te

ct
io

n
 P

a
tt

e
rn

s

39:38 E. Yuan et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Monitor & Detect

Respond & Protect

Plan & Prevent

Network

Host

Middleware

Application

Depth-Ind.

Dev Time

Runtime

Confidentiality

Integrity

Availability

No Separation

Partial Sep.

Complete Sep.

Formal Models

Heuristic Rules

Optimization

Prob. Models

Machine Learning

Single Strategy

Multi-Strategy

Cost-sensitive

Local Only

Globally Centr.

Globally Decentr.

Reactive

Proactive

Timing-Neutral

System Boundary

System Internals

Locale-neutral

Protective Wrapper

Agmt-based Redund

Impl. Diversity

S/W Rejuvenation

Protective Recomp.

Attack Containment

Reconfig on Reflex

Ctr-measure Broker

Aspect-Orientation

Artificial Immun.

Empirical

Proof

Simulation

None

High

Low

High

Low

[G
o

el
 e

t
al

.
2

0
0

5
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[J
ai

n
 e

t
al

.
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[G
ut

tm
an

 a
n

d
H

er
zo

g
2

0
0

5
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[H
as

h
ii

 e
t

al
.

2
0

0
0

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[H
e

et
 a

l.
 2

0
1

0
a]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[H

e
et

 a
l.

 2
0

1
0

b]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[H
in

to
n

 e
t

al
.

1
9

9
9

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[H

ua
n

g
et

 a
l.

 2
0

0
6

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[N
ag

ar
aj

an
 e

t
al

.
2

0
1

1
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[J

ab
bo

ur
 a

n
d

M
en

as
ce

 2
0

0
8

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[J

ab
bo

ur
 a

n
d

M
en

as
ce

 2
0

0
9

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[J

an
se

n
 e

t
al

.
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[J
ea

n
 e

t
al

.
2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[K

ep
h

ar
t

et
 a

l.
 1

9
9

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[W

h
it

e
et

 a
l.

 1
9

9
9

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[L
ab

ra
o

ui
 e

t
al

.
2

0
1

0
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[L
am

p
re

ch
t

an
d

v
an

 M
o

o
rs

el

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[L

am
p

re
ch

t
an

d
v

an
 M

o
o

rs
el

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[L
au

re
an

o
 e

t
al

.
2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[L

ee
 e

t
al

.
2

0
0

2
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[L
ia

n
g

an
d

Se
k

ar
 2

0
0

5
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[L

im
 e

t
al

.
2

0
0

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[L

o
re

n
zo

li
 e

t
al

.
2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[M

al
ek

 e
t

al
.

2
0

0
9

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[M

en
as

ce
 e

t
al

.
2

0
1

1
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[M
ax

im
il

ie
n

 a
n

d
Si

n
gh

 2
0

0
4

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[M
o

n
ta

n
ge

ro
 a

n
d

Se
m

in
i

2
0

0
4

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[M
o

ue
lh

i
et

 a
l.

 2
0

0
8

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[M
o

ri
n

 e
t

al
.

2
0

1
0

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[M
us

m
an

 a
n

d
F

le
sh

er
 2

0
0

0
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[O
k

h
ra

v
i

et
 a

l.
 2

0
1

0
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[O

k
h

ra
v

i
et

 a
l.

 2
0

1
2

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[O
st

ro
v

sk
y

 a
n

d
Y

un
g

1
9

9
1

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[P
o

rr
as

 a
n

d
N

eu
m

an
n

 1
9

9
7

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[N

eu
m

an
n

 a
n

d
P

o
rr

as
 1

9
9

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[P
o

rt
o

k
al

id
is

 a
n

d
B

o
s

2
0

0
6

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[R
ai

ss
i

2
0

0
6

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[R
aw

at
 a

n
d

Sa
x

en
a

2
0

0
9

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

V
a

li
d

a
ti

o
n

M
e

th
o

d
A

p
p

.
R

e
p

.

S
e

lf
-

P
ro

t.

L
e

ve
ls

D
e

p
th

s
o

f

D
e

fe
n

se

L
if

e

cy
cl

e

F
o

cu

S
e

cu
ri

t

y
 G

o
a

ls

M
e

ta
-

L
e

ve
l

S
e

p
.

