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Self-protecting software systems are a class of autonomic systems capable of detecting and mitigating 

security threats at runtime. They are growing in importance, as the stovepipe static methods of securing 

software systems have shown inadequate for the challenges posed by modern software systems. Self-

protection, like other self-* properties, allows the system to adapt to the changing environment through 

autonomic means without much human intervention, and can thereby be responsive, agile, and cost 

effective. While existing research has made significant progress towards autonomic and adaptive security, 

gaps and challenges remain. This paper presents a significant extension of our preliminary study in this 

area. In particular, unlike our preliminary study, here we have followed a systematic literature review 

process, which has broadened the scope of our study and strengthened the validity of our conclusions. By 

proposing and applying a comprehensive taxonomy to classify and characterize the state-of-the-art 

research in this area, we have identified key patterns, trends and challenges in the existing approaches, 

which reveals a number of opportunities that will shape the focus of future research efforts.  
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 INTRODUCTION 1.

Security is increasingly a principal concern for the design and construction of most 

modern software systems. In spite of the significant progress over the past few 

decades, the challenges posed by security are more prevalent than ever before. As the 

awareness grows of the limitations of traditional, often static and rigid, security 

models, research shifts to dynamic models, where security threats are detected and 

mitigated at runtime, i.e., self-protection.  

Self-protection has been identified as one of the essential traits of self-

management for autonomic computing systems. Kephart and Chess characterized 

self-protection from two perspectives [Kephart and Chess 2003]: From a “reactive” 

perspective, the system automatically defends against malicious attacks or cascading 

failures, while from a “proactive” perspective, the system anticipates security 
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problems in the future and takes steps to mitigate them. Self-protection is closely 

related to the other self-* properties, such as self-configuration and self-optimization. 

On one hand, a self-configuring and self-optimizing system relies on self-protection 

functions to ensure the system security remains intact during dynamic changes. On 

the other hand, the implementation of self-protection functions may also leverage the 

same techniques used for system reconfiguration and optimization. 

The past decade has seen extensive and systematic research being conducted 

around self-adaptive and self-managing systems. Research that focuses on self-

protecting capabilities, however, has been relatively speaking less abundant. 

Scattered efforts can be found in various application domains such as autonomic 

computing, mobile and ad-hoc networks, sensor networks, fault tolerant systems, 

trust management, and military domains like information survivability and tactical 

systems. 

The contributions of the paper include: (1) A proposed taxonomy for consistently 

and comprehensively classifying self-protection mechanisms and research approaches; 

(2) A systematic survey of the state of the art of self-protecting software systems 

using the proposed taxonomy; (3) Observations and comparative analysis across 

these self-protecting systems, to identify trends, patterns, and gaps; and (4) A set of 

recommendations for future research directions for self-protecting systems.  

This paper has significantly extended our preliminary study of self-protecting 

software systems [Yuan and Malek 2012]. In particular, unlike our preliminary study, 

here we have followed a systematic literature review process proposed by 

Kitchenham [2004]. This has broadened the scope of our study and strengthened the 

validity of our conclusions. In particular, we expanded our preliminary study of 32 

publications to a systematic study of more than 1030 papers, from which 107 

publications were deemed relevant (including a few that were published after the 

previous study). Our taxonomy and observations have been refined, enriched with 

more in-depth analysis, and in some cases altogether revised. To the best of our 

knowledge, this study is the most comprehensive and elaborate investigation of the 

literature in this area of research.  

We begin by introducing our research problem (1.1), illustrating it using a 

motivating example (1.2), and laying out the organization of the entire paper (1.3). 

 Problem Description and Motivation 1.1

There is an unprecedented need for self-protection in today’s software systems, 

driven by both external factors such as cyber threats as well as internal factors that 

lie within the system architecture. 

From Outside: Ever-Increasing Cyber Threats.  As software systems become more 

distributed, interactive and ubiquitous, networking services become an integral part 

of the system architecture, making these systems more prone to malicious attacks. 

Over the years the frequency, complexity, and sophistication of attacks are rapidly 

increasing, causing severe disruptions of online systems with sometimes catastrophic 

consequences. From some of the well-publicized recent incidents we can get a glimpse 

of the characteristics of such threats. The Conficker worm, first detected in 2008, 

caused the largest known computer infection in history and was able to assemble a 

botnet of several million hosts — an attack network that, if activated, would be 

capable of large-scale Distributed Denial of Service (DDoS) attacks. What is unique 

about Conficker is not just the scale it achieved, but also its use of sophisticated 

software techniques including peer-to-peer networking, self-defense through 

adaptation, and advanced cryptography [Dittmann et al. 2010]. The Stuxnet worm, 

discovered in 2010, is the first known malware to target and subvert industrial 
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control systems. In addition to being credited with damaging the Iranian nuclear 

program, the malware demonstrates its ability to attack multiple architecture layers 

of the target system — exploiting the network and host-level vulnerabilities is only a 

stepping stone for malicious actions at the application level [Langner 2011]. The 

Duqu worm, discovered in September 2011, is a reconnaissance worm that does no 

harm to the infected systems but is tasked to collect and exfiltrate information such 

as valid digital certificates that may be used in future attacks. It further illustrates 

the deliberate and persistent nature of today’s cyber threats [Bencsáth et al. 2012]. 

What has become increasingly clear from examples like these is that to protect 

today’s software systems, especially those that are mission critical, applying static 

point security solutions (e.g., firewall and one-time password authentication) is no 

longer sufficient. Rather, there is a need for dynamic approaches that actively 

evaluate and reassess the overall security posture of the entire system architecture. 

From Within: Dynamic Architectural Behaviors.  An equally pressing need for 

system self-protection arises from the fact that software systems are increasingly 

designed to take on more dynamic behaviors at runtime. As dynamic architectural 

styles (such as service-orientation) become more widely adopted, a system function 

may, for example, be reassembled and provisioned with different components (e.g., 

using Service Component Architecture [Marino and Rowley 2010]). Similarly, a web 

service orchestrator could be constructed to dynamically discover and access different 

service providers (e.g., using a Business Process Execution Language (BPEL) engine). 

Runtime architectural changes like these tend to be security-relevant. For example, 

if a BPEL orchestrator switches a Partner Link from a non-responsive local service 

provider to an alternative external provider, the new SOAP connection becomes an 

additional source of vulnerability. 

Therefore, as runtime system architectures become adaptive and dynamic, so 

must their protection, as manual changes in security policies would simply be too 

slow and too costly. 

 A Simple Motivating Example 1.2

Self-protection mechanisms for a 

software system can take many 

diverse forms. As an example, 

let us suppose an intruder, 

through attempts such as 

phishing, has gained access to 

an online banking system and 

starts to exfiltrate confidential 

user information. A much-

simplified architecture of the 

system is shown in Fig. 1. 

Suppose shortly after the intruder breaks into the system, his access gets denied 

and he can no longer gain access. To achieve this effect, the system could have taken 

any of the following different measures: 

— The router’s intrusion detection capability detects this intrusion at the network 

level and automatically disables the connection from the source IP address; 

— The firewall detects unusually large data transfer that exceeds the predefined 

policy threshold and accordingly disables the HTTP connection; 

— The ARchitecture Manager (ARM) monitors and protects the system by 

implementing the Monitor, Analyze, Plan, Execute (MAPE) loop for self-

 
Fig. 1: Simple Online Banking System Example 
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adaptation [Kephart and Chess 2003]. Upon sensing an unusual data retrieval 

pattern from the Windows server, the ARM shuts down the server and redirects 

all requests to a backup server accordingly; 

— Alternatively, the ARM deploys and manages multiple application server 

instances on the Windows machine. By comparing the behavior from all server 

instances (e.g., using a majority voting scheme), the ARM detects the anomaly 

from the compromised application server instance and consequently shuts it down. 

While the first two examples merely execute pre-determined actions using a 

particular component, the latter two clearly exhibit self-adaptive and self-protecting 

behavior at the system level. As the paper will show later, many other self-protecting 

mechanisms are possible. How do these different approaches compare against one 

another? Are some more effective than others? If so, under what conditions? To better 

answer these questions, one must methodically evaluate the state of the art of the 

self-protection approaches, architectures, and techniques, and assess how they 

address the externally-driven and internally-driven security needs mentioned above. 

This paper seeks to take a step toward this goal by proposing a comprehensive 

taxonomy for self-protecting systems. The next section starts with a survey of 

existing taxonomies and classification schemes that are relevant. 

 Organization of the Paper 1.3

The rest of the paper is organized as follows. Section 2 provides a detailed definition 

of the self-protection property, which serves to bound the scope of this survey. Section 

3 lists the existing surveys that are directly or indirectly related to self-protection. 

Section 4 summarizes the research method and underlying protocol of the survey 

while leaving the process details to Appendix A. Section 5 surveys the existing 

taxonomies and classification schemes related to system self-protection and adaptive 

security, before proposing a coherent and comprehensive taxonomy that builds on top 

of existing taxonomies. Section 6 classifies current and past self-protection research 

initiatives against the proposed taxonomy. We present the analysis on the survey 

results, offering observations on patterns, trends, gaps, and opportunities. Threats to 

validity of the results are addressed in Section 7. Based on this analysis, Section 8 

outlines a set of recommendations for future self-protecting system research. Section 

9 presents the conclusions. 

 SELF-PROTECTION DEFINED 2.

Before we delve into the study, it is important to establish a working definition of 

self-protection property, given that our experience shows the term has been used 

rather loosely in the literature. The goal of this definition is to clarify what we have 

considered to be a self-protecting software system, which in turn has defined the 

scope of this study. Our understanding of the self-protection property is consistent 

with that laid out in FORMS [Weyns et al. 2012], a formal language for specifying 

the properties and architectures of self-* (i.e., self-management, self-healing, self-

configuration, and self-protection) software systems. According to FORMS, a software 

system exhibiting a self-* property is comprised of two subsystems: a meta-level 

subsystem concerned with the self-* property that manages a base-level subsystem 

concerned with the domain functionality.  

Fig. 2 shows what we consider to be a self-protecting software system in light of 

FORMS’ concepts. The meta-level subsystem is part of the software that is 

responsible for protecting (i.e., securing) the base-level subsystem. The meta-level 

subsystem would be organized in the form of feedback control loop, such as the 
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MAPE-K architecture depicted in the figure [Kephart and Chess 2003]. One should 

not interpret this reference architecture to mean that the base level subsystem is 

agnostic to security concerns. In fact, the base-level subsystem may incorporate 

various security mechanisms, such as authentication, encryption, etc. It is only that 

the decision of when and how those security mechanisms are employed that rests 

with the meta-level subsystem. In the case of the online banking system introduced 

in Section 1.2, the banking application logic corresponds to the base-level subsystem, 

while the logic used for detecting an intruder and mitigating the threat through 

changes in the system corresponds to the meta-level subsystem. 

