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A systems biology approach for pathway
level analysis
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1,2,3Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48202, USA; 2Department of Computer Science,
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A common challenge in the analysis of genomics data is trying to understand the underlying phenomenon in the

context of all complex interactions taking place on various signaling pathways. A statistical approach using various

models is universally used to identify the most relevant pathways in a given experiment. Here, we show that the

existing pathway analysis methods fail to take into consideration important biological aspects and may provide

incorrect results in certain situations. By using a systems biology approach, we developed an impact analysis that

includes the classical statistics but also considers other crucial factors such as the magnitude of each gene’s expression

change, their type and position in the given pathways, their interactions, etc. The impact analysis is an attempt to a

deeper level of statistical analysis, informed by more pathway-specific biology than the existing techniques. On

several illustrative data sets, the classical analysis produces both false positives and false negatives, while the impact

analysis provides biologically meaningful results. This analysis method has been implemented as a Web-based tool,

Pathway-Express, freely available as part of the Onto-Tools (http://vortex.cs.wayne.edu).

[Supplemental material is available online at www.genome.org.]

Together with the ability of generating a large amount of data per

experiment, high-throughput technologies also brought the

challenge of translating such data into a better understanding of

the underlying biological phenomena. Independent of the plat-

form and the analysis methods used, the result of a high-

throughput experiment is, in many cases, a list of differentially

expressed genes. The common challenge faced by all researchers

is to translate such lists of differentially expressed genes into a

better understanding of the underlying biological phenomena

and, in particular, to put this in the context of the whole organ-

ism as a complex system. In 2002, a computerized analysis ap-

proach using the Gene Ontology (GO) was proposed to deal with

this issue (Khatri et al. 2002; Draghici et al. 2003). This approach

takes a list of differentially expressed genes and uses a statistical

analysis to identify the GO categories (e.g. biological processes,

etc.) that are over- or under-represented in the condition under

study. Given a set of differentially expressed genes, this approach

compares the number of differentially expressed genes found in

each category of interest with the number of genes expected to be

found in the given category just by chance. If the observed num-

ber is substantially different from the one expected just by

chance, the category is reported as significant. A statistical model

(e.g. hypergeometric) can be used to calculate the probability of

observing the actual number of genes just by chance, i.e., a P-

value. Currently, there are over 20 tools using this over-

representation approach (ORA) (Khatri and Draghici 2005). In

spite of its wide adoption, this approach has a number of limi-

tations related to the type, quality, and structure of the annota-

tions available. An alternative approach considers the distribu-

tion of the pathway genes in the entire list of genes and performs

a functional class scoring (FCS), which also allows adjustments

for gene correlations (Goeman et al. 2004; Pavlidis et al. 2004).

Arguably the state of the art in the FCS category, the Gene Set

Enrichment Analysis (GSEA) (Mootha et al. 2003; Subramanian

et al. 2005; Tian et al. 2005), ranks all genes based on the corre-

lation between their expression and the given phenotypes, and

calculates a score that reflects the degree to which a given path-

way P is represented at the extremes of the entire ranked list. The

score is calculated by walking down the list of genes ordered by

expression change. The score is increased for every gene that

belongs to P and decreased for every gene that does not. Statis-

tical significance is established with respect to a null distribution

constructed by permutations.

Both ORA and FCS techniques currently used are limited by

the fact that each functional category is analyzed independently

without a unifying analysis at a pathway or system level (Tian et

al. 2005). This approach is not well suited for a systems biology

approach that aims to account for system level dependencies and

interactions as well as to identify perturbations and modifica-

tions at the pathway or organism level (Stelling 2004). Several

pathway databases such as KEGG (Ogata et al. 1999), BioCarta

(http://www.biocarta.com), and Reactome (Joshi-Tope et al.

