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Abstract

The effectiveness of an extractive distillation process relies on the choice of the extractive
agent. In this contribution heuristic rules for entrainer selection and for the design of
entrainers through computer-aided molecular design are reviewed first. The potential of
the generated alternatives is then evaluated by their selectivity at infinite dilution and by
the rectification body method (RBM). It is shown that a screening based on selectivity
alone is not sufficient and could possibly lead to an unfavorable entrainer choice. The
minimum entrainer flowrate and the minimum energy demand, calculated from the RBM,
allow a more comprehensive evaluation of different entrainer alternatives. In a third step a
rigorous MINLP optimization of the entire extractive flowsheet for the remaining entrainer
candidates is executed to fix the remaining design degrees of freedom and to determine the
best entrainer. Since a number of alternative entrainers have already been eliminated, only
a few optimization runs are necessary. These steps form a framework which facilitates the
systematic generation and evaluation of entrainer alternatives. The suggested synthesis
framework is illustrated by a case study for the separation of acetone and methanol.

Keywords: extractive distillation, entrainer selection, CAMD, RBM, MINLP

1. Extractive distillation

Separation of close-boiling or even azeotropic mixtures in a single simple distillation col-
umn is usually not feasible. The first step in the conceptual design of a distillation process
for such a non-ideal mixture is the evaluation of the pressure sensitivity of the azeotrope
(5). If the azeotropic composition is insensitive to pressure change, then the addition of
another component, the so-called entrainer1, can be used to alter the relative volatility of
the close-boiling or azeotrope forming components. This entrainer is selected to facilitate
the separation in a distillation process.

Doherty and Malone (5) classify possible entrainer candidates into four categories:

1. liquid entrainers that do not induce liquid-phase separation in the ternary mixture,
1Other names include solvent or (mass) separating agent (5).
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2. liquid entrainers that induce liquid-phase separation in the ternary mixture,

3. entrainers that react with one of the components in the mixture, and

4. entrainers that ionically dissociate in the original mixture and alter the VLE.

In this paper, we focus on entrainers of the first category, a distillation type that is also
referred to as homogeneous azeotropic distillation. Here, the entrainer influences the distri-
bution of the components in the vapor and liquid phases by interacting with one or more of
the components in the liquid phase.
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Figure 1: Sketch of an extractive distillation setup. The process feed is separated with the
help of an entrainer in the extractive distillation column, yielding one azeotrope forming
component as the distillate. In the second column the other component is separated from
the entrainer.

In classical extractive distillation setup (cf. Fig. 1), one azeotrope forming component
is withdrawn at the top of the extractive column, while the other, together with the entrainer,
forms the bottoms product. In a second column, the entrainer is separated from the second
component and recycled to the first column. The separation in the second column is easier
when a large difference in the boiling points between the high-boiling entrainer and the
second component exists and no additional azeotropes occur in the mixture.

Extractive distillation can be more energy efficient than azeotropic separation, where
a liquid phase split is used to overcome distillation boundaries (18). This is especially
true when thermally integrated sequences are used (12). Using extractive distillation, how-
ever, high product purities are sometimes difficult to obtain (18). This is apparently the
reason why about 45% of all industrial distillation assignments are either conventional or
azeotropic setups while only 10% are operated as extractive distillation (3).
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Another drawback of extractive distillation is the larger number of degrees of freedom
when compared with a simple distillation setup. In a simple distillation setup these degrees
of freedom are the reflux ratios and the number of stages of the distillation columns. For
extractive distillation the entrainer choice and the entrainer flowrate comprise additional
degrees of freedom.

generating
entrainer

alternatives

fast screening
of alternatives

detailed
rigorous

optimization

computer aided
molecular design

rectification body
Method (RBM)

MINLP
optimization
algorithms

heuristics/
literature studies

Figure 2: Outline of the proposed synthesis framework

To facilitate an easier conceptual design of distillation processes a systematic synthesis
framework has been proposed (13). This framework, which has so far only been applied to
simple distillation, is extended here to extractive distillation. As outlined in Fig. 2, the en-
trainer candidates can either be generated systematically through Computer Aided Molec-
ular Design (CAMD) or found from heuristic rules or literature studies. The resulting flow-
sheets for the different entrainer candidates are screened next to find the economically most
attractive entrainers. Different screening methods are reviewed; it is shown that shortcut
calculations with an extended RBM (4) give the most meaningful screening results. Fur-
thermore, the results from this shortcut step can be used to initialize a more detailed MINLP
optimization of the entire extractive flowsheet (14). This MINLP optimization marks the
concluding step of the systematic synthesis framework. After completion of these steps the
optimal entrainer choice, the optimal column design and the optimal operating point have
been found.

The methods presented throughout the paper are illustrated with the sample separation
of an acetone/methanol mixture. This mixture is typically separated through extractive dis-
tillation using water as an entrainer (5) to produce acetone as the distillate of the extractive
column (cf. Fig. 1). The feed concentration of the example process is assumed to be
0.7774/0.2226 and the feed flowrate is assumed to be 1kmol/s. The vapor phase was mod-
eled as an ideal gas. For the evaluation of the minimum energy demand in Section 4.2.2, all
feeds to the individual columns were assumed to be boiling liquids.

In the next section, a brief summary of the thermodynamic foundations of extractive
distillation is given. Methods to find possible entrainer candidates are presented in Section
3. Section 4 focuses on methods for the rapid screening and evaluation of entrainer can-
didates, while the MINLP optimization strategy based on rigorous models is presented in
Section 5.
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2. Extractive distillation with liquid entrainers

2.1. Thermodynamic foundations

The relative volatility of the key components i and j in a given mixture with ideal vapor
phase is defined by

αi j =
yi/xi

y j/x j
=

γi p0
i

γ j p0
j
, (1)

where x and y are the molar fractions in the liquid and vapor phase, γ is the activity coeffi-
cient and p0 the pure component vapor pressure.