In addition to 

the intricate 

relationship 

between the meta-

level and base-

level subsystems, 

we make two 

additional 

observations. First, 

we underline the 

role of humans in 

such systems. 

Security objectives often have to be specified by human stakeholders, which are 

either the system’s users or engineers. As we will see in the remainder of this paper, 

the objectives can take on many different forms (e.g., access control policies, anomaly 

thresholds). Second, we observe that for self-protection to be effective, it needs to be 

able to observe the domain environment within which the software executes. The 

domain environment is comprised of elements that could have an impact on the base-

level software, but are outside the realm of control exercised by the meta-level 

subsystem. For instance, in the case of the online banking system, the domain could 

be other banking systems, which could impact the security of the protected system, 

but the meta-level subsystem has no control over them. 

These concepts, although intuitive, have allowed us to define the scope of our 

study. For instance, we were able to distinguish between an authentication algorithm 

that periodically changes the key it uses for verifying the identities of users, and a 

system that periodically changes the authentication algorithm it uses at runtime. 

The former we classified to be an adaptive security algorithm, as the software used in 

provisioning security does not change, and therefore outside the scope of this paper. 

While the latter we classified to be a self-protecting software system, as it changes 

the software elements used in provisioning security, and therefore within the scope of 

our study. Though other reference frameworks exist (such as control theory-based 

DYNAMICO [Villegas et al. 2013]), we will use the basic concepts introduced in this 

section throughout the paper to illustrate the differences between the self-protection 

approaches surveyed. 

 RELATED SURVEYS 3.

Because self-protection mechanisms fall into the intersection of self-adaptive systems 

and software security, we have sought survey papers from both research domains. 

First, even though the research field of self-adaptive and self-managing systems is 

a fertile research ground with rapidly advancing state of the art [Lemos et al. 2013; 

Cheng et al. 2009], little endeavor has been devoted to security as an adaptation 

 
Fig. 2: Self-Protection in Light of FORMS Reference Architecture 
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property. Nonetheless, a number of related surveys are worth noting. Villegas et al. 

[2011] developed a control theory-based framework for surveying and evaluating self-

adaptive software systems, in which security is included as one of the observable 

adaptation properties. None of their surveyed papers, however, covered security. A 

taxonomy of compositional adaptation [McKinley et al. 2004] focuses on composition 

as a key paradigm for adaptation, and describes a taxonomy based on how, when, 

and where software composition takes place. A related survey can be found in 

[Sadjadi 2003] with a stronger focus on adaptive middleware. Even though these two 

surveys are not directly related to self-protection systems, our paper draws certain 

taxonomy attributes for our purposes. Salehie and Tahvildari [2009] presented a 

comprehensive survey on self-adaptive software in general. It offers a taxonomy of 

self-adaptation that covers a variety of dimensions, some of which are security-

relevant such as adaptation layers (OS, middleware, etc.), realization approach (such 

as static vs. dynamic decision making), and temporal characteristics (such as reactive 

vs. proactive adaptation). Even though many of these dimensions are relevant for 

self-protection, they need to be further defined in the specific context of security 

before they become useful. A comprehensive survey of self-healing systems [Psaier 

and Dustdar 2011] provides a taxonomy of system failure classes (security being one 

of them) and catalogs self-healing approaches such as architecture-based, agent-

based, middleware-based, etc. Albeit not security-focused, the paper identified 

approaches and techniques that overlap with the self-protection research especially 

around the security goal of availability, as will be seen later in this paper.  

Across these surveys, the profound influence of the IBM Autonomic Computing 

(AC) vision as presented in [Kephart and Chess 2003] is clearly visible, specifically 

around the adopted definitions of self-* properties and the MAPE-K (Monitor, 

Analyze, Plan, Execute, and Knowledge) loop. A recent survey, for instance, further 

expanded the MAPE-K concept with a “Degree of Autonomicity” dimension with four 

progressive levels of maturity: Support, Core, Autonomous, and Autonomic 

[Huebscher and McCann 2008]. 

Secondly, we have found quite a number of relevant surveys in the software 

security domain. We recognize that computer security is a vast research domain, and 

that our objective is not to advance the state of the art of security techniques but 

rather to apply them to self-protecting systems. Consequently, we have limited our 

search to high-level surveys and review papers from which we can draw useful 

attributes for our self-protection taxonomy (described in Section 5). To that end, we 

have found good sources that cover various security concepts: 

— To have a better understanding of computer security threats and vulnerabilities, 

we turned to [Igure and Williams 2008], which provides a state-of-the-art 

“taxonomy of taxonomies” on types of attacks (general attacks, intrusion detection 

system (IDS) signatures and anomalies, Denial of Service (DoS) related attacks, 

web attacks and other specialized taxonomies) and vulnerabilities (software flaws, 

network vulnerabilities). Similarly, Swiderski and Snyder [2004] presented 

Microsoft’s threat model which classifies attacks along the STRIDE model 

(spoofing, tampering, repudiation, information disclosure, DoS, and elevation of 

privilege). A different attack taxonomy was introduced in [Bijani and Robertson 

2012], which defined high-level categories, including Disclosure, Modification, 

DoS, and Fake Identity. The same paper also organized the countermeasures in 

terms of detection techniques (peer monitoring, information monitoring, policy 

monitoring, activity monitoring, and attack modeling) and prevention approaches 
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(encryption, access control policies, behavior policies, agent-oriented software 

engineering, and language-based security). Other related threat taxonomies 

include the top 25 software vulnerabilities [MITRE 2011] and dependability 

threats and failure types [Avižienis et al. 2004] that are a superset of security 

threats and failures.  

— In addition to understanding the attacks, it is equally important to understand the 

objectives we would like to achieve when it comes to software self-protection. A 

common “CIA” model from the security community defines Confidentiality, 

Integrity, and Availability as the main security objectives for information systems, 

as used in [Perrin 2008], [Hafiz et al. 2007], and [Cavalcante et al. 2012]). 

— Software systems use a variety of techniques to mitigate security threats to 

achieve the CIA objectives. In addition to those countermeasures catalogued in 

[Bijani and Robertson 2012], Sundaram [1996] provided a good introduction and 

categorization on intrusion detection techniques, an important research area 

related to self-protection. Kumar et al. [2010] provided a good survey of Artificial 

Intelligence (AI) techniques for intrusion detection. 

— A number of surveys focused on organizing and classifying security patterns. 

[Konrad et al. 2003], for example, uses metrics such as purpose (creational, 

structural, and behavioral) and abstraction level (network, host, application). A 

similar effort [Hafiz et al. 2007] proposed other ways to organize security patterns, 

many of which are applicable to classifying self-protection approaches. 

Even though these generic surveys on security attacks, objectives, techniques and 

patterns are helpful, they do not specifically apply to software self-protection. Four 

other surveys, however, offer more pertinent insight into how software systems adapt 

to security threats: First, Elkhodary and Whittle [2007] provided a good survey on 

adaptive security mechanisms. It builds on top of the taxonomy of computational 

paradigms defined in [Sadjadi 2003], and adds additional dimensions such as 

reconfiguration scale and conflict handling. These dimensions are certainly 

applicable to self-protection systems in general; however, the paper’s focus is 

primarily on the application layer. Secondly, Nguyen and Sood [2011] offered an up-

to-date survey on Intrusion Tolerant Systems (ITS), a class of self-protecting systems 

that focus on continued system operations even in the presence of intrusion attacks. 

ITS architectures are often based on fault tolerance techniques. Some research 

efforts identified in this paper are also covered in our analysis in Section 6. As 

correctly pointed out by the authors, these approaches are by no means mutually 

exclusive and may be used together. Thirdly, Stakhanova et al. [2007a] and Shameli-

Sendi et al. [2012] surveyed a different class of systems called Intrusion Response 

Systems (IRS) that focus on dynamic response mechanisms once an intrusion has 

been detected. Both surveys proposed an IRS taxonomy that included dimensions 

such as adjustment ability (adaptive vs. non-adaptive), response selection (static, 

dynamic, or cost-sensitive), and response type (proactive vs. reactive), which overlap 

to some extent with our self-protection taxonomy. Cost-sensitive response selection, 

in particular, corroborated with a similar trend we have identified in our survey. 

Even though ITS and IRS have moved beyond traditional static and human-

driven security mechanisms, they are still intrusion-centric and perimeter based and 

as such do not yet constitute true self-protection. In fact, none of the four surveys 

focused specifically on self-protection research in the AC context. Nor did any of them 

follow the systematic literature review methodology. 
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 RESEARCH METHOD 4.

This survey follows the general guidelines for systematic literature review (SLR) 

process proposed by Kitchenham [2004]. We have also taken into account the lessons 

from [Brereton et al. 2007] on applying SLR to the software engineering domain. The 

process includes three main phases: planning, conducting, and reporting the review. 

Based on the guidelines, we have formulated the following research questions, which 

serve as the basis for the systematic literature review: 

— RQ1: How can existing research on self-protecting software systems be classified? 

— RQ2: What is the current state of self-protection research w.r.t. this classification? 

— RQ3: What patterns, gaps, and challenges could be inferred from the current 

research efforts that will inform future research? 

We have detailed our review process in Appendix A, including the methodology 

and tasks that we used to answer the research questions (Section A.1) and the 

detailed SLR protocol including key words, sources, and selection criteria (Section 

A.2). As a result, we have included 107 papers published from 1991 to 2013, out of 

the total of over 1037 papers found.  

No survey can be entirely comprehensive. Our keywords-based search protocol 

restricts us to papers that explicitly address the self-protection topic while potentially 

leaving out relevant papers under different terms. Section 7 lists some of the 

interesting areas that are not in the scope of the survey. 

 TAXONOMY 5.

To define a self-protection taxonomy for RQ1, we started with selecting suitable 

dimensions and properties found in existing surveys. The aforementioned taxonomies 

described in Section 3, though relevant and useful, are not sufficiently specific and 

systematic enough for classifying self-protection approaches in that they either focus 

on adaptive systems in general, but not specifically on security, or focus on software 

security in general, but not on autonomic and adaptive security. Many focus on only 

certain architectural layers of software systems (such as middleware). Even when a 

taxonomy dimension is appropriate for our purposes here, it is oftentimes too generic 

(e.g., open vs. closed) and need to be further qualified in the self-protection context. 

Furthermore, many of the taxonomies and classification schemes lean heavily 

towards implementation tactics and techniques (such as those for implementation 

patterns) but perhaps fall short on covering architectural strategies or styles (though 

some exceptions do exist, such as [Nguyen and Sood 2011]). 