2005) currently describe metabolic pathway and gene signaling

networks offering the potential for a more complex and useful

analysis. A recent technique, ScorePage, has been developed in

an attempt to take advantage of these types of data for the analy-

sis of metabolic pathways (Rahnenfuhrer et al. 2004). Unfortu-

nately, no such technique currently exists for the analysis of gene

signaling networks. All pathway analysis tools currently available

use one of the ORA approaches above and fail to take advantage

of the much richer data contained in these resources. GenMAPP/

MAPPfinder (Doniger et al. 2003; Dahlquist et al. 2002) and

Gene-Sifter use a standardized Z-score. PathwayProcessor (Grosu

et al. 2002), PathMAPA (Pan et al. 2003), Cytoscape (Shannon et

al. 2003), and PathwayMiner (Pandey et al. 2004) use Fisher’s
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exact test. MetaCore uses a hypergeometric model, while ArrayX-

Path (Chung et al. 2004) offers both Fisher’s exact test and a false

discovery rate (FDR). Finally, VitaPad (Holford et al. 2004) and

Pathway Studio (Nikitin et al. 2003) focus on visualization alone

and do not offer any analysis.

The approaches currently available for the analysis of gene

signaling networks share a number of important limitations.

First, these approaches consider only the set of genes on any

given pathway and ignore their position in those pathways. This

may be unsatisfactory from a biological point of view. If a path-

way is triggered by a single gene product or activated through a

single receptor and if that particular protein is not produced, the

pathway will be greatly impacted, probably completely shut off.

A good example is the insulin pathway (http://www.genome.

ac.jp/KEGG/pathway/hsa/hsa04910.html). If the insulin receptor

(INSR) is not present, the entire pathway is shut off. Conversely,

if several genes are involved in a pathway but they only appear

somewhere downstream, changes in their expression levels may

not affect the given pathway as much.

Second, some genes have multiple functions and are in-

volved in several pathways but with different roles. For instance,

the above INSR is also involved in the adherens junction pathway

as one of the many receptor protein tyrosine kinases. However, if

the expression of INSR changes, this pathway is not likely to be

heavily perturbed because INSR is just one of many receptors on

this pathway. Once again, all these aspects are not considered by

any of the existing approaches.

Probably the most important challenge today is that the

knowledge embedded in these pathways about how various

genes interact with each other is not currently exploited. The

very purpose of these pathway diagrams is to capture some of our

knowledge about how genes interact and regulate each other.

However, the existing analysis approaches consider only the sets

of genes involved on these pathways, without taking into con-

sideration their topology. In fact, our understanding of various

pathways is expected to improve as more data are gathered. Path-

ways will be modified by adding, removing or redirecting links

on the pathway diagrams. Most existing techniques are com-

pletely unable to even sense such changes. Thus, these tech-

niques will provide identical results as long as the pathway dia-

gram involves the same genes, even if the interactions between

them are completely redefined over time.

Finally, up to now the expression changes measured in these

high-throughput experiments have been used only to identify

differentially expressed genes (ORA approaches) or to rank the

genes (FCS methods), but not to estimate the impact of such

changes on specific pathways. Thus, ORA techniques will see no

difference between a situation in which a subset of genes is dif-

ferentially expressed just above the detection threshold (e.g.,

twofold) and the situation in which the same genes are changing

by many orders of magnitude (e.g., 100-fold). Similarly, FCS tech-

niques can provide the same rankings for entire ranges of expres-

sion values, if the correlations between the genes and the phe-

notypes remain similar. Even though analyzing this type of in-

formation in a pathway and system context would be extremely

meaningful from a biological perspective, currently there is no

technique or tool able to do this.

We propose a radically different approach for pathway

analysis that attempts to capture all aspects above. An impact

factor (IF) is calculated for each pathway incorporating param-

eters such as the normalized fold change of the differentially

expressed genes, the statistical significance of the set of pathway

genes, and the topology of the signaling pathway. We show on a

number of real data sets that the intrinsic limitations of the clas-

sical analysis produce both false positives and false negatives

while the impact analysis provides biologically meaningful re-

sults.

