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Abstract

Using small molecule probes to understand gene function is an attractive approach that allows functional characterization
of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these
compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent
methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a
combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae
combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of
this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1mutants revealed that Crg1, a stress-
responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-
related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide
analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance
in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid
homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with
other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of
small molecule inhibitors.
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Introduction

Methyltransferases are a large class of enzymes comprising 0.6–

1.6% of protein coding genes in most sequenced organisms [1]. S-

adenosyl methionine (SAM)-dependent methyltransferases regu-

late a dynamic network of cellular signaling events and are

required to maintain intracellular homeostasis in the face of

external perturbations by catalyzing the methylation of a wide

variety of substrates (proteins, nucleic acids, lipids and small

molecules) [2–4]. The characterization and understanding of the

roles of most methyltransferases remains challenging, however,

due to their dispensability in standard growth conditions.

Numerous studies from our lab and others have demonstrated

that chemogenomic profiling of the Saccharomyces cerevisiae yeast

deletion collection [5] is a powerful approach for the identification

and subsequent characterization of genes required for growth in

the presence of bioactive compounds [6–15]. Moreover, while

most yeast genes (,80%) are dispensable for growth in standard

laboratory conditions, the presence of chemical and/or environ-

mental perturbations of the cell, 97% of the yeast genome exhibits

a fitness defect that would not otherwise have been revealed [15].

Well-established chemogenomic assays in yeast, such as drug-

induced Haploinsufficiency Profiling (HIP), Homozygous Profiling

(HOP) and Multicopy Suppression Profiling (MSP) are designed to

identify small molecule-gene interactions. For example, HIP assay

is used to detect compounds that target essential genes, and HOP

and MSP are suitable for identification genetic modifiers of drug

resistance [8–10,13]. The combination of these chemogenomic

assays allowed us to identify a novel gene, YHR209W, that we

subsequently named CRG1 (Cantharidin Resistance Gene 1), due
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to its requirement for growth in the presence of the small molecule

cantharidin [14]. Specifically, both CRG1 heterozygous and

homozygous deletion strains exhibited sensitivity to the drug,

and the overexpression of CRG1 conferred resistance to the drug.

Nonetheless, Crg1 is uncharacterized, except for annotation

derived from large-scale analyses [15–17].

Based on its primary sequence, Crg1 is predicted to encode a

Class I S-adenosyl-methionine (SAM)-dependent methyltransfer-

ase [18]. Crg1 shares close sequence homology with trans-aconitate

methyltransferase Tmt1 (BLAST-P expect value 2610231 and

3610234 for the full proteins and the methyltransferase domains,

respectively). Tmt1 is known to modify and detoxify small

molecules by methylation [19–21]. We have previously shown

indirectly that Crg1 does not likely possess Tmt1 methyltransferase

activity towards trans-aconitate, 3-isopropylmalate, and isopropyl-

maleate, indicating that these closely related proteins have

divergent substrates [19,21]. Bioinformatics analysis from our

group has shown, however, that Crg1 clusters with a family of

eight methyltransferases based on their methyl-accepting substrate

specificity, including Tmt1, the lipid methyltransferases (Coq3,

Coq5, and Erg6), and a tRNA methyltransferase, Trm9 [22]. All

of these proteins methylate carboxylic acids present in small

molecules to form methyl esters, suggesting that Crg1 might have a

similar biochemical activity and catalyze the formation of a methyl

ester.

Cantharidin, a natural product produced by Chinese blister

beetles of the Meloidae family of Coleoptera, is used in Traditional

Chinese Medicine for the treatment of a variety of cancers [23].

Cantharidin has potent anticancer activity characterized by cell

cycle arrest in G2/M phase, apoptosis, and DNA damage,

presumably as a result of the generation of reactive oxygen species

[23–29], yet its use is limited due to renal and mucous membrane

toxicity. Although the activity of cantharidin is usually attributed

to its high affinity towards Type 1 and 2A serine/threonine

protein phosphatases [30,31], several studies suggest that canthar-

idin has additional cellular targets. Specifically, cantharidin has

been reported to stimulate xanthine oxidase activity and to inhibit

N-acyltransferase and cAMP phosphodiesterase in liver cells,

suggesting a complex mode of action [32–34]. Using the HIP and

HOP genome-wide assays, we discovered that a surprisingly large

number of methyltransferase deletion mutants are sensitive to

cantharidin, suggesting that, as a class, these enzymes may interact

directly or indirectly with cantharidin and participate in the

response to cantharidin stress [15]. Notably, among these

methyltransferases only the overexpression of CRG1 is able to

confer resistance to cantharidin.

