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A Systems Approach to Evolutionary
Multi-Objective Structural Optimization and Beyond

Yaochu Jin and Bernhard Sendhoff

Abstract— Multi-objective evolutionary algorithms (MOEAs)
have shown to be effective in solving a wide range of test
problems. However, it is not straightforward to apply MOEAs
to complex real-world problems. This paper discusses the major
challenges we face in applying MOEAs to complex structural
optimization, including the involvement of time-consuming and
multi-disciplinary quality evaluation processes, changing envi-
ronments, vagueness in formulating criteria formulation, and
the involvement of multiple sub-systems. We propose that the
successful tackling of all these aspects give birth to a systems
approach to evolutionary design optimization characterized by
considerations at four levels, namely, the system property level,
temporal level, spatial level and process level. Finally, we suggest
a few promising future research topics in evolutionary structural
design that consist in the necessary steps towards a life-like design
approach, where design principles found in biological systems
such as self-organization, self-repair and scalability play a central
role.

Index Terms— Evolutionary multi-objective optimization,
structural optimization, efficiency and scalability, robustness,
systems approach

I. INTRODUCTION

Evolutionary multi-objective optimization has witnessed a
great success in solving a wide range of scientific and en-
gineering problems [1], [2]. One of the most successful yet
challenging application of evolutionary optimization is struc-
tural optimization [3], such as aerodynamic optimization [4].
Structural optimization is often characterized by requirements
at four levels. First, structural design optimization involves
complex, multi-disciplinary processes, which are often com-
putationally very expensive to simulate, or very costly to
do experiment with. For example, in design optimization of
micro heat exchangers, both thermodynamic efficiency and
aerodynamic efficiency must be optimized. That is to say, a
completeness of system properties must be taken into account.
Second, structural design optimization requires the considera-
tion of the performance of a designed structure in the whole
lifetime, including robustness to a changing environment, its
maintenance and disposal. Third, it is nontrivial to specify
the criteria to be optimized in some complex structural design
problems. In this sense, formulating the problem itself is a part
of the problem-solving process. Finally, complex structural de-
sign can consist of multiple spatially distributed sub-systems,
which however, must be taken into account simultaneously
during the optimization. We believe that the fulfillment of the
aforementioned four levels of requirements will lead to a novel
and systematic approach to design complex structure, which
we term it a systems approach.
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One major concern in the systems approach to complex
structural design is the scalability and efficiency of the MOEA.
First, the design space is high-dimensional, which can be
attributed to the requirements both at the system property level
and the spatial level. For solving high-dimensional problems,
developing scalable MOEAs is of paramount importance. In
addition, involvement of multiple disciplines and difficulties
in specifying the optimization criteria may result in a high
number of objectives, where the scalability to the number
of objectives comes into play. Second, assessments of the
quality of candidate designs often involve computationally
time-consuming simulations or expensive experiments. This
problem becomes extraordinary severe, when additional fitness
evaluations are needed to search for robust solutions to meet
the temporal level of requirements. Thus, it is essential to
enhance the efficiency of MOEAs for structural optimization.
To enhance scalability and efficiency of MOEAs for structural
design, a number of measures can be taken in geometry
representation, genetic encoding, genetic operators and fitness
evaluations.

The remainder of the paper is organized as follows. Section
II gives a brief introduction to main components in evolution-
ary multi-objective structural optimization (EMOSO). In the
sections that followed, main aspects of a systems approach to
EMOSO are discussed. Section III presents various methods
for efficiency enhancement in EMOSO, focusing on geom-
etry representation and surrogate-based fitness evaluations.
Approaches to the improvement of the scalability of EMOSO
are discussed in Section IV, where algorithms that are able to
capture problem structure during optimization are advocated.
Bio-inspired representation is also considered a promising
methodology for scalable EMOSO. In Section V, we discuss
strategies for the search of robust solutions and life-long
optimization to deal with temporal level of considerations
in EMOSO. Requirements at the spatial and process levels
are studied briefly in Section VI. Section VII suggests a few
promising future research topics stressing features such as self-
organization, self-repair and scalability inspired by biology,
which we believe will lead to a life-like design methodology.
A summary of the paper is provided in Section VIII.

II. EVOLUTIONARY MULTI-OBJECTIVE STRUCTURAL
OPTIMIZATION (EMOSO)

Evolutionary algorithms (EAs) are meta-heuristic search
methods inspired by biological evolution. Research on us-
ing evolution-like computational algorithms for solving en-
gineering optimization problems and creating self-organizing
intelligent systems can be traced back to the late 1950s [5].



Over the last few decades, evolutionary computation, including
a number of variants of evolution-inspired algorithms such
as genetic algorithms, evolution strategies, evolutionary pro-
gramming, genetic programming, and other bio-inspired meta-
heuristics, including particle swarm intelligence, ant colony,
and differential evolution, has grown to be a new discipline of
computer sciences.

A. A generic diagram of EMOSO

The success of evolutionary computation is characterized
not only with rapid advances in theory and algorithmic de-
velopment, including the boom of research on multi-objective
evolutionary algorithms (MOEAs) in the last decade, but also
with a wide range of applications in almost all areas of science
and technology, such as optimization and control, scheduling,
decision-making, robotics, finance, game theory, artificial life
and computational systems biology, just to name a few.

Fig. 1. A generic framework of EMOSO.