Impact analysis

Our goal is to develop an analysis model that would require both

a statistically significant number of differentially expressed genes

and biologically meaningful changes on a given pathway. In this

model, the IF of a pathway Pi is calculated as the sum of two

terms:

IF�Pi� = log�1

pi
� +

�
g∈Pi

|PF�g�|

|�E| � Nde�Pi�
. (1)

The first term is a probabilistic term that captures the significance

of the given pathway Pi from the perspective of the set of genes

contained in it. This term captures the information provided by

the currently used classical statistical approaches and can be cal-

culated using either an ORA (e.g., z-test [Doniger et al. 2003],

contingency tables [Pan et al. 2003; Pandey et al. 2004], etc.), a

FCS approach (e.g., GSEA; Mootha et al. 2003; Subramanian et al.

2005) or other more recent approaches (Robinson et al. 2004;

Breslin et al. 2005; Tian et al. 2005). The pi value corresponds to

the probability of obtaining a value of the statistic used at least as

extreme as the one observed, when the null hypothesis is true.

The results presented here were obtained using the hypergeomet-

ric model (Tavazoie et al. 1999; Draghici et al. 2003) in which pi

is the probability of obtaining at least the observed number of

differentially expressed gene, Nde, just by chance.

The second term in Equation 1 is a functional term that

depends on the identity of the specific genes that are differen-

tially expressed as well as on the interactions described by the

pathway (i.e., its topology). In essence, this term sums up the

absolute values of the perturbation factors (PFs) for all genes g on

the given pathway Pi. The PF of a gene g is calculated as follows:

PF�g� = �E�g� + �
u∈USg

�ug �
PF�u�

Nds�u�
. (2)

In this equation, the first term captures the quantitative infor-

mation measured in the gene expression experiment. The factor

�E (g) represents the signed normalized measured expression

change of the gene g determined using one of the available meth-

ods (Quackenbush 2001; Churchill 2002; Draghici 2002; Yang

and Speed 2002). The second term is a sum of all PFs of the genes

u directly upstream of the target gene g, normalized by the num-

ber of downstream genes of each such gene Nds(u), and weighted

by a factor �ug, which reflects the type of interaction: �ug = 1 for

induction, �ug = �1 for repression. (In KEGG, which is the source

of the pathways used here, this information about the type of

interaction is available for every link between two genes in the

description of the pathway topology.) USg is the set of all such

genes upstream of g. The second term here is similar to the Page-

Rank index used by Google (Page et al. 1998), only we weight the

downstream instead of the upstream connections (a Web page is

important if other pages point to it, whereas a gene is important

if it influences other genes).

Under the null hypothesis, which assumes that the list of

differentially expressed genes only contains random genes, the

likelihood that a pathway has a large IF is proportional to the
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number of such “differentially expressed” genes that fall on the

pathway, which in turn is proportional to the size of the path-

way. Thus, we need to normalize with respect to the size of the

pathway by dividing the total perturbation by the number of

differentially expressed genes on the given pathway, Nde(Pi). Fur-

thermore, various technologies can yield systematically different

estimates of the fold changes. For instance, the fold changes re-

ported by microarrays tend to be compressed with respect to

those reported by RT-PCR (Canales et al. 2006; Draghici et al.

2006). In order to make the IFs as independent as possible from

the technology, and also comparable between problems, we also

divide the second term in Equation 1 by the mean absolute fold

change �E, calculated across all differentially expressed genes.

Assuming that there are at least some differentially expressed

genes anywhere in the data set, both �E and Nde(Pi) are different

from zero so the second term is properly defined. (If there are no

differentially expressed genes anywhere, the problem of finding

the impact on various pathways is meaningless.)