To further explore the function of Crg1 and the mechanism of

cantharidin cytotoxicity, we employed chemical genomics tools

combined with conventional biological techniques. We demon-

strated that Crg1 methylates cantharidin in vitro, and identified

cantharidin-specific CRG1 genetic interactors. To extend our

chemogenomic results we analyzed the lipid profile of mutants

grown in the presence of cantharidin, and demonstrated that

cantharidin resistance involves Crg1-dependent maintenance of

lipid homeostasis.

Results

CRG1 Is a Functional Methyltransferase Required for
Protein Phosphatase Inhibitor Resistance
To confirm our published cantharidin-specific response of

CRG1 [14], we measured the growth of three strains 1) wild-type

diploid strain BY4743, 2) a crg1 D/D homozygous deletion strain,

and 3) a crg1D/D homozygous deletion strain overexpressing

CRG1 (2 m plasmid) as a function of cantharidin concentration. We

observed that the gene dosage of the putative SAM-dependent

methyltransferase CRG1 correlated with the sensitivity/resistance

of these strains to cantharidin (Figure 1A). In agreement with this

gene-dose dependent effect, crg1D/CRG1 heterozygous mutants

grew worse than the wild-type strain but better than a crg1D/D

homozygous mutant in the presence of cantharidin (500 mM)

(Figure S1A). We found that cantharidin is more potent against

cells grown in synthetically defined (SD) medium than in YPD

medium (5 mM and 250 mM, IC20 for wild-type in SD and YPD,

respectively; Figure S1B). The observed differential drug sensitivity

in defined media and rich YPD media is a common phenomenon

in our drug screens (unpublished data). We also tested structural

analogues of cantharidin, including cantharidic acid and nor-

cantharidin, and found that these compounds produced a similar

gene-dose dependent response in crg1 mutants (Figure S1C).

Because our data suggested that CRG1 responds to cantharidin

in a gene dose-dependent manner, we next tested whether the

transcription of CRG1 is induced in the presence of the drug. qRT-

PCR analysis showed that the relative abundance of CRG1

transcripts increased drastically in the wild-type strain after 60 min

of the drug treatment (250 mM) compared to the DMSO control

(P-value ,0.02; Figure 1B, left panel). Importantly, a gene-dose

dependent effect in the response to cantharidin was also observed

for CRG1 transcript levels in crg1D/CRG1 heterozygous and CRG1-

overexpressing mutants (Figure S2A). In agreement with the qRT-

PCR data, we also observed induction of Crg1 at the protein level.

GFP-tagged Crg1 protein increased from undetectable levels prior

to treatment and accumulated to high levels (restricted to the

cytoplasm) following 1 hour of cantharidin treatment (Figure S1B).

Given the known high affinity of cantharidin towards Type 2A

protein phosphatases (PP2A) and to a lesser degree towards Type 1

(PP1) [30,31], we tested if CRG1 induction was mediated by

chemical inhibition of protein phosphatase function. We phe-

nocopied cantharidin treatment using a panel of protein

Author Summary

Chemical genetics uses small molecules to perturb
biological systems to study gene function. By analogy
with genetic lesions, chemical probes act as fast-acting,
reversible, and ‘‘tunable’’ conditional alleles. Furthermore,
small molecules can target multiple protein targets and
target pathways simultaneously to uncover phenotypes
that may be masked by genes encoding partially
redundant proteins. Finally, potent chemical probes can
be useful starting points for the development of human
therapeutics. Here, we used cantharidin, a natural toxin, to
uncover otherwise ‘‘hidden’’ phenotypes for a methyl-
transferase that has resisted characterization. This enzyme,
Crg1, has no phenotype in standard conditions but is
indispensible for survival in the presence of cantharidin.
Using this chemical genetic relationship, we characterized
novel functions of Crg1, and by combining diverse
genomic assays with small molecule perturbation we
characterized the mechanism of cantharidin cytotoxicity.
These observations are relevant beyond yeast Crg1
because cantharidin and its analogues have potent
anticancer activity, yet its therapeutic use has been limited
to topical applications because of its cytotoxicity. Consid-
ering that methyltransferases are an extremely abundant
and diverse class of cellular proteins, chemical probes such
as cantharidin are critical for understanding their cellu-
lar roles and defining potential points of therapeutic
intervention.

