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Drowsiness is a leading cause of traffic and industrial accidents, costing lives

and productivity. Electroencephalography (EEG) signals can reflect awareness and

attentiveness, and low-cost consumer EEG headsets are available on the market.

The use of these devices as drowsiness detectors could increase the accessibility

of safety and productivity-enhancing devices for small businesses and developing

countries. We conducted a systemic review of currently available, low-cost, consumer

EEG-based drowsiness detection systems. We sought to determine whether consumer

EEG headsets could be reliably utilized as rudimentary drowsiness detection systems.

We included documented cases describing successful drowsiness detection using

consumer EEG-based devices, including the Neurosky MindWave, InteraXon Muse,

Emotiv Epoc, Emotiv Insight, and OpenBCI. Of 46 relevant studies, ∼27 reported an

accuracy score. The lowest of these was the Neurosky Mindwave, with a minimum

of 31%. The second lowest accuracy reported was 79.4% with an OpenBCI study.

In many cases, algorithmic optimization remains necessary. Different methods for

accuracy calculation, system calibration, and different definitions of drowsiness made

direct comparisons problematic. However, even basic features, such as the power

spectra of EEG bands, were able to consistently detect drowsiness. Each specific

device has its own capabilities, tradeoffs, and limitations. Widely used spectral features

can achieve successful drowsiness detection, even with low-cost consumer devices;

however, reliability issues must still be addressed in an occupational context.

Keywords: electroencephalography (EEG), drowsiness detection, low-cost, consumer EEG, fatigue detection,

device portability

INTRODUCTION

Drowsiness is defined as the transition between the states of responsiveness and sleep, during
which reaction times are reduced (US Dot National Highway Traffic Safety Administration, 2018).
Drowsiness or fatigue is a major cause of road accidents and has significant implications for
road safety, due to clear declines in attention, the recognition of dangerous drivers, and the
diminished vehicle-handling abilities associated with drowsiness (Wang, 2011; Solaz et al., 2016).
In addition, drowsiness-related accidents cost billions of US dollars and result in the loss of lives in
industry, including transportation, manufacturing, mining, maritime, and aerospace sectors. Thus,
developing a reliable, non-invasive method for drowsiness detection can save both money and lives
(US Dot National Highway Traffic Safety Administration, 2018).
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Key economic sectors, such as transportation, construction,
security, and manufacturing, reported loss of productivity and
lives due to drowsiness (Wang, 2011; Solaz et al., 2016). In
the transportation sector, drowsiness-influenced road accidents
represent social and economic problems worldwide. In the
European Union (EU), 25% of road accidents have been
associated with fatigue and drowsiness, compared with 40% of
fatal accidents in the United States (US) (Solaz et al., 2016;
Wei et al., 2018). According to a National Highway Traffic
Safety Administration (NHTSA) report, ∼83,000 road accidents
reported annually in the US are caused by driver fatigue. Their
analysis showed that ∼416,000 crashes were caused by drowsy
driving during the 5-year period from 2005 to 2009 (Wang et al.,
2017; US Dot National Highway Traffic Safety Administration,
2018). In 2017, the NHTSA report reported that 3,166 fatalities
resulted from distraction-affected crashes (US Dot National
Highway Traffic Safety Administration, 2018). The factors that
contributed to drowsiness included long working hours, the use
of medication, lack of sleep, and continuous driving (Zhang
et al., 2017). However, the exact definition of drowsiness is
highly variable.

The term drowsiness is sometimes used interchangeably
with the term fatigue in the literature. Although physiological
state detection has been used to detect either (or both)
states, researchers have defined certain differences between
drowsiness and fatigue. Fatigue was defined as the decrease
in physical and mental performance resulting from exhaustion
(Vuckovic et al., 2002; Cabrall et al., 2016). Drowsiness can
be a symptom of fatigue, which can occur without drowsiness
(Vuckovic et al., 2002). Other concepts, such as microsleep,
can be used to describe a similar lack of responsiveness but
have mechanisms distinct from those associated with fatigue
and drowsiness (Davidson et al., 2007; Izquierdo-Reyes et al.,
2016). Electroencephalography (EEG) has been used to identify
these mechanisms, but the body of such work examining these
other concepts is less well-defined than the total body of
work associated with drowsiness research (Bryan Van Hal and
Bossemeyer, 2014; Cabrall et al., 2016; Wang et al., 2017; Rundo
et al., 2019).

The prediction of drowsiness using EEG is a well-defined
research topic. Approaches that utilize conventional EEG systems
have advantages for the quantitative assessment of alertness
levels, which requires expensive computational signal processing
(Mard et al., 2011; Correa et al., 2014; Shabani et al., 2016; Zhang
et al., 2017). Observing changes in the power spectra or spatio-
temporal features of EEG frequency bands have commonly been
used to detect subject drowsiness, but other methods have been
investigated (Ayala Meza, 2017; Min et al., 2017; Majkowski et al.,
2018). EEG-based drowsiness detection systems could be easily
integrated into protective or occupational headgear for use in
occupations that require such equipment (Wilaiprasitporn and
Yagi, 2016).

Research- and medical-grade EEG systems rely on the use of
dozens of channels, rendering such systems impractical for real-
world occupational use (Ries et al., 2014). In contrast, low-cost
EEG systems offer potential solutions for drowsiness prediction.
These systems typically include fewer electrodes than medical

and research headsets, but their low prices make them accessible
to hobbyists, small businesses, and developing countries. The
use of consumer EEG headsets as drowsiness detectors has
been previously investigated (Rodríguez et al., 2013; Van Hal
et al., 2014; Salehi et al., 2015). A review of consumer EEG
headsets as research tools was investigated, but it did not include
occupational contexts (Sawangjai et al., 2019).