It can be shown that the IFs correspond to the negative log

of the global probability of having both a statistically significant

number of differentially expressed genes and a large perturbation

in the given pathway. IF values, if, will follow a �(2,1) distribu-

Figure 1. The complement and coagulation cascade as affected by treatment with palmitate in a hepatic cell line. There are seven differentially
expressed genes (red, up-regulated; blue, down-regulated) out of 69 total genes. All classical ORA models would give any other pathway with the same
proportion of genes a similar P-value, disregarding the fact that six out of these seven genes are involved in the same region of the pathway, closely
interacting with each other. Both ORA and GSEA would yield exactly the same significance value to this pathway even if the diagram were to be
completely redesigned by future discoveries. In contrast, the impact factor can distinguish between this pathway and any other pathway with the same
proportion of differentially expressed gene, as well as take into account any future changes to the topology of the pathway.

An impact analysis of gene signaling pathways
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tion from which P-values can be calculated as P = (if + 1) � e�if (for

details, see Supplemental materials).

The impact analysis proposed here extends and enhances

the existing statistical approaches by incorporating the novel as-

pects discussed above. For instance, the second term of the gene

perturbation (in Equation 2) increases the PF scores of those

genes that are connected through a direct signaling link to other

differentially expressed genes (e.g., the PFs of F5 and F11 in

Fig. 1 are both increased because of the differentially expressed

SERPINC1 and SERPINA1). This will yield a higher overall score

for those pathways in which the differentially expressed genes

are localized in a connected subgraph, as in this example. Inter-

estingly, when the limitations of the existing approaches are

forcefully imposed (e.g., ignoring the magnitude of the measured

expression changes or ignoring the regulatory interactions be-

tween genes), the impact analysis reduces to the classical statis-

tics and yields the same results. For instance, if there are no

perturbations directly upstream of a given gene, the second term

in Equation 2 is zero and the PF reduces to the measured expres-

sion change �E, which is the classical way of assessing the impact

of a condition upon a given gene. A more detailed discussion of

various particular cases is included in the Supplemental materials.

Results

We have used this pathway analysis approach to analyze several

data sets. A first such set includes genes associated with better

survival in lung adenocarcinoma (Beer et al. 2002). These genes

have the potential to represent an important tool for the thera-

peutic decision, and if the correct regulatory mechanisms are

identified, they could also be potential drug targets. The expres-

sion values of the 97 genes associated with better survival iden-

tified by Beer and colleagues were compared between the cancer

and healthy groups. These data were then analyzed using a clas-

sical ORA approach (hypergeometric model), a classical FCS ap-

proach (GSEA), and our impact analysis. Figure 2 shows a com-

parison between the results obtained with the three approaches.

From a statistical perspective, the power of both classical

techniques appears to be very limited. The corrected P-values do

not yield any pathways at the usual 0.01 or 0.05 significance

levels, independently of the type of correction. If the significance

levels were to be ignored and the techniques used only to rank

the pathways, the results would continue to be unsatisfactory.