Among these applications, evolutionary structural optimiza-
tion has attracted attention from both academia and industry. A
generic framework for evolutionary multi-objective structural
optimization (EMOSO) is illustrated in Fig. 1. From the figure,
we can see that EMOSO consists of four main components,
namely, genotype-phenotype mapping (including geometry
representation and genetic encoding), fitness evaluation, se-
lection, and genetic variations, such as crossover, mutation
and local search. All these components play a role in the
efficiency of EMOSO, where geometry representation and
fitness evaluation are two components of particular importance
in structural optimization.

B. Differences between single-objective optimization (SOO)
and multi-objective optimization (MOO)

There seems to be no essential difference in the generic
diagram of EMOSO compared to that of evolutionary single-
objective structural optimization (ESOSO). However, intrinsic
differences do exist between single-objective optimization
(SOO) and multi-objective optimization (MOO), which are

listed in Table I. These differences lead directly to different
considerations in developing single-objective evolutionary al-
gorithms (SOEAs) and MOEAs. Apart from the well under-
stood difference in selection between SOEAs and MOEAs,
the following differences are less attended, which, however,
have significant influence on the efficiency and scalability of
MOEAs, as first discussed in [6]:

• The concept of convergence is completely changed. In
SOEAs, the evolutionary search is converged when all
individuals of a population move to a local or global op-
timum, that is, when all individuals sit on the same point
in the search space. After the population of an SOEA
is converged to an optimum, the population will stay
with the optimum when the crossover operator is applied
to a genetic algorithm. For a single-objective evolution
strategy, the population will remain converged even if
the mutation operator is used. This can be attributed to
the fact that the step-size used in evolution strategies will
also converge to zero after the population is converged.
By contrast, a population converged to the Pareto front
will diverge again when crossover is applied to a genetic
algorithm based MOEA. As a consequence, crossover
must be constrained to neighboring individuals to have
fine search in a genetic algorithm based MOEA [7].
An evolution strategy based MOEA is able to converge
to the Pareto front when mutations are applied only.
Such a difference implies that differences in genetic
representation and genetic operators will result in a much
larger difference in search dynamics of MOEAs [8], and
thus the search efficiency.

• Some genetic operators may give rise to additional prob-
lems unknown to SOEAs. A good example is that a
genetic algorithm with the bimodal normal distribution
crossover (BNDX) may get trapped in a local Pareto front
that is not resulted from the problem to be solved. As
illustrated in Fig. 2, once the individuals in a population
align into a linear curve, the population is no longer
able to move toward the true Pareto front if population-
centric genetic operators such as BNDX is used only
to generate new offspring, because any newly generated
offspring will stay on the line. The population is able to
escape from the local Pareto front only if perturbations
are deliberately added in generating new offspring in the
direction orthogonal to the line.

• Model based EAs gain a few additional advantages in
MOO compared to SOO for the following reasons. First,
since most multi-objective optimization problems have an
infinite number of Pareto-optimal solutions, model based
EAs, such as the estimation of distribution algorithm
(EDAs), are more efficient in representing Pareto-optimal
solutions, because the number of solutions that can be
represented by a model is not limited by the size of
the population or of the archive. In addition, there are
often regularities in the distribution of Pareto-optimal
solutions [9]. Thus, model based algorithms are more
capable of capturing these regularities.



TABLE I
FUNDAMENTAL DIFFERENCES BETWEEN SOO AND MOO

SOO MOO
Target

• Find the global optimal
solution

• Achieve the Pareto-optimal
solution set or a representative
subset

Performance Indexes
• Accuracy
• Efficiency

• Accuracy
• Spread
• Distribution
• Efficiency

Problem Structure
• Fitness landscape

– ruggedness
– deceptiveness
– multi-modality
– correlation, etc.

• Fitness landscape
– ruggedness
– deceptiveness
– multi-modality
– correlation, etc.

• Distribution of the Pareto-optimal solu-
tions

– finite/infinite
– convex, concave
– continuous, discrete
– curve, surface, etc.

Fig. 2. Pseudo local Pareto front introduced by the BNDX on the 30-D
Schaffer function.

We will discuss in more detail in Section III-C.1 and
Section IV-A how to enhance the efficiency and scalability
of EMOSO, being aware of the aforementioned differences in
the search dynamics of SOEAs and MOEAs.

III. EFFICIENCY ENHANCEMENT IN EMOSO

As discussed in Section I, efficiency is one major concern
in EMOSO. In this section, we will focus on two aspects of
particular importance to EMOSO in improving the efficiency,
namely, geometry representation and fitness evaluations. Gen-
eral aspects relevant to efficiency improvement such as genetic
variations and knowledge incorporation will also be discussed.

A. Geometry representation

Geometry representation is the first step in EMOSO, which
plays an essential role in the efficiency and scalability of
evolutionary search. In this section, we first mention a few
general requirements in choosing a geometry representation.
We then introduce a few selected geometry representation
methods and discuss their strengths and weaknesses. Follow-
ing that, we point out that multiple representations or adaptive

representations may be needed to overcome the weaknesses in
a single geometry representation.

1) General requirements: An optimal geometry representa-
tion is always problem specific. Nevertheless, there are a few
general requirements in choosing a geometry representation,
which is closely related to the requirements on the genotype-
phenotype mapping for an evolvable and robust evolutionary
search.

• A geometry representation should be complete and com-
pact. Completeness means that the geometry represen-
tation should be able to describe all feasible solutions.
Meanwhile, the representation should be compact to
reduce the dimension of the search space.

• A geometry representation should be unbiased unless a
priori knowledge is available indicating that a particular
space is more promising in finding the global optimum.

• A geometry representation should be causal and local.
Causality means that the neighborhood in the genotype
space should be conserved in the phenotype space. On the
other hand, local changes in the genotype space should
be allowed to make fine tuning.