Since the ratio p0
i /p0

j is constant for a given temperature, the solvent only affects the
ratio of the activity coefficients γi/γ j. In the presence of a solvent S, this ratio is called
selectivity Si j (3):

Si j =
(

γi

γ j

)

S
. (2)

The activity coefficients depend on the liquid phase composition. Since the effect of the
entrainer tends to increase with concentration in the mixture, it is common practice to eval-
uate the selectivity at infinite dilution (18). The definition of selectivity given in eq. (2) then
becomes

S∞
i j =

(
γ∞

i
γ∞

j

)
, (3)

which also represents the maximum possible selectivity2.
Another proposed measure to asses the suitability of an entrainer is the capacity (9)

which is determined by

C∞
j,Entrainer =

1
γ∞

j
, (4)

where j denotes the solute. The smaller the value of the activity coefficient γ∞
j , the stronger

are the interactions between component j and the entrainer, which results in a larger ca-
pacity C∞

j,Entrainer. Jork et al. (9) note that entrainers with a high selectivity often possess
a low capacity. Mostly, however, the capacity is neglected (cf. (3; 18)). We follow this
view and see the capacity as a secondary decision variable; it is therefore not included in
our screening process. We will, however, review the different screening criteria at the end
of this paper.

While a high selectivity is certainly the most important criterion for the selection of an
entrainer, several other constraints also need to be fulfilled:

1. The entrainer should not form any new azeotropes with the original components (3).

2. The entrainer should not cause any immiscible regions (3).

3. The boiling point should differ significantly from the other components to facilitate
an easy separation in the second column (3).

2For the evaluation of eq. (3) we set xi = x j = 0 (i 6= j) and xS = 1, where S denotes the solvent in excess.
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4. Entrainer selection should also consider safety, environmental effects, corrosion,
price and availability (18).

There are classes of entrainers that facilitate the separation even though new azeotropes
are formed and criterion 1 is violated (16). The analysis presented here is restricted to the
class of heavy boiling entrainers that do not form any new azeotropes, since this is the most
relevant setting for extractive distillation (5; 16; 17; 18).

2.2. Nonlinear analysis of extractive distillation

A certain minimum entrainer flow rate Emin is required to make an extractive separation
feasible. This minimum entrainer flow can be calculated from a bifurcation analysis of the
nonlinear tray-to-tray (11) or pinch equations (4). It is also known that not only a minimum
reflux ratio rmin is required, but also a maximum reflux ratio rmax exists above which the
desired separation is infeasible. These values can be determined from the rectification body
method for extractive separation (see Section 4.2.2 and (4)).

Figure 3: Minimum and maximum reflux ratio as a function of entrainer to process feed
ratio. The dots denote QB,min and QB,max at E/Emin ≥ 1.1 and rmax/rmin ≥ 2.0. Figure taken
from (4).

When the minimum and maximum reboiler heat duties (corresponding to the minimum
and maximum reflux) for the sample separation of acetone and methanol are plotted for dif-
ferent entrainer candidates as a function of the entrainer flowrate (cf. Fig. 3), the minimum
reflux ratio is usually minimal at the minimum entrainer flowrate. One notable exception is
chlorobenzene, where the minimum reflux ratio and therefore the minimum energy demand
is significantly lower at higher entrainer flowrates (cf. fig. 3). In the extractive column, sub-
stantial energy savings would be possible if a higher entrainer flow is chosen. This increased
entrainer flow rate would lead to a higher energy demand in the entrainer recovery column.
In case of chlorobenzene, however, the decrease in energy demand in the extractive column
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offsets the increase in energy demand of the entrainer recovery column. This behavior has
also been found for p-Xylene, when the mixture is modeled using the UNIFAC parameters.
Although this potential for energy saving is not very common, it is recommended to per-
form a search with increasing entrainer flow rate to find the optimal value (cf. 4.1.3). This
enables the comparison of different flowsheets at their optimal operating point and provides
even better initial values for the MINLP optimization (cf. Section 5).

3. Entrainer selection

This section focuses on methods to find promising entrainer candidates. We restrict our-
selves to the industrially most relevant case of organic liquid entrainers and water for the
time being.

3.1. Heuristics

The extractive property of an entrainer is based on the ability to form hydrogen bonds
with one of the key components (18). Based on this property, entrainer candidates can be
classified into five groups. The classification is derived from the enthalpy of vaporization
of a component in comparison with Trouton’s constant (∆Hvap = 88J/K ·mol): a larger
value indicates a large interaction in the liquid phase while a lower value usually indicates
the formation of associates in the vapor phase. Blass (3) introduces the following different
classes:

• Class I includes molecules which are capable to form three-dimensional networks
of strong hydrogen bonds in the liquid phase. They show the highest deviation
from Trouton’s constant. Components such as water (∆Hvap = 109J/K ·mol), gly-
col (∆Hvap = 121,1J/K ·mol), hydroxylamine, hydroxyaxcids, amides etc. belong to
this group.

• Class II includes molecules which are capable to form one-dimensional chains
through hydrogen bonds. For these components, the effect of hydrogen bonds is
not as predominant as for those in class I and van der Waals’ forces become more
important. Components such as ethanol (∆Hvap = 110,1J/K ·mol) and acetic acid
(∆Hvap = 60,5J/K ·mol) belong to this group.

• Class III includes molecules that act as a hydrogen bond acceptor. Ethers, ketones
and nucleophilic aromatic compounds are included in this group. ∆Hvap is close to
Trouton’s constant for molecules belonging to this group.

• Class IV consists of molecules that act primarily as hydrogen bond donors, such as
chloroform, dichlorethan, trichlorethan etc.

• Molecules in Class V do neither act as hydrogen bond donors nor as acceptors. Tetra-
chlorethan and aromatic compounds belong to this group.

Table 1 shows the deviations from Raoult’s law for the different interacting component
groups. The best entrainers should be found in component classes I & II (18), which cause
a positive deviation form Raoult’s law. It should be noted that there are many exceptions to
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these heuristics. Special care needs to be taken to avoid the formation of new azeotropes and
heterogeneous regions, as can be seen in Table 1. This is usually tested through the mea-
surement of VLE data or through gas-liquid chromatography (18). These two procedures
are, however, time consuming.

interacting Deviation H-Bonding
Classes
I + V Always positive; I + V usually H-Bonds are
II + V show phase splitting dissociated

III + IV Always negative H-Bonds are formed
I + IV Always positive; I + IV usually More H-Bonds are
II + IV show phase splitting dissociated than formed

I + I Usually positive, Some H-Bonds
I + II sometimes negative are formed,
I + III and formation of some areS

maximum azeotropes dissociated
II + II
II + III
III + III Nearly ideal No Hydrogen
III + V systems; small positive bonds
IV + IV deviations, seldom
IV + V formation of minimum
V + V azeotropes

Table 1: Deviation from Raoult’s law for different classes of interacting components (taken
from (3))

3.2. Computer Aided Molecular Design

While heuristic guidelines offer a way to find entrainer candidates, they are usually not
very efficient. Computer aided molecular design (CAMD) on the other hand is a systematic
tool for efficient design of entrainer candidates (10). CAMD can be interpreted as the
inverse of the property prediction problem. Given a set of desirable properties – in this case
a high selectivity for one component – a combination of structural groups is sought that
satisfies the property specification. The application of CAMD for entrainer design is mostly
based on the UNIFAC group contribution method. Two different approaches to molecular
design, namely optimization-based and generate-and-test approaches, can be distinguished
(6). Both alternatives are briefly outlined in the following.