According to the classical ORA analysis, the most significantly

affected pathways in this data set are prion disease, focal adhesion,

and Parkinson’s disease. In reality, both prion and Parkinson’s

diseases are pathways specifically associated to diseases of the

central nervous system and are unlikely to be related to lung

adenocarcinomas. In this particular case, prion disease ranks at

the top only due to the differential expression of LAMB1. Since

this pathway is rather small (14 genes), every time any one gene

is differentially expressed, the hypergeometric analysis will rank

it highly. A similar phenomenon happens with Parkinson’s dis-

ease, indicating that this is a problem associated with the method

rather than with a specific pathway. At the same time, pathways

highly relevant to cancer such as cell cycle and Wnt signaling are

ranked in the lower half of the pathway list. The most significant

pathways reported as enriched in cancer by GSEA (Subramanian

et al. 2005) are cell cycle, Huntington’s disease, DRPLA, Alzheimer’s

disease, and Parkinson’s disease (see Fig. 2). Among these, only

cell cycle is relevant, while Huntington’s, Alzheimer’s and Par-

Figure 2. A comparison between the results of the classical probabilis-
tic approaches (A, hypergeometric; B, GSEA) and the results of the path-
way impact analysis (C) for a set of genes differentially expressed in lung
adenocarcinoma. The pathways marked with green are considered most
likely to be linked to this condition in this experiment. The ones in red are
unlikely to be related. The ranking of the pathways produced by the
classical approaches is very misleading. According to the hypergeometric
model, the most significant pathways in this condition are: prion disease,
focal adhesion, and Parkinson’s disease. Two out of these three are likely
to be incorrect. GSEA yields cell cycle as the most enriched pathway in
cancer, but three out of the four subsequent pathways are clearly incor-
rect. In contrast, all three top pathways identified by the impact analysis
are relevant to the given condition. The impact analysis is also superior
from a statistical perspective. According to both hypergeometric and
GSEA, no pathway is significant at the usual 1% or 5% levels on corrected
P-values. In contrast, according to the impact analysis, the cell cycle is
significant at 1%, and focal adhesion and Wnt signaling are significant at
5% and 10%, respectively.
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kinson’s diseases are clearly incorrect. However, although ranked

first, cell cycle is not significant in GSEA, even at the most lenient

10% significance and with the least conservative correction.

In contrast, the impact analysis reports cell cycle as the most

perturbed pathway in this condition and also as highly signifi-

cant from a statistical perspective (P = 1.6 � 10�6). Since early

articles on the molecular mechanisms perturbed in lung cancers

(Slebos and Rodenhuis 1989; Nau et al. 1985) until the most

recent articles on this topic (Panani and Roussos 2006; Coe et al.

2006), there is a consensus that the cell cycle is highly deranged

in lung cancers. Moreover, cell cycle genes have started to be

considered both as potential prognostic factors and therapeutic

targets (Vincenzi et al. 2006). The second most significant path-

way as reported by the impact analysis is focal adhesion. An

inspection of this pathway (shown in Fig. 3) shows that in these

data, both ITG and RTK receptors are perturbed, as well as the

VEGF ligand. Because these three genes appear at the very begin-

ning and affect both entry points controlling this pathway, their

perturbations are widely propagated throughout the pathway.

Furthermore, the CRK oncogene was also found to be up-

regulated. Increased levels of CRK proteins have been observed in

several human cancers, and over-expression of CRK in epithelial

cell cultures promotes enhanced cell dispersal and invasion (Rod-

rigues et al. 2005). For this pathway, the impact analysis yields

a raw P-value of 0.005, which remains significant even after the

FDR correction (P = 0.048), at the 5% level. In contrast, the ORA

analysis using the hypergeometric model yields a raw P-value of

0.155 (FDR corrected to 0.627), while the GSEA analysis yields a

raw P-value of 0.16 (FDR corrected to 0.384). For both tech-

niques, not even the raw P-values are significant at the usual

levels of 5% or 10%. This is not a mere accident but an illustra-

tion of the intrinsic limitations of the classical approaches. These

approaches completely ignore the position of the genes on the

given pathways, and therefore, they are not able to identify this

pathway as being highly impacted in this condition. Note that

any ORA approach will yield the same results for this pathway for

any set of four differentially expressed genes from the set of genes

on this pathway. Similarly, GSEA will yield the same results for

any other set of four genes with similar expression values (yield-

ing similar correlations with the phenotype). Both techniques are

unable to distinguish between a situation in which these genes

are upstream, potentially commandeering the entire pathway as

in this example, or randomly distributed throughout the pathway.

The third pathway as ranked by the impact analysis is Wnt

signaling (FDR corrected P = 0.055, significant at 10%). The im-

portance of this pathway is well supported by independent re-

search. At least three mechanisms for the activation of Wnt sig-

naling pathway in lung cancers have been recently identified: (1)

over-expression of Wnt effectors such as Dvl, (2) activation of a

non-canonical pathway involving MAPK (previously known as

JNK), and (3) repression of Wnt antagonists such as WIF

(Mazieres et al. 2005). Mazieres and colleagues also argue that the

blockade of Wnt pathway may lead to new treatment strategies

in lung cancer.