This review was conducted to evaluate the feasibility,
complexity, and difficulty of using low-cost EEG systems
for occupational drowsiness detection, such as drivers and
security guards. PRISMA standards for systematic reviews were
considered (Moher et al., 2009). The initial problem was the
cost of drowsiness on economic productivity and safety. The
implementation of low-cost, EEG-based detection could make
the technology more accessible. Drowsiness detection systems
implemented with low-cost EEG devices were compared. The
successful outcomes were low-cost, robust implementations.
A validation required study designs replicating occupational
conditions with multiple subjects. A systematic search was
conducted investigate prior implementations of low-cost EEG-
based drowsiness detection systems.

SEARCH METHODOLOGY

Summary
In recent years, the number of portable, low-cost EEG-based
systems available on the market has increased (Wei et al., 2018).
Research examining the use of low-cost EEG systems has focused
on the continuous recording of EEG data and/or the replication
of larger EEG analytical systems using portable devices. In
this review, we surveyed research papers that described the
use of low-cost EEG devices, focusing on the devices where
the headset was below $1,000 USD in price, independent of
licensing fees: the InteraXon Muse, the Neurosky MindWave,
the Emotiv Epoc, the Emotiv Insight, and the OpenBCI. These
devices represent a sample of widely-used commercial models.
Although other devices and suppliers have been used (Li and
Chung, 2015), the search was focused on those non-invasive EEG
devices that were below $1000, not marketed as medical devices,
accessible to consumers, prominent in the hobbyist community,
and have provided tools or options for brain-computer interface
(BCI) applications. Table 1 presents a comparison of these
commercial, low-cost EEG headsets. Most low-cost headsets use
dry electrodes, which are more convenient for casual users.
Similarly, most headsets come bundled with software that
includes research tools, open-source software, and additional
hardware (Lin et al., 2014; Farnsworth, 2017).

Headset Information
The primary investigated headsets were the InteraXon Muse,
the Neurosky MindWave, OpenBCI, and the Emotiv Epoc
and Insight.

InterAxon Muse
The InteraXon Muse is a compact EEG system that measures
brain activity via 4 EEG sensors (Muse, InteraXon) and can utilize
Bluetooth to send data to nearby devices. Muse claimed that
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TABLE 1 | Comparison of consumer EEG headsets.

Device Electrodes Sampling Rate External Information References

InteraXon -Rigid electrode placement - 256Hz - Research Tools for Windows, Mac,

and Linux

Doudou et al., 2018

Muse v1, v2 - 4 channels: AF7, AF8, TP9, TP10 - 12 bits - Source Developer Kit (SDK) for

Android, IOS, Windows

- Cost: $200 USD

Neurosky MindWave - Rigid electrode placement - 512Hz -SDK Available Doudou et al., 2018

- 1 channel: AFz - 12 bits - Cost: $99.99 USD

OpenBCI - Up to 16 channels - 256Hz -Open-source software, firmware,

and hardware

Doudou et al., 2018

- Flexible electrode placement at 35

locations

- 24 bits -Cost: $500 USD for 8 channels,

$949 USD for 16

Emotiv Epoc, Flex, and Insight - Rigid electrode placement - 128Hz -Research Tools for Windows, Mac,

and Linux

Doudou et al., 2018

- Epoc: 14 channels (AF3, F7, F3, FC5,

T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4)

- 14 bits -Cost: $799 USD (Epoc), $299 USD

(Insight)

-Insight: 5 channels (AF3, AF4, T7, T8, Pz)

the headband could assist the user to achieve a state of deep
relaxation. Based on the 10–20 International electrode placement
convention, the dry electrodes were located at FPz, AF7, AF8,
TP9, and TP10 (Krigolson et al., 2017). Electrode FPz was utilized
as the reference electrode. The specifications detailed correspond
to the original Muse device.

Neurosky Mindwave
Neurosky developed the single-channel MindWave as a low-cost,
single-channel, dry EEG headset that is able to wirelessly transmit
EEG via Bluetooth Low Energy or classic Bluetooth (Doudou
et al., 2018). TheMindWave device consists of a headset, with a T-
shaped headband, a wider ear clip, and a flexible arm. The device’s
reference and ground electrodes are placed on the ear, while
the EEG electrode is positioned on the forehead above the eye.
Neurosky EEG headsets come with training software, educational
apps, and software developer information. Free developer tools
are also available for researchers. While Neurosky makes other
models, the MindWave was the most frequently used model in
the relevant studies (Lin et al., 2014; Doudou et al., 2018).

OpenBCI
The OpenBCI Ultracortex Mark IV is an open-source, 3D-
printable headset intended to work with any OpenBCI board.
It is capable of recording research-grade brain activity EEG.
The Ultracortex Mark IV headset is capable of sampling up
to 16 channels of EEG from up to 35 different locations,
based on the 10–20 International System (Mohamed et al.,
2018b). The OpenBCI boards include options for 4 channels,
8 channels, and 16 channels. The OpenBCI is an open-source
assemblage of parts, requiring assembly prior to use (Murphy
and Russomanno, 2016). Therefore, it is not as widely used as
readily-purchased consumer devices, but it theoretically allows
greater customization. It has previously been used for drowsiness
detection in a driving simulator.

Emotiv Insight and Epoc
Emotiv offers both the smaller, cheaper Insight and the
larger, more expensive Epoc (and its upgraded counterpart,
the Epoc+). The Emotiv Epoc is the most expensive of the
investigated EEG headsets, containing more electrodes than
the others (de Lissa et al., 2015). It has two electrode arms,
each containing sensor electrodes and two reference electrodes.
The locations provide coverage of the temporal, parietal,
and occipital lobes. Emotiv provides a free companion app
for users to monitor their emotions. They also offer pay-
to-download games, such as Arena, which allows users to
experience mental commands. Emotiv provides a two-tiered
SDK for the Epoc. The headset has been used in research,
from BCI to brain state detection (Badcock et al., 2013, 2015;
Manolova et al., 2016). However, the Epoc and Epoc+ were the
most common models found. Results returned using “Insight”
as a keyword instead yielded results referencing the Epoc
and Epoc+.