3.2.1. Optimization-based CAMD

The entrainer design problem can be formulated as a MINLP problem, where the selectivity
is maximized subject to several constraints (10). The most important constraints in the
context of entrainer design are structural constraints, pure component property constraints
and mixture property constraints.
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Structural constraints are rules for the generation of physically meaningful components
from a collection of groups. These constraints typically include (10)

• the octet rule, which ensures that the product has zero valency,

• structural feasibility constraints that ensure that two adjacent groups in a molecule
are not linked by more than one bond, and

• constraints on lower and upper limits of the number of groups of a particular type and
on the total number of groups in a molecule.

Pure component property constraints usually include the boiling point difference, while
mixture property constraints aim to avoid liquid-liquid phase splitting or the formation of
new azeotropes. For the evaluation of these properties, group contribution methods such as
Joback or UNIFAC are typically employed. The high complexity of the optimization prob-
lem has led to the development of decomposition methods for optimization based CAMD
(10). Here, subproblems with increasing complexity are solved to provide a numerically
stable CAMD method.

3.2.2. CAMD by generate-and-test

Another approach to computer aided molecular design is called generate-and-test. It con-
sists of three basic steps (7; 8):

1. Pre-Design: Define the problem in terms of desired properties of the compound to be
designed.

2. Design: Run the actual CAMD design algorithm to generate compounds and test
them against stated criteria from the pre-design stage.

3. Post-Design: Test the results based on properties that are not easily screened during
stage two, such as environmental and safety criteria.

Each of these three steps will be described briefly. For a more detailed discussion, the reader
is referred to Harper and Gani (7; 8).

Pre-Design

In this step, the desired and the undesired properties of the new molecules are specified
as targets for the generation algorithm. In case of entrainer design, the target value is a
high selectivity at infinite dilution as defined in eq. (3). Further target properties are a
high boiling point, no miscibility gap with the components in the original mixture and no
formation of new azeotropes (cf. Section 2.1). All these constraints can be specified in
ICAS (7), a software package that can readily be used for CAMD applications.
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Design

Given the targets from the pre-design phase, feasible molecules are generated. Again a
set of rules as outlined in Section 3.2.1 is required to design only meaningful compounds.
The algorithm used here splits the problem into a number of sub-problems with increas-
ing complexity (7). The generated molecules can then be ordered by a variety of criteria,
for example by the selectivity at infinite dilution S∞

i j or by more sophisticated functions to
prepare the post-design phase.

Post-Design

In the post-design phase the user can rank and test the generated alternatives. In Section 4
different ranking and test criteria will be presented and compared.

3.3. Entrainer candidates for the illustrative case study

3.3.1. Literature study

For the sample separation of acetone and methanol several entrainer candidates can be found
in the literature. Laroche et al. (16) suggest water, ethanol, isopropanol and chloroben-
zene, while Lei et al. (18) additionally recommend ethylene glycol. Employing the heuris-
tics reviewed in Section 3.1, it can be expected that the polar components associate with
methanol and produce acetone as the distillate product in the extractive column. The unpo-
lar chlorobenzene, on the other hand, binds with acetone and produces high purity methanol
as the distillate product in the extractive column, even though methanol is the intermediate-
boiling component in the original mixture.

3.3.2. CAMD

The following specifications are set in the ICAS module ProCAMD which uses a generate
and test approach (cf. Section 3.2.2) to generate molecules:

• For methanol as the solute (and acetone as the distillate product of the extractive col-
umn), only acyclic alkanes and alcohols with a maximum number of eight functional
groups should be designed.

• For acetone as the solute (and methanol as the distillate product of the extractive
column), only acyclic alkanes and compounds that contain chlorine with a maximum
number of eight functional groups should be designed.

These compound design specifications stem from an evaluation of the heuristic guidelines
presented in Section 3.1. These two constraints decrease the search space, but, as shown
below, still a large number of feasible and useful entrainer candidates are designed in both
cases. Other specifications include:

• The minimum boiling temperature for the entrainer candidates is set to 350 K to facil-
itate an easy separation in the entrainer recovery column. Furthermore, a maximum
boiling temperature of 500 K is specified.
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• As stated in Section 2.1, no miscibility gap and no additional azeotropes should be
introduced by the entrainer. The criterion for phase splitting is set so that an entrainer
flowrate of 1.4 E/F does not cause any immiscibility with the feed. It should be
noted that this miscibility check can also be done for a range of compositions and
temperatures.

• A minimum selectivity of S∞
i j > 2.5 as predicted with the UNIFAC model is requested

in both cases.

• As suggested in Section 3.2.2, the generated candidates are checked if they have been
included in the DIPPR (20) or ASPEN (1) databases3. If they could not be found in
the databases, they were excluded pragmatically from further considerations.

Common solvents are screened in addition to the generation of new components with Pro-
CAMD. The results are given in Tables 2 and 3.

distillate acetone
entrainer S∞

i j [-] S∞
i j [-] Tboil [K]

candidate UNIFAC UNIQUAC (20)
water 4.81 2.42 373.15
DMSO 1.47 2.89 464.0
ethylene glycol 2.99 4.19 470.45
ethanol 1.76 1.65 351.44
isopropanol 1.3 1.72 355.41

Table 2: Entrainer candidates generated for the acteone/methanol separation; listed are en-
trainers which bond with methanol and therefore produce acetone as the distillate.

