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Abstract

As sessile organisms, plants must cope with multiple and combined variations of signals in their environment. However,
very few reports have studied the genome-wide effects of systematic signal combinations on gene expression. Here, we
evaluate a high level of signal integration, by modeling genome-wide expression patterns under a factorial combination of
carbon (C), light (L), and nitrogen (N) as binary factors in two organs (O), roots and leaves. Signal management is different
between C, N, and L and in shoots and roots. For example, L is the major factor controlling gene expression in leaves.
However, in roots there is no obvious prominent signal, and signal interaction is stronger. The major signal interaction
events detected genome wide in Arabidopsis roots are deciphered and summarized in a comprehensive conceptual model.
Surprisingly, global analysis of gene expression in response to C, N, L, and O revealed that the number of genes controlled
by a signal is proportional to the magnitude of the gene expression changes elicited by the signal. These results uncovered
a strong constraining structure in plant cell signaling pathways, which prompted us to propose the existence of a ‘‘code’’ of
signal integration.
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Introduction

Living organisms need to integrate both internal and external

signal information in order to program the appropriate responses

for survival. Signaling pathways that respond to single nutrient or

hormonal signals are on the way to being resolved [1,2,3,4,5,6,7,8].

However, little is known about how multiple signals are integrated

on a genome-wide scale to change gene expression, make

physiological adjustments and/or direct new programs of develop-

ment. In plants, some early clues to these molecular mechanisms

come from the study of hormonal crosstalk [9,10]. The prevalence

of multiple hormone-resistant mutants suggests that such crosstalk is

very frequent [11]. In plant nutrition, it has been clearly established

that proteins involved in glucose sensing (HXK1), nitrate transport

(NRT1.1, NRT2.1) and light signaling (HY5) are involved in the

crosstalk with auxin/cytokinin [12], auxin [13,14,15] and abscisic

acid signaling [16], respectively. This crosstalk is proposed to allow

regulation of growth to be tuned to nutrient or light availability.

However, very few of the molecular elements generating crosstalk

between nutritional signaling pathways are known. For instance,

Carbon (C), Light (L) and Nitrogen (N) signals are well known to be

finely coordinated to ensure the appropriate Carbon/Nitrogen ratio

(C/N) needed for amino acid synthesis under a specific light regime.

In particular, N transport and assimilation genes are known to be

under the control of L/C/N signals [17]. For genes encoding

transporters, this C/L control can involve different C-related

signaling pathways [18]. It has also been demonstrated that

photosynthetic genes are under regulation by N and C [12,19].

Previous genome-wide studies have shown that C, N and C/N

control major cellular functions such as energy, metabolism, C-

metabolism, and fundamental processes such as ribosome biogen-

esis [20,21,22]. Together, the evidence indicates a strong coordi-

nation between the C/N/L signals. However, the underlying

mechanism(s) and models of signal integration involved in this

crosstalk have yet to be proposed.

Recently, a bioinformatics approach was undertaken to

characterize the crosstalk between seven different hormones

[23]. By analyzing lists of hormone-responsive genes, the authors

concluded that a very low level of interaction between hormone

signaling pathways exists because of the small overlap among these

lists. However, they do predict that the biosynthesis of each

hormone is susceptible to control by others, which has been

recently proven for ethylene-controlled auxin synthesis [24,25].
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In our study, we integrate experimental and bioinformatics

analysis to evaluate interactions of nutrient and light signals, using

gene expression as a reporter of signal effects. For this, we

analyzed the Arabidopsis transcriptome (using Affymetrix ATH1

GeneChips) under a complete factorial combination of Carbon

(C), Nitrogen (N) and Light (L) on two different Organs (O), roots

and shoots. The response of each gene was modeled as a function

of each factor (C, N, L, O) and all possible interactions using

analysis of variance (ANOVA). Thus, if a gene is controlled for

instance by N and C, it constitutes a marker of convergence for

signals from these two factors. By considering the whole set of

regulated genes (a third of the genome), this logic allowed us to

follow signal interaction on a genome-wide scale. This quantitative

vision of factor interactions allowed us: i) to discover an

unexpectedly strong level of signal integration that we consider

to be a ‘code’ of gene expression control; ii) to decipher major

relationships between factors (C, N, L, O) on a genomic scale; and

iii) to uncover a characteristic of signal propagation, linking the

number of genes controlled by a signal to the magnitude of its

control on individual gene expression.

Results

Genome-wide analysis of gene expression responses to
Carbon (C), Nitrogen (N), Light (L) and Organ (O)

We analyzed global gene expression patterns in all possible

combinations of C, L and N as binary factors (presence or absence)

on two different organs (leaves and roots). Plants were grown

hydroponically in L/D cycles (8/16 h) for six weeks, with 1 mM

nitrate as the N source and without exogenous C. They were then

treated for 8 h with combinations of 30 mM sucrose, 5 mM

nitrate either in the light (60 mmol.m22.s21) or in darkness. Those

conditions were chosen according to our previous study [20] in

which we showed that neither gene expression nor signal

interaction could be correlated to the quantity of nitrate or

sucrose provided. We thus chose to use the lowest concentrations

of the nutrients previously tested to minimize osmotic effects.