Scope
The purpose of this review is to identify examples and
reports that described the successful use of specific, low-
cost, consumer EEG headsets for drowsiness detection. These
headsets will be referred to as “low-cost” for simplicity for the
remainder of this paper. The scope and aims of the review
process were not designed to comment on the algorithms
and approaches used for drowsiness detection. Even single-
channel EEG headsets, including custom-made headsets, have
been successfully used for drowsiness detection in a research
context (Ogino, 2018). For this review, a successful study
was defined as a system that achieved greater than random
accuracy in detecting drowsiness using EEG. Simple, robust
algorithms for both drowsiness detection and general EEG
processing were preferred, as these are likely to be more
easily implemented by resource-constrained small businesses,
individuals in developing countries, and others who are
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FIGURE 1 | Review search process and winnowing.

unable to afford more complex EEG headsets or purpose-
built systems. To facilitate comparisons and ensure search
replicability, the PRISMA convention on systematic reviews
and meta-analyses was followed (Moher et al., 2009). The

PRISMA conventional facilitates the process and replication
of research reviews. A prior review focused on the broader
viability of low-cost EEG as research tools, but not narrower
occupational contexts (Sawangjai et al., 2019). Thus, the primary
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aim of this review was to determine whether commercial,
low-cost EEG headsets can easily be used for occupational
drowsiness detection.

Eligibility Criteria
This review focused primarily studies related to low-cost EEG
headsets that those non-invasive EEG devices that were below
$1,000 USD, not marketed as medical devices, accessible to
consumers, prominent in the hobbyist community, and have
provided tools or options for brain-computer interface (BCI)
applications. Because commercial EEG systems have been
publicly available for approximately one decade prior to the
current date, only papers published within this period were
included, starting from 2009. This year was shortly before the
commercial release of the Emotiv, the earliest of the listed
systems. Similarly, the total body of relevant results was thought
to represent only a fraction of the total work on drowsiness
detection; therefore, conference papers, completed dissertations,
and validation studies were included. However, conference
papers were excluded if they were published within 1 year of a
journal paper on the same topic and by the same authors.

Data Combination
Two independent searchers, co-authors M. and J., gathered
their findings in a reference document. Redundant results were
eliminated, and information on each study was gathered. Data
items included the authorship and publication of each work, the
study design, experimental implementation, reported results, and
concluding analysis. Specific preprocessing, feature extraction,
and classification techniques were recorded, as was any statistical
analysis performed on the results. Information on the computing
platform used was also recorded. The primary information
sought by each searcher included the work’s criteria of “success,”
“accuracy,” and other performance metrics. Numerical values,
such as the confusion matrix, were used to calculate statistical
measures, if provided by the work in question.

Search Strategy and Parameters
Google Scholar, IEEE Xplore, and PubMed were used as primary
sources, due to the large databases available using these sources
and their prior use in other reviews. All three search resources
have been used in prior literature reviews in the field of
biomedical engineering; however, many of the results could be
accessed by multiple search engines. The resulting papers were
grouped according to the model of EEG headset used. Duplicate
results were removed by software.

The use of low-cost EEG headsets for drowsiness detection
was described by only a limited number of studies, as the
relevant results were those that utilized a low-cost EEG headset
as the primary EEG recording system. The search included three
phases. The first was the search for keywords, which included the
terms: electroencephalography (EEG), drowsiness, and the device
name. Second, the three keywords were joined by “AND.” During
the third phrase of the search, specific words were sought in the
title: (encephalography OR EEG) AND (drowsiness OR fatigue
OR tired) AND ([device name]). The filter words included:
drowsiness, fatigue, and tired.

Results from each source were combined, and duplicates were
removed. These “filter words” were selected based on their use in
prior papers and literature reviews (Vuckovic et al., 2002; Cabrall
et al., 2016; Guo et al., 2017; Min et al., 2017). Similarly, any
paper that did not include any of the filter words in the title
was eliminated.

The remaining papers were included in the review. The
removal of papers through the search process is depicted in
Figure 1.

Table 2 summarizes the final results, according to the specific
brand of EEG device used.

The final papers are further detailed in search results.
However, potential bias and limitations had to be accounted for.

Bias and Error Sources
Possible sources of error included the ranking algorithms used
by the search and indexing processes of Google Scholar, PubMed,
and IEEE Xplore. The ranking processes of each search engine
potentially missed relevant material. The primary purpose of
this review was to identify examples describing the use of
each consumer EEG headset for drowsiness detection, rather
than performing a model-specific critique of each and every
device. Similarly, the primary biases in published works would
be toward positive results, potentially limiting insights from less
successful studies.

A less clear topic was managing potentially relevant studies
in affective computing and emotion recognition. Drowsiness has
a range of definitions in the research literature, and a range
of nearly synonymous terms used interchangeably in different
contexts. There was the potential of drowsiness being one
of several discrete states detected in an emotion recognition
study, rather than an exclusively binary classification (Tan,
2012). Similarly, other studies integrated other signals than EEG
(Polosky et al., 2017). In such cases, each study’s structure was
evaluated to determine if the system, as reported, could be used
as to estimate drowsiness. If not, it was excluded from the
final review (Alchalabi et al., 2018).

Data Management
Each search result would be evaluated for relevant
data items. These include system parameters and
study parameters. System parameters are those relevant
to the drowsiness detection system, including the
algorithms used for feature extraction and classification.
Study parameters include those relevant to the entire
study, including experimental design, cohort size, and
performance results. The reported classifier accuracy,

TABLE 2 | Relevant results after search process.

