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Abstract. Within the scope of interest of deontic logic, systems in which
names of actions are arguments of deontic operators (deontic action
logic) have attracted less interest than purely propositional systems.
However, in our opinion, they are even more interesting from both the-
oretical and practical point of view. The fundament for contemporary
research was established by K. Segerberg, who introduced his systems of
basic deontic logic of urn model actions in early 1980s. Nowadays such
logics are considered mainly within propositional dynamic logic (PDL).
Two approaches can be distinguished: in one of them deontic operators
are introduced using dynamic operators and the notion of violation, in
the other at least some of them are taken as primitive. The second ap-
proach may be further divided into the systems based on Boolean algebra
of actions and the systems built on the top of standard PDL.

In the present paper we are interested in the systems of deontic
action logic based on Boolean algebra. We present axiomatizations of six
systems and set theoretical models for them. We also show the relations
among them and the position of some existing theories on the resulting
picture. Such a presentation allows the reader to see the spectrum of
possibilities of formalization of the subject.

Keywords: Deontic action logic, algebra of actions, Segerberg, Castro
and Maibaum.

Introduction

A Deontic Logic of Action [Segerberg, 1982], an article published by
K. Segerberg in 1982 was a milestone in the development of deontic
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logic since the 1950s when von Wright [von Wright, 1951] and Kalinowski
[Kalinowski, 1953] had published their innovative deontic systems.

In his article Segerberg proposed two systems: basic open deontic

logic of urn model action (B.O.D.) and basic closed deontic logic of

urn model action (B.C.D.). He also provided two models for both sys-
tems and proved the adequacy theorems. Segerberg’s work has become
a source of inspiration for the deontic first-order theories of Lokhorst
[Lockhorst, 1996] and Trypuz [Trypuz, 2008], and deontic logics of action
built in connection with Propositional Dynamic Logic (PDL). In the last
class of systems, which are perhaps the most developed and explored
deontic logics of action nowadays, we can distinguish (i) those in which
deontic operators are defined in the Andersonian-Kangerian style by PDL
operators and constant V (violation) [Meyer, 1988, Dignum et al., 1996,
Hughes and Royakkers, 2008] and (ii) those which are built on PDL and
in which (at least some) deontic operators are taken as primitive.

The second approach may be further divided into the systems built
on top of standard PDL [McCarty, 1983, Meyden, 1996] and the systems
based on Boolean algebra of actions [Castro and Maibaum, 2009].

The latter class of systems is especially promising and is the subject
of this article. A characteristic feature of the systems in question is a
clear distinction between three layers: the deontic layer, the PDL layer
and the action layer shaped by Boolean algebra. That distinction is
convinient because each of the layers can be studied separetly and freely
combined, allowing for a greater flexibility in the design of systems and
the ease of choosing the right one for specific applications.

In this paper we analyze the relations between the systems of deontic
action logic which are closely related to Segerberg’s systems, and the
deontic layer of Castro and Maibaum’s DPL logic [Castro and Maibaum,
2009]. Some of the systems introduced in this paper are deductively
equivalent to existing ones. Some other are such under certain assump-
tions. Others will be shown to be stronger or weaker from the systems
of Segerberg and Castro and Maibaum.

The paper assumes the following structure. In section 1 a basic de-
ontic action logic without obligation will be described. Its extensions are
the subject of section 2. In that section the relations of the introduced
systems to the ones of Segerberg and Castro and Maibaum will be pro-
vided as well. We also demonstrate that the deontic action logic B.C.D. is
not included in DPL logic of Castro and Maibaum and vice versa. More-
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over it will be shown that both aforementioned systems are stronger than
B.O.D. logic of Segerberg and both are contained in (constructed by us
in this paper) system DAL3.

1. Basic Deontic Action Logic without obligation

We introduce a class of deontic action logics without obligation. All of
them share the same language. Every logic of the class will be referred
by DALn, where n is the unique index of the logic.