Although the above requirements are true in general, two
issues are worthy of further discussions. First, there may be
a trade-off between completeness and compactness of the
representation, because compact representations may limit the
flexibility in the representation, thus harming the completeness
of the representation. Second, causality can be a double-side
sword. Causality is often required for a fine tuning, and is
a condition for self-adaptation of search parameters in EAs.
Nevertheless, strict causality may degrade the ability to search
in an innovative way, and does not allow for neutrality. As we
know, innovation and neutrality are two important yet related
facets for evolvability of EAs [10]. The reader is referred
to [11] for a more comprehensive and general discussion on



genetic representations.
Two possible approaches can be taken to address the trade-

off between completeness and compactness requirements in
geometry representation, which will be discussed in the next
sections.

2) Methods for geometry representation: Several method
can be used for geometry representation for EMOSO. A few
often used geometry representations are:

• Direct representation. In this method, the geometry is
represented by a number of linearly connected points in
terms of their coordinates in a Cartesian space. The merit
of this method is that it is complete, however, this method
is not compact. A large number of parameters are needed
for representing a complex shape.

• Parametrized representation. Parametrized optimization
often needs additional domain knowledge. For example,
a two-dimensional turbine blade can be described by
circles at the leading edge, in the middle and the trailing
edge [12]. The main advantage of such representations
is their compactness. Unfortunately, the flexibility of
parametrized representations is very low and such rep-
resentations do not meet the completeness requirements.

• Non-parametrized representations. Non-parametrized rep-
resentations include Bezier curves, splines, and non-
uniform B-splines (NURBS) [13]. These methods are
rather flexible and relatively compact. In addition, when
computational fluid dynamics (CFD) simulations are in-
volved in fitness evaluations, which often happens in
structural optimization, a re-meshing for the CFD cal-
culation is needed, which is a highly time-consuming
process [14], [15].

• Free form deformation (FFD) [16]. FFD-based geome-
try representation is more compact, compared to non-
parametrized representations such as NURBS, since FFD
accounts only for the changes in the geometry in modify-
ing the geometry [17]. An additional advantage of FFD is
that in FFD based design, deformation is applied to both
the geometry and the CFD mesh for fitness evaluations,
thus no re-meshing is needed. The major weakness with
FFD-based geometry representations is that modifications
are made to control points, which will affect the whole
shape and everything inside the control volume, thus
making it difficult to implement local modifications. An
approach to addressing this weakness is the so-called
direct manipulation of FFD (DM-FFD) [18], [19]. In DM-
FFD, the points to be modified are chosen directly on
the shape. The required changes in the control points
for realizing the desired changes in the shape are then
calculated using an optimization algorithm, e.g., the least
square method.

Fig. 3 illustrates three widely used geometry representa-
tions, i.e., parametrized representation, NURBS, and FFD.

3) Multiple and adaptive representations: As we can see in
the previous section, no single representation seems to be able
to meet all the requirements for geometry representation. There
are two possible approaches to dealing with this problem.
First, multiple representations can be used simultaneously for
a design. A good example is the design optimization of a

Fig. 3. Three typical geometry representations. (a) Parametrized representa-
tion, (b) NURBS, (c) FFD.

micro heat exchanger, where the heat transfer rate is to be
maximized and the pressure drop of the flow needs to be
minimized [20]. For this problem, it is found that only part
of the Pareto front can be achieved with a single geometry
representation, as shown in Fig. 4. In this design example, the
upper left segment of the Pareto front can be obtained only by
using a sine function where the frequency and amplitude are
optimized. On the other hand, the lower right part of the Pareto
front can be obtained using a spline representation, which is
missing if a sine representation is adopted.

Fig. 4. Obtained solutions using different geometry representations in an
evolutionary optimization of a micro heat exchanger.

A method to tackle the completeness and compactness
trade-off in geometry representation is to introduce an adaptive
representation [21], [22]. The main idea is to begin with
a small number of design variables. As the evolutionary
optimization proceeds, additional free design variables are
introduced to increase the flexibility of the representation.
A question that may arise is why not use a more flexible
representation from the beginning. This can be attributed
to the fact that the search efficiency of most evolutionary
algorithms seriously degrades as the dimension of search space
increases [23]. Thus, if a higher number of variables is adopted
from the beginning, the EA may fail to find the optimum. With
an adaptive representation where new variables are introduced
step by step during the evolution, it is expected that it is easier
for EAs to find the global optimum.

It should be noticed that several issues need to be addressed
appropriately to ensure that an adaptive representation works
better than a fixed representation. One important point is that



the new variables should be introduced in such a way that the
phenotype is neutral to the newly included variables. This kind
of neutral mutation is key to the success of adaptive represen-
tations. Nevertheless, it is unclear where on the geometry and
when during the evolution should the new design variables be
introduced. The “where” problem can be solved to a certain
degree by e.g., finding out the location of the shape where
modifications are most likely to improve the quality of the
design. As to the “when” problem, it has been found that it
is a good strategy to introduce new variables long before the
population converges.

B. Surrogate-based fitness evaluations

One most popular and effective approach to efficiency en-
hancement in EMOSO is to reduce the computational cost for
fitness evaluations. To this end, various approximation meth-
ods can be used, including problem approximation, where,
e.g., a full-scale simulation is replaced with a reduced-scale of
simulations, functional approximation, where computationally
efficient surrogates, or meta-models are used instead of an
expensive simulation, and EA-specific approximation methods
that estimate the fitness value of an individual from its
parents or from other individuals. Among these approximation
methods, surrogate-assisted evolutionary optimization is the
most popular approach. However, it is highly recommendable
to use different approximation methods simultaneously.