For such reasons, we have defined our own taxonomy to help classify existing self-

protection and adaptive security research. The proposed taxonomy builds upon 

existing work surveyed in Section 3, and is a refinement and substantial extension of 

what we proposed in earlier work [Yuan and Malek 2012]. It consists of 14 

dimensions that fall into three groups: Approach Positioning, Approach 

Characterization, and Approach Quality. They are defined and illustrated in Fig. 3 

and Fig. 4, and explained in the following subsections. 

 Approach Positioning 5.1

The first part of the taxonomy, Approach Positioning, helps characterize the “WHAT” 

aspects, that is, the objectives and intent of self-protection research. It includes five 

dimensions, as depicted in the left part of Fig. 3: 

(T1) Self-Protection Levels: This dimension classifies self-protection research 

based on the level of sophistication of its meta-level subsystem (as defined in Section 



A Systematic Survey of Self-Protecting Software Systems                                                                             39:9  

                                                                                                                                         

 

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

2). “Monitor & Detect” is the most basic level, indicating the protecting subsystem is 

equipped with the capability to constantly monitor for security threats and detect 

anomalous or harmful activities from normal system operations. The next level is 

“Respond & Protect”, which indicates the subsystem’s ability to take action against 

the detected attack or anomaly. This implies the protecting subsystem can, ideally in 

an autonomous fashion, (a) characterize and understand the nature/type of the 

attacks, and (b) deploy the proper countermeasures to mitigate the security threat 

and maintain normal system operations to the extent possible – a property often 

called “graceful degradation”. The third level, “Plan & Prevent”, represents the 

highest level of sophistication; a security approach reaching this level allows a 

system to adapt and strengthen its security posture based on past events so that 

known security faults are prevented. We illustrate this dimension using the 

motivating example of Section 1.2: 

— The online banking system is at the Monitor & Detect level if it is equipped with a 

network based IDS device connected to the router, which can detect an intrusion 

attempt based on known attack signatures (such as a DoS attack to the banking 

server), and generate an appropriate alert to the ARM, which acts as the “meta-

level subsystem” for self-protection; 

— The system is at the Respond & Protect level if, in addition to the previous level, 

the ARM component responds to the router alert and changes the firewall policy to 

block all traffic from the source domain; 

— The system is at the Plan & Prevent level if, in addition to the previous level, the 

ARM also reviews the history of such attacks and moves the web server to a 

different IP address, so that future DoS attacks are rendered ineffective. 

The three levels are consistent with (and in fact inspired by) Kramer and Magee’s 

three-level reference architecture for self-managed systems [Kramer and Magee 

2007]. It is easy to see the mapping from the self-protection levels to Component 

Management, Change Management, and Goal Management, respectively. It may also 

be envisioned that each self-protection level may have its own MAPE-K loop; 

therefore this dimension is not in conflict with the IBM reference architecture. 

(T2) Depths-of-Defense Layers: This dimension captures the renowned security 

principle of Defense in Depth, which simply acknowledges the fact that no single 

security countermeasure is perfectly effective and multiple layers of security 

protections should be placed throughout the system. For self-protecting systems, the 

following defensive layers are possible, starting with the outmost layer (please see 

Section 6.1 for examples of security countermeasures at each layer): 

— Network: Focuses on communication links, networking protocols, and data packets.  

— Host: Involves the host environment on a machine, involving hardware/firmware, 

OS, and in some occasions hypervisors that support virtual machines. 

— Middleware: With the prevalence of component-based and service-oriented 

systems, use of middleware such as application servers (e.g. JEE), object brokers 

(e.g. CORBA) and service buses (e.g. JBoss ESB) are becoming a common practice 

and as such may be used as an additional layer of defense. 

— Applications: As the last line of defense, application level security is usually 

concerned with programming language security and application-specific measures. 

— Depth-Independent: This fifth layer is a special value to indicate any self-

protection research that is not specific to any architecture layers. One example 

may be an approach that addresses self-protection in terms of software 
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architecture abstractions such as software components, connectors, configurations, 

and architecture styles. A software architecture-based approach enjoys many 

benefits such as generality, abstraction, and potential for scalability, as pointed 

out by Kramer and Magee [2007]. 

The counter-intrusion example given earlier for dimension T1 is clearly a network 

layer defense. The online banking system can also choose to have a host-level defense 

such as a periodic patching mechanism to install OS patches that remediate 

Windows OS vulnerabilities, a middleware level defense that configures a cluster of 

redundant application servers under a Byzantine agreement protocol (as described by 

Castro and Liskov [2002]), and an application-level defense where the ARM 

component dynamically directs the web-based banking application to adopt different 

levels of security policies. 

 
Fig. 3: Proposed Taxonomy for Self-Protection 



A Systematic Survey of Self-Protecting Software Systems                                                                             39:11  

                                                                                                                                         

 

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

(T3) Protection Goals: This dimension classifies research approaches according 

to the security goal(s) they intend to achieve. Here we follow the traditional CIA 

model for its simplicity: 

— Confidentiality: to protect against illegal access, spoofing, impersonation, etc. 

— Integrity: to protect against system tampering, hijacking, defacing, and subversion 

— Availability: to protect against degradation or denial of service 

Other goals such as Accountability, Authenticity and Non-Repudiation may also be 

considered as implicit sub-goals that fit under this model. 

In some cases a security countermeasure may help meet multiple protection goals. 

Suppose in the online banking example, the banking application is compiled using 

the StackGuard compiler [Cowan et al. 1998] to safeguard against buffer overflow 

attacks. This technique stops the intruder from obtaining user financial data stored 

in memory (confidentiality) and from illegally gaining control of the banking 

application (integrity) through buffer overflows. Note that in this case the technique 

does not help with the availability goal; we will return to this point later in the paper. 

(T4) Lifecycle Focus: This dimension indicates what part of the software 

development lifecycle (SDLC) a self-protection approach is concerned with. For the 

purposes of this paper we simply use two phases, Development Time and Runtime, 

with the former encompassing also the design, testing, and deployment activities. 

Security at runtime is undoubtedly the primary concern of self-protection. 

Nonetheless, from the software engineering viewpoint it is also necessary to take into 

account how to better design, develop, test, and deploy software systems for self-

protection.  

As a concrete example, suppose all runtime system auditing data is made 

available to the development team of the online banking system. By feeding data into 

the automated testing process, the team can make sure all new code is regression-

tested against previously known vulnerabilities, or use the system logs to train the 

meta-level self-protection mechanisms. 

(T5) Meta-Level Separation: This dimension indicates how Separation of 

Concerns as an architectural principle is applied in a self-protection approach. 

Specifically, the FORMS reference architecture [Weyns et al. 2012] calls for the 

separation between the meta-level subsystem and the base-level subsystem, logically 

and/or physically. The degree of separation is useful as a telltale sign of the degree of 

autonomicity of the system. In the security context it also takes on an added 

significance, as the meta-level self-protection logic often becomes a high value target 

for the adversary and thus needs special fortification. Three values are used here – 

No Separation, Partial Separation, and Complete Separation. Continuing with the 

online banking system example, complete separation of security concerns is achieved 

when all self-protection logic is contained in the ARM component as illustrated in Fig. 

1, and the component (along with communication channels to/from it) is deployed in 

dedicated, trusted hardware. On the other hand, if the ARM runs in the same 

application server as the banking application itself, or the security policy decisions 

are embedded in the banking application code, the degree of separation is low. 

 Approach Characterization 5.2

The second group of the taxonomy dimensions are concerned with classifying the 

“HOW” aspects of self-protection research. It includes five dimensions shown in the 

right half of Fig. 3: 

(T6) Theoretical Foundation: As a self-protecting software system takes 

autonomic and adaptive actions against malicious attacks, it often needs to consider 
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many factors from the runtime environment and choose the optimal or near-optimal 

course of action out of a vast problem space. The theoretical foundation of the 

approach, as captured in this dimension, is therefore critical and deserves close 

examination. The following sub-categories are defined: 

— Logic / formal models, which involve logic or other mathematically based 

techniques for defining security related properties, as well as the implementation 

and verification of these properties. The design of the online banking system, for 

example, may include security policies formulated by finite state automata (such 

as those defined in [Schneider 2003]), and formal proof of policy enforceability; 

— Heuristics based, which include knowledge-based, policy-based, or rule-based 

models whose parameters may change at runtime. For example, the online 

banking system may implement a policy that disables a user account when 

suspicious fund withdrawal patterns arise. In this case these patterns are based 

on heuristic rules such as a maximum daily withdrawal threshold. The system 

may further lower or increase the threshold according to security threat levels; 

— Optimization, which employs analytical techniques that model security-related 

system behavior through quantitative metrics that is used to select the optimal 

adaptation strategy. For example, the banking system may use a utility function 

to model a user’s preference between convenience/user-friendliness and strengths 

of protection, and set security policies accordingly (e.g. username/password vs. 

multi-factor authentication); 

— Learning based models, including a rich variety of techniques that use historical or 

simulated data sets to train the system’s autonomic defences. The learning process 

could be based on cognitive, data mining, stochastic/probabilistic models, etc. The 

banking system’s router, for instance, may use a neural net algorithm to 

differentiate intrusions from normal network behavior [Kumar et al. 2010]). 

Note that these models are not meant to be mutually exclusive. In fact, as we will see 

in the survey results, many approaches leverage more than one model. 

 (T7) Meta-Level Decision-Making: This dimension attempts to further 

characterize self-protection research by examining its decision-making strategy and 

“thought process”. Here we adopt the following rather coarsely grained values (again, 

illustrated using the online banking system example): 

— Single strategy, the simplest approach with a single objective, a single decision 

model, or a single type of attacks/vulnerabilities in mind (many examples given 

earlier fall into this category). 

— Multi-strategy, involving multiple levels of decisions, metrics, and tactics. For 

instance, consider a situation in which the banking system deploys two intrusion 

detection sensors, one network-based and the other host-based on the application 

server. Simple intrusions such as port scanning and buffer overflows are deterred 

at the device level, but the ARM component also correlates the network and host 

alerts to look for higher-level attack sequences. 

— Cost-sensitive modeling, a special case in which security decisions involve trade-

offs with other non-security related factors, such as costs or Quality of Service 

(QoS) requirements. For example, under certain situations, the banking 

application may not shut itself down to cope with a user account breach because 

many other legitimate users will be impacted, resulting in big loss of revenue. 