1.1. Language of DALn

The language of DALn can be defined in Backus-Naur notation in the
following way:

ϕ ::= ⊤ | α = α | P(α) | F(α) | ¬ϕ | ϕ ∧ ϕ (1)

α ::= ai | 0 | 1 | α | α ⊔ α | α ⊓ α (2)

where ai belongs to the finite set of action generators Act0, “0” is the
impossible action and “1” is the universal action; “⊤” is an arbitrary tau-
tology, “α = β” means that α is identical with β; “P(α)”–α is (strongly)
permitted; “F(α)”—α is forbidden, “α⊔ β”—α or β (a choice between α
and β); “α⊓β”—α and β (parallel doing of α and β); “α”—not α (com-
plement of α). Further, by Act we shall understand a set of formulas
defined by (2). Obviously Act0 ⊆ Act.

1.2. Algebra of actions

Every deontic action logic DALn contains as its integral part a Boolean
algebra of actions from Act. Boolean algebra is one of the possible struc-
tures that can be used for representing a space of possible actions. It is a
simple structure with a significant expressive power.1 Below we provide
a standard list of axioms for that algebra:

α ⊔ β = β ⊔ α, α ⊓ β = β ⊓ α (3)

(α ⊔ β) ⊔ γ = α ⊔ (β ⊔ γ), (α ⊓ β) ⊓ γ = α ⊓ (β ⊓ γ) (4)

1Adequacy of Boolean algebra as an ontology of action is not discussed in this
paper.
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(α ⊓ β) ⊔ β = β, α ⊓ (α ⊔ β) = α (5)

α ⊓ (β ⊔ γ) =(α ⊓ β) ⊔ (α ⊓ γ) (6)

α ⊔ α = 1, α ⊓ α = 0 (7)

Formulas (3)–(5) are adequate for lattice. (6) is a distributivity condi-
tion. Axioms (3)–(7) characterize Boolean algebra.

It is also reasonable to require that Boolean algebra of actions is not
degenerated, formally:

0 6= 1 (8)

however it is not a necessary assumption for most of DALn systems
presented in this paper.

In Boolean algebra we also define order in a standard way:

α ⊑ β =df α ⊓ β = α (9)

By “α ⊑ β” we mean that “α is a component of β” or that “α is included
in β”. Obviously “⊑” is reflexive, antisymmetric and transitive. The fact
that the set of generators Act0 is finite implies that the Boolean algebra
of actions is atomic.

We shall think about the action generators as the bricks from which

all actions are made up. Such simple elements can be combined us-
ing algebra operators. They can be performed simultaniously (⊓) or
alternativelly, meaning that one of the two actions takes place (⊔). A
complement of action α is such an agent behaviour, that agent does not
perform α, doing something else instead. It is worth noting that action
generators are the most basic elements in the Boolean action theory only
from the perspective of its construction. As we shall see below in the
finite Boolean algebra they are other elements which we might be also
considered as “basic”, although in different sense.

If the set of action generators is finite, then there are some elements
of algebra called atomic actions such that there is no action between
an atom and the impossible action 0. It is a combination of all action
generators and has a form:

δ1 ⊓ · · · ⊓ δn (10)

where δk is a generator ak ∈ Act0 or its complement. It is worth stressing
that not all formulas of that form are atoms since some of them may equal
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0 (cf. the formula (49)). In the formula (10) generators without comple-
ments are “parts” or “components” of atomic action and generators with
complement are not. If all generators are present with complements we
are dealing with a behavior which can be understood as doing nothing.

It is a well known property of atomic Boolean algebra that any el-
ement is a sum of atoms. For actions it can be understood intuitively
that an arbitrary agent’s action is a sum of action atoms (of an agent)
at a certain time. Thus action atoms are parts of all action (except 0).
The element 1 is an alternative of all possible behaviors.

Some agent’s actions cannot occur together. In that case they are
not possible and their parallel doing (⊓) equals 0.

1.3. Basic Deontic Action Logic DAL
0

Axiomatization of DAL
0. DAL0 is axiomatized by the following set

of axioms and rules:

• Axioms of Propositional Calculus (in short PC)

• Axioms (3)–(7)

• Identity axioms:

α = α (11)

α = β → (ϕ → ϕ(α/β)), (12)

where ϕ(α/β) is any sentence obtained from ϕ by replacing some or
all occurrences of α with β

• Specific axioms for deontic operators:

P(α ⊔ β) ≡ P(α) ∧ P(β) (13)

F(α ⊔ β) ≡ F(α) ∧ F(β) (14)

α = 0 ≡ F(α) ∧ P(α) (15)

Remark. Axiom (15) is equivalent with the conjunction of three following
formulas (theses):

P(0) (16)

F(0) (17)

P(α) ∧ F(α) → α = 0 (18)
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Axiom (13) says that a choice between two actions is permitted if and
only if each of them is permitted. The same applies (14) for forbidden
actions. (15) expresses the fact that only the impossible action is at the
same time permitted and forbidden.