Roots and leaves were harvested separately and used for total

RNA isolation. This strategy corresponds to 16 different

experimental conditions, including organ as a factor (Figure 1A).

RNA samples were used to hybridize the Arabidopsis ATH1

genome array from Affymetrix to evaluate global gene expression.

All experiments were performed in duplicates. All hybridizations

were normalized using the MASv5.0 package and analyzed with

custom-made R functions. To evaluate the effect of the

experimental treatments on gene expression, we used ANOVA

on the expression of each gene represented on the microarray. We

used two different models for ANOVA analysis. The first model

considers the organ as a factor, such that the expression Yi of a

genei is given by: Yi =a0+a1C+a2L+a3N+a4O+a5CL+a6CN+a7

CO+a8LN+a9NO+a10LO+a11CNL+a12LNO+a13CNO+a14CLO+
a15CLNO+Z. In this model, a0 represents the expression under a

‘‘control’’ condition (without C, without N, without L, in roots), Z

represents the noise, and a1 to a15 represent the coefficients

quantifying the effect of each factor (C, N, L, O) or combination of

factors. For example, the coefficient of CNL represents the effect of C,

N and L in combination, over and above the main effects of C, N, L

and O, and all two-way interactions among these factors. The second

model is just a simplified version of the first model in which gene

expression in the root and leave datasets were analyzed separately:

Yi =a0+a1C+a2L+a3N+a4CL+a5CN+a6LN+a7CNL+Z. These two

modeling approaches were used because they highlight three different

aspects of the data (1, whole data set; 2, leaves only; 3, roots only).

Indeed, we found that the O effect is a predominant factor that

controls gene expression (see below) and that its dramatic effect on

gene expression can mask the weaker effects of other factors. On the

other hand, the analysis of the whole dataset provides insight into how

the O factor is integrated and how it influences the other factors. The

results of the modeling are provided as Table S1 for the whole dataset,

Table S2 for leaves and Table S3 for roots. These tables summarize

the significant coefficients (i.e. magnitude of the effect) for each factor

or combination of factors in the model for each gene and constitute

the basis for further analyses. Note here that in the following analyses,

we considered that each factor (C, N, L, O) can be the signal triggering

gene regulation on its own. Furthermore, combinations of factors

(such as for instance NL), named composite signals, can be the necessary

condition for a gene to be regulated (illustrated Figure 1B and 1C).

This terminology (signal vs composite signal) is used throughout the

manuscript and discussed below for its physiological consequences.

From the modeling using the entire dataset, 8,036 genes (35% of the

genome) were found to be significantly controlled by at least one factor

or combination of the four factors. We found 3,279 (14.3%) and 1,002

(4.4%) genes that were regulated by at least one factor (C, N, L) or

combination of factors in leaves and roots respectively.

A ‘code’ of signal interaction?
To understand the global patterns of response to the

experimental factors, we simplified the matrices with the gene

expression models described in the previous section using a binary

code. We replaced model coefficients that were negative, not

significant or positive with a 21, 0 or 1, respectively. Thus, genes

harbouring similar expression patterns (successions of 0, 1 or 21)

could be grouped in the same model of regulation (independent of

the magnitude of the effect). Considering the whole data set, a

gene can be either induced, repressed or not affected by the 15

terms (C, L, N, O, CL, CN, CO, LN, NO, LO, CNL, LNO,

CNO, CLO, CLNO) derived from the combinations of the 4

factors and their 1st, 2nd, and/or 3rd order interactions. Thus, a

gene can respond in any one of 315 = 14,348,907 possible ways.

Our global analysis led to the surprising result that a very large

number of genes are controlled by a very small number of

regulation models (Figure 2, Table 1 as truncated version; Table

S4 as full version). For instance, we found that 6,422 out of the

8,036 regulated genes (79.9%) are explained by only 87 of the 315

possible models of gene regulation. This result indicates that there

is a major constraining structure in plant cell signaling pathways.

We thus hypothesize the existence of a ‘code’ governing signal

integration at the organism level, which is responsible for the

Author Summary

Light (L), nitrogen (N), and carbon (C) are well known to be
strong signals regulating gene expression in plants. But, so
far, few reports have described their interactions on a
genome scale. Here, we report the transcriptome response
of the factorial combination of these three signals in leaves
and roots of Arabidopsis, corresponding to all possible
combinations or 16 different treatment conditions. To
mine this complete transcriptome data set, gene expres-
sion was modelled as a function of the C, N, L, and O
(organ) signals. This computational approach revealed that
multiple signals coordinate gene expression precisely and
according to a constrained plan, which we call the ‘‘code
of signal interaction.’’ Our studies indicated that signal
integration occurs differently in different organs. We
identified new modes of signal interaction that imply
existence of new signaling pathways coordinating gene
expression on a genomic scale.