(T8) Control Topology: More often than not, modern software-intensive systems 

are logically decomposed into separate self-contained components and physically 
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deployed in distributed and networked environments. Self-protection functionality, 

therefore, needs to be implemented and coordinated among different components and 

machines. This dimension looks at whether a self-protection approach focuses on 

controlling the local (i.e., a single host or node) or global scale of the system. For 

those approaches at the global scale, this dimension also specifies whether they use 

centralized or decentralized coordination and planning. Under a centralized topology, 

system self-protection is controlled by a single component that acts as the “brain”, 

whereas under a decentralized topology, the nodes often “federate” with one another 

in a peer-to-peer fashion without relying on a central node. In the online banking 

system, for instance, self-protection is globally centralized if the ARM component is 

hosted on a dedicated server that monitors, controls, and adapts security 

countermeasures on all other devices and servers. Alternatively, if the banking 

system consists of multiple interconnected servers (possibly at different locations) 

and each server hosts its own architecture manager component, the topology is 

globally decentralized. In a more trivial situation, the topology would be “local only” if 

the self-protection technique is used within a single server. 

 (T9) Response Timing: This dimension indicates when and how often self-

protecting actions are executed, which in turn is dependent on whether the approach 

is reactive or proactive. In reactive mode, these actions occur in response to detected 

threats. In proactive mode, they may occur according to a predefined schedule, with 

or without detected threats. Some systems may include both modes. The security 

countermeasures illustrated earlier using the online banking example, such as 

intrusion prevention or controlling access to a user account, all fall into the reactive 

category. Alternatively, the banking system could use software rejuvenation 

techniques (introduced by Huang et al. [1995]) to periodically restart the web 

application instances to a pristine state, to limit damage from undetected attacks. 

(T10) Enforcement Locale: This dimension indicates where in the entire system 

self-protection is enforced. Here we adopt a metric from [Hafiz et al. 2007] and define 

the values as System Boundary or System Internal. In the former case, self-protection 

is enforced at the outside perimeter of the system (such as firewalls, network devices, 

or hosts accessible from external IP addresses). In the latter case, self-protection 

mechanisms cover internal system components. The distinction may be easily seen in 

the online banking example: The router and the firewall represent the system 

boundary that needs to be protected against intrusions, whereas the web application 

and the middleware components represent system internals that may also be 

protected by access control policies issued from the ARM component. Self-protection 

approaches independent of enforcement locations are categorized as locale-neutral. 

(T11) Self-Protection Patterns: This dimension indicates any recurring 

architectural patterns that rise from the self-protection approaches. Many 

architecture and design patterns exist, but as we can see in the next section several 

interesting patterns have emerged in our research as being especially effective in 

establishing self-protecting behavior. Here we simply mention them in two groupings 

and describe their details in Section 6.7: 

— Structural patterns that use certain architectural layouts to situate, connect, and 

possibly reconnect system components to achieve better integrity, robustness, and 

resiliency against attacks. These patterns include Protective Containment, 

Agreement-based Redundancy, Implementation Diversity, Countermeasure 

Broker, and Aspect-Orientation. 

— Behavioral patterns that seek to reconfigure and adapt the runtime behavior of 

existing system components and their connections without necessarily changing 
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the system architecture. These patterns 

include Protective Recomposition, 

Attack Containment, Software 

Rejuvenation, Reconfiguration on 

Reflex, and Artificial Immunization. 

Please note that these patterns are not 

mutually exclusive. It is conceivable that a 

system may use a combination any 

number of them to provide more vigorous 

and flexible self-protection behavior. 

 Approach Quality 5.3

The third and last section of the taxonomy 

is concerned with the evaluation of self-

protection research. Dimensions in this 

group, as depicted in Fig. 4, provide the 

means to assess the quality of research 

efforts included in the survey. 

(T12) Validation Method: This 

dimension captures how a paper validates 

the effectiveness of its proposed approach, 

such as empirical experimentation, formal 

proof, computer simulation, or other methods. The selected sub-category for the 

validation method is closely related to the selected sub-category for the theoretical 

foundation (T6) of the proposed approach. When the approach is based on 

logic/formal methods, validation is expected to be in the form of formal proof. 

Approaches that are based on heuristics and optimization demand empirical 

validation. Finally, simulation is a perfect fit for learning based models. 

(T13) Repeatability: This dimension captures how a third party may reproduce 

the validation results from a surveyed paper. This dimension classifies repeatability 

of research approaches using a simplified measure: 

— High repeatability, when the approach’s underlying platform, tools and/or case 

studies are publicly available; 

— Low repeatability, otherwise. 

 (T14) Applicability: A self-protection approach or technique, though effective, 

may or may not be easily applied in a broader problem setting. Similar to 

repeatability, we use a simple “low” vs. “high” measure: 

— Low applicability, when the approach is specific to a particular problem domain 

(suppose the online banking system uses users’ income and spending patterns to 

calculate their risk profile), is dependent upon a proprietary framework or 

implementation, or requires extensive infrastructure support that may not be 

generally available; 

— High applicability, otherwise. 

 SURVEY RESULTS AND ANALYSIS 6.

A large number of research efforts related to self-protecting systems and adaptive 

security have been identified in this survey, and are then evaluated against the 

proposed taxonomy. The detailed evaluation results are included in Appendix B. 

 
Fig. 4: Taxonomy for Self-Protection (Cont.) 
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Note that the classifications are meant to indicate the primary focus of a research 

paper. For example, if a certain approach does not have a checkmark in the 

“Availability” column under Protection Goals, it does not necessarily indicate that it 

absolutely cannot help address availability issues. Rather, it simply means 

availability is not its primary focus. 

By using the proposed taxonomy as a consistent point of reference, many 

insightful observations surface from the survey results. The number of the research 

papers surveyed will not allow elaboration on each one of them in this paper. Rather, 

we highlight some of them as examples in the observations and analysis below. 

 Correlating Self-Protection Levels and Depths of Defense 6.1

Starting with the Self-Protection Levels (T1) dimension, we see that abundant 

research approaches focus on the “Monitor & Detect” level, such as detecting 

security-relevant events and enforcing security policies that respond to these events. 

For example, Spanoudakis et al. [2007] used Event Calculus to specify security 

monitoring patterns for detecting breaches in confidentiality, integrity and 

availability. Liang and Sekar [2005] used forensic analysis of victim server’s memory 

to generate attack message signatures. At the “Respond & Protect” level, research 

efforts attempt to characterize and understand the nature of security events and 

select the appropriate countermeasures. For example, He et al. [2010b] used policy-

aware OS kernels that can dynamically change device protection levels. Taddeo and 

Ferrante [2009] used a multi-attribute utility function to rank the suitability of 

cryptographic algorithms with respect to the runtime environment and then used a  

knapsack problem solver to select optimal algorithm based on resource constraints. 

At the highest “Plan & Prevent” level, research efforts are relatively speaking not as 

abundant; such efforts seek to tackle the harder problem of planning for security 

adaptation to counter existing and future threats. To that end, many approaches 

offer a higher degree of autonomicity. Uribe and Cheung [2004], for instance, used a 

formal network description language as the basis for modeling, reasoning, and auto-

generating Network-based Intrusion Detection System (NIDS) configurations. The 

Self-Architecting Software SYstems (SASSY) framework, by contrast, achieves 

architecture regeneration through the use of Quality of Service scenarios and service 

activity schemas [Malek et al. 2009; Menasce et al. 2011]. 

Along the Depths-of-Defense Layers (T2) dimension, we see many self-adaptive 

security approaches focusing on the “traditional” architecture layers, such as network, 

host, middleware and application code. At the network level, abundant research can 

be found in the field of intrusion-detection and intrusion-prevention. Examples 

include Yu et al. [2007; 2008] who used fuzzy reasoning for predicting network 

intrusions, and the Wireless Self-Protection System (WSPS) [Fayssal et al. 2008] 

which uses both standard and training based anomaly behavior analysis that can 

detect and deter wide range of network attack types. Because network vulnerabilities 

are closely linked to the network topology and equipment configurations, devoted 

research can also be found on adapting network security policies based on such 

network characteristics [Burns et al. 2001]. At the host/node level, antivirus and 

malware detection/prevention have been receiving a lot of attention from the 

research community (a latest example on adaptive rule-based malware detection can 

be found in [Blount et al. 2011]).  

When we shift our focus to defense at the middleware level, self-protection 

approaches start to focus and/or leverage distributed middleware platforms such as 

Java Enterprise Edition or JEE (as in [De Palma et al. 2012]), object request brokers 

(as in [Yau et al. 2006]), and message-oriented middleware (as in [Abie et al. 2008; 
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Abie 2009]). More importantly, researchers started to recognize the benefit of a 

robust middleware layer as an extra line of defense against host and application level 

attacks (as seen in the QuO adaptive middleware example [Atighetchi et al. 2003; 

Atighetchi et al. 2004]). More recent research has started to focus on adaptive 

security for web services middleware in a SOA. Such research can be found, for 

example, around service trust [Maximilien and Singh 2004] and service-level 

assurance [Casola et al. 2008]. Research around the security behavior of a collection 

of services (such as a BPEL orchestration or a composite service), however, seems to 

be lacking. 

As we move up to the application level, self-adaptive security research is more 

concerned with programming language level vulnerabilities such as those concerning 

pointers, memory buffers, and program execution points. Lorenzoli et al. [2007], for 

example, presented a technique, called From Failures to Vaccine (FFTV), which 

detects faults using code-level assertions and then analyzes the application to 

identify relevant programming points that can mitigate the failures. 

Research seems to be sparse on the adaptation of the software architecture as a 

whole in dealing with security concerns. Nonetheless, the “Depth-Independent” 

subcategory in this dimension does capture some interesting and sophisticated 

approaches. The RAINBOW [Garlan et al. 2004; Cheng et al. 2006] and SASSY 

frameworks are two examples that fit into this category, even though they are not 

specifically focused on self-protection alone. Additionally, work by Morin et al. [2010] 

and Mouelhi et al. [2008] represent a key example of applying “models@runtime” 

thinking to security adaptation, which can be applied to all architecture layers. 

To take a further look at the research trends, we use Self-Protection Levels and 

Depths of Defense as two crosscutting dimensions to map out the existing self-

protection research approaches, as shown in Fig. 5. In the plot, the height of each 

column represents the number of papers per each self-protection level and each line 

of defense. We clearly see that abundant research exist at the network and host 

levels for attack detection and response, fueled by decades of research in such fields 

as Intrusion Detection / Intrusion Prevention (ID/IP), Antivirus / Malware, and 

Mobile Adhoc Networks 

(MANET) security. It 

becomes apparent, 

however, that existing 

research start to “thin 

out” as we move up the 

two respective 

dimensions. Autonomic 

and adaptive security 

approaches that apply to 

attack prediction and 

prevention, especially at 

middleware, application, 

or abstract architecture 

levels, appear to be a 

research gap to be filled. 