Intutively, for an action to be permitted (forbidden) means “per-
mitted (forbidden) in any circumstances”, i.e. “in combination with any
other action”. This sense of permissibility was named “strong” in the
literature.

We also add to the logic the standard definitions for missing classical
operators of PC and sign “ 6=”:

⊥ =df ¬⊤ (19)

ϕ ∨ ψ =df ¬(¬ϕ ∧ ¬ψ) (20)

ϕ → ψ =df ¬(ϕ ∧ ¬ψ) (21)

ϕ ≡ ψ =df ¬(ϕ ∧ ¬ψ) ∧ ¬(¬ϕ ∧ ψ) (22)

α 6= β =df ¬(α = β) (23)

Weak permission. In the scope of our framework we also define a
concept of weak permission:

Pwe(α) =df ¬F(α) (24)

An action is weakly permitted if and only if it is not forbidden. In con-
trast to a (strongly) permitted action, weakly permited one is permited
in some situations, in combination with some other actions.

The meaning of weak permission will be best captured by the condi-
tions of satisfaction for that operator. Syntactically we can provide the
way of understanding the concept by the following theses:

¬Pwe(0) (25)

Pwe(α ⊔ β) ≡ Pwe(α) ∨ Pwe(β) (26)

P(α) ∧ α 6= 0 → Pwe(α) (27)

Some other theses of DAL
0. There is a list of a few self-explanatory

theses of DAL0 below.

P(β) ∧ α ⊑ β → P(α) (28)

F(β) ∧ α ⊑ β → F(α) (29)
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P(α) → P(α ⊓ β) (30)

F(α) → F(α ⊓ β) (31)

Pwe(α ⊓ β) → Pwe(α) (32)

P(α) ∧ F(β) → α ⊓ β = 0 (33)

1.4. Semantics for DAL
0

Deontic action model for DAL0 is a structure M = 〈DAF ,I〉, where
DAF = 〈E,Leg, Ill〉 is a deontic action frame in which E = {e1, e2, . . . ,
en} is a nonempty set of possible outcomes (events), Leg and Ill are sub-
sets of E and should be understood as sets of legal and illegal outcomes,
respectively. The basic assumption is that there is no outcome which is
legal and illegal:

Ill ∩ Leg = ∅ (34)

I : Act −→ 2E is an interpretation function for DAF defined as follows:

I(ai) ⊆ E, for ai ∈ Act0 (35)

I(0) = ∅ (36)

I(1) = E (37)

I(α ⊔ β) = I(α) ∪ I(β) (38)

I(α ⊓ β) = I(α) ∩ I(β) (39)

I(α) = E \ I(α) (40)

Additionally we accept that the interpretation of every atom is a
singleton:

I(δ) = 1 (41)

where δ is an atom of Act. A basic intuition is such that an atomic action
corresponding to (a set with) one event/outcome is indeterministic.

From those definitions it is clear that every action generator is in-
terpreted as a set of (its) possible outcomes, the impossible action has
no outcomes, the universal action brings about all possible outcomes,
operations “⊔”, “⊓” between actions and “ ” on a single action are in-
terpreted as set-theoretical operations on interpretations of actions. A
class of models defined as above will be represented by C0.
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Satisfaction conditions for the primitive formulas of DAL0 in any
model M ∈ C0 are defined as follows:

M |= P(α) ⇐⇒ I(α) ⊆ Leg

M |= F(α) ⇐⇒ I(α) ⊆ Ill

M |= ⊤
M |= α = β ⇐⇒ I(α) = I(β)
M |= ¬ϕ ⇐⇒ M 6|= ϕ
M |= ϕ ∧ ψ ⇐⇒ M |= ϕ and M |= ψ

Action α is strongly permitted iff all of its possible outcomes are le-
gal. It means in practice that if α is permitted, then it is permitted in
combination with any action (cf. the thesis (30)). The same is true for
forbiddance.

It can be proved that the satisfaction condition for weak permission
takes the form:

M |= Pwe(α) ⇐⇒ I(α) ∩ Leg 6= ∅

We say that some action α is weakly permitted if and only if (at least)
some of its possible outcomes are legal.