In the same data set, Huntington’s disease, Parkinson’s dis-

ease, prion disease, and Alzheimer’s disease have low IFs (cor-

rected P-values of >0.20), correctly indicating that they are un-

likely to be relevant in lung adenocarcinomas.

A second data set includes genes identified as being associ-

ated with poor prognosis in breast cancer (van’t Veer et al. 2002).

Figure 3. The focal adhesion pathway as impacted in lung adenocarcinoma vs. normal. In this condition, both ITG and RTK receptors are perturbed,
as well as the VEGF ligand. Because these three genes appear at the very beginning and affect both entry points controlling this pathway, their
perturbations are widely propagated throughout the pathway and this pathway appears as highly impacted. All classical approaches completely ignore
the positions of the genes on the given pathways and fail to identify this pathway as significant.
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Figure 4 shows a comparison among the classical hypergeometric

approach, GSEA, and the pathway impact analysis. Based on

these data, GSEA finds no significantly impacted pathways at any

of the usual 5% or 10% levels. In fact, the only FDR-corrected

value below 0.25, in the entire data set is 0.11, corresponding to

the ubiquitin mediated proteolysis pathway. Furthermore, GSEA’s

ranking does not appear to be useful for these data, with none of

the cancer-related pathways being ranked toward the

top. The most significant signaling path-

way according to the hypergeometric

analysis, cell cycle, is also the most sig-

nificant in the impact analysis. How-

ever, the agreement between the two ap-

proaches stops here. In terms of statisti-

cal power, according to the classical

hypergeometric model, there are no

other significant pathways at either 5%

or 10% significance on the corrected P-

values. If we were to ignore the usual sig-

nificance thresholds and only consider

the ranking, the third highest pathway

according to the hypergeometric model

is Parkinson’s disease. In fact, based on

current knowledge, Parkinson’s disease

is unlikely to be related to rapid metas-

tasis in breast cancer. At the same time,

the impact analysis finds several other

pathways as significant. For instance, fo-

cal adhesion is significant with an FDR-

corrected P-value of 0.03. In fact, a link

between focal adhesion and breast can-

cer has been previously established (Go-

lubovskaya et al. 2002; van Nimwegen

and van de Water 2006). In particular,

PTK2 (previously known as FAK), a cen-

tral gene on the focal adhesion pathway,

has been found to contribute to cellular

adhesion and survival pathways in

breast cancer cells, which are not re-

quired for survival in nonmalignant

breast epithelial cell (Beviglia et al.

2003). Recently, it has also been shown

that Doxorubicin, an anti-cancer drug,

caused the formation of well-defined fo-

cal adhesions and stress fibers in mam-

mary adenocarcinoma MTLn3 cells early

after treatment (van Nimwegen et al.

2006). Consequently, the PTK2/PI-3 ki-

nase/PKB signaling route within the fo-

cal adhesion pathway has been recently

proposed as the mechanism through

which Doxorubicin triggers the onset of

apoptosis (van Nimwegen et al. 2006).

TGF-beta signaling (P = 0.032) and

MAPK (P = 0.064) are also significant.

Both fit well with previous research re-

sults. TGF-beta1, the main ligand for the

TGF-beta signaling pathway, is known

as a marker of invasiveness and meta-

static capacity of breast cancer cells

(Todorovic-Rakovic 2005). In fact, it has

been suggested as the missing link in the

interplay between estrogen receptors and ERBB2 (previously

known as HER-2; human epidermal growth factor receptor 2)

(Todorovic-Rakovic 2005). Furthermore, plasma levels of TGF-

beta1 have been used to identify low-risk postmenopausal meta-

static breast cancer patients (Nikolic-Vukosavljevic et al. 2004).