 Run-time vs. Development-time 6.2

Along the Lifecycle Focus (T4) dimension, the vast majority of self-protection 

research (96% to be exact) focuses on runtime. Indeed, it is a general consensus that 

software components are never completely fault-free and vulnerability-free no matter 

 
Fig. 5: Correlating Self-Protection Levels and Depths of Defense 
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how carefully they are designed and coded. Nonetheless, 18% of the papers also 

involve development time activities. They generally fall under three cases: 

— Runtime techniques that happen to need development time support. The FFTV 

approach [Lorenzoli et al. 2007], for instance, complements runtime 

healing/protection strategies with design-time construction of “oracles” and 

analysis of relevant program points, and also with test-time generation of 

reference data on successful executions. In [Hashii et al. 2000], the dynamically 

reconfigurable security policies for mobile Java programs also rely on supporting 

mechanisms put in at deployment time (such as policy class loaders). 

— Programming language level protection approaches that focus primarily at 

development time. They employ novel techniques such as fuzz testing [Abie et al. 

2008], whitebox “data perturbation” techniques that involve static analysis [Ghosh 

et al. 1998; Ghosh and Voas 1999], or software fault injection which merges 

security enforcement code with the target code at compile time [Erlingsson and 

Schneider 2000]. 

— Model-driven approaches that essentially blur the line between development time 

and runtime. They achieve self-protection through incorporating security 

requirements into architecture and design models, and relying on Model-Driven 

Engineering (MDE) tool sets to instrument security related model changes at 

runtime. In addition to [Morin et al. 2010; Morin et al. 2010], the Agent-oriented 

Model-Driven Architecture (AMDA) effort [Xiao et al. 2007; Xiao 2008] also falls 

into this category. Such approaches may hold some promise for future self-

protection research, although empirical results so far are far from convincing. 

Because the philosophy, structure, and process through which software components 

are constructed could have a significant impact on their quality of protection at 

runtime, we believe that full lifecycle approaches combining development-time and 

run-time techniques will result in the best self-protection of software systems – 

another research opportunity. 

 Balancing the Protection Goals 6.3

Along the Protection Goals (T3) dimension, the survey results revealed that most 

research efforts seem to focus on either Confidentiality and Integrity or Availability, 

but not all three goals. As shown in the Venn diagram in Fig. 6 (a), a large portion of 

the survey papers focus on Confidentiality (68%) and Integrity (81%), but only 40% of 

the papers address availability, and even fewer (20%) deal with all three goals. The 

dichotomy between confidentiality and availability objectives is not surprising: the 

former seeks mainly to protect the information within the system, but is not so much 

concerned with keeping the system always available; the opposite is true for the 

latter. For example, when a host-based intrusion is detected, the typical system 

responses involve stopping/restarting a service, rebooting the server, disable user 

logins, etc. [Strasburg et al. 2009] – system confidentiality and integrity are 

preserved, whereas availability suffers. 

Preserving system availability, on the other hand, goes beyond the security realm 

and is closely related to system QoS, thus requiring different treatments. Intrusion 

Tolerant Systems (e.g., [Sousa et al. 2007], [Reiser and Kapitza 2007b]) address 

availability especially well by leveraging fault tolerance mechanisms, though they 

tend to focus on the network and host levels rather than taking a broader 

architectural approach. 
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This observation, 

though a bit subtle, 

shows that a self-

protecting system 

may need to include 

a “best of breed” 

combination of 

adaptive security 

techniques rather 

than relying on a 

single mechanism, to 

meet all protection 

goals. 

 Separation of Meta-level and Base-level Subsystems 6.4

As introduced in Section 5.1, the Meta-level Separation dimension (T5) intends to 

show self-protection research separates the meta-level (“protecting”) components 

from the base-level (“protected”) components. The survey results summarized in Fig. 

6 (b) indicate that self-protection architectures from 83% of the papers show at least 

partial separation, which serves as strong evidence that the meta-level separation 

proposed in Section 2 has been indeed widely practiced in the research community. 

Instantiations of the meta-level subsystem take on many interesting forms among 

the surveyed papers, such as managerial nodes [Abie 2009], Security Manager [Ben 

Mahmoud et al. 2010], guardians [Montangero and Semini 2004], Out-of-Band (OOB) 

server [Reynolds et al. 2002], or control centers [Portokalidis and Bos 2007]. Those 

approaches that have been put under “partial separation” either rely on certain 

enforcement mechanisms that are an intrinsic part of the base-level subsystem (e.g., 

through library interposition with the protected application [Liang and Sekar 2005]), 

or do not provide a clear architecture that depicts the separation boundary. 

The remaining 17% papers that do not exhibit meta-level separation deserve 

special attention. Closer examination reveals two contributing factors are the 

primary “culprits”, with the first having to do with the domain environment and the 

second pertaining to the nature of the research technique. First, for MANETs, 

wireless sensor networks, or agent-based networks of a self-organizing nature, 

because no central control typically exists within the system, self-protecting 

mechanisms would have to be implemented within each network node or agent. This 

is the case with [Adnane et al. 2008], [Alampalayam and Kumar 2003], [Chigan et al. 

2005], and [Jean et al. 2007]. It is no coincidence that these papers also fall into the 

“Global – Decentralized” subcategory of the “Control Topology” dimension (T8); see 

Section 6.6 for more details. Since each node/agent is just as susceptible to attack and 

subversion as any other node/agent, protecting the security mechanism itself 

becomes a real challenge. Costa et al. [2008] used a mechanism called Self-Certifying 

Alerts (SCA) that are broadcasted over an overlay network to overcome this problem, 

but the challenge of “protecting the meta-level” in a globally decentralized topology is 

largely unanswered in the surveyed papers. 

The second contributing factor arises from those approaches that use code 

generation and code injection techniques at the application level, because the 

protection mechanism becomes part of the codebase, meta-level separation is 

obviously lacking. It is quite revealing that most of the papers cited in Section 6.2 as 

having a development time focus – such as FFTV [Lorenzoli et al. 2007], SASI 

[Erlingsson and Schneider 2000], and AMDA [Xiao et al. 2007] – belong to this case! 

 
Fig. 6: (a) Coverage of Protection Goals; (b) Meta-Level Separation 



A Systematic Survey of Self-Protecting Software Systems                                                                             39:19  

                                                                                                                                         

 

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

Here, we see another research challenge, that is, to find ways to employ valuable 

techniques (e.g., programming language analysis and model-driven engineering) 

while staying true to the self-protection reference architecture with clear meta-level 

vs. base-level separation. 

 Foundations and Strategies for Self-Protection Decision-Making 6.5

When it comes to the “HOW” part of the taxonomy, we see the surveyed papers 

employ a large variety of models, schemes, algorithms, and processes. First of all, a 

simple analysis along the Theoretical Foundation dimension (T6) shows a 

predominant use of heuristics-based methods, as shown in Fig. 7 (a), in such forms as 

expert systems [Porras and Neumann 1997; Neumann and Porras 1999], policy 

specification languages [Burns et al. 2001], event-condition-action rules [English et al. 

2006], directed graphs [Balepin et al. 2003], genetic/evolutionary algorithms [Raissi 

2006], structured decision analysis (such as Analytic Hierarchy Process or AHP, as in 

[Ben Mahmoud et al. 2010]), or human input as a last resort [White et al. 1999]. 

Even when non-heuristics based methods are used, whether it is using formal 

semantics [Dragoni et al. 2009] or utility function based optimization [Taddeo and 

Ferrante 2009] or stochastic modeling [Sousa et al. 2006], they are more often than 

not complemented by heuristics. Our analysis along this dimension has revealed the 

following insights: 

— Given the multitude of decision factors such as objectives, system properties, 

resource constraints and domain-specific environment characteristics, the problem 

space for self-protection decision making is usually too large for classic problem 

solving methods (though they may still prove effective in solving a small, 

narrowly-focused sub-problem, such as formalisms and proofs around software 

rejuvenation [Ostrovsky and Yung 1991] or reinforcement based learning for 

malware detection [Blount et al. 2011]); 

— Because the entire system is at stake with regard to self-adaptive security 

decisions, a wrong move may lead to severe consequences. As such, few approaches 

in this survey leave such decisions (such as threat containment or deploying 

countermeasures) solely to an algorithm without any heuristic input. Indeed, as 

pointed out in a number of papers [Al-Nashif et al. 2008; Crosbie and Spafford 

1995], autonomic responses often require near 100% accuracy in threat detection 

and characterization (i.e. the rate of false positives at near zero). Many papers 

went to great lengths to analyse and reduce the rate of false positives while 

maintaining a high detection rate (i.e. low false negatives), with varying results. 

 
Fig. 7: (a) Theoretical Foundation (b) Meta-level Decision-making 
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— The lack of non-heuristics based methods may also be explained by the daunting 

challenge of quantitatively assessing the overall security posture of a complex 

software system. Several papers proposed various metrics as attempts to this goal 

– the Security Health Index comprised of a weighted basket of security metrics 

from [Savola and Heinonen 2010] and the Compromise Confidence Index as a 

measure to pinpoint attack location from [Foo et al. 2005a] are representative 

examples. Empirical validation of these metrics, however, is far from sufficient 

and convincing from the surveyed papers. This is definitely a pressing research 

need, especially in today’s heated domain of cyber warfare. 

The meta-level decision making dimension (T7) of our taxonomy offers an even more 

interesting perspective on self-protection decision making. From Fig. 7 (b) we can see 

two important opportunities in self-protection research: 

From single-strategy to multi-strategy. Some researchers have come to the 

realization that a single technique or a point solution is no longer enough to match 

the ever increasing sophistication of today’s cyber-attacks, as described in Section 1.1. 

Rather, self-protecting systems should be able to (1) detect higher-level attack 

patterns and sequences from low-level events, (2) have an arsenal of 

countermeasures and response mechanisms that can be selectively activated 

depending on the type of attack, and (3) have a concerted strategy to guide the 

selection and execution of the responses at multiple defense depths and resolve 

conflicts if necessary. A number of research papers have started down this path. The 

APOD initiative [Atighetchi et al. 2003; Atighetchi et al. 2004], for example, uses 

higher level strategies (e.g. attack containment, continuous unpredictable changes, 

etc.) to derive/direct lower-level sub-strategies and local tactics in responding to 

attacks. Similarly, the AVPS approach [Sibai and Menasce 2011; Sibai and Menasce 

2012] generates signatures (low level rules) based on high level rules; Tang and Yu 

[2008] showed that high-level goal management can optimize the lower level policy 

execution at the network security level. This is an encouraging trend, although the 

survey shows the multi-strategy based papers are still a minority (at 33%). 