Brand Papers

InterAxon 11

Neurosky 16

OpenBCI 5

Emotiv 17
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how reliably a device rates drowsiness, was the primary
performance result.

RESULTS

Overview
The use of low-cost EEG headsets represents a logical
progression based on the accomplishments reported using
clinical and research-grade systems. These tasks range
from brain-computer interfaces (BCIs) to brain-state rating
to drowsiness detection. Much of the reported work has
been context-specific, necessitating a thorough look at
each study, and some works listed multiple headsets or
lacked an experimental component, requiring that they
be listed separately. The experimental use of each headset
is described.

Crowley et al. (2010) performed psychological tests to induce
stress and correlated the results with measured attention and
meditation signals, using a Neurosky Mindset. They were able
to detect when a subject’s emotions changed using the Stroop
and Towers of Hanoi tests. Both tests used in this study resulted
in clear indications of subject stress and alertness changes,
based on the attention and meditation parameters measured by
the headset. However, this study would be cited as the basis
for others.

Wei (2017) wrote a doctoral dissertation on drowsiness
detection based on the detection of neural activity. The document
largely described the real-life challenges faced by drowsiness
detection in the context of BCI. In addition, experimental work
on calibration was performed. Despite the research relevancy,
a research 32-channel Quik-Cap Neuroscan EEG headset
was used.

Wei et al. (2018) described the potential advantages
of smaller, non-hair bearing (NHB) dry electrode
headsets relative to larger ones. Smaller headsets that
did not offer full coverage of the head were less
affected by hair than larger ones. Specific devices named
included the Neurosky and InterAxon devices. Potential
advantages, including cost and ease of occupational use,
were discussed.

Doudou et al. (2018) listed a number of consumer
and portable EEG headsets (including all of the headsets
reviewed here) and rated them using a number of parameters.
Their particular focus was driver-based drowsiness detection.
However, the authors did not perform any direct, experimental
comparisons. The complete omission of any results was explicitly
mentioned in their future work sections, however.

Lakhan et al. (2019) used consumer headsets in affective
computing. With a study of 200 healthy subjects, they claimed
predictive accuracies approximating those on costlier EEG
systems. They used an OpenBCI EEG system for their work.
The separate tasks included affective video selection and emotion
recognition. No other low-cost headsets were investigated for the
study, although they were mentioned in the article. The article
lacked extensive discussion of potential context-specific specific
advantages or limitations.

Majumder et al. (2019) performed a review of drowsiness
detection. The review covered both consumer EEG devices
and more purpose-built devices. It was found that power
spectral densities of EEG bands were the most commonly
utilized features across studies. The final conclusion was that
identifying the specific EEG bands and brain sites would limit the
need for EEG electrodes, reduce processing requirements, and
improve accuracy.

Wexler and Thibault (2019) took a critical view of consumer
EEG headsets and many of the claims made regarding their use.
In particular, the authors reported that such consumer devices
could serve as drowsiness detectors, despite a lack of reliability
with regards to the identification of other brain states. They also
discussed the legal and ethical complexities of such devices. Many
issues were raised, but not all fully addressed.

InteraXon Muse
Bashivan et al. (2015) collected EEG data from 16 individuals.
The authors used support vector machines (SVMs), sparse
logistic regression, and deep belief networks (DBN) to
discriminate among states of mind induced by different
video inputs. The results demonstrated the significant potential
for wearable, consumer EEG devices to differentiate among
different cognitive states in different situations.

Krigolson et al. (2017) used a Muse for their BCI research.
The authors used t-tests to observe and quantify statistically
significant differences in event-related potentials in 60 subjects,
including the N200 and the P300, during both a visual oddball
task and a reward-learning task. Statistical tests were conducted
for each case.

Rohit et al. (2017) used a Muse for real-time drowsiness
detection. Spectral features were used with an SVM classifier on
a total of 23 subjects. The study also investigated a blink-based
method of drowsiness detection but found this method to be less
accurate than the spectral power-based method.

Almogbel et al. (2018) investigated a single subject in a
simulated driving task. Temporal feature vectors, from each of
the Muse headset’s 4 channels, were fed into a convolutional
neural network (CNN). Various cognitive workloads were
compared in both urban and rural driving scenarios. The CNN
was used to estimate the workload based on EEG. The highest
accuracy across scenarios was 95.3%. However, no field testing
was conducted.

Bakshi (2018) detailed a system to detect cognitive workload
through EEG. A Muse headband was used to collect EEG from
28 subjects, and spectral features were calculated for each band.
For classification, a linear SVM, a radial basis SVM, a logistic
regression model, and a shallow artificial network were used. The
linear SVM was easily able to achieve an average accuracy of
99.1%. However, the system was not validated in live trials.

Teo and Chia (2018) proposed using EEG to detect interest
and monotony while subjects were immersed in a virtual
reality (VR) simulation. Users were exposed to a VR roller-
coaster experience while wearing an EEG headset. Using a deep
learning approach, accuracy rates of 78–96% were achieved.
While “detecting interest” was a novel concept, more supporting
research could have been cited.
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TABLE 3 | InterAxon Muse Studies.

Paper Year Features Classification Accuracy Size

Bashivan et al. 2015 Spectral Features SVM, Regression, DBN N/A 16

Krigolson et al. 2017 Amplitude t-test N/A 60

Rohit et al. 2017 Spectral Features SVM 87% 23

Almogbel et al., 2018 Raw EEG CNN 95.30% 1

Bakshi 2018 Spectral Features SVM, Regression, NN 99.10% 28

Teo and Chia 2018 Spectral Features Deep NN 96% 24

Araújo 2019 Spectral Features NN 81.10% 3

Foong et al. 2019 Spectral Features NU (RBF+SVM) 93.80% 29

Mehreen et al. 2019 Spectral Features, Gyro Linear SVM 92% 50

Dunbar et al. 2020 Spectral Features N/A N/A 25

Hoffman 2020 Spectral Features ANOVA N/A 19

Araújo (2019) used a second version Muse for drowsy driver
detection in a thesis. A scaled artifact rejection was implemented
based on the measured spectral power, prior to bandpass
filtering. The features used were the power spectral density of
different EEG bands. An artificial neural network was used for
classification. Three subjects were used for model generation,
training, and testing. Final testing accuracies included 70.8, 75.8,
and 96.7% for a total average of 81.1% on testing data. In addition
to the small sample size, the age of subjects was not addressed.