Surrogate-assisted evolutionary optimization has attracted
increasing research interest in recent years [24]. The following
three questions must be answered when surrogates are used in
an attempt to enhance the efficiency of EMOSO.

• Where surrogates can be used in EAs. Generally speak-
ing, surrogates can be used wherever a fitness evaluation
is needed. For example, fitness approximation can be
helpful in reducing randomness in reproduction [25].
During reproduction, instead of passing all individuals
generated by crossover or mutation into the offspring pop-
ulation, candidate individuals are passed to the offspring
generation only if they survive a pre-selection according
to the surrogate. In addition, surrogates can also be
employed in local search of a memetic evolutionary
method [26]. The most common way to use a surrogate
is in selection.

• How surrogates can be used. This is often known as
model management, and is particularly important when
surrogates are used directly in selection. Surrogates can
mislead the evolutionary search if they are not used
properly due to the fact that surrogates may introduce
approximation errors and even false optima [27]. A
basic principle is to use surrogates together with the
exact fitness evaluations 1. In general, we can categorize
existing methods into three groups. First, individual-based

1In solving complex engineering problems, it is almost impossible to
calculate the fitness value of a design exactly. More often, there are more exact
approximations, such as experiments or full-scale simulation, or less exact
approximations, such as reduced-scale simulations or surrogates. In general,
there is a trade-off between approximation accuracy and computational cost
among different approximation methods. In this case, the exact fitness function
means the most accurate approximation.

methods. In these methods, only part of the individuals in
a population at a certain generation are evaluated with the
exact fitness function [28], [29], [30]. In these methods,
the essential issue is which individuals should be chosen
for re-evaluation using the exact fitness function. Second,
generation-based methods. In these frameworks, the sur-
rogate is used for fitness evaluations in some of the gener-
ations, and in the rest of the generations, the exact fitness
function is used [31], [30], [27]. Third, population-based
approaches. In these methods, a few sub-populations
co-evolve, where different sub-populations use different
surrogates [32], [33]. Usually, these surrogates are of
different accuracy. Individuals are allowed to migrate
among sub-populations.

• How the quality of the surrogates can be assessed and
how to improve the quality of the surrogates. The first
part of the question appears straightforward. In machine
learning, the quality of a learning model can be judged by
the approximation error on unseen data, i.e., the model’s
generalization ability [34]. This must not be true when
the model is used for fitness evaluations as a surrogate of
the exact fitness function. The reason is that in selection,
we are not directly concerned with the approximation
accuracy, rather a correct selection. Thus, various model
assessment criteria have been proposed for comparing
surrogates [35], [36], [37]. The second part of the ques-
tion is concerned with the question about which kind of
surrogate models, such as global models or local models,
should be preferred for surrogates [24]. In general, an
ensemble model is better than a single model, not only
because an ensemble is able to provide a more accurate
prediction, but also because an ensemble contains infor-
mation about if a prediction is sufficiently reliable [38],
[39], [40]. Recently, a dual surrogate memetic framework
has been proposed [41], [42], where a combination of
global and local models are used in surrogate-assisted
local search. It has been shown that the dual surrogate
framework performs better in that the global model can
smooth the global fitness landscape, thus achieving the
effect of the bless of uncertainty, whereas a local model
is able to accurately predict in a local neighborhood
of the fitness landscape, thus addressing the curse of
uncertainties. Fig. 5 illustrates how approximation errors
introduced by a surrogate influence the dominance com-
parison. It can be seen from the figure that approximation
errors may slow down the convergence to the Pareto
front in some cases (left panel), but can speed up the
convergence and even enhance diversity as well (right
panel).
When a surrogate is used to predict a fitness value
solved by a CFD simulation, where a large number
of iterations must be carried out before convergence, a
recurrent neural network can be switched on during the
CFD iterations to reduce the number of needed CFD
iterations, thus reducing the computational cost of fitness
evaluations [43]. This is applicable to any iterative quality
evaluation methods. A diagram illustrating how to predict
the solution of CFD simulations in an evolutionary loop



is given in Fig. 6.

Fig. 5. Curse of uncertainties in dominance comparison (left panel) and
bless of uncertainties (right panel).

Fig. 6. A diagram showing how recurrent neural networks can be used for
predicting results in CFD iterations.

In many cases, it is impossible to define a concrete fitness
function when the desired quality cannot be described by
an explicit mathematical function, for example in interactive
evolution [44]. In this case, a surrogate is helpful in reducing
the burden of a human user.

C. Other aspects

In addition to geometry representation and surrogate-
assisted evolutionary optimization, a few other aspects can
be considered in enhancing the efficiency of EMOSO, some
of them are particular to multi-objective design, others are
generally valid for evolutionary optimization.

1) Genetic representation and genetic operations: The dif-
ference in the search dynamics between a binary genetic
algorithm with crossover and a real-coded evolution strategy
with Gaussian mutations for SOO has been discussed [45].
For MOO, as indicated in Section II-B, the difference becomes
even more significant. One main phenomenon is that a binary
GA with crossover can never converge in MOO when no
constraints on crossover are imposed. This means that a binary
GA with crossover performs poorly for local search, even

when it is converging to the Pareto front. An evolution strategy,
in contrast to a binary GA, can still do fine local search if the
step-size is properly self-adapted so that at the end of the
evolution, it becomes sufficiently small.