Theorem 1. DAL0 is sound and complete with respect to class of mod-
els C0.

Proof. We prove theorem 1 in standard way by showing that each
consistent set of formulas has a model. The canonical model and the
truth lemma crucial for this kind of proof are introduced below. A very
similar proof one can find in [Castro and Maibaum, 2009].

Definition 1. Let Φ be a maximally consistent set of formulas of the
language of DAL0 and [α]= be an equivalence class of relation =, for
α ∈ Act. Then a canonical model for this language has the form:

• EΦ = {[α]= : α is an atom of Act}

• IΦ(α) = {[β]= ∈ EΦ : β ⊑ α ∈ Φ}

• LegΦ =
⋃

{IΦ(α) : P(α) ∈ Φ}

• IllΦ =
⋃

{IΦ(α) : F(α) ∈ Φ}
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Lemma 1. MΦ = 〈DAFΦ,IΦ〉, where DAF = 〈EΦ,LegΦ, IllΦ〉, belongs
to C0.

Proof. Lemma 1 we prove by showing that the canonical model satisfies
condition (34) and (35)–(41). For (34): let’s assume that there exists
[α]= ∈ EΦ s.t. [α]= ∈ LegΦ ∩ IllΦ.

Then we have [α]= ∈ LegΦ and [α]= ∈ IllΦ. By definitions of the
canonical model and thesis (28) we obtain that P(α) ∈ Φ and F(α) ∈ Φ,
which then implies by (18) that α = 0 ∈ Φ. The last formula gives
contradiction because α, according to our assumption, should be an atom
(or an action identical with an atom).

Conditions (35)–(40) are easily provable also for IΦ. Condition (41)
follows immediately from the definitions of IΦ and EΦ.

Lemma 2. ∀α ∈ Act, ∀[β]= ∈ IΦ(α) (β ⊑ α ∈ Φ)

Proof. The proof of that lemma is inductive, assuming that α can have
the forms: α = ai, α = 0, α = β ⊔ γ, α = β ⊓ γ, α = β (cf. the proof of
Lemma 1 in [Castro and Maibaum, 2009])

Lemma 3 (Truth lemma). MΦ |= ϕ ⇐⇒ ϕ ∈ Φ

Proof. The proof is inductive. For PL operators the proof is standard.
For the other ones we prove as follows:

MΦ |= α = β ⇐⇒ α = β ∈ Φ

“⇒” Assume that MΦ |= α = β. Then IΦ(α) = IΦ(β). For IΦ(α) =
IΦ(β) = ∅ we get α = 0 ∈ Φ and β = 0 ∈ Φ and finally that α = β ∈ Φ.
For IΦ(α) and IΦ(β) being nonempty sets, we shall notice that they have
the same elements, which are all atoms “included” in α and also in β.
Let χ be a sum of all atoms γk for which it is true that [γk]= ∈ IΦ(α)
and [γk]= ∈ IΦ(β). Then obviously: χ = α ∈ Φ and χ = β ∈ Φ and
finally α = β ∈ Φ.

“⇐” Assume that α = β ∈ Φ. Then α ⊑ β ∈ Φ and β ⊑ α ∈ Φ. If so,
all atoms “included” in α are “included” in β and vice versa. The last
implies that IΦ(α) = IΦ(β). Finally MΦ |= α = β.

Moreover

MΦ |= P(α) ⇐⇒ P(α) ∈ Φ

⇐⇒ IΦ(α) ⊆ LegΦ ⇐⇒ P(α) ∈ Φ
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MΦ |= F(α) ⇐⇒ F(α) ∈ Φ

⇐⇒ IΦ(α) ⊆ IllΦ ⇐⇒ F(α) ∈ Φ

2. Extensions of DAL
0

Differences among the systems considered in this section lie in two aspects
that are intuitively significant: the level of closeness of a deontic action
logic and the possibility of performing no action at all.

In deontic action logic closeness means that for a class of actions,
an action has to be either permitted or forbidden. The principle has
been present in the philosophy of law at least since Thomas Hobbes,
who stated in 17th century that what is not explicitly forbidden by law
is permitted. In a more practical context of computer science it is also
important that any possible action of an agent is either permitted or for-
bidden. Some remarks on that subject can be found in [Segerberg, 1981].