Foong et al. (2019) used EEG band-based power spectra
to identify drowsiness in 29 subjects. Decreases in alpha and
beta band power and increases in the theta band power were
cited as signature features of drowisiness detection. The final
reported accuracy was 93.8 ± 8.2%. A negative-unlearned (NU)
algorithim, consisting of a combination of SVM and radial
basis function (RBF) was positively reported on. However,
the offline implementation precluded assessments for real-
time performance.

Mehreen et al. (2019) used multimodal signals from a Muse
headset for drowsiness detection. In addition to EEG power
spectral features and blink detection, they used accelerometer and
gyroscope data to detect head movements, with head nodding
corresponding to drowsiness periods. They reported a 92%
accuracy, using leave-one-out cross-validation with 50 subjects.

Dunbar et al. (2020) simulated a driving task with 25 subjects.
A Muse was used in a driving task. Spectral band power was used
for the automated classification. Unlike algorithm-based papers,
the purpose was to investigate if self-reported measures were
consistent with documented electrophysiological changes. The
electrophysiological changes and self-reported measures were
consistent across subjects. However, a larger population subject
size would be required for decisive confirmation.

Hoffmann (2020) combined gamification with EEG-based
drowsiness detection. The dissertation consisted of an evaluation
of a Muse headset, a companion app, and a larger study. Alpha
and beta band power were the main feature used, calculated after
filtering. A total of 19 subjects were used in validating the EEG
headset. A combination of the EEG headset and app using self-
reported measures were used in the larger studies. Analysis of
variance (ANOVA) was used for a comparison of EEG across

different states. A limitation was studying the app’s effect on stress
outside of the evaluated metrics, as well as the relatively low size.

Of the entries reporting accuracy, the minimum was 83.3%,
and the maximum was 99.1%. As shown in Table 3, these
results suggested that the InteraXon Muse could be sufficiently
reliable for use as a drowsiness detection system, due to both
its convenience and its successful use during physiological
state detection.

Neurosky MindWave
Jones and Schwartz (2010) wrote a short article reviewing several
low-cost EEG devices, including a Neurosky device, and their
abilities to detect drowsiness. The signal frequency content
was divided into the following clinically relevant frequency
bands: alpha (8–13Hz), beta (14–30Hz), and theta (4–7Hz)
waves. When comparing the power spectra, the alpha and
beta waves decreased when drowsy, while the theta waves
remained constant.

AlZu’bi et al. (2013) reported on three feature extraction
methods using EEG: power spectral density, log variance, and
statistical features. These features were fused into a single fatigue
index; however, no accuracy scores were reported.

Shin et al. (2013) used EEG signals combined with an SVM
classifier. A total of 5 subjects wore the MindWave for 3 h each
night, to capture the onset of sleep and drowsiness. Analysis
of variance (ANOVA) was performed on the extracted features,
identifying statistically significant (p < 0.001) differences
between the alert and the drowsiness states. The results reported
an accuracy of 88.9% from a single subject, preventing larger
validation of the system.

Lim et al. (2014) examined changes in the low alpha EEG
band during eye closure. A total of 50 subjects were rated, with
periods denoted by the Karolinska scale. The system had a lower
accuracy rate than comparable systems, with an accuracy of 31%
per second. However, the reported false alarm rate was 0.5%.
Comparable MindWave-based systems reported accuracy higher
than the reported rate, such as Suprihadi and Karyono (accuracy
of 68.11%).

Suprihadi and Karyono (2014) used a MindWave device as a
drowsiness detection system. An alarm was triggered when the
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classifier detected a drowsy state, based on low alpha, high alpha,
and theta spectral features. They reported an accuracy of 68.11%.

Abdel-Rahman et al. (2015) designed a mobile app to work
with the MindWave EEG headset. They reported a 98% accuracy
rate, using a spectral feature-based detection method during a
simulated driving task. However, they used a binary state to
determine whether the subject was in Stage 1 sleep, rather than
other drowsiness markers used in other work.

Dunne et al. (2015) investigated a real-time, Stage 1 sleep
detection system. The EEG signal was filtered into low alpha,
high alpha, high beta, and low beta bands and then used to
predict potential sleep onset. The results suggested that even
single-channel systems, such as the Neurosky MindWave, may
be sufficient for real-time drowsiness detection schemes.

Joshi et al. (2015) performed a limited literature review
describing EEG-based drowsiness and fatigue detection. Their
review covered specific examples of the MindWave being used,
due to its low cost. The low-cost EEG examples described in
this review are also described here. However, they did not detail
their searchmethodologies, nor did they include any EEG devices
beside the MindWave.

Lin et al. (2015) used a Neurosky device as a real-
time, EEG-based drowsiness detection device. The paper
detailed a combined approach to drowsiness detection,
integrating drowsiness detectors with other automobile safety
features. However, no quantifiable results, such as accuracy,
were summarized.

Putra et al. (2016) reported the development of an EEG-
based microsleep detector for driving. The device used features
from the different EEG spectral bands. However, no experimental
results were reported in the paper.