T
h

e
o

re
ti

ca
l

F
o

u
n

d
a

ti
o

n

M
e

ta
-

L
e

ve
l

D
M

S
o

u
rc

e

C
o

n
tr

o
l

T
o

p
o

lo
g

y

R
e

sp
o

n
s

e

T
im

in
g

E
n

fo
rc

e
.

L
o

ca
le

S
e

lf
-P

ro
te

ct
io

n
 P

a
tt

e
rn

s

A Systematic Survey of Self-Protecting Software Systems 39:39

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Monitor & Detect

Respond & Protect

Plan & Prevent

Network

Host

Middleware

Application

Depth-Ind.

Dev Time

Runtime

Confidentiality

Integrity

Availability

No Separation

Partial Sep.

Complete Sep.

Formal Models

Heuristic Rules

Optimization

Prob. Models

Machine Learning

Single Strategy

Multi-Strategy

Cost-sensitive

Local Only

Globally Centr.

Globally Decentr.

Reactive

Proactive

Timing-Neutral

System Boundary

System Internals

Locale-neutral

Protective Wrapper

Agmt-based Redund

Impl. Diversity

S/W Rejuvenation

Protective Recomp.

Attack Containment

Reconfig on Reflex

Ctr-measure Broker

Aspect-Orientation

Artificial Immun.

Empirical

Proof

Simulation

None

High

Low

High

Low

[R
ei

se
r

an
d

K
ap

it
za

 2
0

0
7

a]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[R

ei
se

r
an

d
K

ap
it

za
 2

0
0

7
b]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[R
ey

n
o

ld
s

et
 a

l.
 2

0
0

2
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[R
ey

n
o

ld
s

et
 a

l.
 2

0
0

3
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[S
ax

en
a

et
 a

l.
 2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[H

e
an

d
L

ac
o

st
e

2
0

0
8

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[S
ib

ai
 a

n
d

M
en

as
ce

 2
0

1
1

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[S

ib
ai

 a
n

d
M

en
as

ce
 2

0
1

2
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[S
o

us
a

et
 a

l.
 2

0
0

6
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[S
o

us
a

et
 a

l.
 2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[S
o

us
a

et
 a

l.
 2

0
1

0
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[S
ta

k
h

an
o

v
a

2
0

0
7

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[S
tr

as
bu

rg
 2

0
0

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[S

w
im

m
er

 2
0

0
6

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[T
ad

de
o

 a
n

d
F

er
ra

n
te

 2
0

0
9

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[T

an
 e

t
al

.
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[T
an

g
an

d
Y

u
2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[U

ri
be

 a
n

d
C

h
eu

n
g

2
0

0
4

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[V

al
de

s
et

 a
l.

 2
0

0
4

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[V

er
is

si
m

o
 e

t
al

.
2

0
0

6
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[V

ik
ra

m
 e

t
al

.
2

0
0

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[W

an
g

et
 a

l.
 2

0
0

3
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[W

an
g

et
 a

l.
 2

0
0

9
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[X
ia

o
 e

t
al

.
2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[X
ia

o
 2

0
0

8
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[Y
au

 e
t

al
.

2
0

0
6

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[Y
u

et
 a

l.
 2

0
0

7
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[Y

u
et

 a
l.

 2
0

0
8

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[Z
h

an
g

an
d

Sh
en

 2
0

0
9

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[Z
h

an
g

et
 a

l.
 2

0
1

1
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
[Z

o
u

et
 a

l.
 2

0
0

2
]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

V
a

li
d

a
ti

o
n

M
e

th
o

d
A

p
p

.
R

e
p

.

S
e

lf
-

P
ro

t.

L
e

ve
ls

D
e

p
th

s
o

f

D
e

fe
n

se

L
if

e

cy
cl

e

F
o

cu

S
e

cu
ri

t

y
 G

o
a

ls

M
e

ta
-

L
e

ve
l

S
e

p
.

T
h

e
o

re
ti

ca
l

F
o

u
n

d
a

ti
o

n

M
e

ta
-

L
e

ve
l

D
M

S
o

u
rc

e

C
o

n
tr

o
l

T
o

p
o

lo
g

y

R
e

sp
o

n
s

e

T
im

in
g

E
n

fo
rc

e
.

L
o

ca
le

S
e

lf
-P

ro
te

ct
io

n
 P

a
tt

e
rn

s