From security-at-any-cost to cost-sensitive protection. Though earlier 

attempts exist in quantifying the cost of intrusion detection and prevention (such as 

[Lee et al. 2002]), an increasing number of recent research papers start to consciously 

balance the cost (that is, penalization of other quality attributes) and benefits of 

autonomic responses to security attacks. Stakhanova et al. [2007b; 2009], for 

example, defined a set of cost metrics and performed quantitative trade-off analyses 

between cost of response and cost of damage, and between the importance of early 

pre-emptive responses (when there is a high cost of missed or late detections) vs. the 

importance of detection accuracy (when there is a high cost of false positives). 

Similarly, Nagarajan et al. [2011] developed cost models involving operational costs, 

damage costs, and response costs, and implemented the model using Receiver 

Operating Characteristic (ROC) curves. At 23%, the cost-sensitive strategies are a 

minority but we believe they represent a promising and sensible direction for self-

protection research, especially in the larger picture of self-* systems.  

 Spatial and Temporal Characteristics 6.6

Together, the three taxonomy dimensions Control Topology (T8), Response Timing 

(T9), and Enforcement Locale (T10) expose interesting characteristics and trends 

about the spatial and temporal aspects of self-protection approaches – that is, where 

the “brain” of the self-protection is within the system and where the “action” takes 

place, as well as when the adaptive actions are carried out. 
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First, as shown in Fig. 8, survey results along the Control Topology dimension 

clearly shows that adaptive security approaches functioning at the global level are 

predominantly centralized – about 57% of the papers. For example, many research 

efforts (e.g., [He et al. 2010a] and [Abie et al. 2008]) recognize the need for 

coordination between local and global security policies. In most cases, the 

coordination is through a central controller (e.g., [Huang et al. 2006]). One of the 

main reasons behind widespread adoption of centralized topology may be the fact 

that using a central controller makes coordination and global optimization easier. 

However, central controller runs the risk of becoming the single point of failure of the 

system, prone to denial of service and subversion attacks. Some approaches put more 

robust protection around the central controller, such as using hardened and trusted 

hardware/software (as in the case of the Malicious-and Accidental-Fault Tolerance 

for Internet Applications (MAFTIA) system [Verissimo et al. 2006]) or putting the 

controller in dedicated network zones [Chong et al. 2005]. Another potential 

disadvantage for the centralized approach is scalability. For pervasive systems with 

highly distributed computing resources, it may be inefficient and costly to have all of 

the resources communicate with a central controller. Accounting for only 8% of the 

total papers, globally decentralized approaches appear to be an exception rather than 

norm. As pointed out in section 6.4, self-protection efforts from the MANET and self-

organizing agent domains tend to fall into this category because the system topology 

does not allow for a centralized component. The decentralized control topology is not 

limited to these domain environments however. MAFTIA, for example, also uses local 

middleware controllers (called “wormholes”) at each server that are interconnected 

yet do not appear to require a central controller. Decentralized security approaches 

hold more promise in their resilience and scalability. The fact that coordination and 

global optimization is harder in a decentralized setting indicates the need for more 

research attention. Indeed, decentralized control has been highlighted as a key 

research topic on the roadmap of self-adaptive systems [Lemos et al. 2013]. 

Secondly, survey results along the Response Timing dimension indicate reactive 

adaptation based on the “sense and respond” paradigm still seems to be the norm for 

self-protection (79% of total papers). That being said, the survey results also show an 

interesting trend that proactive security architectures are gaining ground in the past 

decade, with 21% papers claiming some proactive tactics. By proactively “reviving” 

the system to its “known good” state, one can limit the damage of undetected attacks, 

though with a cost. The TALENT system [Okhravi et al. 2010; Okhravi et al. 2012], 

for example, addresses 

software security and 

survivability using a “cyber 

moving target” approach, 

which proactively migrates 

running applications across 

different platforms on a 

periodic basis while preserving 

application state. The Self-

Cleansing Intrusion Tolerance 

(SCIT) architecture 

[Nagarajan et al. 2011] uses 

redundant and diverse servers 

to periodically “self-cleanse” 

the system to pristine state. 

 
Fig. 8: Temporal and Spatial Characteristics 
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The aforementioned R-Xen framework [Jansen et al. 2008] proactively instantiates 

new VM instances to ensure system reliability, a technique much faster than 

rebooting hardware servers thanks to hypervisor-based virtualization technology.  

Thirdly, the Enforcement Locale dimension shows that over 52% of self-protection 

approaches still rely on perimeter security, especially those that focus on intrusion 

detection and intrusion prevention. Systems relying solely on perimeter security, 

however, are often rendered helpless when the perimeter is breached; nor can they 

effectively deal with threats that originate from inside of the system. To compensate 

for this weakness, some approaches follow the “defense-in-depth” principle and 

establish multiple layers of perimeters or security zones [Pal et al. 2007], but the 

disadvantage still exists. In light of this, we feel there is a need to shift focus from 

perimeter security to overall system protection, especially from monitoring the 

system boundary to monitoring overall system behavior. For example, recent 

research has started to focus on detecting and responding to insider threats based on 

monitoring user-system interactions [Sibai and Menasce 2011; Sibai and Menasce 

2012]. Another possible approach is to shift the focus from delimiting system 

boundaries to identifying system assets under protection, as developed by Salehie et 

al. [2012] and Pasquale et al. [2012]. 

Fig. 8 summarizes the statistics around the spatial and temporal traits of 

surveyed approaches, highlighting the research gaps around (1) global self-protection 

architectures that do not require a central controller, (2) combining reactive 

protection tactics with proactive ones, and (3) protecting the overall system and not 

just the perimeter. 

 Repeatable Patterns and Tactics for Self-Protection 6.7

One of the most revealing findings from our survey is the emergence of repeatable 

architectural patterns and design tactics that software systems employ specifically 

for self-protection purposes (T11 of the taxonomy). Even though some of these 

patterns bear similarity to the generic software architecture and design patterns, 

their usage and semantics are quite different. As mentioned in Section 5.2, they can 

be loosely categorized as structural and behavioral patterns. Their description, 

examples, and perceived pros/cons are summarized in Table I. 

These patterns cover 84% of the surveyed papers; therefore their use is quite 

pervasive. Note that the patterns are by no means mutually exclusive. A system may 

combine a number of complementary patterns to add to its depths of defense and 

boost survivability. The TALENT system, for instance, employs OS-level and 

programming language-level diversity and periodically moves running applications to 

a clean platform. Though technical challenges remain, this “cyber moving target” 

approach holds promise for defense against advanced, zero-day attacks. As another 

example, the R-Xen framework [Jansen et al. 2008] used hypervisor-based Protective 

Wrapper to provide application monitoring and protection. Fearing the protective 

wrapper itself may become a weak link for the system, it also used software 

rejuvenation to protect the hypervisor core. 

We also found, not surprisingly, that the positioning and techniques employed by 

a self-protection approach will to some extent determine the architectural patterns 

being used. This observation, however, does point to a critical research opportunity, 

that is, to further identify and catalogue such correlations, to codify them into 

machine-readable forms, so that a system may dynamically re-architect itself using 

repeatable patterns as requirements and environments change. This is a higher level 

of self-protection and may only be enabled through an architecture-based approach. 
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Table I. Catalog of Self-Protection Patterns 

Pattern Definition Examples Evaluation 

Structural Patterns 

Protective Wrapper—Place 

a security enforcement 

proxy, wrapper, or 

container around the 

protected resource, so that 

request to / response from 

the resource may be 

monitored and sanitized in 

a manner transparent to 

the resource.  

The SITAR system [Wang et al. 2003] 

protects COTS servers by deploying an 

adaptive proxy server in the front, which 

detects and reacts to intrusions. Invalid 

requests trigger reconfiguration of the 

COTS server. Virtualization techniques 

are increasingly being used as an effective 

protective wrapper platform. VASP [Zhu 

et al. 2011], for example, is a hypervisor-

based monitor that provides a trusted 

execution environment to monitor various 

malicious behaviors in the OS. 

Pros—Security adaptation is 

transparent to the protected 

resource; easy to implement. 

Cons—Since the wrapper is 

inherently intended for outside 

threats, this pattern cannot 

address security vulnerabilities 

inside the protected component. 

The wrapper, esp. when 

externally visible, may itself 

become an exploitation target. 

Agreement-based 

Redundancy —In addition 

to reliability and 

availability benefits 

provided by the common 

redundancy mechanism, 

this pattern uses 

agreement-based protocols 

among the replicas to 

detect anomalies and 

ensure correct-ness of 

results. 

The seminal work by Castro and Liskov 

[2002] described a Byzantine Fault 

Tolerance (BFT) algorithm that can 

effectively tolerate ƒ faulty nodes with 3ƒ 

replicas. Similar agreement-based voting 

protocols have been used in many other 

systems such as SITAR and [Valdes et al. 

2004]. The Ripley system [Vikram et al. 

2009] implements a special kind of 

agreement based technique by executing 

a “known good” replica of a client-side 

program on the server side. 

Pros—Robust mechanism that 

can meet both system integrity 

and availability goals; effective 

against unknown attacks. 

Cons—Due to required number of 

replicas, needs significant 

hardware and software 

investments, which can be costly. 

Further, by compromising enough 

replicas, the system will be 

essentially shut down, resulting 

in denial of service. 

Implementation 

Diversity— Deploy 

different implementations 

for the same software 

specification, in the hope 

that attacks to one impl. 

may not affect others. This 

may be achieved through 

the use of diverse prog. 

languages, OS, or H/W 

platforms. To safely switch 

requests from one instance 

to another, checkpointing 

is necessary to save the 

current system state. 

The HACQIT system [Reynolds et al. 

2002; Reynolds et al. 2003] achieves 

diversity by using two software 

components with identical functional 

specifications (such as a Microsoft IIS 

web server and an Apache web server) for 

error detection and failure recovery. 

Similarly, the DPASA system [Chong et 

al. 2005; Pal et al. 2007] included 

controlled use of hardware and OS level 

diversity among redundant environments 

as part of a comprehensive survivable 

architecture. A similar approach is 

dubbed Architecture Hybridization in the 

MAFTIA system [Verissimo et al. 2006]. 

Pros—Effective defense against 

attacks based on platform-specific 

vulnerabilities. Increases system 

resilience since an exploited 

weakness in one impl. is less 

likely to kill the entire system. 

Cons—Significant efforts required 

to develop, test, and deploy 

diverse program implementations. 

Diverse languages / platforms 

may give rise to more software 

defects. Further, checkpointing to 

preserve program state at 

runtime may prove technically 

challenging. 