2.1. DAL1

Definition 2. DAL1 is DAL0 extended with Generator Closure Axiom:

F(ai) ∨ P(ai), for ai ∈ Act0 (42)

In that system it is accepted that closeness applies to action genera-
tors: every action generator is either forbidden or permitted, no matter

their context. We find such a constraint somehow paradoxical. The para-
dox can be seen better when we combine (42) with the thesis (33). As a
result we obtain the principle that it is impossible to perform simultane-
ously simple elements of agent’s behavior freely, but permitted elements
can be combined with permitted ones only and forbidden with forbidden
ones.

ai ⊓ aj 6= 0 → (P(ai) ∧ P(aj)) ∨ (F(ai) ∧ F(aj)), for ai, aj ∈ Act0 (43)

Theorem 2. DAL1 is sound and complete with respect to the class of
models C0 satisfying additionally the following condition for I:

∀ai ∈ Act0, (I(ai) ⊆ Leg or I(ai) ⊆ Ill) (44)
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Proof. We need to show that a canonical model for DAL1 satisfies
condition (44). Let us take any generator ai ∈ Act0. By (42) we know
that F(ai) ∨ P(ai) ∈ Φ, i.e. that F(ai) ∈ Φ or P(ai) ∈ Φ. Assume that
P(ai) ∈ Φ. Then IΦ(ai) ∈ {IΦ(α) : P(α) ∈ Φ} and obviously IΦ(ai) ⊆
LegΦ. Finally IΦ(ai) ⊆ IllΦ or I(ai) ⊆ LegΦ. We obtain the same result
assuming that F(ai) ∈ Φ.

2.2. DAL2

Definition 3. DAL2 is DAL1 extended with Closure of Total Refrain-
ing Axiom:

P(a1 ⊓ ... ⊓ an) ∨ F(a1 ⊓ ... ⊓ an), where {a1, ..., an} = Act0 (45)

In DAL2 performing no action at all is either permitted or forbidden.
In other words, doing nothing has always some deontic value. In this
system it can be proved that every atomic action is either permitted or
forbidden:

P(δ1 ⊓ · · · ⊓ δn) ∨ F(δ1 ⊓ · · · ⊓ δn) (46)

where δk is a generator ak ∈ Act0 with or without complement (see the
proof 2.6 below).

Theorem 3. DAL2 is sound and complete with respect to the class of
models C0 satisfying condition (44) and the following one:

(E \
⋃

ai∈Act0

I(ai)) ⊆ Leg or (E \
⋃

ai∈Act0

I(ai)) ⊆ Ill (47)

Proof. See proof 2.1.

2.3. DAL
3

Definition 4. DAL3 is DAL1 extended with axiom of Universal Sum
of Generators:

(a1 ⊔ · · · ⊔ an) = 1 (48)

The question which arises while analysing that system concerns the
possibility of performing no action at all. It is worth noting that the
axiom (48) is equivalent to:

(a1 ⊓ · · · ⊓ an) = 0 (49)
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It means that it is impossible to refrain from performing any action
generator at a certain moment. In other words it is necessary to per-
form at least one atomic action any time. An agent must do something.
Whether that is true or not clearly depends on application. In general it
does not seem to be necessary. However, in computer science the action
skip (which means do nothing) is widely used. If such action is present
in a set of atomic actions axiom (48) should be accepted.

The weaker version of the above is admitting that performing no
action is either forbidden or permitted—cf. the axiom (45).

Theorem 4. DAL3 is sound and complete with respect to the class of
the models C0 satisfying (44) and the following condition:

E =
⋃

ai∈Act0

I(ai) (50)

(50) states that there is not event/outcome which would not belong to
any interpretation of action.

Proof. We need to show that a canonical model for DAL3 satisfies
the condition (50). We know that (a1 ⊔ · · · ⊔ an) = 1 ∈ Φ. Then
(a1 ⊔ · · · ⊔an) ⊑ 1 ∈ Φ and 1 ⊑ (a1 ⊔ · · · ⊔an) ∈ Φ. All atoms “included”
in a1 ⊔ · · · ⊔an are also “included” in 1 and vice versa. Thus, taking into
account the definition of IΦ, it is the case that IΦ(a1 ⊔· · ·⊔an) = IΦ(1),
what directly gives (50).