Finally, MAPK has been shown to be connected not only to can-

cer in general but to this particular type of cancer. For instance

the proliferative response to progestin and estrogen was shown

Figure 4. A comparison between the results of the classical (ORA) probabilistic approach (A), GSEA
(B), and the results of the pathway impact analysis (C) for a set of genes associated with poor prognosis
in breast cancer. The pathways marked with green are well supported by the existing literature. The
ones in red are unlikely to be related. After correcting for multiple comparisons, GSEA fails to identify
any pathway as significantly impacted in this condition at any of the usual significance levels (1%, 5%,
or 10%). The hypergeometric model pinpoints cell cycle as the only significant pathway. Relevant
pathways such as focal adhesion, TGF-beta signaling, and MAPK do not appear as significant from a
hypergeometric point of view. While agreeing on the cell cycle, the impact analysis also identifies the
three other relevant pathways as significant at the 5% level.
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to be inhibited in mammary cells micro-

injected with inhibitors of MAP kinase

pathway (Chen et al. 2001). Also, it is

worth noting the gap between the P-

values for regulation of actin cytoskeleton

(P = 0.111), which may be relevant in

cancer, and the next pathway, Parkin-

son’s disease (P = 0.239), which is irrel-

evant in this condition.

A third data set involves a set of dif-

ferentially expressed genes obtained by

studying the response of a hepatic cell

line when treated with palmitate

(Swagell et al. 2005). Figure 5 shows the

comparison between the classical statis-

tical analysis (ORA) and the pathway im-

pact analysis. (The GSEA analysis re-

quires expression values for all genes;

since this experiment was performed

with a custom array and not all values

are publicly available, GSEA could not be

applied here.) The classical statistical

analysis yields three pathways signifi-

cant at the 5% level: complement and co-

agulation cascades, focal adhesion, and

MAPK. The impact analysis agrees on all

these but also identifies several addi-

tional pathways. The top four pathways

identified by the impact analysis are well

supported by the existing literature.

There are several studies that support the

existence of a relationship between dif-

ferent coagulation factors, present in the

complement and coagulation cascades

pathway, and palmitate. Sanders et al.

(1999), for instance, demonstrated that a

high palmitate intake affects factor VII

coagulant (FVIIc) activity. Interestingly,

Figure 1 shows not only that this path-

way has a higher than expected propor-

tion of differentially expressed genes but

also that six out of seven such genes are

involved in the same region of the path-

way, suggesting a coherently propagated

perturbation. The focal adhesion and tight junction pathways

involve cytoskeletal genes. Swagell et al. (2005) considered the

presence of the cytoskeletal genes among the differentially ex-

pressed genes as very interesting and hypothesized that the

down-regulation of these cytoskeletal genes indicates that palmi-

tate decreases cell growth. Finally, the link between MAPK and

the palmitate was established by Susztak et al. (2005), who

showed that p38 MAP kinase is a key player in the palmitate-

induced apoptosis.

Conclusions

A statistical approach using various models is commonly used in

order to identify the most relevant pathways in a given experi-

ment. This approach is based on the set of genes involved in each

pathway. We identified a number of additional factors that may

be important in the description and analysis of a given biological

pathway. Based on these, we developed a novel impact analysis

method that uses a systems biology approach in order to identify

pathways that are significantly impacted in any condition moni-

tored through a high-throughput gene expression technique.

The impact analysis incorporates the classical probabilistic com-

ponent but also includes important biological factors that are not

captured by the existing techniques: the magnitude of the ex-

pression changes of each gene, the position of the differentially

expressed genes on the given pathways, the topology of the path-

way that describes how these genes interact, and the type of

signaling interactions between them. The results obtained on

several independent data sets show that the proposed approach is

very promising. This analysis method has been implemented as a

Web-based tool, Pathway-Express, freely available as part of the

Onto-Tools (http://vortex.cs.wayne.edu).
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