Countermeasure Broker—

The self-protecting system 

includes a brokering 

function that, based on the 

type of an attack, performs 

dynamic matching or 

tradeoff analysis to select 

the most appropriate 

response or 

countermeasure, often 

from a pre-defined 

repository. 

Case-based Reasoning (CBR) techniques 

are sometimes used to detect intrusions 

and select responses. The SoSMART 

system [Musman and Flesher 2000] 

describes an agent-based approach where 

the CBR “brain” picks the suitable 

response agent. Alternatively, the 

ADEPTS effort [Foo et al. 2005a; Wu et 

al. 2007] uses attack graphs to identify 

possible attack targets and consequently 

suitable responses. 

Pros—Flexibility and dynamic 

nature of the response, when 

implemented correctly, makes it 

harder for an adversary to predict 

and exploit the security defense. 

Cons—Not effective against 

unknown attacks. Static, “knee-

jerk” like responses are likely to 

be predictable, thus lose 

effectiveness in the long run. The 

broker component may become a 

high value target for adversaries. 

Aspect-Orientation—

Following the Aspect 

Oriented Programming 

(AOP) principle, this 

pattern deploys self-

protection mechanisms as 

a separate aspect in the 

system, transparent to 

Morin et al. [2010], for example, showed 

how a security access control metamodel 

is defined and combined with the 

business architecture metamodel; the 

security aspect is “woven” into the overall 

model using MDE tools such as the 

Kermata language. A related effort 

[Mouelhi et al. 2008] shows how the 

Pros—Bringing AOP benefits to 

self-protection, such as reuse, 

separation of concerns, and 

improved application quality. 

Assisted with MDE techniques, it 

also provides a way of expressing 

security policies as models. 

Cons—It is not yet known if self-
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Pattern Definition Examples Evaluation 

application logic. This 

pattern is often assisted by 

Model Driven Engineering 

(MDE) techniques, as 

mentioned in Section 6.2. 

security policies from the model are 

generated in XACML and integrated into 

the application using AOP. Xiao et al. 

[2007; 2008] also used a similar model 

driven approach to model security policy 

rules and dynamically weave them into 

the runtime application in an agent-based 

environment. 

protection as a cross-cutting 

concern can be adequately 

expressed in today’s modeling 

languages and tools. Weaving in 

the security aspect into the very 

application it is protecting makes 

security logic just as vulnerable. 

Behavioral Patterns 

Protective Recomposition—

Dynamically adapt 

security behavior of a 

system through altering 

how security-enforcing 

components are connected 

and orchestrated. This 

may include tuning of 

security parameters, 

changing authentication / 

authorization methods, 

switching to a different 

crypto algorithm, or 

regeneration of access 

control policies. 

The E2R Autonomic Security Framework 

[Saxena et al. 2007; He and Lacoste 

2008a], for example, allows nodes in a 

wireless network to collect and derive 

security context information from 

neighboring nodes and reorganize upon 

node failures. Other examples include 

changes in contract negotiations between 

security components [Feiertag et al. 

2000], altered security service sequences 

based on QoS objective changes [Malek et 

al. 2009], or regenerating new concrete 

policy instances from a generic policy 

based on dynamic security context [Debar 

et al. 2007]. 

Pros—A key pattern that touches 

the very essence of self-adaptive 

security: the ability to adapt 

security posture based on 

changing threats and real time 

security contexts. Makes the 

system more defendable and 

harder to exploit. 

Cons—Dynamic and sometimes 

even non-deterministic security 

behavior is difficult to test and 

even harder to evaluate its 

correctness and effectiveness. 

Attack Containment—A 

simple pattern that seeks 

to isolate a compromised 

component from the rest of 

the system to minimize the 

damage. Typical 

techniques include 

blocking access, denying 

request, deactivating user 

logins, and shutting down 

the system component. 

De Palma et al. [2012] developed an 

approach for clustered distributed 

systems that involves isolating a 

compromised machine from the network. 

Solitude uses file-system level isolation 

and application sandboxing to limit 

attack propagation [Jain et al. 2008]. 

SASI [Erlingsson and Schneider 2000], a 

code-level containment approach, uses a 

compile-time Software Fault Isolation 

(SFI) method to enforce security policies. 

Pros—Simple, fast, and effective 

way to mitigate and contain 

security compromises. 

Cons—Often carried out at the 

opportunity cost of (at least 

temporary) unavailability of 

system resources to legitimate 

users. 

Software Rejuvenation—

As defined by Huang et al. 

[1995], this pattern 

involves gracefully 

terminating an application 

and immediately 

restarting it at a clean 

internal state. Often done 

proactively and 

periodically. 

In addition to the rejuvenation-based 

SCIT system [Huang et al. 2006; 

Nagarajan et al. 2011] and the 

aforementioned HACQIT system, the 

Proactive Resilience Wormhole (PRW) 

effort [Sousa et al. 2006; Sousa et al. 

2007; Sousa et al. 2010] also employs 

proactive rejuvenation for intrusion 

tolerance and high availability. Wang et 

al. [2009] presented a special case of 

rejuvenation involving software 

hotswapping, i.e. swapping out infected 

components at runtime, replaced with a 

valid/more strongly protected equivalent. 

Pros—Effective technique that 

addresses both security and high 

availability. Periodic software 

rejuvenation limits the damage of 

undetected attacks. 

Cons—The rejuvenation process, 

short as it may be, temporarily 

reduces system reliability. Extra 

care is needed to preserve 

application state and transition 

applications to a rejuvenated 

replica. Extra investment is 

needed for maintaining redundant 

replicas. 

Reconfiguration on 

Reflex—A bio-inspired 

pattern that reconfigures 

the system to a higher 

level of protection (which 

may be more resource 

consuming), and when 

attack passes, returns to a 

less restrictive mode. 

The Security Adaptation Manager (SAM) 

[Hinton et al. 1999] dynamically operates 

the system at 3 levels of implementations 

(calm, nervous, panic) depending on the 

threat level. The DASAC approach [Jean 

et al. 2007] uses a boosting-based 

algorithm and heuristically defined 

security levels that allow the agent 

network to react to agent 

trustworthiness. 

Pros—A technique for balancing 

competing goals of security and 

performance, depending on the 

ongoing threat level. 

Cons—Ineffective in the case of 

undetected threats. An attacker 

can trick the system to always 

run at heightened security levels 

to sacrifice performance, therefore 

not suitable for persistent threats 
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Pattern Definition Examples Evaluation 

Artificial Immunization—

Inspired by adaptive 

immune systems in 

vertebrates, this pattern 

seeks to capture samples 

of worms or viruses; 

analyze the virus to derive 

a signature that can be 

used to detect and remove 

it from infected resources; 

and disseminate the 

“antidote” to all vulnerable 

systems. 

Kephart et al. [1997] and White et al. 

[1999] designed one of the first Digital 

Immune Systems in response to early 

virus epidemics, when it was realized that 

automation was needed to spread the 

cure faster than the virus itself. Later 

approaches such as SweetBait 

[Portokalidis and Bos 2007] use more 

sophisticated “honeypot” techniques to 

capture suspicious traffic and generate 

worm signatures. A variant of this 

pattern uses the so-called Danger Theory 

to as the basis for autonomic attack 

detection and defense [Swimmer 2007; 

Rawat and Saxena 2009]. 

Pros— “Detect once, defend 

anywhere”; the pattern proved to 

be a successful approach for 

defending against computer 

viruses and helped creation of the 

anti-virus industry. 

Cons—Centralized and top-down 

architecture is a challenge to 

scalability and agility, esp. as 

attacks become more localized 

and targeted. Further, just like all 

signature-based techniques, it is 

not effective against unknown / 

zero-day attacks. 

 Quality Assessment of Surveyed Papers 6.8

We used reputable sites in our review protocol (recall Appendix A). This resulted in 

the discovery of high quality refereed research papers from respectable venues. We 

use Validation Method (T12), Repeatability (T13), and Applicability (T14), which are 

the three Approach Quality dimensions in the taxonomy, to develop better insights 

into the quality of the research papers surveyed. Fig. 9 summarizes some of our 

findings. Fig. 9 (a) depicts the share of different Validation Methods in assessing the 

quality of self-protection approaches. Most (70%) of the approaches have used 

Empirical techniques to assess the validity of their ideas. The Empirical techniques 

range from detailed assessment of full implementation of the approach (e.g., [Castro 

and Liskov 2002]) to a proof-of-concept experimentation of a prototype (e.g., [Raissi 

2006]). A limited number (6%) of approaches (e.g., Ostrovsky and Yung [1991]) have 

provided mathematical Proof to validate their ideas. Some approaches (16%) have 

relied on Simulation to validate their claims (e.g., [Taddeo and Ferrante 2009]). 

Finally, there are approaches (14%) that have either not validated their ideas (e.g., 

[Valdes et al. 2004]) or validated aspects (such as performance) of their work other 

than security (e.g., [Swimmer 2007]). 

The evaluation of security research is generally known to be difficult. Making the 

results of experiments repeatable is even more difficult. We can see this in Fig. 9 (b), 

where only limited portions (12%) of approaches are highly repeatable. The rest have 

not made their implementations, prototypes, tools, and experiments available to 

other researchers. This has hampered their adoption in other relevant domains. As 

we can see in Fig. 9 (c), many approaches (60%) are portable and have high potential 

for being applicable to broad range of situations and domains. However, the fact that 

their artifacts are not accessible outside the boundary of the same team/organization, 

has limited their usage and prevented their potential applicability from becoming 

actual applicability. 

 THREATS TO VALIDITY 7.

As detailed in Appendix A, by carefully following the SLR process in conducting this 

study, we have tried to minimize the threats to the validity of our results and 

conclusions made in this paper. Nevertheless, there are three possible threats that 

deserve additional discussion.  
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One important threat is the completeness of this study, i.e., whether all of the 

appropriate papers in the literature were identified and included. This threat could 

be due to two reasons: (1) some relevant papers were not picked up by the search 

engines or did not match our keyword search, (2) some relevant papers that were 

mistakenly omitted, and vice versa, some irrelevant papers that were mistakenly 

included. To address these threats, we adopted multiple strategies. First, we used 

multiple search engines of different types, including those targeted specifically at 

scientific publications as well as general-purpose search engines. Second, we adopted 

an iterative approach to keyword-list construction. As the study progressed, we 

noticed different research communities refer to the same concepts using different 

words. The iterative process allowed us to ensure proper list of keywords were used 

in our search process. Nonetheless, the limited number of keyword phrases we used 

(see Appendix A.2) in order to keep the study manageable has prevented the coverage 

of some interesting areas, such as: 

— Research pertaining to security assurance and security Service Level Agreements 

(SLA) during the autonomic adaptation of services / components, such as the 

ongoing work at EU projects ASSERT4SOA and Aniketos (see [Anisetti et al. 