As shown in Table 2, the entrainer candidates reported in the literature (cf. Section
3.3.1.) for methanol could be reproduced with the CAMD algorithm. The notable excep-
tion is ethanol, which is apparently excluded because the boiling point estimate is 330.1 K
(which is less than the required 350 K), even though the measured boiling point of ethanol
is above that threshold. For known solvents the screening should therefore be based on
experimental data. DMSO (dimethylsulphuroxide), ethanol and isopropanol were also ex-
cluded from the list of possible entrainer candidates because their selectivity is below the
required value of 2.5 according to the UNIFAC model. They are left in the sample, however,
to retain a larger number of entrainer candidates to test the entrainer selection criteria in the
next section.

When the criterion for the minimum required selectivity is relaxed to 2.0, a number of
diols (propane-, butane- and pentanediol) and n-methyl-2-pyrrolidone are designed. How-
ever, we have decided to keep the bound on S∞

i j the same as in the case where acetone is the
distillate of the extractive column (see next section).

3For a continuous chemical process usually a large amount of entrainer material is required. Availability
may be a problem for some of the more exotic chemical compounds designed in the CAMD step. Selecting
components from these databases also has the additional advantage that constants for pure component va-
por pressure correlations are available, which increases the reliability of the predictions tremendously. This
criterion could, however, lead to the exclusion of very promising yet uncommon compounds.
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distillate methanol
entrainer S∞

i j [-] S∞
i j [-] Tboil [K]

candidate UNIFAC UNIQUAC ((20))
ethylbenzene 4.59 1.04 409.35
m-xylene 4.4 NA 412.27
o-xylene 4.4 NA 417.58
p-xylene 4.4 2.32 411.51
mesitylene 3.75 NA 437.89
1,2,3-trimethylbenzene 3.59 NA 449.27
1,2,4-trimethylbenzene 3.59 NA 442.53
benzyl ethyl ether 2.53 NA 458.15
chlorobenzene 5.51 5.84 404.87

Table 3: Entrainer candidates generated for the acteone/methanol separation; listed are
entrainers which bond with acetone and therefore produce methanol as the distillate.
Chlorobenzene is listed under the double line since it was manually re-included in the sam-
ple (see text).

When methanol is the desired distillate product, the entrainer candidates given in Table
3 are generated. Chlorobenzene, which has been previously suggested by Laroche et al.
(16) (cf. Section 3.3.1.), is excluded by the ProCAMD algorithm because the UNIFAC
parameters wrongly predict the formation of an azeotrope. Since it has a very high predicted
selectivity of 5.51, it is retained in the sample.

The selectivities at infinite dilution of some candidates in Table 3 are notably higher than
those given in Table 2. The bound of S∞

i j > 2.5 is not as strict in this case and more entrainer
candidates would be expected. However, only a few physically meaningful structures are
generated. For those found, often ASPEN parameters are not available which led to the
exclusion of dibromoethane, dichlorobutane and dichloropentane.

4. Entrainer screening

From the several entrainer alternatives the economically best alternative giving the lowest
total annualized cost (TAC) of the process has to be determined. This requires, however, a
detailed MINLP optimization of the entire extractive distillation process as done by Krae-
mer et. al. (15), which is not practical for a large number of entrainer alternatives. It is
therefore advisable to screen the entrainer alternatives based on shortcut calculations to
narrow the choices down to two or three promising alternatives first. For such a small num-
ber of possible entrainers, a complete rigorous optimization and costing can be done to
reliably identify the best entrainer. For the screening of entrainer alternatives a number of
criteria, either based on thermodynamics or shortcut calculations have been devised. In the
following these screening methods are applied to the sample separation. The main ideas, re-
quirements and results are briefly outlined for each method. For a more detailed discussion
the reader is referred to the cited literature.
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4.1. Screening methods

4.1.1. Thermodynamic considerations

As stated in Section 2.1, the selectivity at infinite dilution S∞
i j is a very important selection

criterion for different entrainer candidates, even though finite dilution is the prevailing con-
dition in actual columns. Laroche et al. (16) note that the selectivity at finite dilution and the
selectivity at infinite dilution are not necessarily related to each other. Some entrainers may
even exhibit a maximum selectivity at an intermediate concentration (16). Nevertheless,
the entrainer selection based on selectivity at infinite dilution is still the most commonly
applied criterion.

The influence of the entrainer selectivity on the total annualized cost of the process
has been studied in great detail by Momoh (19). The mixtures of n-butane/trans-2-butene
and n-hexane/benzene were used as sample problems. For each mixture and choice of
entrainer a complete design and costing was done. Process optimization was done manually
through iterative simulation studies. Some results of Momoh (19) are presented in Fig. 4,
where it can be seen that the TAC decreases with increasing entrainer selectivity in general.
However, significant discrepancies from this trend can be observed in both cases. It can be
concluded from this study that the entrainer with the highest selectivity has a good potential
to be the best choice for the overall process, while some other factors such as the heat
of vaporization of the entrainer may also constitute an important contribution to the total
process cost.
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Figure 4: The effect of entrainer selectivity on the TAC of an extractive distillation pro-
cess. (a) n-butane/trans-2-butene mixture and (b) n-hexane/benzene mixture; adapted from
Momoh (19)

This extremely simple method allows a fast screening of a large number of different
entrainer alternatives. For a given separation and for a fixed flowsheet topology this crite-
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rion might be sufficient. When, as in the sample separation of acetone and methanol the
distillate product of the extractive column changes with the choice of entrainer, no direct
comparison is possible. As will be shown below, the selectivity is only suited for a com-
parison of structurally identical flowsheets. When the distillate product changes from one
entrainer alternative to another, a meaningful ranking is not possible. Momoh (19) also
notes that choosing solvents on the basis of selectivity alone tends to emphasize the cost of
the extractive column, whereas the cost of the second column is neglected. This cost can,
however, dominate the total process cost in some cases.

This method is therefore very well suited as an objective function in CAMD or for a pre-
screening of a large number of different entrainer alternatives, while the results are not as
detailed and meaningful as those obtained with the more advanced methods. For example,
screening with this simple criterion does not give an indication of the minimum entrainer
flowrate or the minimum and maximum reflux (cf. Section 2.2).

4.1.2. The Rectification Body Method for extractive columns

The Rectification Body Method (RBM) (2) allows the computation of the minimum sepa-
ration energy of azeotropic mixtures with an arbitrary number of components. This method
is based on approximating column profiles through the so-called rectification bodies, which
can be calculated from pinch points. Recently, this tool has been extended to extractive
distillation processes (4).