Signal Interactions in Arabidopis
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observed global gene expression reprogramming in response to C,

N and L in two different organs. Indeed, a code can be defined as

‘‘A systematically arranged and comprehensive collection of laws’’

(Oxford English Dictionary definition). In our case, if we consider

the presence or the absence of the studied factors and their

interactions (as an input), the gene expression (the ‘‘output’’) is

deterministic and driven by a comprehensive collection of law. We thus

propose that this structure can be compared to/defined as a

‘‘code’’ of signal interaction controlling gene expression.

Deciphering the signal interaction ‘‘code’’
To elucidate the structure that controls the regulation of gene

expression by the experimental factors and their interactions, we

used two approaches. The first is based on clustering across the

three matrices described above (whole data, root, shoot). This

method, adapted from Speed (2003), enables qualitative analysis of

the co-occurrence of each term in the models of gene expression

(Figure 3A,C,E)[26]. The second method uses the Sungear

software [27] to quantitatively evaluate the importance of each

term, as assessed by the number of genes, in the models of gene

expression (Figure 3B,D,F) (Please refer to the Materials and

Figure 2. A small number of models explain most gene
expression patterns in response to 16 different experimental
conditions. The gene expression patterns obtained from the 16
different experimental conditions were modeled as a function of the
four experimental factors and their interactions using a rigorous
statistical procedure (see Materials and Methods). Genes with the same
model of expression were grouped. The graph shows the number of
genes (Y-axis) explained by the different models of gene expression (X-
axis).
doi:10.1371/journal.pcbi.1000326.g002

Figure 1. Scheme of experimental design and working model
of gene control by multiple signals at the organ-specific level.
A) 6-week-old plants were treated for 8 h with all combinations of three
(C, L, N) binary (0/1) factors. Leaves and roots were analyzed separately
for a total of 16 experimental conditions. Treatments were as follows: N,
5 mM NO3

2; C, 30 mM sucrose; L, 60 mmol.m22.s21. RNAs were
extracted from roots and shoots separately and hybridized to ATH1
Affymetrix chips. Microarray data analysis was performed as described

in Experimental Procedures. B) Scheme presenting the concept used to
decipher signal interactions in the control of gene expression. We
propose that perceived signals can be produced from a factor (C, N, L
represented as blue squares) or combination of factors (green squares).
These combination of factors build what we name ‘‘composite signals’’.
These signals or composite signals can then affect the expression of a
particular gene. The expression of a gene (e.g. black circles labeled 1
and 2) can be affected by (red arrow) one signal (e.g., C alone for
number 1) or a composite signal (e.g., C and N for number 2). C)
Idealized gene expression patterns produced by the signal effects
shown in (B) for the genes 1 and 2.
doi:10.1371/journal.pcbi.1000326.g001

Signal Interactions in Arabidopis
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Methods section for a detailed explanation on clustering and

Sungear software use). Thus, we used average linkage hierarchical

cluster analysis with euclidean distance on the simplified matrix of

regulatory models (Table S4). To do so, we multiplied each

column in Table 1 by the number of genes with the corresponding

model (last column in Table 1) to weight each row proportionally

to the number of genes. The dendrograms generated by the

clustering algorithm allowed us to infer the relationship between

the signals and/or the composite signals (as defined in Figure 1) in

the control of gene number (Figure S1) [26]. To evaluate the signal

strength as determined by the number of genes controlled by each

signal we also used Sungear, which is a software tool designed for

the dynamic analysis and visualization of multiple lists of genes

[27,28] (See Materials and Methods section for detailed

description of the Sungear tool). In a second analysis, we used

hierarchical clustering analysis on the model coefficients (Tables

S1; S2; S3). In this case, we grouped signals based both on their

relationship and magnitude of their effect on gene expression. The

combined hierarchical clustering and Sungear analysis revealed

that O is the predominant factor controlling gene expression

(Figure 3A and 3B). In leaves, the main signal is L (Figure 3A–3D),

while in roots the L effect manifests as an interaction with C

(Figure 3E, 3F). That is, genes controlled by L in leaves do not

typically respond to other signals, but in roots genes controlled by

L are also largely controlled by C. This logic can be used to

decipher the relationships and strengths of any of the signals or

composite signals (Figure 3).

Interestingly, the hierarchy of signals and composite signals in

this analysis seems to be comparable to our first analysis based on

model size (compare dendrograms in Figure 3 and Figure S1).