For this reason, a hybrid representation can improve the
search efficiency of EMOSO. In [46], an evolutionary al-
gorithm with a hybrid representation has been proposed. In
this algorithm each individual can potentially use either a
binary representation or a real-coded representation. Once
a binary representation is activated, crossover will be used
for generating offspring. When a real-coded representation
is in use, Gaussian mutations are used. Two questions must
be answered. First, which representation should be activated.
For this question, an additional gene, whose value can be
zero or one, is included in the representation, where zero
means that the binary representation is activated, and one
means the real-valued representation. The second question is
how to synchronize between the two representations. This
is particularly important when a binary coding is switched
to a real-valued coding, where the step-size self-adaptation
must be performed. In [46], the step-size is estimated by
calculating the distance between the parent and its offspring
generated using crossover. It has been shown that an MOEA
with a hybrid representation consistently outperform one with
a single representation on the problems used in [46]. More
interestingly, it has been shown that a binary representation
using crossover is preferred at the beginning of search while
a real-valued coding overwhelms at the end of evolution.

2) Use of parallel and grid computing: To enhance the
efficiency of EMOSO from the computational point of view,
parallel computing and grid computing techniques are almost
a must for EMOSO. Fig. 7 shows a parallel computing
paradigm, where two levels of parallelization are implemented.
The first level is done on the population level, where individu-
als are evaluated in parallel on separate machines. The second
level of parallelization is implemented during the fitness
calculation of each individual. Since a three-dimensional (3D)
CFD simulation takes several hours on a single computer, the
simulation process is again parallelized on four processors.

This parallel computing architecture is satisfactory if the
machines are of similar performance, in the same physical
location, and if the fitness evaluations for all individuals take
similar computation time. This assumption may be violated
for two reasons. First, computational resources may be het-
erogeneous in computational speed, operation platform, com-
munication protocol, and may be distributed at geographically
different locations. In addition, the time taken to evaluate
individuals can be very different, particularly when surrogate
models of different fidelity are used in a population. If the stan-
dard master-slave parallelization architecture is adopted and a
generational EA is used, the evaluation time of a generation
depends on the slowest evaluation of a population, which may
be a waste of computing resources. To address this problem,
there are also two possible solutions. One is to use a steady-
state evolutionary algorithm instead of a generational one. In
a steady-state EA, only the worst individual or a few worst
individuals are replaced, therefore it is not necessary to wait
until the whole population is evaluated. Once an individual is



Fig. 7. A computing architecture with both population level and individual
level of parallization.

evaluated, a reproduction can be done immediately [47].
However, steady-state EAs may not be applicable to multi-

objective optimization without degrading search performance.
A preferable solution is to develop a computing architecture
that can still provide the speed-up regardless of the heterogene-
ity in the computing resources or surrogates while preserving
the standard behavior of the parallel evolutionary search. A
good example of such solutions is the decoupled grid-enabled
hierarchical parallel genetic algorithm (DGE-HPGA) proposed
in [48]. The DGE-HPGA consists of two-level parallelization.
At level one, the island model is used for parallelization,
whereas at level two, a master-slave parallelization scheme is
adopted. The two levels of the hierarchical parallel genetic
algorithm (PGA) are gridified to form the ‘sub-population
evolution’ and ‘chromosome evaluation’ Grid services. Fur-
thermore, the ‘sub-population evolution’ Grid service is de-
coupled into two separate services, namely, the ‘evolutionary
operations’ at the client(master) and ‘chromosome ensemble’
at each computing cluster. In this way, the computing clusters
are used for fitness evaluations only and genetic operations
are processed at the client side. As a result, a constant sub-
population size can be maintained at the client side while non-
uniform ensembles are allocated to the computing clusters
of chromosomes for fitness evaluations. The DGE-PGA has
shown to be significantly more efficient than a non-decoupled
grid-enabled PGA on an airfoil design optimization example.

3) Domain knowledge discovery by mining history data:
When using an adaptive representation, one concern is where
the new variables should be included in the geometry. In this
case, acquiring domain knowledge may be very helpful. One
interesting example is the work reported in [49], where a
displacement measure is proposed for informing the amount
and direction of surface modifications. Such information, in
combination with data mining techniques for rule extrac-
tion, can provide useful insights into the evolutionary search
and thus improve its efficiency. Domain knowledge extracted
during the optimization can also be taken advantage of to
identify potentially high performance region to reduce search

space [50], or to support decision-making [51]. A data mining
method using self-organizing map has been proposed to iden-
tify the design variables that are responsible for performance
improvement and trade-offs [52]. More general methods for
discovering and reusing domain knowledge in evolutionary
search can be found in [53].

IV. SCALABILITY OF EMOSO

A. Capturing problem structure

In EMOSO, evolutionary algorithms have to deal with
high-dimensional search spaces due to the fact that complex
structures often have a large number of design variables
to be optimized. For this reason, scalability of the MOEA
for complex structural design is of pivotal importance. We
believe that a scalable MOEA should be able to discover
and take advantage of the structure of the problem at hand.
As discussed in Section II-B, being able to capture the
problem structure is particularly important and also possi-
ble in MOO, because there are often regularities in the
distribution of the Pareto-optimal solutions. However, most
MOEAs do not pay sufficient attention to regularities in Pareto
front [9]. By regularity, we mean two aspects. First, Pareto-
optimal solutions are often connected. Second, according to
the Karush-Kuhn-Tucker condition, the Pareto front is a (m-
1)-dimensional piece-wise continuous manifold for continuous
MOPs with m objectives. The connectedness of the Pareto-
optimal solutions justifies the use of local search in MOO,
either in combination with an evolutionary search [54] or the
dynamic weighted aggregation method [55] and other similar
approaches [56]. The second aspect is particularly useful in
model-based evolutionary algorithms, such as the estimation
of distribution algorithms [57], where reduction of dimension
is key to the success of model building. Thus, taking advantage
of regularity in multi-objective optimization is key to develop-
ing scalable MOEAs. Regularity model-based multi-objective
estimation of distribution algorithm (RM-MEDA) is a good
example of such scalable MOEAs [58], [59]. In RM-MEDA, a
probabilistic model is built up to model the population, which
consists of one deterministic part, a principal curve, and a
probabilistic part, a Gaussian model. It has been shown that
regularity modeling contributes significantly to the scalability
of MOEAs for solving problems with strongly correlated
design variables using a reasonably small population size.
Fig. 8 shows the performance landscape in D-metric [60]
with respect to population size and the search dimension of
the RM-MEDA, of the univariate factorized Gaussian model
(UGM), and of the marginalized multivariate Gaussian model
(MGM). From the figure, we can see that the performance of
RM-MEDA is highly scalable to the search dimension, and
relatively insensitive to the population size. In contrast, the
performance of both UGM and MGM deteriorates quickly as
the search dimension increases.