Characterizing Crg1-Cantharidin Interaction
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phosphatase homozygous deletion strains. Consistent with the

results of chemical inhibition of protein phosphatases with

cantharidin, we found that the homozygous deletion strains

sit4D/D (PP2A), ptc1D/D (PP2C) and the heterozygous deletion

strain glc7D/GLC7 (PP1) also resulted in transcriptional upregula-

tion of CRG1 in the absence of cantharidin (Figure 1B, right panel).

It is important to note that perturbation of these protein

phosphatases accounted for only ,20% of the transcript induction

observed by cantharidin. Furthermore, the treatment with

calyculin A, a structurally distinct PP2 and PP1 inhibitor [35],

known to interact with the yeast PP1 GLC7 [14], resulted in an

increase of CRG1 transcript level to a similar degree as in glc7D/

GLC7 mutant (,2.5 fold; Figure S2C). This observation opens up

the possibility that cantharidin acts independently of this PPase.

This hypothesis is also supported by our observation that

overexpression of GLC7 confers resistance to calyculin A, but

not to cantharidin [14]. These results also suggest that these

protein phosphatases are likely to be negative regulators of the

cellular pathway regulating CRG1 induction.

We also observed that cantharidin-induced transcription of CRG1

follows a temporal pattern characteristic of diverse environmental

stress responses [36], following a peak at 60 min of treatment the

transcript levels began to decrease at 120 min (,40 fold, P-

value,0.01; Figure 1B). Indeed, a comprehensive genome-wide

analysis of diverse environmental stresses from publicly available

expression data [36] revealed that the transcription profile of CRG1

in diverse stress conditions correlates highly (r=0.8) with a well-

characterized stress-responsive gene, the heat shock protein SSE2

(Figure S2D), suggesting that CRG1 is also transcriptionally

activated by other stress conditions in addition to cantharidin.

Figure 1. Functional SAM-dependent methyltransferase Crg1 is required for cantharidin response. (A) CRG1 gene dose is important for
cantharidin tolerance. Wt, crg1D/D and CRG1-overexpressing crg1D/D mutants were assessed in the presence of cantharidin in YPD. Dose-response
curves were obtained by plotting OD600 at saturation point vs. tested drug concentrations. (B) Chemical (left panel) and genetic inhibition (right
panel) of protein phosphatases result in the induction of CRG1. Wt, glc7D/GLC7 heterozygous, sit4D/D and ptc1D/D homozygous deletion mutants
grown to mid-exponential phase were incubated with or without cantharidin (250 mM). For each time point, total RNA was extracted, cDNA
synthesized and the relative abundance of CRG1 transcript was analyzed by qRT-PCR. Data are the mean of at least three independent experimental
replicates, and error bars represent the standard deviation. (C) Point mutations in conserved residues of the Crg1 methyltransferase domain reduce
cantharidin tolerance. Site-specific mutations in the conserved motifs of methyltransferase domain are shown with the arrows. Mutated CRG1 ORFs
were cloned under GAL1 promoter and transformed into crg1D/D cells. The transformants were grown in SD-URA with raffinose (2%) to mid-
exponential phase and induced with galactose (2%). The fitness of point mutants based on saturation at final OD was assessed in the presence of
cantharidin (6 mM). (D) A plot comparing the transcriptome profiles of crg1D/D and CRG1-overexpressing crg1D/D mutants. Exponentially grown cells
were treated with cantharidin (250 mM) for 1 hour or DMSO, total RNA was extracted and synthesized cDNA was hybridized to Affymetrix Tiling
arrays. Significantly different GO Biological processes are listed in Table S1. (E) Diagram showing that the methionine biosynthesis is tightly linked to
SAM cycling in methylation reactions coordinated by methyltransferases. The genes that are transcriptionally different between cantharidin-resistant
and sensitive mutant are shown in red. STR3 (P-value,0.0057),MET17 (P-value,0.0036), MET6 (P-value,0.012), SAM1 (P-value,0.02), SAH1 (P-value
,0.03), MMP1 (P-value ,0.04), SAM2 (P-value ,0.056) (Table S2).
doi:10.1371/journal.pgen.1002332.g001