This finding suggested that for a given signal, its strength on

individual gene regulation and the number of genes in the genome

that are controlled by this signal are correlated. To test this

hypothesis, we plotted the absolute values of the model coefficient

(an indicator of the strength of regulation) against the number of

genes controlled by each individual signal or composite signal

(Figure 4). We observed a logarithmic relationship between these

two parameters at the whole dataset level (R2 = 0.50) and at the

organ-specific level (R2 = 0.82) (Figure 4). Note here that

logarithmic regression excluding the L signal in leaves is still very

significant (R2 = 0.74). The two terms with the largest coefficient

(i.e. largest effect on gene expression) and number of genes, C and

L, seem to be the ones that behave most differently in the roots

and leaves datasets. Treating data from root and leaves separately

allowed us to reduce this constraint and improved the regression.

Thus, if we sort the signals and the composite signals by their

ability to control gene expression, two components can be

identified. The first component encompasses weaker interactions,

controlling few genes (,500 genes). In this component, the

strength of the signal increases without a concomitant increase in

the number of genes regulated. In the second component (.500

genes), we observe the inverse relationship. The strength of the

regulation reaches a ‘plateau’ (at a value of approximately 450 in

the coefficients), but there is a large increase in the number of

regulated genes (Figure 4).

The rules of signal integration
To gain a better understanding of how plants respond and

integrate multiple experimental factors, we analyzed the number

of genes controlled by x number of signals or composite signals (as

defined in Figure 1B, 1C). This analysis revealed that signal

integration is stronger in roots than in leaves (Figure 5A). In leaves

the large majority (89.8%) of genes are controlled by only one

factor, whereas in roots, 86.2% of genes are controlled by two or

more factors (Figure 5A). To decipher the relationships underlying

the dichotomy between leaves and roots, gene lists corresponding

to each group (a to h in Figure 5A) were subjected to hierarchical

clustering (Figures 5B and 5C). This approach showed that in

leaves 99.6% of the 89% of the genes controlled by only one signal

are controlled by L (Fig 5B a). Therefore, L responses in leaves are

mostly independent of the other signals. In roots, genes with simple

models with one significant term also show a dominance of L (78%

are induced by light only; Figure 5C e). However, as the models

become more complex (Figure 5B e to h), L and C appear related

(compare Figures 5C e to h). Furthermore, the effect of N is mainly

Table 1. Predominant model of expression at the whole data set level.

C N L O CN CL CO LN NO LO CNL LNO CNO CLO CNLO #genes

0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 1009

0 0 0 1 0 0 0 0 0 21 0 0 0 0 0 676

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 502

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 485

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 337

0 0 1 21 0 0 0 0 0 0 0 0 0 0 0 229

0 0 21 21 0 0 0 0 0 0 0 0 0 0 0 226

21 0 21 21 0 1 1 0 0 1 0 0 0 21 0 154

0 0 1 0 0 0 0 0 0 21 0 0 0 0 0 153

0 0 21 21 0 0 0 0 0 1 0 0 0 0 0 142

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 139

1 0 1 0 0 0 21 0 0 0 0 0 0 0 0 135

1 0 1 0 0 0 21 0 0 21 0 0 0 0 0 112

…

Expression of each gene has been modeled as a function of C, L, N and O factors and their interactions. Each gene model was recoded replacing by 21, 0 or 1,
coefficients respectively for negatively, not significant or positively regulated genes. Number of genes in each class is indicated in the last column. The full version of this
table is provided in Table S4.
doi:10.1371/journal.pcbi.1000326.t001

Signal Interactions in Arabidopis
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observed as an interaction with C and L, indicating that the effect

of N is largely dependent on the context of the other signals. This

result is consistent with previous studies that indicate a large

component of the N-response was dependent on the particular

conditions used in the experiment [26].

To further characterize signal cross-talk in our conditions, we

analyzed the number of genes controlled by a given signal (C, N, L

or O) and the effect of adding x other signals or composite signals

(Figure 6). This approach provides information about how signals

superimpose to control gene expression at the whole plant

(Figure 6A) and organ-specific (Figure 6B) levels. In leaves, most

genes are regulated by L alone (Figure 6B). In contrast, genes that

respond to N or C are also regulated by one or two additional

signals or composite signals (Figure 6B). No gene was found to be

controlled by N or C alone, indicating that N and C are mainly

sensed as composite signals rather than as single signals in leaves.

Figure 3. Signal strength and relationship for the control of gene expression. A, B) Analysis using the entire data set; C, D) Analysis using
data from leaves; E, F) Analysis using data from roots; A–C) Dendrograms produced by average linkage hierarchical clustering analysis with euclidean
distance carried out on the simplified model matrices as described in the text. B–F) Analysis of signal strength using the Sungear software. The
Sungear polygon shows the signals at the vertices (anchors). The circles inside the polygon (vessels) represent the genes controlled by different
signals as indicated by the arrows around the vessels. The area of each vessel (size) is proportional to the number of genes associated with that
vessel. Thus, it is visually and quantitatively possible to identify the main signal at the whole dataset level as O. In leaves, L predominates, and in roots
C and L are similar with regard to the number of genes affected. See details for interpretation in Materials and Methods.
doi:10.1371/journal.pcbi.1000326.g003

Signal Interactions in Arabidopis
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In roots, most genes regulated by C, N or L are under the control

of at least two other signals (Figure 6B).