The RM-MEDA has also been employed for 3D blade de-
sign optimization. The NURBS based geometry representation
is shown is Fig. 9, and the optimization results are plotted in
Fig. 10, together with solutions achieved from various single-
objective or multi-objective optimization approaches. It can



Fig. 8. Scalability of three MOEAs on the test problem ZDT2.2, whose
design parameters are nonlinearly correlated. Left panel: RM-MEDA. Middle
panel: UGM. Right panel: MGM.

be seen that the Pareto front achieved by the RM-MEDA
outperforms those from other algorithms.

Fig. 9. NURBS representation of a 3D turbine blade of a gas turbine.

Fig. 10. Results from the 3D design optimization as represented by NURBS
in Fig. 9.

Another issue in MOEAs that has received increasing at-
tention is algorithms’ scalability to the number of objectives,
which is often known as many-objective optimization. Several
approaches have been developed for solving many-objective
optimization with evolutionary algorithms [61], such as mod-
ifying the dominance definition, using performance indicators
as fitness function, using preference information, or reducing
the number of objectives. Nevertheless, one fact seems to

become clear that the Pareto-ranking based approach to sorting
the population will dramatically decrease the efficiency of
MOEAs, thus worsening the scalability of MOEAs to the
number of objectives.

B. Bio-inspired scalable representations

Most MOEAs for structural optimization use a direct en-
coding, where the genotype-to-phenotype mapping in these
algorithms are explicit and static. On the other hand, it is
believed that developmental encodings are more scalable,
particularly when there are repeated structures in the target
design, although it is non-trivial to show the benefit of
developmental representations in optimization [62]. In [63],
a multi-cellular model is proposed for designing lightweight
and stable structures. In that cellular model, there are two
types of cells, namely, material cells that have a mass and can
bear physical forces, and void cells that occupy a space but
do not have a mass and cannot bear any force. Each cell, no
matter whether it is a material cell or a void cell, contains a
virtual DNA that forms a gene regulatory network determining
whether a cell divides, if yes, the type of the daughter cells. In
addition to the genetic control of the cellular system, physical
cell-cell interactions including cell adhesion are also modeled.

Fig. 11. Pareto-optimal solutions for lightweight stable structures obtained
from a cellular growth model.

There are only six parameters in total in the cellular model
that regulates the cell growth process. Nevertheless, complex
structures can be evolved with this cellular model through a
developmental process. The system starts with a few cells of
both material and void cells. During the development, cells
will replicate themselves when the gene for cell division is
activated. The gene regulatory network is evolved using the
non-dominated sorting genetic algorithm (NSGA-II) [64] for
designing lightweight and stable structures, where the two
objectives are optimized. One is the total mass of the structure
denoted by the number of material cells in the structure and the
other is the stability of the structure denoted by the maximal
internal tension when a force is applied on the surface of the
structure. Fig. 11 shows the Pareto-optimal solutions of one
evolutionary run of the cellular approach to structural design.
These solutions have a quite complex inner structure. These
results suggest that a bio-inspired representation and design



approach may be promising in improving the scalability of a
class of EMOSO.

V. ROBUST AND LIFE-LONG OPTIMIZATION: TEMPORAL
LEVEL CONSIDERATIONS

A systems approach to EMOSO considers not only the
performance of the design at a certain time or under a certain
condition, but also in the whole life of the design, e.g., the
maintenance and sustainability of the design. Different mea-
sures can be taken to address these concerns. For instance, for
easier maintenance, the performance of the design should be
insensitive to small changes in the design due to deformation
or worn-out effect, and changes in the environment during the
life time. This is known as the robustness requirement on the
design. Robust solutions, however, are not sufficient to tackle
large changes in the design or in the environment. In this case,
a life-long optimization will be indispensable. The simplest
form of life-long optimization is dynamic optimization, where
the changes in the environment are embodied in the changes
of the fitness over time, which is usually known as dynamic
optimization. We will elaborate on these two aspects in the
following.