This method is divided into two distinct steps. In the first step, the minimum entrainer
flowrate is determined from the analysis of the nonlinear pinch equations. It could be shown
that a so-called pitchfork bifurcation appears at a critical reflux ratio and at the minimum
entrainer flowrate. This minimum entrainer flowrate is called Emin,bi f . At this entrainer
flowrate the ratio of the feasible reflux ratios rmin and rmax is usually very small, making
the process extremely sensitive to small changes in the feed. Brüggemann and Marquardt
(4) therefore propose operational constraints of rmax/rmin = 2.0 and E/Emin,bi f = 1.1 to
guarantee stable process operation. Here rmax is determined from the nonlinear analysis
and rmin from a tailored RBM. The entrainer flowrate that obeys these additional constraints
will be denoted by Emin.

The main advantage of this method computed to the thermodynamical criteria presented
in the previous section is its capability to predict the minimum energy demand of the sep-
aration. This allows a direct comparison of extractive distillation to other flowsheet alter-
natives. The method can also determine the minimum flow rate of the entrainer from a
nonlinear analysis of the pinch equations (4). The RBM gives the most accurate informa-
tion of all the screening methods presented. As shown by Brüggemann and Marquardt (4),
the RBM results are very well reproducible with the flowsheet simulator package ASPEN.

4.1.3. Flowsheet optimization using shortcut models

As noted in Section 2.2, an increase in entrainer flowrate might yield a lower energy demand
of the entire process. To compare the different entrainer alternatives at the optimal operating
point, a simple flowsheet optimization is run after the determination of the energy demand
of the individual columns.
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Here, the only optimization variable is the entrainer flowrate, since the overall mass bal-
ance and the compositions of the individual product streams are fixed. Therefore a simple
one dimensional search along increasing entrainer flowrates is sufficient in this case. As
could already be deduced from Fig. 3, the only case in which a substantial energy reduc-
tion could be observed is when chlorobenzene and p-xylene (when the UNIFAC model is
used) are selected as an entrainer. Since the computational cost of this step is very low it is
advised to run this optimization step anyway to at least improve the initialization values for
the following MINLP optimization step (cf. Section 5.2).

It should be noted here that this step is very important when a more complex flowsheet
with a mixed recycle stream is designed. As shown previously (13) this step can lead to sub-
stantial savings in energy and reduces the computational time of the MINLP optimization
significantly.

4.2. Evaluating entrainer candidates for the case study

4.2.1. Ranking by selectivity

The selectivities at infinite dilution, S∞
i j, as calculated with the UNIFAC model and, where

parameters were available in ASPEN, with the UNIQUAC model, are also listed in Tables
2 and 3 for the different entrainer candidates.

Two interesting conclusions can be drawn from these simple calculations:

1. The calculated selectivities as predicted with UNIFAC and those calculated with the
UNIQUAC model seem to be in reasonably good agreement. In case of ethylbenzene,
and to a lesser extent in case of ethylene glycol, a large discrepancy is observed. A
satisfying reason for this behavior could not be found.

2. The numerical value of S∞
i j is much smaller for all those candidates that bind with

methanol than for those that bind with acetone. This should be the reason why a
smaller number of entrainer candidates could be found in this case.

If the final entrainer candidate was chosen based on the evaluation of the selectivity at
infinite dilution, the best entrainer alternatives would be any candidate found in Table 3. As
mentioned above, all entrainer candidates listed in Table 2 seem to be inferior and should
be neglected. In industrial practice, however, the only entrainer candidates found are those
listed in Table 2 that produce acetone as the distillate in the extractive section. One reason
is that water and ethyl glycol are environmentally benign substances and are therefore pre-
ferred. Another reason can be deduced from the more thorough analysis presented in the
next sections.

4.2.2. Ranking by the RBM

The RBM for extractive distillation is used as a second screening criterion for the sample
separation. Only one of the xylene isomers (p-xylene) and one of the trimethylbenzenes
isomers (1,2,3-trimethylbenzene) is chosen since all isomers are described by the same
UNIFAC groups. The small differences in the pure component vapor pressures between the
different isomers are neglected. Since UNIQUAC is used whenever possible, ethylbenzene
is also excluded from the list, since it does not fulfill the criterion S∞

i j > 2.5.
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distillate acetone
entrainer S∞

i j Emin,bi f /F E/F QB,min/F QB,min/F
candidate extractive column total process
DMSO 2.89 0.651 0.771 5.42 7.20
water 2.4 0.814 0.933 9.866 11.803
ethanol 1.65 0.721 0.760 11.077 16.981
isopropanol 1.71 2.187 2.923 15.97 26.101
ethylene glycol 4.19 NA NA NA NA

distillate methanol
chlorobenzene 5.84 1.615 2.015 3.75 7.93
p-xylene (UNIFAC) 4.4 0.81 1.67 3.82 8.71
mesitylene 3.75 0.82 1.55 4.01 9.562
p-xylene (UNIQUAC) 2.32 0.77 2.38 4.32 9.94
1,2,3-trimethylbenzene 3.59 0.83 1.63 3.93 10.11
benzyl ethyl ether 2.53 1.13 NA NA NA

Table 4: Results for the different entrainer alternatives obtained with the RBM for extractive
columns after the flowsheet optimization. The total process also takes the energy demand
of the entrainer recovery column into consideration. For the components below the double
line RBM for extractive distillation did not find a minimum entrainer flowrate (ethylene
glycol) or reflux bounds (benzyl ethyl ether). All energies are given in 107 W/kmol.

The results calculated with the RBM are given in Table 44. The nonlinear analysis
of the pinch equations does not yield a minimum entrainer flowrate for ethylene glycol.
Furthermore, no reflux bounds can be found for benzyl ethyl ether.

For all other entrainer alternatives the minimum flowrate Emin,bi f as well as the min-
imum entrainer flowrate E that satisfies the constraints stated in Section 4.1.2 are given.
Furthermore, the minimum reboiler energy QB,min/F for the extractive column and the
minimum energy demand of the total process, which also includes the entrainer recovery
column, after the flowsheet optimization are listed.