Characterizing Crg1-Cantharidin Interaction
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Because CRG1 is annotated (based on its amino acid sequence)

as a putative SAM-dependent methyltransferase [18], we next

asked whether its methyltransferase domain is required for

cantharidin tolerance by mutating amino acids (D44A, D67A,

E105A-D108A) within the conserved motifs (Figure 1C). These

amino acids have previously been shown to be critical for activity

of other methyltransferases [37]. Overexpression of these crg1 site-

specific mutants in a crg1D/D strain failed to confer cantharidin

resistance while, in contrast, mutation of a non-conserved residue

(G96A) in the methyltransferase domain showed resistance

equivalent to wild-type CRG1 (Figure 1C). The observed decrease

in resistance to cantharidin was not due to reduced expression of

the mutated Crg1 proteins (Figure S2E), suggesting that the

methyltransferase domain of Crg1 is both functional and

important for cellular survival in the presence of the drug.

To identify other potential cellular factors important for Crg1-

mediated cantharidin resistance, we profiled the complete yeast

transcriptome using whole-genome tiling microarrays. Transcrip-

tional changes in wild type, crg1D/D deletion and CRG1-

overexpressing crg1D/D strains were analyzed after 1 hour of

exposure to the drug. To ensure that the transcriptome datasets for

the different strains are comparable, the IC20 for wild type

(250 mM) was applied to all strains. Even at this high dose, the

hypersensitive crg1D/D strain is viable, after 1 hour of exposure

(Figure S3A). When applied for an extended period, this dose is, in

fact, inhibitory for growth of crg1D/D strains (Figure 1A and

Figure S1A). Furthermore, the treatment of crg1D/D strain with a

lower dose (30 mM, the IC20 for this mutant) resulted in

quantitative difference in the transcriptome profile rather than in

any qualitative differences, suggesting that the transcriptional

changes are consistent across a range of concentrations. In

particular, this observation was relevant to downregulated genes

(Figure S3B and S3C). It is also worth noting that the expression of

most genes was not affected by crg1 mutation. To uncover

cantharidin-specific genes in our transcriptome analysis, we

eliminated Environmental Stress Response (ESR) genes known

to be activated by a large number of stresses, such as genes

required for vacuole biogenesis, response to stress, ribosome

biogenesis, and RNA processing [36]. We also eliminated those

genes that did not demonstrate at least two-fold difference in the

presence of cantharidin or if their differential expression failed to

show statistical significance. To detect genes and biological

processes that are differentially expressed among the strains and

treatments, the enrichment of genes for Gene Ontology (GO) term

Biological process in the transcriptomes of wild type, crg1D/D and

CRG1-overexpressing crg1D/D strains in the presence and absence

of cantharidin were compared (Table S1). We also clustered genes

according to their expression pattern. The clustering and GO term

comparative analysis revealed that significantly downregulated

genes (log2 (drug/DMSO) ,21, P-value ,0.05) in crg1D/D

mutant and the wild type were enriched for the genes of amino

acid process (multiple-testing corrected P-value,1.061027 and P-

value,7.061027, respectively), while the transcriptional profile of

cantharidin-resistant CRG1-overexpressing crg1D/D strain did not

demonstrate a similar enrichment (Figure 1D and Figure S3D). Of

particular interest, most of the genes that comprise methionine

biosynthetic process (MET6, MET17, MMP1, STR3, ADE3,

SAM1, SAM2, SAH1, MET22, MET31) were differentially

expressed between cantharidin-resistant CRG1-overexpressing

crg1D/D, wild type and cantharidin-sensitive crg1D/D strain in

the presence of cantharidin (P-value ,0.05; Table S2; Figure 1E).

One noteworthy example is STR3, a cystathionine beta-lyase, the

gene that demonstrated the most differential expression in the

strains. STR3 was significantly induced by cantharidin in CRG1-

overexpressing crg1D/D strain (log2 (drug/DMSO)= 4.7, P-value

,0.022) and downregulated in the wild type (log2 =20.6) and

crg1D/D (log2 =20.55). The observed differential expression of

STR3 was further confirmed by qRT-PCR (Figure S3F). Str3 is of

interest because it functions in methionine biosynthesis by

converting cystathionine into homocysteine, a precursor for

methionine, which is a substrate for the generation of SAM.