To conclude the analysis of signal cross-talk, we evaluated the

patterns of signal interactions. For example, to identify the signal(s)

that interact with N in roots we analyzed the coefficients of the

ANOVA models (indicating the direction and strength of the

regulation) that included N (Figure 6C). We found that ANOVA

models that included N and tree other signals were similar

(Figure 6B and 6C, y and z data points and panels respectively).

These N-controlled genes are negatively controlled by C and L

signals and positively controlled by the CL composite signal in

roots (100% of the 22 genes in this gene list follow this same

pattern). This is not the case for simpler models such as N

controlled by one or two additional signals or composite signals

(Figure 6b and 6C, w and x data points and panels respectively). A

summary of all patterns found is provided in the following section.

A model of signal integration in roots
To identify general patterns of signal integration, we analyzed

the relationship between each pair of signals or composite signals.

The ANOVA coefficients for each pair of signals or composite

signals in a model were plotted against one another (Figure 7). For

example, the second panel in the first row of Figure 7 (labelled a)

shows the values of the coefficients for models that contain both C

and L signals plotted against each other. This analysis indicates a

high correspondence for the effect of C and L on gene expression

in roots. In this case, the influence of L was positively correlated

with the influence of C, consistent with the hypothesis that L is

mainly sensed as sugars in roots (Figure 7 a). Similar analysis

reveals that C signals are inversely correlated with CL and CN

signals. This indicates that the C effect is reduced in the presence

of L or N (Figure 7 e-b). The effect of L is reduced by the presence

of C or N (Figure 7 f-c). The significant relationships between

signals (more than 50 genes with Pearson coefficient.0.80) were

used to draw regulatory relationships that were summarized in a

model of signal integration (Figure 8). In Figure 8, we use logic

gates to represent the effect of each signal on gene expression. For

instance, the presence of C OR L has the same effect on the

expression of 754 genes that are regulated by these signals.

Similarly, we used AND gates to represent that two signals are

required for an effect on gene expression. For example, the

presence of C AND N is needed to repress the effect of the L signal

on gene expression. This conceptual model of signal interaction in

Arabidopsis roots is discussed further for its predicted physiological

consequences.

Discussion

Four factor factorial design: The key to ‘code’ discovery
For the past decade, transcriptome studies have been used to

understand molecular events involved in responses to biotic,

abiotic or hormonal treatments or developmental series (for an

overview see https://www.genevestigator.ethz.ch/ or http://bbc.

botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Nevertheless, only

three reports have systematically addressed the interaction

between experimental factors genome-wide (C vs N, C vs L)

[20,22,29]. These approaches revealed gene networks involved in

plant adaptation to a fluctuating N, C and L environment. Here,

increasing the number of factors to four (C, N, L, O) allowed us to

reach a new level of complexity. When analyzing single factors,

there are 31 different models possible (induced, repressed or not

regulated). This same logic (depicted Figure 1B) applies to two

factors (33 = 27 different models), three factors (37 = 2,187), four

factors (315 = 14,348,907) and so on. But it is only by performing

the experiments with four factors that we uncovered the

tremendous constraint in signaling pathways in Arabidopsis. In

the systematic analysis of this dataset, we found that the

distribution of gene expression patterns fell within very few models

of expression and revealed a strong coordination between signals.

The probability of finding the observed models by chance is

negligible (,102323). This result supports the idea of a ‘code of

signal interaction’. It is clear that our modeling approach can

explain only part of the gene expression variability. However, our

results suggest that plant cell signaling pathways are constrained

such that the possible outputs in response to simultaneous change

in multiple external factors are restricted to a very small portion of

the total possibilities. Since our model, i) might miss non-linear

relationships, ii) is built on data obtained from multi-cellular

organs (roots and shoots), we hypothesize that the structure in

plant cell signaling pathways is even more restrictive than what

proposed here. For example, it could be of great interest to

reproduce this analysis at the cell-specific level to unmask

regulation hidden at an organ level. For a simple NO3
2 treatment,

cell specific analyses were successful in revealing regulation

obscured from whole organ analysis [30].