A. Search for robust solutions

Robustness and sustainability is a temporal level of require-
ment in a systems approach to structural design that not only
takes the performance of the structure at one operation point,
but also that during its entire lifetime, its maintenance or even
its disposal into account. In this section, we mainly discuss
evolutionary methodologies for the search of robust solutions
when the evolved structure is subject to mild changes in the de-
sign and environment. Several measures are available for defin-
ing robust solutions [65]. In evolutionary optimization, four
methods can be employed for achieving robust solutions [66].
The first method is known as implicit averaging, where random
perturbations are added into the phenotype during fitness
evaluations [67]. It has been shown that for genetic algorithms
with an infinite population size, the implicit averaging method
is able to achieve the expected fitness (or effective fitness) so
that the robust solution can be obtained. The second method,
also known as the explicit averaging, calculates the fitness of
a design by averaging over the fitness of a number randomly
sampled solutions (effective fitness) in the neighborhood [68].
It should be pointed out that whether the implicit or explicit
averaging strategy should be adopted depends on the property
of the noise and that of the fitness landscape [69]. The third
approach is to treat robustness as an additional objective,
and it has been found that a trade-off between optimality
and robustness often exists [70]. In that work, robustness
is defined to be the variance in the objective value scaled
by the average variance in the design variables, estimated
from the individuals in a population. Another method for
estimating the robustness is termed the inverse multi-objective
robust evolutionary (IMORE) design [71], where a maximum
of tolerable degradation in performance is predefined. The
robustness is thus measured by the maximal allowed variation

in the design variables for the given maximum performance
degradation.

Search for robust solutions may require additional fitness
evaluations, e.g., in the explicit averaging method and the
IMORE. Since additional fitness evaluations can be very
expensive, surrogates may also be adopted in estimating the
robustness of a candidate design. A simple approach is to
use history data near the candidate solution [68]. A more
sophisticated method has been suggested in [72], where a
local approximation model of the fitness function is built
for estimating the expected fitness and the variance. Linear
interpolation or regression and quadratic interpolation or re-
gression models are compared with respect to the reliability
in estimation, and results showed that the regression models
always outperform the models using interpolation. An example
of the Pareto fronts obtained by surrogates compared to the
one achieved using the real fitness function (denoted by the
solid line) is presented in Fig. 12.

Fig. 12. Pareto fronts obtained from the real fitness function and various
surrogates.

Search for robust Pareto-optimal solutions has attracted
much research attention in the recent years. In [73] two
approaches to finding robust Pareto-optimal solutions are
suggested. The first approach, similar to SOO, is to perform
the evolutionary search based on the effective objective values
instead of the original ones. In the second approach, the
optimization will be performed with the original objective
functions, however, subject to the condition that the relative
performance degradation compared to the effective fitness
value or the worst one in the neighborhood is less than a
predefined value.

Including the robustness measure in the objectives is less
attractive in MOO in that an additional objective not only
reduces the performance of an MOEA, but also makes it
difficult to visualize. An interesting idea suggested in [74] is to
measure the robustness of the Pareto-optimal solutions using a
discrete degree according to the allowed size of neighborhood
for a predefined performance degradation. One main merit
of this method is that it can provide helpful and sufficient
information on robustness of each Pareto-optimal solution to
the user in decision-making without making the problem more



complicated. The reader is referred to Part IV in [75] for more
detailed discussions and recent advances in search for robust
solutions in MOO.

B. Life-long optimization

While searching for robust optimal solutions is a practical
and efficient strategy for tacking mild changes in the system
and in the environment that can occur in the lifetime of a de-
sign, it is not sufficient for robust optimal solutions to deal with
large changes. When the speed of change is relatively slow but
the severity of change is large accumulated over time, life-long
optimization (LLO) is necessary. In evolutionary computation,
LLO is also known as dynamic optimization [76], [66]. The
goal of LLO is to track the optimum, or the Pareto front that is
changing over time. The change in the optimum can a result
of a change in the system, or a change in the environment.
For tracking a moving optimum for SOO, strategies such as
maintenance of diversity in the population, introduction of
memory, and maintenance of multiple sub-population (species)
can be used. The idea of maintaining diversity is to prevent
the population from fully converging to the current optimum
and thus is able to locate a new optimum. This strategy
becomes less useful for MOO because MOEAs have intrinsic
population diversity. In other words, the population for MOO
is supposed to be able to follow a slowly moving Pareto
front. Memory mechanisms are of limited use for both SOO
and for MOO when the change is not cyclic, or when the
new optimum or Pareto front is weakly correlated to the old
ones. The strategy of using multiple sub-populations is not
attractive for MOO either. While it still makes sense to have
different small populations for tracking multiple peaks, it is
no longer practical to use multiple small populations to track
multiple Pareto fronts. One possibility is to extend the idea
described in [77] to use a sub-population to track only a
segment of a moving population. Another idea is to predict
the trajectory of a moving Pareto front based on history data
using prediction methods so that the population can anticipate
the changes in the future to track the moving Pareto front more
efficiently [73], [78], [79].

VI. SPATIAL AND PROCESS LEVEL CONSIDERATIONS

Complex structural design often involves a large number of
correlated subsystems. Optimization of one single sub-system
does not lead to the optimization of the whole system. For
example, the optimization of gas turbine engine includes the
stator blades, rotor blades, the end-wall contour etc. [80].
Another good example of complex structural design is the
optimization of the aerodynamic performance of a racing car,
which may involve the optimization of the diffusor, front
wing, rear wing, the chassis etc. These parts are spatially
distributed, however, are strongly correlated in optimization
of aerodynamics such as down force and drag.

In [81], multi-multi-objective optimization has been dis-
cussed, which is concerned with the multi-objective optimiza-
tion of a family of designs sharing common components,
and thus sharing a common search subspace. The shared
components are termed communal components and the design

variables in the communal components are termed communal
variables. It is assumed that improvement in one MOP by
tuning the communal variables will lead to the deterioration of
other MOPS. In that paper, a sequential approach to the multi-
multi-objective optimization is proposed, where the multiple
MOPs are solved sequentially, as the name of the approach
suggests. The basic idea is to solve one MOP first, achieving
a Pareto front. In searching for the Pareto front for the
second MOP, the communal variables achieving the first Pareto
solutions will be set to be constant.