Sadeghi et al. (2016) detailed the use of EEG-based drowsiness
detection by passing data to wearable devices for processing.
To scale the proposed SafeDrive app, the authors propose the
HumaNet framework, which integrates both model-related and
context-related information. The system was intended to work
with both the Neurosky MindWave and the Emotiv Epov. The
average performance values reported included an accuracy of
91%, a sensitivity of 83%, and a specificity of 99%.

Patel et al. (2017) evaluated the Neurosky MindWave
specifically as a drowsiness detector. Using a driving simulator,
a total of 7 subjects had EEG recorded. These 10 s sessions
were divided into attentive driving and drowsy driving, and a
paired t-test was performed on them. No statistically significant
differences (p > 0.05) were found between averaged epochs for
each category.

Anwar et al. (2018) used a Neurosky MindWave to record a
meditating subject’s EEG output and compared this with that of
a 19-channel conventional EEG setup. Similar spectral changes
were observed using both devices, although the measured
amplitudes were different. Spectral data from different phases of
meditation, such as the beginning and end, were also compared.
Changes in the alpha and delta bands were noted.

Sethi et al. (2018) used a Mindwave device for assessing e-
learning outcomes. EEG data was gathered from each subject
(out of 42), without feedback. Following this, the subject was
exposed to feedback for subsequent EEG recording sessions.

Spectral features and proprietary parameters of attentiveness
and meditation were compared for the same person, and then
compared to the subject’s EEG afterwards.

Aboalayon and Faezipour (2019) investigated a wireless EEG
sleep stage detection system with a single channel Mindwave
device. The system evaluated a real-time simulated driving
task. However, the study was limited by its scope and length,
precluding a definitive result on the device’s performance.

Nissimagoudar and Nandi (2020) detailed an EEG detection
system using alpha power, and using SVM for classification.
The study used 10 subjects. The work detailed the expansion
of a driver assistant, aimed at improving performance and
safety behind the wheel. A range of classification results were
reported from 74 to 89%, although highly dependent upon
spatio-temporal features corresponding to drowsiness states.

Of those entries reporting accuracy, the performance ranges
from 31 to 97.6%. As shown in Table 4, these results suggested
that the Neurosky MindWave may be used for an EEG-based
drowsiness detection system, although additional processing and
feature extraction may be required.

OpenBCI Ultracortex
Karuppusamy and Kang (2017) used a 14-channel custom EEG
headset with anOpenBCI board. Theymanually rated drowsiness
periods using manually tagged videos of eye closure. The highest
performing classifier reported was an SVM with a Gaussian
kernel, with an accuracy of 81.2%.

Shen et al. (2017) reported a method of drowsiness detection
beyond a binary state classifier. They did not report a specific
accuracy, but they described a testing method that returned
results that were independent of a subject’s age and were based
on the channels C4 and P3. They used a hybrid OpenBCI
and Emotiv-based system to quantify spectral power across 50
test cases. According to the authors, the “depth of drowsiness”
method described in this study was the first implementation of
a non-binary drowsiness detector using a low-cost EEG system.
They reported an accuracy of 82%, over a prior reported accuracy
of 70% (Yin et al., 2011).

Mohamed et al. (2018a,b) used theMark IV headset to analyze
EEG output during driver behavior, based on spectral features.
The input signal was divided into standard bands (delta, theta,
alpha, and beta). To estimate the alertness level, the following
feature extraction techniques were evaluated: the periodogram,
Lomb-Scargle, multi-taper, and Welch’s method. A multilayer
neural network was used to evaluate the performance across
all extracted features, with 10-fold cross-validation. The highest
average classification accuracy was obtained using Welch’s
method, with 85.0% for testing accuracy. As the averaged sum
of multiple periodograms, Welch’s method was robust and not
computationally intensive.

As shown in Table 5, these results suggested that the OpenBCI
may be utilized for drowsiness detection, but the entire system
must be assembled from component parts. Of the reported
accuracies, the minimum was 79.4%, and the maximum was
96.4%. The additional complexity may decrease the accessibility
relative to other systems.
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TABLE 4 | Neurosky MindWave Studies.

Paper Year Features Classification Accuracy Size

Jones and Schwartz 2010 Spectral Features N/A N/A 5

AlZu’bi et al. 2013 PSD, log variance, stats Fatigue index N/A 1

Shin et al. 2013 Spectral Features SVM 88.90% 1

Lim et al. 2014 Alpha band power Triggering window 31% 50

Suprihadi and Karyono 2014 Spectral Features Spectral threshold 68.11% 1

Abdel-Rahman et al. 2015 Periodogram Neural network 97.60% 60

Dunne et al. 2015 Alpha and Beta Features Threshold 81% 3

Joshi et al. 2015 Spectral Features Threshold N/A 1

Lin et al. 2015 Spectral Features Threshold N/A 1

Putra et al. 2016 Spectral Features Threshold N/A 0

Sadeghi et al. 2016 Alpha, Beta, Theta Power Markov Chain Model 91% 1

Patel et al. 2017 Spectral Features Paired t-test N/A 7

Anwar et al. 2018 Spectral Features Averaged threshold 75% 20

Sethi et al. 2018 Spectral Features, eSense N/A N/A 42

Aboalayon and Faezipour 2019 Spectral Features N/A N/A 1

Nissimagoudar and Nandi 2020 Spectral Features SVM 74-89% 10

TABLE 5 | OpenBCI Studies.

Paper Year Features Classification Accuracy Size

Karuppusamy and Kang 2017 PCA Gaussian SVM 81.20% N/A

Polosky et al. 2017 Spectral Features Neural Network N/A 1

Shen et al. 2017 Spectral Features Threshold 82% 10

Mistry et al. 2018 Spectral Features Threshold 79.40% 4

Mohamed et al. 2018 Spectral Features Multilayer NN 96.40% 25

Emotiv Insight and Epoc
Li and Chung (2014, 2015) used a combination of EEG and
eyelid closure degree (ECD) to detect drowsiness. A smartphone
was used as a processor, in conjunction with an Emotiv headset,
resulting in a multimodal drowsiness detector. The phone’s
camera was used to detect ECD. The combined EEG-ECD
detection system achieved an accuracy rate of up to 87.5%. They
noted that the combination of the two measurements was able to
overcome the shortcomings of each individual measurement.