SAM is required as a methyl donor for methylation reactions

(Figure 1E). To further explore the role of the Crg1 SAM-

dependent methyltransferase, we treated wild-type cells with a

combination of cantharidin and S-adenosyl homocysteine (SAH), a

non-specific methyltransferase inhibitor. We found that wild-type

strains were more sensitive to the cantharidin/SAH combination

compared to either single agent (Figure S3F). These observations

confirm the requirement of SAM-dependent methyltransferase

activity in response to cantharidin, and suggest that Crg1 is a

functional methyltransferase that catalyzes a SAM-dependent

methylation reaction important for cantharidin resistance.

Crg1 Methylates Cantharidin In Vitro
Given that CRG1 provides cantharidin resistance in a gene dose-

dependent manner and because of its close sequence homology to

TMT1, a small molecule methyltransferase that catalyzes the

formation of methyl esters (Figure 2A), we hypothesized that Crg1

might methylate cantharidin because this drug bears some structural

similarity to the substrates of Tmt1 (Figure 2B). To test this possibility,

we performed in vitro biochemical assays with purified Crg1,

cantharidin, and S-adenosyl-[methyl-14C]methionine (Figure 3A).

These in vitro reactions were separated via reverse phase liquid

chromatography and the radioactivity of the collected fractions was

quantified with a scintillation counter. We detected a unique peak of

radioactivity eluting in the 18–20 min fraction (Figure 3B). The

appearance of this peak was both cantharidin and Crg1-dependent,

suggesting that it could correspond to methylated cantharidin.

To confirm that the novel activity was catalyzed by Crg1 rather

than by a co-purifying protein, we repeated the methylation

reactions with mutant forms of Crg1 containing amino acid

substitutions at critical residues within the methyltransferase

domain. As described earlier, the D44A and E105A-D108A

mutations abolished resistance to cantharidin (Figure 1C), so we

assessed whether these mutated proteins were able to methylate

the drug molecule. We prepared in vitro reactions containing

varying concentrations of cantharidin and quantified the amount

of acid-labile volatile radioactivity because methyl esters are

known to readily hydrolyze in both strongly acidic and basic

conditions to yield methanol [19,38]. Unlike the reactions

performed with wild-type Crg1, addition of cantharidin to the

reactions with mutant forms of the enzyme showed no increase in

acid-labile radioactivity (Figure 3C), strongly suggesting that a

functional methyltransferase domain in Crg1 is required for

cantharidin methylation.

To definitively determine whether cantharidin is a substrate of

Crg1, we prepared and analyzed unlabeled reactions containing

purified Crg1, cantharidin, and SAM by liquid chromatography-

mass spectrometry. We first looked at the extracted ion chromato-

gram expected for unreacted cantharidin (C10H13O4
+; m/z=

197.08146100 ppm) and found a large peak in cantharidin-

containing reactions with an elution time of 18.6–18.8 min (Figure

S4B). The combined spectra of this peak in the complete reaction

mixture contained several species: m/z=197.0942 and 215.1065,

corresponding to the m/z for cantharidin and hydrated cantharidin

(C10H15O5
+; m/z=215.0919), respectively (Figure 3D). Because

these species co-elute at 18.6–18.8 min in the complete reaction and

the control reactions containing cantharidin (Figure S4B and S4C)

Characterizing Crg1-Cantharidin Interaction
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and because sterically hindered anhydrides do not favor hydrolysis

[39], a likely explanation is that cantharidin forms a co-eluting water

adduct during ionization.

Next, we analyzed the full reaction to determine whether Crg1

methylates cantharidin. Specifically, we analyzed the extracted ion

chromatogram expected for methyl cantharidin (C11H15O4
+;

m/z= 211.09706100 ppm). We identified a peak eluting after

cantharidin at 19.2 min corresponding to the mass of methyl

cantharidin in the complete reaction mixture (Figure S4D).

Importantly, this species was absent in each of our control

reactions lacking cantharidin, SAM, or Crg1 (Figure S4D). This is

strong evidence that cantharidin is indeed methylated by Crg1.

Finally we analyzed the combined spectra of the 19.2-min peak

(Figure 3E). In addition to the m/z= 211.1105 species, we

observed m/z= 229.1215 and m/z=197.0930 species, corre-

sponding to hydrated methyl cantharidin (C11H17O5
+; m/z=

229.1076) and cantharidin, respectively. Importantly, all of these

species co-elute (Figure S4B, S4D and S4E).