A link between the strength and the number of
controlled genes by a signal

Our current analysis uncovered a relationship between the

strength of signals or composite signals (absolute value of model

coefficient) and the number of genes controlled by these signals

Figure 4. Relationship between the number of regulated genes
and the magnitude of gene regulation (coefficients of the
model). The graphs show the relationship between the average
coefficient and the number of genes that showed the coefficient as
significant in the regulation model. Circles are labeled with the
corresponding signal. The coefficient of determination (R2) for each
logarithmic regression analysis is indicated in the graphs. (A) Analysis
for the complete data set. (B) Analysis for roots and leaves data sets
separately.
doi:10.1371/journal.pcbi.1000326.g004

Signal Interactions in Arabidopis
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Figure 5. Signal integration at the organ-specific level. A) Percentage of regulated genes as a function of the number of signals. In leaves most
genes are regulated by only one signal, labeled with the letter ‘‘a’’. Genes belonging to the groups labeled with letters (a to e) in panel A were
subjected to average linkage hierarchical clustering with euclidean distance to analyze the signal relationship across increasingly complex models of
gene expression in leaves B), in roots C). Dendrograms show hierarchy of signals in the control of gene expression (a to d for leaves, e to h for roots).
doi:10.1371/journal.pcbi.1000326.g005

Signal Interactions in Arabidopis
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(Figure 4). A recurrent logarithmic law in biology is known to link

the perceived sensation/response of biological systems to true

stimulus intensity. The Weber–Fechner equation [31] can be

applied to many different biological systems: from human odor

perception [32] and time perception [33] to prefrontal cortex

neuronal activity of monkeys under visual stimulation [34] or

cockroach neuron response to light intensity [35]. It is thus tempting

to hypothesize that the plant transcriptome response might be under

the same kind of mechanistic stimulus/perception relationship.

However, our study does not directly link the strength of the applied

signal, but instead two components of the sensed signals (1, number

of regulated genes and 2, gene regulation magnitude). Further

investigation is warranted to (i) validate this link between gene

response and applied signal intensity in Arabidopsis and (ii)

demonstrate that this strong logarithmic relationship can be found

in the transcriptomes of other living organisms.

Working model validation and finding of Boolean-like
signal integration

In the proposed models to explain gene expression in response

to multiple experimental factors (Figure 1), we hypothesised that

plants sense combinations of signals (Figure 1B, 1C). This

assumption is supported by experimental data. For instance, it as

been demonstrated that NRT2.1/NRT3.1 repression (coding a

major component of the high affinity NO3
2 transport system) is

effective only when both high NO3
2 AND high NH4

+ are present

in the medium [7]. Our present study also supports this point of

view. Indeed, the ANOVA model that we used has uncovered

genes that behave as proposed in Figure 1C. For instance,

modeling of leaf data detected three genes that were controlled as

a single independent composite signal by the presence of CL, two

by CN (as defined in Figure 1 gene #2), or four by LN. In roots,

two genes were found to be controlled by CL, nine by CN, and six

Figure 6. Signal integration of C, L, N and O factors: case of study for nitrogen. Effect of added signal on the percentage of controlled
genes considering each factor at A) the whole dataset level or B) the organ specific level. C) Centroid-plots of model coefficients for the gene lists
(w,x,y,z) considered in (B). Note that in C-x, the N effect is significant (by definition), but no trend between genes gathered in the list can be visualized.
Some of the genes are positively controlled by N, others are negatively controlled.
doi:10.1371/journal.pcbi.1000326.g006
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by LN as a single and independent composite signal (Figure S2).

This post hoc analysis provides support for the modeling approach

and suggests that plants can sense combinations of factors as single

signals. From another standpoint, this analysis suggests that genes

are under the control of AND-like-logic-gates, as we previously

showed for C/L and for NH4/NO3 [7,36]. Our present study

suggests that this kind of boolean-like-regulation can affect

genome-wide expression in plants (Figure 7 and Figure 8).

Moreover, it is noteworthy that the experimental conditions

(concentrations of the treatments) can possibly influence the signal

relationships depicted here. However, in previous work [20] we

published the transcriptome response of treatments of C and N at

different concentrations (NO3
2 at 0, 5, 10 and 15 mM) and

Carbon (Sucrose at 0, 30, 60 and 90 mM). In that analysis, we

found no dose effect of the signals on gene expression. This

supports our simplification of gene expression patterns as binary

patterns.

Signal integration overview in Arabidopsis
The role of autotrophic leaves as an energy converter has been

known since the 18th century. Shoots of plants capture solar energy

and convert it into sugars through photosynthesis, thereby

constituting the major entry of energy into food chains. Our

current findings showed that the management of signal integration

and their consequences on a genome-wide scale follow this

centuries-old paradigm. Our study shows that signal integration,

for the considered signals, is more important in roots than in

leaves. In photosynthetic leaves, the main signal in the control of

gene expression is L. We also show that the L signal in leaves is

insensitive to C, N or combinations thereof (Figure 6B). Corre-

sponding L-controlled genes in leaves have significantly over-

represented functions including metabolism and photosynthesis

(data not shown). By contrast, in the heterotrophic roots, L is very

poorly sensed on its own (Figure 5A, C-e), and L and C act on

genes in an unexpectedly highly coordinated fashion (Figure 7).