2.4. DAL
4

Definition 5. DAL4 is DAL0 extended with Atom Closure Axiom:

F(δ) ∨ P(δ), (51)

for δ being an atom of algebra.

In DAL4 closeness applies for atomic actions: every atomic action is
either forbidden or permitted. (51) is stronger than (42) since it implies
that any possible behavior of an agent in a certain situation is either
permitted or forbidden.

Theorem 5. DAL4 is sound and complete with respect to the class of
models C0 satisfying the following closure condition:

E = Leg ∪ Ill (52)
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Proof. We need to show that a canonical model for DAL4 satisfies
the condition (52). Assume that it is not the case, i.e. that there is
some [δ]= ∈ EΦ s.t. neither [δ]= ∈ LegΦ nor [δ]= ∈ IllΦ. We know that
F(δ) ∨ P(δ) ∈ Φ, i.e. that F(δ) ∈ Φ or P(δ) ∈ Φ. Then IΦ(δ) ⊆ LegΦ or
IΦ(δ) ⊆ IllΦ. Because IΦ satisfies the condition (41) (interpretation of
every atom is a singleton), [δ]= ∈ IΦ. Thus [δ]= ∈ LegΦ or [δ]= ∈ IllΦ,
which contradicts our assumption.

2.5. DAL
5

DAL5 is DAL4 extended with axiom (48). In that system it is assumed
that for every agent it is necessary to perform at least one atomic action
at any time and that any possible behavior of an agent is either permitted
or forbidden.

Theorem 6. DAL5 is sound and complete with respect to the class of
models C0 satisfying conditions (50) and (52).

Proof. See the proofs 2.3 and 2.4.

2.6. Relations between the systems

It is easy to see that the following relations hold between the systems:

• DAL0 ( DAL1

• DAL0 ( DAL4

• DAL1 ( DAL2

• DAL2 ( DAL3

• DAL4 ( DAL5

What is less trivial and what we are going to show below is that

• DAL4 ( DAL2

From that fact it immediately follows that

• DAL5 ( DAL3

For showing that DAL4 ( DAL2 we need to prove that 51 is a thesis
of DAL2.
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DAL0

(42) DAL1

(42,45) DAL2

(42,48) DAL3

DAL4 (51)

DAL5 (51,48)

Figure 1. A lattice of DALn systems

Proof. Every atom has a form

δ1 ⊓ · · · ⊓ δn

where δk is a generator ak ∈ Act0 or its complement. Of course there is
only one atom whose all generators appear as complements: a1 ⊓· · ·⊓an.
From (45) we immediately get that

F(a1 ⊓ · · · ⊓ an) ∨ P(a1 ⊓ · · · ⊓ an)

Other atoms contain at least one generator ak appearing not as a com-
plement. So, let γ be any atom in which some ak appears not as a
complement. It is obvious that γ ⊑ ak (cf. (9)). Then by the axiom
(42), theses (28) and (29) and PL we get that F(γ)∨ P(γ), what ends the
proof.

As mentioned earlier, all inclusions of the considered systems are
proper. It can be proved by showing that additional axioms of stronger
systems are false in some models of weaker ones. As an example we will
show, that DAL1 is not included in DAL5 and vice versa.

Lemma 4. (42) is not a thesis of DAL5 and (51) is not a thesis of DAL1.

Proof. We use the completeness proofs for both logics in question and
show (i) that (42) is not valid in the class of model adequate for DAL5

and (ii) that (51) is not valid in the class of models adequate for DAL1.
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In the first case we need to show that it is not the case that I(ai) ⊆
Leg or I(ai) ⊆ Ill , for an ai ∈ Act0, in a model belonging to the class of
models C0 satisfying conditions (50) and (52). For that purpose let us
take any model from C0, satisfying conditions (50) and (52) such that
I(ai) is a sum of at least two singletons from which one is a subset of
Leg and the other is a subset of Ill . I(ai) is neither a subset of Leg nor
Ill , what was to be proved.

In the second case we need to show that it is not the case that
I(δ) ⊆ Leg or I(δ) ⊆ Ill , for atomic action δ, in a model belonging
to C0, satisfying condition (44)). For that purpose let us take any
model from C0 satisfying condition (44) and, additionally, the property:
E \

⋃
ai∈Act0

I(ai) is neither a subset of Leg nor Ill . Let δ = a1 ⊓ ... ⊓ an

(where {a1, . . . , an} = Act0). Then I(δ) = E \
⋃

ai∈Act0
I(ai). Thus I(δ)

is neither a subset of Leg nor Ill, what was to be proved.