Based on its close sequence homology to Tmt1, we suspect that

Crg1 catalyzes the formation of a cantharidin methyl ester

(Figure 2). In solution, this putative methyl ester is likely in

equilibrium with its ring-closed methyl anhydride form. If the

equilibrium favors the ester form, some fraction of the cantharidin

methyl ester could undergo ring-closing elimination reactions

during ionization to yield methyl cantharidin and cantharidin

products. Likewise, if the equilibrium favors the methyl anhydride,

it may possibly undergo in-source fragmentation to give

cantharidin, and like cantharidin, it may simply form a water

adduct during ionization. Although our mass spectrometry data

strongly support our hypothesis that Crg1 methylates cantharidin

in vitro, additional analysis is needed to determine the structure of

the methylated drug molecule. It is possible that the observed

methyl cantharidin and hydrated methyl cantharidin species are

ionization products of another methylated cantharidin derivative

that is the actual product of the Crg1-catalyzed reaction.

Revealing the Genetic Interactome of CRG1 in the
Presence of Cantharidin
To identify cellular processes required for cantharidin resistance

and to define the spectrum of genes that compensate for the

absence of CRG1 in the presence of cantharidin, we used a

chemogenomic approach to analyze genetic interactions between

CRG1 and each of the ,4800 non-essential yeast genes both in the

presence and absence of the drug. A genetic interaction between

two genes occurs when the phenotype of the double deletion mutant

shows significant deviation in fitness compared with the expected

(multiplicative) effect of combining two single mutants (e.g. sickness

or synthetic lethality) [17,40]. When synthetic lethality is observed,

it suggests that the genes may have overlapping functions. By

analogy, identification of drug-gene interactions will similarly

uncover genes that act in parallel with a gene of interest and these

interactions can illuminate a compound’s effect on a cell. To

perform this experiment, we generated double deletion mutants

(with a crg1D strain as the query) using Synthetic Genetic Array

(SGA) technology [40], pooled all viable double deletion mutants

and analyzed their growth in a competitive fitness assay in the

presence and absence of cantharidin (Figure 4A) [41]. Six highly

reproducible and independent crg1DxxxD pools (r=0.72, Figure

S5A) were further averaged yielding 70 double deletion mutants

(Table S3; Datasets S1 and S2) that showed significant growth

defects (log2 (drug/DMSO),21, P-value,0.05) in the presence of

an IC20 dose of cantharidin (30 mM) in YPD when grown in a pool.

Noteworthy, these genes were not sensitive as single deletion

mutants (P-value ,0.025; Figure 4B and 4C, Table S3), and, thus,

the effect was specific to the double mutant combination. To obtain

a general overview of ‘‘aggravating’’ (negative) interactors of CRG1

in the presence of cantharidin, we categorized this set of genes

according to their GO term Biological process (Figure 4B). This

dataset comprised diverse biological processes, including vesicle-

mediated transport (P-value,0.008), chromosome organization (P-

value ,0.001), response to chemical stimulus (P-value ,0.019),

lipid metabolic process (P-value ,2.061025), response to stress (P-

value ,0.018), and protein modification process (P-value ,0.003).

We also identified the serine/threonine kinase DBF2 as a strong

suppressor of CRG1-dependent cantharidin toxicity (log2 (drug/

DMSO)= 1.12, P-value ,4.061025; Figure 4B). This interaction

was confirmed by evaluating the fitness of individual strains in liquid

and on solid SD medium in the presence of 25 mM and 10 mM

cantharidin, respectively (lethal doses for crg1D strain in these media

conditions; Figure 4C and Figure S5B). Furthermore, the alleviating

Figure 2. Small molecule methyltransferase TMT1 is a sequence homolog of Crg1. (A) Tmt1, a sequence homolog of Crg1, modifies small
molecule intermediates of TCA cycle (trans-aconitate) and leucine biosynthesis (3-isopropylmalate and isopropylmaleate) to form methyl esters. (B)
Hypothetical methylation of cantharidin by Crg1.
doi:10.1371/journal.pgen.1002332.g002
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interaction between DBF2 and CRG1 was not observed at 37uC,

indicating cantharidin-specific nature of this interaction (Figure

S5B). In addition to the well-characterized roles of Dbf2 in the

mitotic exit network [42], this newly uncovered interaction suggests

that this kinase may have an opposing function to the protein

phosphatases (PP2A and PP1), the primary targets of cantharidin

[30,31]. As independent evidence for an interaction with canthar-

idin, we found that DBF2 transcript levels were significantly

decreased in a crg1D/D mutant in the presence of cantharidin

(250 mM) (,2-fold, P-value ,0.013) compared to DMSO control,

and that change was not detected in other strains (Figure S5C). This

observation confirms the role of Crg1 in phosphorylation/

dephosphorylation homeostasis during cantharidin stress.