Figure 7. Signal integration in roots. Genes controlled by at least each pair of considered signals were identified and then plotted based on their
gene expression ANOVA coefficients. Significant Pearson correlation coefficients are presented in corresponding panels (a–e).
doi:10.1371/journal.pcbi.1000326.g007
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Our genome-wide study also suggests that sensing systems in

heterotrophic roots are very responsive to the presence of sugar,

whether this resource comes from an externally supplied source or

from leaves as photosynthate. Recent findings on root ion

transporters support this hypothesis, by showing that 16 out of

19 light- or carbon-regulated transporters were directly controlled

by a carbon signaling pathway [18]. Moreover, we showed that

the CL composite signal exerts a negative feedback loop on the

actions of C and L. This loop means that gene regulation by C or

L reaches a plateau and the CL signal does not have any

synergistic effect on gene expression control. This observation

reinforces the notion that roots primarily sense L as C. More

interestingly, we found a pronounced effect of CN as a repressor of

C or L signals (Figure 7 and Figure 8 panels e–f). This repression

corresponds to genes controlled by C or L, for which control is

disrupted (the level of the CN coefficient is equal to the C effect) by

the presence of CN. In other words, these 136 genes (Figure 7 and

Figure 8, panels e and f) are under the control of a yet-to-be-

identified C and N sensing system and are up- or down-regulated

only when C but not N is applied to plants. This type of genomic

regulation might correspond to the signaling evoked by Moore et

al. (2003) for photosynthetic genes [12]. Indeed, sugar repression

of CAB1 and RBCS are antagonized by nitrate. These newly

discovered candidate genes as a group will deserve further analysis

to identify the molecular mechanisms involved in their control and

consequently elements of the C and N sensing system.

In conclusion, this analysis provides mathematical models that

explain global gene expression as a function of C, N and L in roots

and leaves. Analyses of the models provided insights into nutrient

signal transduction pathways in a sessile organism, Arabidopsis. Our

findings provide a new model of C, N and L signal management

and suggest that many of the effects seen for single genes

[12,18,19,36,37,38], are in fact managed by the plant at a systemic

level (Figure 7, Figure 8). We believe that our findings have broad

relevance since not only are plants the primary providers of C and

N through sugar and amino acid biosynthesis, but also carbon

fixation via photosynthesis is a major factor that can help alleviate

global warming. In this context, understanding systematic C/N/L

signal interaction at a genomic scale in plants may provide new

ways to tackle agricultural productivity and other socio-econom-

ical and environmental problems.

Materials and Methods

Plant culture and transcriptome analysis
Arabidopsis thaliana Col-0 were grown hydroponically in

nutrient solution as described previously [20]. To summarize,

plants were directly grown on cut eppendorf tubes which had

mesh at the bottom and were filled with sand. These tubes were

placed in custom-designed styrofoam rafts floating on a nutrient

solution, in a growth chamber (EGC, Chagrin Falls, OH, USA) at

22uC with 60 mmol.m22.s21 light intensity and 8 h/16 h light/

dark cycles. The seeds were initially germinated in tap water for

one week, then transferred to a complete nutrient solution, which

was renewed weekly [7]. After six weeks, plants were transferred to

fresh media the day before the experiments. For treatments,

individual rafts were transferred to containers with 300 ml of

nutrient solution supplemented with various concentrations of

nitrate [as a mix of 2/1 KNO3/Ca(NO3)2] and/or sucrose. The

N-free nutrient solutions contained 0.25 mM K2SO4 and

0.25 mM CaCl2 instead of KNO3/Ca(NO3)2. Plants were

transferred to treatment media at the beginning of the light

period and were harvested 8 h afterwards. Roots and leaves were

collected separately and quickly frozen in liquid nitrogen.

Microarray hybridization
Total RNA extraction was performed as described previously

[20]. Briefly, cDNA were synthesized from 8 mg total RNA using

T7- Oligo(dT) promoter primer and reagents recommended by

Figure 8. Conceptual model of signal interactions in Arabi-
dopsis roots. The strong relationships discovered (a–e) in Figure 7
were summarized by a conceptual model. Number of genes involved
are provided on the top of arrows. More details are provided in
Materials and Methods section.
doi:10.1371/journal.pcbi.1000326.g008
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Affymetrix (Santa Clara, CA, USA). Biotin-labeled cRNA was

synthesized using the Enzo BioArray HighYield RNA Transcript

Labeling Kit (Enzo, New York, NY). The concentration and

quality of the cRNA were evaluated by A260/280 nm reading and

1% agarose gel electrophoresis. We used 15 mg of labeled cRNA

to hybridize the Arabidopsis ATH1 Affymetrix gene chip for 16 h at

42uC. Washing, staining and scanning were performed as

recommended by Affymetrix. Image analysis and normalization

to a target median intensity of 150 was performed with the

Affymetrix MAS v5.0 set at default values. We analyzed the

reproducibility of replicates using the correlation coefficient and

visual inspection of scatter plots of pairs of replicates. One pair of

duplicates failed this quality control. Thus, to improve the

reliability of the measure we performed two more Affymetrix

chips from independent samples corresponding to the condition:

roots, light, no nitrogen, and no carbon.