Pomer-Escher et al. (2014) used spectral features from the
alpha and theta bands of EEG. No real time classification
was performed, but an ANOVA was conducted across features,
channels, and conditions. In particular, the alpha power and ratio
of theta to alpha were found to be measurements of fatigue.

Wang et al. (2015) proposed the use of sample entropy and
rhythm energies for EEG-based mental fatigue estimation. A
wavelet transformwas used to find non-linear features in the EEG
segment.Wavelet features and a backpropagation neural network
(BPNN) were combined for classification. However, no accuracy
was reported.

Dkhil et al. (2015, 2017) used an Epoc to validate a
Fast Fourier Transform (FFT)-based method. A fuzzy logic
system was used to assess drowsiness. This technique was
also tested on Physionet sleep samples, but no accuracy value
was reported.

Chen et al. (2016) compared four devices for drowsy driver
detection: an Emotiv Epoc, a Neurosky MindWave, a camera,
and a gyroscope. A total of three subjects were investigated. EEG
spectral features were combined with regression for classification.
The MindWave had an accuracy of 71%, but a high rate of
misclassifications. The Emotiv Epoc had a reported accuracy of
92%, attributed to the greater number of electrodes. Compared
with the other devices, EEG was found to be the most cost-
effective means of driver detection.

Nugraha et al. (2016) and Sarno et al. (2016) used an Emotiv
headset for drowsiness detection. Data from 30 volunteers were
collected during driving simulator sessions that ranged from 33
to 60min in length. A cross-channel correlation between spectral
features was calculated for each subject. Both k-nearest neighbor
(KNN) and SVM classifiers were used to detect drowsiness. The
KNN system achieved a mean accuracy of 96%, whereas the SVM
classifier achieved a mean accuracy of 81%.

Sawicki et al. (2016) examined a new measure for drowsiness
detection, based on the maximum differences between the alpha
band and the theta band, and a combined alpha-theta spectral
power. An ANOVA was used to find significant differences
between the feature under different lighting conditions. However,
no accuracy value was reported.

Damit et al. (2017) developed a multi-modal fatigue
estimation system for soldiers. The EEG of 10 subjects was
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gathered. Features extracted included spectral power and the
discrete wavelet transform (DWT). In particular, the peak alpha
frequency (PAF) was the primary EEG feature. No classification
was performed, but a paired t-test was performed.

Alchalcabi et al. (2017) investigated the use of the Epoc+ as a
tool for treating attention deficit hyperactivity disorder (ADHD)
and attention deficit disorder (ADD). A virtual reality game was
controlled using the headset. Instead of detecting drowsiness,
the system was used to increase focus, and the authors reported
an increase of 10% in healthy subjects that used the EEG-
based controls.

Pham et al. (2018) directly examined real-time drowsiness
detection using an Emotiv Epoc. The primary features extracted
were spectral features, and classification was performed with
SVM. The reported accuracy was 70%, with a single subject.

Poorna et al. (2018) investigated drowsiness detection in a
driving simulation. Two feature sets were collected, spectral
band powers and temporal characteristics. Principal component
analysis (PCA) was used to reduce the number of features.
Two algorithms were used for classification: k-nearest neighbor
(KNN) and an artificial neural network (ANN). Reported
classification accuracies were 80% for KNN and 85% for ANN.

Bajwa et al. (2019) tested a distracted driver detection
system. A total of 13 subjects were investigated. Features include
time-domain features and frequency-domain features, including
spectral band power and wavelets. A multilayer perceptron
(MLP) and Bayesian network were used for classification. Testing
was performed while driving in a controlled an environment,
an isolated parking lot. The reported accuracies include 91.54%
for distraction detection, and 76.99% in identifying the cause
of distraction.

Chen et al. (2019) explored the EEG of fatigue affecting
drivers. Fourteen participants provided data for the study. EEG
data was decomposed into band-based features using the wavelet

packet transform (WPT). A parameter called phase-lag index
(PLI) was proposed for network activity rating. Classification was
performed with an SVM, and resulted in a reported accuracy
of 94.4%.

Li et al. (2019) proposed fourmethods to identify fatigue.Most
were derived from spectral features, which were used to establish
a mental fatigue level (MFL). A simulated excavator task was
used to validate the experiment with 15 participants. However, no
classification was performed. However, an MF-based threshold
was established from experimental data.

Rahma and Rahmatillah (2019) used an Epoc+ device
for drowsiness data acquisition. EEG features were converted
to discrete wavelet transforms (DWTs) and then subjected
to common spatial patterns (CSP). The authors reported an
average accuracy ranging from 91.67 to 93.75%, whereas the
exclusion of CSP processing reduced the accuracy to no more
than 87%.

Saichoo and Boonbrahm (2019) detailed a real-time
driver drowsiness detection system used EEG band based
spectral features, using the Emotiv Epoc+. Spectral band
power was calculated using wavelets, Fourier transforms,
and autoregressive estimates. Spatial filtering techniques,
such as principal component analysis, were used for signal
enhancement. Five volunteers were used. The system was
able to correctly identify drowsiness at a rate of up to
83.33%, but had an overall accuracy of 70%. However,
the system had difficulties with correct identification of
non-drowsy states.

Tan et al. (2020) used data from a 40-min simulated driving
task with 18 subjects, gathered with an Emotiv Epoc. Feature
extraction involved band-based spectral power with a 2 s window.
A time series classification (TSC) model was used, which
assigned a label to each time segment. A Long-term Recurrent
Convolutional Network (LCRN) was used for classification. As

TABLE 6 | Emotiv Insight, Flex, and Epoc Studies.