CRG1 Is Important for Lipid Homeostasis during
Cantharidin Treatment
To identify genes specifically required for growth in the

presence of cantharidin, we removed the genes that behave as

multidrug resistance genes (MDR) from our chemogenomic

dataset described above. MDR genes are defined here as those

that are required for growth in the presence of multiple stress

conditions (at least 20% of tested conditions for homozygous

deletion strains) [15]. This filtering removed apparent enrichment

of genes involved in vesicle-mediated transport genes (P-

value = 0.216), response to stress (P-value = 0.024), chromosome

organization (P-value = 0.075) and protein modification process (P-

value = 0.021). Following this, we found that cantharidin-specific

CRG1 interactors are significantly enriched for genes required for

lipid metabolic process (multiple testing corrected P-value

,0.0003) (Figure S6A). In particular, lipid methyltransferases

(CHO2, ERG6), glycosylphosphatidylinositol (GPI) lipid biosynthe-

sis genes (ARV1, GUP1, PER1) and lipid-related genes (SAC1,

MOT3, DEP1, RVS167, YTA7) are essential in the double deletion

strains in the presence but not absence of cantharidin treatment

(Figure 5A). Furthermore, we demonstrated that an increase in

cantharidin concentration (10 mM) did not result in cantharidin

Figure 3. Crg1 methylates cantharidin in vitro. (A) Silver stained 12% SDS-PAGE of purified His-tagged Crg1. Wild-type cells (Y258) carrying
empty vector BG1805 and BG1805-GAL1-CRG1 were grown in SD-URA and raffinose (2%) to mid-exponential phase. The expression of CRG1 was
induced with galactose (2%) for 5 hours. His-tagged Crg1 was purified with Ni-sepharose resin. The diagram (right panel) shows the transfer of
[methyl-14C] from S-adenosyl-[methyl-14C]methionine to a potential substrate by purified Crg1. (B) In vitro enzymatic reaction mixtures containing
cantharidin, S-adenosyl-[methyl-14C]methionine, and Crg1 were separated by reverse phase chromatography. Radioactivity in the fractions was
quantified with a scintillation counter, and a cantharidin and Crg1-dependent peak with a retention time of 18–20 minutes was identified (asterisk).
(C) In vitro analysis of the reactions containing cantharidin and mutated forms of Crg1 by measurement of the amount of acid-labile volatile
radioactivity (see Materials and Methods for details). (D) Additional in vitro reaction with unlabeled SAM were prepared in a similar manner and
analyzed by liquid chromatography-mass spectrometry with positive ionization. The mass spectrum of the peak from the full reaction with an elution
time of 18.6–18.8 minutes is shown. (E) The mass spectrum of the peak with an elution time of 19.2 minutes from the complete reaction with
cantharidin, SAM and Crg1.
doi:10.1371/journal.pgen.1002332.g003
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sensitivity for these genes compared to wild type (Figure 5A),

confirming the dependence of the detected interactions on the

presence of CRG1.

To explore further the role of CRG1 in lipid metabolism and

related processes, we compared the lipid content (or ‘‘lipidome’’) of

wild type, crg1D/D homozygous deletion and CRG1-overexpress-

ing crg1D/D strains in the presence and absence of cantharidin

(250 mM) using electrospray ionization tandem mass spectrometry

(ESI-MS/MS) analysis [43]. We observed significant changes in

the abundance of most glycerophospholipids and sphingolipids in

both the wild type and crg1D/D strains after growth in cantharidin-

containing medium (P-value ,0.05, Kruskal-Wallis test). The

strains with a CRG1-overexpressing construct did not exhibit

significant cantharidin-induced lipid alterations (P-value .0.08,

Kruskal-Wallis test; Figure 5B, Table S4, Dataset S3). Specifically,

in both the wild type and crg1D/D strains, cantharidin measurably

increased the levels of short chain phosphatidylcholine (PC),

phosphatidylethanolamine (PE), and phosphatidylinositol (PI)