As mentioned in Section 4.1.3. the minimum energy demand of the process can be
decreased in rare cases when the entrainer flowrate is increased. An optimization along
increasing entrainer flowrates yields that this is the case for chlorobenzene and p-xylene
UNIFAC-model. In case of chlorobenzene for example an increase in entrainer flowrate
from Emin = 1.615 to 2.015 decreases the energy demand of the entire process from 8.079 ·
107 W/kmol to 7.934 · 107. For all subsequent consideration this lower energy demand is
used.

As can be seen in Table 4, the comparison of different entrainers based on their selectiv-
ity allows only an approximate ranking. As the process parameters change, i.e. a different
distillate product is chosen, no conclusions can be drawn from this parameter alone. Based
on selectivity alone, isopropanol should be a better entrainer than ethanol. The results ob-
tained with the RBM, however, show that the opposite is true.

4The values differ from those given in (4) due to a slightly improved algorithm and, in some cases, e.g.
water, because of different physical property parameters.
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Another interesting observation stems from a comparison p-xylene (UNIFAC) and p-
xylene (UNIQUAC). While the total process energy demands are not very different, the
sensitivities show a large difference. While UNIQUAC parameters should be preferred, a
first screening can be done reliably with the UNIFAC model at least in this case.
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Figure 5: Energy demand of the extractive column and of the total process as a function of
selectivity.

The selectivity is a useful but not a very accurate analysis method for the effectiveness
of an extractive distillation process. This is illustrated in Fig. 5, where the energy demand
of the extractive column and of the total extractive distillation process after the flowsheet
optimization is plotted as a function of the selectivity S∞

i j. Interestingly, the selectivity at
infinite dilution gives very poor predictions for the process energy demand for low values
(e.g. water and p-xylene at S∞

i j ≈ 2.4). For higher values of selectivity the energy demand
does not change significantly.

Because of their higher reliability, the results obtained with the RBM are used here to
screen the different entrainers. DMSO and water (since it is an environmentally friendly
substance) are the only candidates yielding acetone as the product of the extractive distilla-
tion column which are selected for further consideration in the next step. Ethanol and iso-
propanol are discarded because of the high minimum energy demand of the process. In case
of methanol as the distillate product, the differences in process energy demand are not as
pronounced and the decision of the cut-off point is harder to define. We choose chloroben-
zene, p-xylene (UNIFAC/UNIQUAC) and mesitylene for further evaluation. For these five
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different entrainer choices the optimal number of stages, the optimal entrainer flowrate and
the optimal reflux ratios of the two columns are calculated by MINLP optimization.

It should be noted that all entrainer candidates listed above (with the obvious exception
of water) are harmful substances. The case study is nevertheless meaningful since we will
then know what properties we should look for (the same mixture behaviour as DMSO but
without its toxicity) in further CAMD steps.

5. MINLP optimization of the extractive flowsheet

5.1. MINLP optimization algorithm

The shortcut calculations with the RBM cannot provide any information about the optimal
number of trays and the optimal feed tray location of the distillation columns as the min-
imum energy demand is calculated for columns with an infinite number of stages. For a
more detailed column design an economic trade-off has to be found between investment
cost (mainly determined by the column diameter and number of trays) and operating cost
(defined by the energy duty of the columns). Since the number of trays and the feed tray
locations are discrete variables while the energy duties, flow-rates and compositions are
continuous variables, MINLP optimization is usually used for identifying the optimal col-
umn designs and the process operating point.

However, robustness and convergence of complex MINLP problems to good local op-
tima still remain issues that need to be addressed for an efficient column optimization, espe-
cially when the entire extractive flowsheet consisting of two columns and a recycle stream
(cf. Fig.1) has to be optimized. To overcome these difficulties a novel solution approach
has been developed, where a sequence of relaxed MINLP problems with decreasing bounds
are solved.

This solution algorithm as well as the column model are described in our previous pub-
lications (14; 15), therefore only a brief summary is given here. The main idea is to replace
the integer variables by continuous decision variables. To ensure an integer solution, spe-
cial integrality constraints are added to force the continuous decision variables to discrete
values (21). These integrality constraints are relaxed and the resulting relaxed MINLP is
solved in a series of successive optimization runs with decreasing relaxation bounds. The
solution procedure is thus termed SR-MINLP (successive relaxed MINLP).

The integer decision variables of a distillation column are the total number of trays and
the location of the feed tray. As already observed by Viswanathan and Grossmann (22) and
confirmed by our own experience (14), the distribution of a single column feed for a simple
distillation column is optimal when the entire feed is introduced on a single stage, i.e. the
optimal solution of the relaxed problem will usually yield an integer solution for the feed
stage. This, however, is not true for extractive columns. Here, a distributed entrainer feed
seems to be optimal and therefore integrality constraints have to be introduced (15) for the
feed location in this case.

The reboiler or condenser location are equally forced to integer values by successively
tightened integrality constraints. After reformulation, the MINLP optimization problem
only contains continuous variables and thus a computational costly Branch and Bound tree
search or an Outer Approximation iteration to handle binary variables can be avoided. The
continuous model therefore exhibits shorter solution times as an equivalent MINLP model.
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In case of this large optimization problem the advantage of the continuous model is even
more pronounced than for the single column case. The combinatorial complexity of the
solution of the MINLP model rises exponentially when multiple columns with discrete
decisions are combined in a flowsheet optimization. In contrast, the combinatorial effort
is significantly reduced when the optimization of column sequences is carried out with
continuous optimization models (15).

5.2. Initialization of the MINLP problem

A key feature of the proposed synthesis framework is that the results from the RBM short-
cut screening can be used for an excellent initialization of the MINLP problem (13; 14).
The entrainer flowrate determined from flowsheet optimization using shortcut models (cf.
Section 4.1.3) and the resulting reboiler and condenser energies provide excellent initial
values for the MINLP optimization. Furthermore, approximate column profiles can be de-
termined from the pinch points calculated by the RBM, which allows the initialization of
tray composition and temperatures very close to their final values. The information on flow
rates, compositions, temperatures and minimal energy demands from the shortcut step can
also be used to provide tight bounds for the optimization problem.