2.7. DAL
n and existing systems

C&M. System DAL5 is equivalent to deontic layer of system DPL of
Castro and Maibaum [Castro and Maibaum, 2009] axiomatized by ax-
ioms of PC, axioms (3)–(7), identity axioms: (11), (12), and (49) and
the following set of axioms:

P (0) (53)

P (α ⊔ β) ≡ P (α) ∧ P (β) (54)

P (α) ∨ P (β) → P (α ⊓ β) (55)

¬Pwe(0) (56)

Pwe(α ⊔ β) ≡ Pwe(α) ∨ Pwe(β) (57)

Pwe(α ⊓ β) → Pwe(α) ∧ Pwe(β) (58)

P (α) ∧ α 6= 0 → Pwe(α) (59)

Pwe(α) → P (α),where [α]BA ∈ at(Act/ΦBA)2 (60)

2ΦBA is an axiomatization of Boolean algebra. Act/ΦBA is the quotient set of
Boolean terms by “=”. 〈Act/ΦBA, ⊔[], ⊓[], −[], [0]BA, [1]BA〉 is a Boolean algebra, where

• −[][α]BA = [α]BA

• [α]BA ⊔[] [β]BA = [α ⊔ β]BA

• [α]BA ⊓[] [β]BA = [α ⊓ β]BA

and at(Act/ΦBA) is the set of atoms of the quotient Boolean algebra.
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To show equivalence we assume that operators P and Pwe correspond
to operators P and Pwe respectively. Then we shall notice that “axioms”
(55) and (58) of DPL are in fact dependent on the other axioms of the
system, i.e. they are provable. Their proofs go as follows:3

1. P(α) → P(α ⊓ β) Th.30

2. P(β) → P(β ⊓ α) Th.30

3. β ⊓ α = α ⊓ β Ax.3

4. P(β) → P(α ⊓ β) MP: Ax.12, 2, 3

5. P(α) ∨ P(β) → P(α ⊓ β) PL:1,4

1. Pwe(α ⊓ β) → Pwe(α) Th.32

2. Pwe(β ⊓ α) → Pwe(β) Th.32

3. β ⊓ α = α ⊓ β Ax.3

4. Pwe(α ⊓ β) → Pwe(α) MP: Ax.12, 2, 3

5. Pwe(α ⊓ β) → Pwe(α) ∧ Pwe(β) PL:1,4

Finally let us consider axiom (60) of DPL. DPL contains axioms for
Boolean Algebra with equality. Thus it includes the extensionality for
identity axiom. That together with identity axioms and axiom (51) is
equivalent to (60).

Segerberg. Systems DAL0 and DAL1 correspond to Segerberg’s sys-
tems B.O.D. and B.C.D., respectively [Segerberg, 1982], under the as-
sumption that Boolean algebra of B.O.D. and B.C.D. is finite (originally
Segerberg assumes it otherwise). Corresponding systems have the same
axioms providing that P and F operators are Segerberg’s operators Perm
and Forb, respectively.

As a result of those analyses we obtain that neither system B.C.D
(DAL1) of Segerberg (with finite Boolean algebra) is contained in DPL
(DAL5) of Castro and Maibaum nor vice versa (see lemma 4). Moreover
both systems are stronger than B.O.D. (DAL0) of Segerberg and both
are contained in system DAL3.

3Of course theses (30) and (32) of DAL5 are also provable for DPL.
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Conclusion and future perspectives

We have presented several systems of deontic logic of action and relations
between those systems. That presentation allows us to see the spectrum
of possibilities of formalizations of the subject. It also makes it possible
to understand the relations between the systems already present in the
literature.

Future works will be directed towards a providing satisfying account
for obligation. Then we are going to investigate the relations between
deontic and PDL operators.

Moreover, it is worth noting that Boolean algebra in the considered
systems plays the role of an ontology (a formal description) of actions. As
it is a very simple ontology it does not reflect many interesting properties
of actions (cf. [Trypuz, 2007]). It would be interesting to incorporate
more complex description of actions into the area of deontic logic of
action.
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