Modelling of gene expression patterns
All data manipulations were performed in R (http://www.

r-project.org/). The ANOVA analysis was carried out using the R

lm() function with three models. The first model considers the

organs as a factor, such that the expression Yi of a genei is given

by: Yi =a0+a1C+a2L+a3N+a4O+a5CL+a6CN+a7CO+a8LN+
a9NO+a10LO+a11CNL+a12LNO+a13CNO+a14CLO+a15CLNO

+Z. In this model, a0 represents the expression under a ‘‘control’’

condition (without C, without N, without L, in roots); Z represents

the noise; and a1 to a15 represent the coefficients quantifying the

effect of each factor (C, N, L, O) or combination of factors. The

second model is a simplified version of the first model in which

gene expression in roots and leaves datasets were analyzed

separately: Yi = a0+a1C+a2L+a3N+a4CL+a5CN+a6LN+a7CNL

+Z. Each gene was analyzed separately. We addressed multiple

testing by controlling the false discovery rate (FDR) at 1% at each

stage of the evaluation procedure as described previously [20]. A

rigorous statistical procedure was implemented to avoid over-

fitting. The complete models were used to assess whether gene

expression could be explained at all by any combination of the

coefficients. If the model was significant at 1% FDR, then each

significant term in the model was evaluated to determine if its

presence contributed to the final model. Terms with higher p-

values were tested first. We used the anova() function to compare

models at each iteration of the procedure. Significant coefficients

were organized as presented in supplemental Tables S1, S2, S3.

Clustering algorithm, Sungear analysis, and
interpretations

Hierarchy between signals were evaluated by average linkage

hierarchical clustering. First, euclidian distances were calculated

using the dist() function in the R software. Second, clusters were

generated by the hclust() function. Third, plots were generated

using the plot() (default values) function. Dendrogram interpreta-

tions were carried out as previously described [26]. Concept: the

fact that a given gene behave similarly in response to 2 factors

(example: C and L), will increase the linkage of those 2 factors

(decrease the distance). Hence, at a gene list (genome) scale, the

study of dendrograms allows to visually capture the relative

relationship of the signals in the control of the considered gene set

regulation. Note that branch length is set to a constant value and is

not related to the data (plot() function with default values). Only the

height of the node reflects the distance between the branches and

the associated leaves of the tree.

Because the dendrograms do not give any direct information on

the size of the gene sets or their overlaps, we used Sungear

software [28] as a complement. We sorted genes for which a given

signal had a positive call. Then, the corresponding gene lists were

uploaded via the VirtualPlant online interface (http://www.

virtualplant.org). The Sungear software (can be understood as a

generalized Venn Diagram) displays polygons with the signals at

the vertices (anchors). The circles inside the polygon (vessels)

represent the genes controlled by different signals as indicated by

the arrows around the vessels. The area of each vessel (size) is

proportional to the number of genes associated with that vessel.

Thus, by visually analyzing the figure we can directly evaluate the

signal interactions.

Supporting Information

Figure S1 Hierarchical clustering of the magnitude of the model

coefficients reveals relationships between signals. Average linkage

hierarchical clustering with euclidean distance was used to analyze

the model coefficient matrices for the entire data set (A, Table S1),

leaves data set alone (B, Table S2), roots data set alone (C, Table

S3).

Found at: doi:10.1371/journal.pcbi.1000326.s001 (0.08 MB PDF)

Figure S2 Example of genes controlled in roots or in shoots by

combination of factors. Genes found to be controlled by a

combination of factors by our modeling approach (as the only

signal, see Figure 1 for a definition) were sorted. The expression

pattern of one representative gene belonging to each category is

presented. Asterisks indicate conditions captured in the model of

gene expression. Note that for At5g36950, the strong variability in

the carbon treatment in light (first yellow bar) does not allow the

analysis to detect C as a significant effect.

Found at: doi:10.1371/journal.pcbi.1000326.s002 (0.13 MB PDF)

Table S1

Found at: doi:10.1371/journal.pcbi.1000326.s003 (1.47 MB XLS)

Table S2

Found at: doi:10.1371/journal.pcbi.1000326.s004 (0.35 MB XLS)

Table S3

Found at: doi:10.1371/journal.pcbi.1000326.s005 (0.14 MB XLS)

Table S4

Found at: doi:10.1371/journal.pcbi.1000326.s006 (0.15 MB XLS)
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