2012], [Foster et al. 2012] and other related publications) 

— Risk-based self-protecting solutions, such as an approach by Cheng et al. [2007] 

— Adaptive solutions addressing privacy, as introduced by Schaub et al. [2012] 

It is our hope that these areas will be covered in our future research.  

Another threat is the objectiveness of the study, i.e., whether the included papers 

were classified without any bias. To avoid misclassification of papers, the authors 

crosschecked papers reviewed by one another, such that no paper received only a 

single reviewer. This allowed us to reduce the effect of bias in our review process.  

Yet another threat is the validity of the proposed taxonomy, i.e., whether the 

taxonomy is sufficiently rich to enable proper classification and analysis of the 

literature in this area. To mitigate this threat, we adopted an iterative content 

analysis method, whereby the taxonomy was continuously evolved to account for 

every new concept encountered in the papers. While the changes to the taxonomy 

were drastic toward the beginning of our study (roughly the first 30 papers that were 

classified), toward the end (roughly the last 30 papers) resulted in almost no changes 

to the taxonomy. This gives us confidence that the taxonomy provides a good 

coverage for the variations and concepts that are encountered in this area of research.  

Finally, the last threat is that synthesis of the results and conclusions made in 

Section 6 could be biased or flawed. As mentioned earlier, we have tackled the 

individual reviewer’s bias by crosschecking the papers, such that no paper received a 

 
Fig. 9: (a) Validation Method (b) Repeatability (c) Applicability 
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single reviewer. We have also strived to base the conclusions on the collective 

numbers obtained from the classification of papers, rather than individual reviewer’s 

interpretation or general observations, thus minimizing the individual reviewer’s 

bias. Lastly, we have made the classification of the papers available to the public, 

which can be accessed at http://goo.gl/Ksy1u.  

 RECOMMENDATIONS FOR FUTURE RESEARCH 8.

From systematically reviewing the self-protection related literature, we see some 

important trends in software security research. Starting in the 1990s, dynamic and 

automated security mechanisms started to emerge in the antivirus and anti-spam 

communities. The late 1990s and early 2000s saw a research boom in the Intrusion 

Detection (ID) / firewall communities, as online systems faced the onslaught of 

network and host based attacks. We then see two important trends in the past 

decade, as reflected by the observations in section 6: (a) from Intrusion Detection to 

Intrusion Response (IR), as the increasing scale and speed of attacks showed the 

acute need for dynamic and autonomic response mechanisms, as confirmed in recent 

surveys ([Stakhanova et al. 2007a] and [Shameli-Sendi et al. 2012]); (b) from 

Intrusion Detection to Intrusion Tolerance (IT), when both the industry and academia 

came to the realization that security threats will persist and prevention mechanisms 

will likely never be adequate, and began to give additional consideration to 

maintaining system performance even in the presence of an intrusion [Nguyen and 

Sood 2011].  

Only in recent few years did we see an explicit focus on self-protection as a system 

property in the autonomic computing context. Frincke et al. [2007] and Atighetchi 

and Pal [2009], for example, see the pressing need for autonomic security approaches 

and true self-protecting systems. From the break-down of papers across ID, IR, IT, 

and Self-Protection (SP) communities, we see an encouraging sign of growing SP 

research, yet we also see the continued influence of the intrusion-centric mindset.  

Therefore, our first and foremost recommendation is to increase attention, 

convergence, and collaboration on self-protection research, and to leverage 

this community for integrating a diverse set of strategies, technologies and 

techniques from ID, IR, IT and other communities toward achieving a common goal. 

More specifically, the survey using our proposed taxonomy has revealed some gaps 

and needs for future research. To summarize, self-protection research needs to focus 

on the following to stay ahead of today’s advancing cyber threats:  

— Advance the sophistication at each self-protection level, that is, from automatically 

monitoring and detecting threats and vulnerabilities to autonomously predict and 

prevent attacks; 

— Move beyond defending the network and host layers, towards developing 

approaches that are independent of specific system architectures and that can 

select suitable strategies and tactics at different architecture layers; 

— Pursue integrated, “full lifecycle” approaches that span both development-time 

and runtime; 

— “Protect the protector”, that is, safeguard the meta-level self-protection module, 

especially in a globally decentralized topology; 

— Explore models@runtime and model-driven engineering techniques while 

maintaining clear meta-level and base-level separation; 
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— Explore the definition and application of qualitative and quantitative metrics that 

can be used to dynamically assess overall system security posture and make 

autonomic response decisions; 

— Continue to explore multi-level, multi-objective, as well as cost-sensitive security 

decision-making strategies based on stakeholder requirements; 

— Continue the paradigm shift from perimeter security to overall system protection 

and monitoring, and from merely reactive responses to a combined use of both 

reactive and proactive mechanisms; 

— Catalog, implement, and evaluate self-protection patterns at the abstract 

architecture level; 

— Promote collaboration in the community by making research repeatable (such as 

providing tools and case studies) and developing common evaluation 

platforms/benchmarks. 

 CONCLUSION 9.

Self-protection of software systems is becoming increasingly important as these 

systems face increasing external threats from the outside and adopt more dynamic 

architecture behavior from within. Self-protection, like other self-* properties, allows 

the system to adapt to the changing environment through autonomic means without 

much human intervention, and can thereby be responsive, agile, and cost effective. 

Existing research has made significant progress towards software self-protection, 

such as in intrusion tolerance systems and adaptive security mechanisms at the 

application level. This paper proposes a comprehensive taxonomy to classify and 

characterize research efforts in this arena. We have carefully followed the systematic 

literature review process, resulting in the most comprehensive and elaborate 

investigation of the literature in this area of research, comprised of 107 papers 

published from 1991 to 2013. The research has revealed patterns, trends and gaps in 

the existing literature and underlined key challenges and opportunities that will 

shape the focus of future research efforts. In particular, the survey shows self-

protection research should advance from focusing primarily on the network and host 

layers to layer-independent and architecture-based approaches; from single-

mechanism and single-objective to multi-strategy and cost-sensitive decision-making, 

and from perimeter security to overall system protection. We believe the results of 

our review will help to advance the much needed research in this area and hope the 

taxonomy itself will become useful in the development and assessment of new 

research. 
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APPENDIX A 

A.1 Research Tasks 

To answer these research questions, we organized our tasks into a process flow 

tailored to our specific objectives, yet still adhering to the three-phase SLR process. 

The overall process flow is outlined in Fig. 10 and briefly described below. 

First, in the planning phase, we defined the review protocol that includes 

selection of the search engines, the initial selection of the keywords pertaining to self-

protecting software systems, and the inclusion/exclusion criteria for the candidate 

papers. The protocol is described in detail in Section A.2. 

The initial keyword-based selection of the papers is an iterative process that 

involves exporting the candidate papers to a “research catalog” and applying the pre-

defined inclusion/exclusion criteria on them. In the process, the keyword search 

expressions and the inclusion/exclusion criteria themselves may also need to be fine-

tuned, which would in turn trigger new searches. Once the review protocol and the 

resulting paper collection were stabilized, our research team also conducted peer-

reviews to validate the selections. 

For RQ1, in order to define a comprehensive taxonomy suitable for classifying 

self-protection research, we first started with a quick “survey of surveys” on related 

taxonomies. Since our research topic straddles both the autonomic/adaptive systems 

and computer security 

domains, we identified 

some classification 

schemes and 

taxonomies from both 

domains, as described 

in Section 3. After an 

initial taxonomy was 

formulated, we then 

used the initial paper 

review process 

(focusing on abstracts, 

introduction, 

contribution, and 

conclusions sections) to 

identify new concepts 

and approaches to 

augment and refine 

our taxonomy. The 

resulting taxonomy is 

presented in Section 5. 

For the second 

research question 

(RQ2), we used the 

validated paper 

collection and the 

consolidated taxonomy 

to conduct a more 

detailed review on the 
 

Fig. 10: Research Process Flow and Tasks 
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papers. Each paper was classified using every dimension in the taxonomy, and the 

results were again captured in the research catalog. The catalog, consisting of a set of 

spreadsheets, allowed us to perform qualitative and quantitative analysis not only in 

a single dimension, but also across different dimensions in the taxonomy. The 

analysis and findings are documented in Section 6. 

To answer the third research question (RQ3), we analyzed the results from RQ2 

and attempted to identify the gaps and trends, again using the taxonomy as a critical 

aid. The possible research directions are henceforth identified and presented in 

Section 8. 

A.2 Literature Review Protocol 

The first part of our review protocol was concerned with the selection of search 

engines. As correctly pointed out in [Brereton et al. 2007], no single search engine in 

the software engineering domain is sufficient to find all of the primary studies, 

therefore multiple search engines are needed. We selected the following search sites 

to have a broad coverage: IEEE Explore, ACM Digital Library, Springer Digital 

Library, Elsevier ScienceDirect (Computer Science collection), Google Scholar. 

For these search engines we used a targeted set of keywords, including: Software 

Self-Protection, Self-Protecting Software, Self-Securing Software, Adaptive Security, 

and Autonomous Security. It is worth noting that the exact search expression had to 

be fine-tuned for each search engine due to its unique search interface (e.g. basic 

search vs. advanced search screens, the use of double quotes, and the AND/OR 

expressions). In each case we tried to broaden the search as much as possible while 

maintaining a manageable result set. For example, because Google Scholar 

invariably returns thousands of hits, we limited our search to the first 200 results. 

We also used the following inclusion and exclusion criteria to further filter the 

candidate papers: 

— Only refereed journal and conference publications were included. 

— Based on our definition of self-protection in Section 2, we included autonomic and 

adaptive software research that is directly relevant to the self-protecting and self-

securing properties. Other properties such as self-healing and self-optimization are 

out of the scope of this survey. 

— Our review focuses on software systems only, therefore does not include self-

protection pertaining to hardware systems. 

— Software security research that doesn’t exhibit any self-adaptive/autonomic traits 

is excluded. 

— Our definition of self-protection pertains to protecting the software system against 

malicious threats and attacks. Sometimes other connotations of self-protection 

may be possible. For example, protecting a system from entering into an 

inconsistent state (from a version consistency perspective), or protecting a wireless 

sensor network (from the field-of-view perspective) may also be viewed as self-

protection. Such papers are excluded in this review. 

— Position papers or research proposals not yet implemented or evaluated are 

excluded.  

When reviewing a candidate paper, we have in many occasions further extended the 

collection with additional papers that appear in its citations or those that are citing it 

(backward and forward citation search).  
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APPENDIX B 

The evaluation matrix below contains the detailed survey results.  
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