In addition to the spatial-level of considerations, the process
level of completeness needs to be taken into account for
complex structural design. This requirement can be attributed
to the fact that for many complex EMOSOs, it is difficult to
define clearly the quality functions to be optimized. In this
case, iterative discussions between application experts such as
aerodynamic engineers and optimization experts are needed
to formulate the optimization problem. During this process,
knowledge from the previous optimization runs can be very
helpful for both application and optimization experts to define
the problem, refer to Fig. 13. In a sense, defining the problem
becomes part of the problem.

Fig. 13. A loop for formulation of the optimization problem.

VII. FROM A SYSTEMS APPROACH TO LIFE-LIKE DESIGN

A systems approach to EMOSO stresses a holistic view
of structural design including four levels of requirements.
Compared to traditional top-down engineering design method-
ologies, a systems approach to EMOSO has the following
features. First, it is no longer a fully top-down method.
The temporal level requirements combined with an evolu-
tionary methodology lead to more sustainable designs that
a purely top-down approach cannot achieve. Nevertheless,
several weaknesses still remain with a systems approach to
EMOSO compared to design approach by nature, i.e., living
organisms, which shows unique features such as self-assembly,
self-organization, self-repair, scalability, robustness and evolv-
ablity [82], [83]. In summary, a life-like design approach
should have the following basic features.

• A life-like design adopts a developmental approach. A
developmental approach starts with a simple design.
Based on the pre-defined blueprint, similar to the DNA



in biological systems, the system increases its function-
ality by interacting with the environment. The increased
functionality, often in terms of increased ability to sense
the environment and to act on the environment, is shaped
by both the blueprint and the environment as well. In
other words, for a given blueprint, the final design can
be different in different environments.
In a developmental design, not every detail of the design
is specified in the blueprint, and a full global control
for the developmental process is not possible. Instead,
the interpretation of the blueprint depends heavily on the
local interactions between the components of the system
in development, as well as the interaction between the
system and environment.

• A life-like design adopts an evolutionary approach. The
blueprint that defines the global control of the devel-
opment is not obtained by a top-down process either.
Instead, the blueprint is evolved by duplicating functional
modules accompanied by a strong positive selection and
afterwards a strong purifying selection to generate the
needed new functionality, which is known as a special-
ization process in biology [84].

• A life-like design is much more than search for a robust
solution or life-long optimization only. Life-like design
is self-organizing and self-repairing, which is mainly
endowed by the developmental process driven by the
blueprint-based global control and the rich interaction
among the components of the system in design and
with the environment. Growing when in use (growing
by adding on) and developmental plasticity contribute
significantly to the system’s robustness to changes in the
system and in the environment. On the other hand, the
reuse of existing functional modules by duplication and
specialization during the evolutionary process improves
the efficiency and scalability [85].

From the above descriptions, it can be seen that a life-like
approach to complex structural design is a large step forward
from a systems approach. Yet, all requirements at the four
levels of a systems approach are embodied implicitly in the
design process of a life-like design.

Research results in the direction of life-like design have
been reported in the recent years. One line of research was
originated from computational model of artificial embryology
that aims at modeling early morphological development of
biological organisms [86] in computational environments [87],
[88], [89], [90]. Computational models for morphological
development have been used for circuit design [91], truss
design [92] or stable and lightweight structural design [63],
[93]. Another line of research has been initiated from robotics,
where cellular mechanisms have been employed for multi-
robot shape construction [94], [95] and self-reconfigurable
robots [96], [97], [98]. These results indicate that genetic and
cellular approaches are promising due to their self-organizing
and self-repairing properties.

VIII. SUMMARY AND CONCLUSION

This paper discusses the main elements of a systems ap-
proach to EMOSO, which includes requirements at four levels.

The first level, the system property level, is concerned with
the properties of the system to be designed, such as the
multiple disciplines involved in the design. In addition, the
time-consuming fitness evaluations and the high-dimensional
search space involved in EMOSO are also two main factors
that require the MOEA should be efficient and scalable. The
second level of a systems approach requires that the designer
should consider performance during the whole lifetime of the
design, in particular in terms of changes in the system and
in the environment. A practical strategy to tackle with small
changes in the system and in the environment is to look for
solutions that are robust to these changes. If the severity of
the change is large, a life-long optimization should be carried
out. The third level of a systems approach takes the spatially
distributed yet coupled sub-systems into consideration, and the
fourth level considers the optimization itself as an interactive
process rather than a one-shot open loop process.

A systems approach to design of complex structures is
not the final goal. To better meet the requirements proposed
in a systems approach is to learn from biology and make
the design process more like the generation of life. Such an
approach to complex system design is termed life-like design,
which should be both developmental and evolutionary. An
developmental and evolutionary approach, as life has been
created in nature, is both self-organizing and self-repairing,
evolvable and robust. Cellular models for structural design,
multi-robot self-organization and self-reconfiguration could be
starting points in this direction.
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hofer, M. Hasenjäger, S. Menzel, L. Graening, T. Steiner, and
collaborators, Y.-S. Ong, Q. Zhang, Y. Cao, Y. Meng, and X.
Yao for their contribution to the work described in this paper.

REFERENCES

[1] C. Coello Coello and G.B. Lamont, Ed., Applications of Multi-Objective
Evolutionary Algorithms. World Scientific, 2004.

[2] Y. Jin, Ed., Multi-objective Machine Learning. Berlin Heidelberg:
Springer, 2006.
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