This excellent initialization together with the new solution algorithm outlined above has
helped robustness, reliability and efficiency of the MINLP optimization dramatically. A typ-
ical optimization problem consist of about 350 discrete decision variables, more than 5000
continuous variables and the underlying highly nonlinear thermodynamic models. Still, so-
lution times are less than 10 minutes with the NLP solver SNOPT 6.2-1 on a workstation
with a 3.06 GHz CPU and 3.75 GB RAM (15). Thus, all entrainer candidates could be
compared by MINLP optimization. Since the shortcut calculations precede the rigorous op-
timization, it is suggested to only optimize the flowsheets for the most promising entrainer
candidates to further reduce the effort in the MINLP optimization step.

5.3. MINLP optimization of the example flowsheets

MINLP problems as described in Sections 5.1 and 5.2 for the rigorous optimization of
the extractive distillation process shown in Fig. 1 were formulated and solved for various
entrainer choices. Only the efficient entrainers DMSO and chlorobenzene and the environ-
mental benign entrainer water need to be evaluated in the rigorous optimization step due
to the ranking of the entrainer alternatives by the minimum process energy demand with
the RBM in the preceding step of the synthesis framework (cf. Tab. 4). However, we
have also included the evaluation of the entrainers mesitylene and p-xylene (UNIFAC and
UNIQUAC) in the rigorous optimization step for a more comprehensive comparison of the
results.

All product purities were set to values larger than 99.5mol% except for the cases where
methanol is the distillate product of the entrainer recovery column: here, the methanol puri-
ties were set to 98.2mol% and 98.9mol% for the entrainers water and DMSO, respectively,
since higher purities could not be obtained. Optimal values are found for the number of
column trays and the feed tray locations (discrete values) as well as for the reboiler and
condenser duties and for the recycle flowrate and composition (continuous values). The ex-
act formulation of the economic objective function accounting for operating and investment
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cost can be found in (14). The rigorous optimization results together with the entrainer
flowrate and minimum energy demand from the shortcut evaluation with the RBM are dis-
played in Tables 5 and 6.

distillate acetone
RBM MINLP

entrainer ERBM/F QB,min/F Eopt/F QB,opt/F Cost/F
candidate total process total process
DMSO 0.771 7.200 0.992 7.57 34.20
water 0.933 11.803 1.886 11.11 44.64

distillate methanol
chlorobenzene 2.02 7.93 2.382 8.37 32.56
p-xylene (UNIFAC) 1.67 8.71 2.249 9.33 35.62
mesitylene 1.55 9.56 1.900 10.38 38.92
p-xylene (UNIQUAC) 2.38 9.94 2.597 10.63 39.67

Table 5: Results for entrainer flowrate, process reboiler energy demand and process cost for
different entrainer alternatives obtained with the rigorous MINLP optimization in compari-
son with values from the RBM shortcut calculations. Process costs include investment and
operating costs. Energies are given in 107 W/kmol and costs in 106 e /kmol.

distillate acetone
Number of Trays Feed Tray

entrainer candidate extr. column recycle column extr. E extr. F recycle F
DMSO 35 13 2 27 5
water 54 26 33 50 15

distillate methanol
chlorobenzene 42 16 10 26 7
p-xylene (UNIFAC) 43 13 10 24 6
mesitylene 37 9 4 22 4
p-xylene (UNIQUAC) 47 11 8 30 6

Table 6: Results for the optimal number of trays and feed tray locations for the different
entrainer alternatives obtained with MINLP optimization.

When comparing the results of the shortcut evaluation with the RBM and the MIMLP
optimization results, the order of the entrainer candidates in the ranking of economic ef-
ficiency is not changed except for DMSO, which turns out to be more expensive than
chlorobenzene due to higher energy costs. These are due to the high boiling point of DMSO
(190.7°C) is well above the boiling points of the other entrainer candidates. Consequently,
steam at a higher pressure level is required for the reboilers of both columns when DMSO
is the entrainer choice, raising the cost of energy in this case. The energy demand of the rig-
orously optimized processes is well correlated to the minimal energy demand predicted by
the shortcut evaluation: the ratios of minimal to optimized energy demands range from 0.92
for mesitylene to 0.95 for DMSO. The exception is water, where a lower product purity for
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methanol and a significantly higher entrainer flowrate than the minimal flowrate give rise
to a lower optimized energy demand than the minimal energy demand from the shortcut
evaluation. Still, the results demonstrate that the assumption of infinitely large columns
for the shortcut calculations is a very reasonable simplification, since the optimized energy
demand is close to the minimal energy demand for all entrainer alternatives. The ratios of
the minimal entrainer flowrates to the optimized entrainer flowrates are between 0.78 for
DMSO and 0.92 for p-xylene (UNIQUAC), again with the exception of water with a ratio
of 0.5.

The significance of the rigorous optimization step is emphasized when the optimal val-
ues for the tray numbers and feed tray locations for the different entrainer candidates are
compared. Here, a noticeable variance in the optimal values for the different entrainers is
observed, especially for the entrainer feed location.

5.4. Comparison of the different screening methods with the MINLP results

When the results from MINLP optimization are taken as the ”true” process cost, the differ-
ent proposed guidelines for entrainer selection can be reviewed and compared with respect
to their prediction accuracy.

5.4.1. Comparison of the MINLP results with the selectivity criterion

The total annualized cost (TAC) as determined from MINLP optimization as a function of
the selectivity (S∞

i j) is plotted in Fig. 6. As can be seen in the figure and also deduced
from the low regression coefficient R2 = 0.4911, the prediction of the total process cost
is not possible from selectivity alone. These findings further support the results already
discussed in Sections 4.1.1 and 4.2.2. Selectivity alone should therefore not be used as the
only criterion for the screening of entrainer candidates.

R2 = 0,4911
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Figure 6: Total annualized cost of the extractive process (MINLP results) as a function of
selectivity.
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5.4.2. Comparison of the MINLP results with the capacity·selectivity criterion

R2 = 0,885
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Figure 7: Total annualized cost of the extractive process (MINLP results) as a function of
capacity·selectivity (C∞

j,Entrainer ·S∞
i j).

Another criterion mentioned for entrainer selection from literature (9) suggests to eval-
uate

C∞
j,Entrainer ·S∞

i j. (5)

This equation takes the selectivity and the capacity of an entrainer into consideration. The
TAC is shown in Fig. 7 as a function of C∞

j,Entrainer ·S∞
i j. It can be seen from the graph and

from R2 = (0.885) that the prediction accuracy of this screening heuristic is already better
than a ranking based on selectivity alone.