Paper Year Features Classification Accuracy Size

Li and Chung 2014–2015 Spectral, Eye Closure SVM 82.71% 6

Pomer-Esche et al. 2014 Spectral Features ANOVA N/A N/A

Dkhil et al. 2015–2017 Spectral Features Fuzzy Logic Controller N/A 1

Wang et al. 2015 Spectral, Wavelets, Entropy BPNN N/A 3

Chen et al. 2016 Spectral Features Regression 92% 3

Nugraha et al. 2016 Spectral Features, Gyro KNN, SVM 81–90% 6

Sawicki et al. 2016 Spectral Features ANOVA N/A 50

Alchalcabi et al. 2017 Spectral Features State-based BCI N/A 4

Damit et al. 2017 Wavelets, Spectral Features Paired t-test N/A 10

Pham et al. 2018 Spectral Features SVM 70% 1

Poorna et al. 2018 Spectral Features KNN, ANN 80–85% 18

Bajwa et al. 2019 Wavelets, Spectral Features MLP, Bayesian Net 91.54% 13

Chen et al. 2019 PLI, Wavelet Transform SVM 94.40% 14

Li et al. 2019 Spectral Features MF Threshold N/A 15

Rahma and Rahmatillah 2019 DWT CSP 91.67–93.75% 1

Saichoo and Boonbrahm 2019 DWT, FT, AR Thresholding 70% 5

Tan et al. 2020 Spectral Features LCRN 83.33% 18
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a preprint, the work still awaited peer review when discussed by
the authors.

As shown in Table 6, the results suggest that the Emotiv
Epoc and Epoc+ may be used for drowsiness detection,
but proprietary firmware and software represent a potential
issue. All entries reporting accuracy have a minimum of at
least 80%. Support for Emotiv devices is difficult without the
appropriate license.

DISCUSSION

Findings
Examples of EEG-based drowsiness detection were found for
each examined brand, including the Emotiv Epoc, the Neurosky
MindWave, the OpenBCI, and the InteraXon Muse, and all
examined EEG systems were utilized in at least one successful
example of real-time drowsiness detection (Abdel-Rahman et al.,
2015; Nugraha et al., 2016; Mohamed et al., 2018b; Teo and
Chia, 2018). A total of 27 surveyed studies reported an accuracy
score. In terms of evaluated average accurate performance, the
least consistent of these was the Neurosky MindWave, but the
minimum of reported from the others was an OpenBCI study
with 79.4% (Mistry et al., 2018). Although these systems may not
be as accurate as research- or medical-grade systems, they may
be sufficient for deployment in certain occupational contexts. For
example, these systems could be deployed by smaller businesses
in developing countries or by professions with the urgent need
for easily available drowsiness detection systems. However, the
different experimental designs utilized by each study make direct
comparisons among these systems challenging.

Furthermore, several successful studies utilized relatively
simple algorithms and spectral features, including FFT, EEG
band powers, and linear classifiers (Abdel-Rahman et al., 2015;
Nugraha et al., 2016;Mohamed et al., 2018b; Teo and Chia, 2018).
The use of “complex” algorithms requiring more processing
power, such as SVM, convolution neural networks, and deep
learning systems, may constrain the ability to implement these
systems (Nugraha et al., 2016). Even these more “complex”
algorithms can easily run on an external device, such as a
smartphone. Thus, even a single-electrode Neurosky Mindwave,
when providing data to a properly trained classifier in controlled
conditions, can achieve high accuracy in certain cases (Abdel-
Rahman et al., 2015).

The usage of proven classification techniques and features
demonstrates the relative ease of designing a drowsiness
detection system, although low levels of accuracy, sensitivity,
and specificity and the necessity of training are likely issues
that may be encountered. However, the “best” headset depends
on the user-specific trade-offs among algorithm complexity,
performance, and price (AlZu’bi et al., 2013; Abdel-Rahman
et al., 2015; Chen et al., 2016).

Limitations
The current review had several limitations. First, the scope of the
investigation was constrained by the small sample size. Second,
the implementations and evaluation criteria greatly differed
across the investigated papers, often using similar terminology

for different concepts. For example, “drowsiness” was defined
differently across studies, which included fatigue, microsleeps,
and sleep stages (Vuckovic et al., 2002; Cabrall et al., 2016).
In addition, the review included validation studies, conference
results, and graduate dissertations, in addition to peer-reviewed
journal articles. Future work would likely require alterations to
the search and inclusion criteria.

Future Work
Further steps are necessary to further examine the viability of
using low-cost consumer EEG headsets as drowsiness detectors.
First, the eligibility and search criteria should be further refined
to more thoroughly cover the published literature. In addition,
common performance metrics and definitions would ideally
be described and consistently maintained. Comparisons of
the data acquisition systems, feature extraction methods, and
classification algorithms would be required. Finally, several
additional brands and models of EEG headsets would need to
be examined. Combining all of these steps would allow a more
thorough meta-analysis to be performed.

CONCLUSIONS

Traditional medical- and research-grade EEG systems have been
successfully used for drowsiness and brain state estimation
but are less versatile outside of a controlled laboratory
environment. Between medical and consumer systems, innate
limitations include a reduced number of electrodes, computation
complexity, and noise removal capabilities. Low-cost EEG
headsets show greater design convenience for “real world”
occupational use. Several of these devices, including the Emotiv
Epoc, Neurosky Mindwave, InterAxon Muse, and OpenBCI,
have been utilized as drowsiness detectors, to varying degrees
of success. However, open-source software and occupational
refinement may boost the capabilities of these systems over time.
This flexibility is advantageous to developing countries, small
businesses, and hobbyist users; however, the final selection of
optimal models and algorithms will be highly context-specific.
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