5.4.3. Comparison of the MINLP results with the RBM

Finally the results from the MINLP optimization as a function of the minimum energy
demand as determined with the RBM are shown in Fig. 8. The prediction accuracy is
already quite good as can be seen in the graph and in the even higher value of R2 = 0.9278.
Note that the R2 value climbs to 0.9854 when the entrainer DMSO is excluded since the
TAC for DMSO is dependent on the specified steam cost for the high pressure steam that is
required for the reboiling of the DMSO at its high boiling point (cf. Section 5.3).

From the results of this case study we can therefore conclude that the RBM gives a
very good estimate of the total process cost. Since the results of the RBM can be used to
initialize the MINLP optimization, it is recommended to use the RBM as a screening tool
for entrainer candidates. When the evaluation of the RBM is not practical or not available,
the expression C∞

j,Entrainer · S∞
i j can be used. It should be noted that this expression can

only serve as a rule of thumb and is limited to the screening of entrainer alternatives since
minimum entrainer flowrates and reflux bounds are not available. The selectivity alone,
however, is not a very good screening tool and should not be used alone to predict entrainer
performance.
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R2 = 0,9278

300000

320000

340000

360000

380000

400000

420000

440000

460000

7 8 9 10 11 12

Energy demand (RBM) 107kW/kmol

T
o

ta
l p

ro
ce

ss
 c

o
st

 (
T

A
C

)

Figure 8: Total annualized cost of the extractive process (MINLP results) as a function of
the energy demand as calculated with the RBM.

6. Summary and conclusion

In this paper, a short summary of the generation and evaluation of different entrainers for
extractive distillation is given. It is shown that possible entrainer candidates can be obtained
from heuristics, literature studies or the more elaborate methods available through CAMD.

It is shown that the different methods for entrainer evaluation have their strengths and
weaknesses. The selectivity gives a first estimate for a relative ranking of entrainer alter-
natives for the same flowsheet structure and for the same type of splits. As soon as this
structure is changed, the results cannot be easily compared to other cases. Furthermore, a
simple correlation of selectivity to TAC or minimum energy demand is not possible (cf. Fig.
4 and 5). The use of the product of capacity and selectivity already improves the screening
accuracy; however, no details on the operating point of the extractive column are available
from this method (cf. Section 5.4).

The Rectification Body Method (RBM) allows a comparison of different flowsheet
structures as well as a comparison of different entrainer alternatives. This information
comes at a slightly higher computational cost. It allows, however, a very accurate ranking
of the generated entrainers and the information generated with this mixture, especially the
determination of the optimum entrainer flowrate, can be used for an excellent initialization
of a detailed MINLP optimization.

This MINLP optimization is the final step of the proposed synthesis framework for ex-
tractive distillation. Here the first two to three optimal entrainer choices as determined with
the RBM are evaluated further. In this case the choices would be DMSO and chlorobenzene
(although water will probably be preferred over the other options since it is environmen-
tally friendly and induces only a moderate economic penalty). The combination of the tools
CAMD, RBM and MINLP optimization is therefore very well suited for the systematic
design of an optimal extractive distillation process.

This approach will be extended to other flowsheets with recycle streams (much like the
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ternary pressure swing process (13)) in the future. Another aspect that will be integrated
into our framework is energy integration, which might offer significant cost-savings for
coupled processes.
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[4] Brüggemann, S. and Marquardt, W. (2004) AIChE Journal, 50, 1129-1149.

[5] Doherty, M.F. and Malone, M.F., Conceptual Design of Distillation Systems,
McGraw-Hill, New York (2001).

[6] Gani, R.,Achenie, L.E.K., and Venkatasubramanian, V., Introduction to CAMD. In:
Achenie, L.E.K., R. Gani and V. Venkatasubramanian: Computer Aided Molecular
Design: Theory and Practice, Elsevier, Amsterdam, (2003).

[7] Harper, P.M., A multi-phase, multi-level framework for computer aided molecular
design, Technical University of Denmark, Lyngy, (2000).

[8] Harper, P.M. and Gani, R. (2000) Computers and Chemical Engineering, 24, 677-
683.

[9] Jork, C., Kristen, C., Pieraccini, D., Stark, A., Chiappe, C., Beste, Y.A., and Arlt, W.
(2005) Journal of Chemical Thermodynamics, 37, 537-558.

[10] Karunanith, A.T., Achenie, L.E.K, and Gani, R. (2005) Industrial and Engineering
Chemistry Research, 44, 4785-4797.

[11] Knapp, J.P., and Doherty, M.F. (1989) Industrial and Engineering Chemistry Re-
search, 28, 564-572.

[12] Knapp, J.P., and Doherty, M.F. (1990) AIChE Journal, 36, 969-983.

[13] Kossack, S., Kraemer, K. and Marquardt, W., In: Sorensen E. (Ed.): Distillation &
Absorption 2006, IChemE, London, (2006).

[14] Kossack, S., Kraemer, K. and Marquardt, W. (2006) Industrial and Engineering
Chemistry Research, 45, 8492-8502.



24 S. Kossack et al.

[15] Kraemer, K., Kossack, S., and Marquardt, W., In: V. Plesu, P.S. Agachi (Eds.): Pro-
ceedings of the 17th European Symposium On Computer Aided Process Engineering
- ESCAPE 17, Bucharest, (2007).

[16] Laroche, L., Bekiaris, N., Andersen, H.W., and Morari, M. (1991) Canadian Journal
of Chemical Engineering, 69, 1302-1319.

[17] Laroche, L., Bekiaris, N., Andersen, H.W., and Morari, M. (1992) AIChE Journal,
38, 1309-1328.

[18] Lei, Z., Li C. and Chen, B., (2003) Separation and Purification Reviews, 32, 121-213.

[19] Momoh, S.O. (1991) Separation Science and Technology, 26, 729-742.

[20] Rowley, R.L., Wilding, W.V., Oscarson, J.L., Yang, Y., Zundel, N.A., Daubert, T.E.,
and Danner, R.P., DIPPR Data Compilation of Pure Chemical Properties, Design
Institute for Physical Properties, AIChE, New York (2006).

[21] Stein, O., Oldenburg, J., and Marquardt, W., (2004) Computers and Chemical Engi-
neering, 28, 1951-1966.

[22] Viswanathan, J., and Grossmann, I., (1993) Computers and Chemical Engineering,
17, 949-955.