species, while the levels of long-chain PCs and PIs were reduced

(Figure 5B). In the crg1D/D strain we also noted a substantial

decrease in the levels of mixed size phosphatidylserine (PS) species

after cantharidin stress, while the wild type and crg1D/D strain had

increased levels of saturated short chain (C16 and C18) PI species

compared to mono-unsaturated short chain PIs in cantharidin

(Table S4). Such abundance changes with respect to acyl chain

length and saturation were not observed in the CRG1-overex-

pressing mutant, suggesting that extra copies of CRG1 comple-

mented the cantharidin-induced defects.

It has been previously reported that phospholipid and sphingo-

lipid biosynthetic pathways are interconnected (Figure 5C) [44–46].

One way in which this interconnection is seen is when, a single gene

deletion or chemical perturbation of cells results in the so-called

‘‘ripple effect’’ [45] characterized by lipidome-wide perturbations.

We see evidence of this effect: the amounts of the most abundant

sphingolipid inositolphosphoceramide (IPC) and mannosyl-inositol-

phosphoceramide (MIPC) were also affected by cantharidin in a

crg1D/D mutant (Figure 5D). To investigate if other lipid

intermediates are affected by the drug in a similar manner in crg1

mutants, we analyzed both sterol content and the formation of lipid

droplets, which serve as storage pools of triacylglycerols and steryl

esters [47].We found no obvious changes in these lipid species in the

presence of drug (Figure S6B and S6C). Taken together, these

results demonstrated that cantharidin’s effect is specific towards

phospholipids and sphingolipids in crg1 mutants.

Figure 4. Characterization of cantharidin-specific genetic interactome of CRG1. (A) Experimental scheme for analysis of cantharidin-specific
genetic interactors of CRG1. Double deletion mutants crg1DxxxD generated through Synthetic Genetic Array (SGA) were pooled together and treated
with cantharidin (30 mM) for 20 generations in YPD. Genomic DNA was isolated, unique strain-representative barcodes were PCR amplified, and the
PCR products were hybridized to TAG4 arrays for the quantitative analysis of fitness of the mutants (see Materials and Methods for details). (B) Scatter
plot representing cantharidin-gene interactions obtained from the comparative analysis of ura3DxxxD (control single deletion pool) and crg1DxxxD
pools. CRG1-dependent interactors are highlighted in the red square. The hits are obtained from the averaged datasets (n = 6 for crg1DxxxD pools and
n= 4 for ura3DxxxD). Significant negative genetic interactors were categorized according to their biological processes (P-value ,0.002 before
multiple testing correction) (Table S3). (C) Representative growth curves for the top hits (sensitive and resistant) that genetically interact with CRG1 in
the presence of cantharidin. Cells were grown in YPD media with and without cantharidin. met22 and dbf2 deletion strains were treated with
cantharidin to test their sensitivity and resistance, respectively.
doi:10.1371/journal.pgen.1002332.g004

Characterizing Crg1-Cantharidin Interaction

PLoS Genetics | www.plosgenetics.org 7 October 2011 | Volume 7 | Issue 10 | e1002332



To test if cantharidin-induced alterations in yeast lipidomes are

evolutionally conserved, we examined the lipidome of the human

fungal pathogen Candida albicans in response to cantharidin. A C.

albicans homozygous crg1 deletion (orf19.633D/D) displayed

similar growth defects to those observed in S. cerevisiae when

challenged with cantharidin (Figure S7A). Lipidomic analysis

demonstrated that cantharidin treatment (2 mM, IC20 for C.

albicans wild type) resulted in the significant changes in most

phospholipid species in both wild type and orf19.633D/D

homozygous mutant (P-value ,0.05). Furthermore, although to

a more modest degree than seen in S. cerevisiae, we found that C.

albicans CRG1 may account for some difference between wild type

and a mutant strain (P-value ,0.05; Figure S7B; Dataset S4). In

addition, we have shown previously that the overexpression of C.
albicans ORF orf19.633 restored cantharidin resistance in S.

cerevisiae crg1D/D mutant [14], further suggesting that the lipid

homeostasis functions of this C. albicans putative SAM-dependent

methyltransferase are conserved.

Crg1-Dependent Effects of Cantharidin on Cytoskeleton
Organization
One of the phospholipids manifesting substantial changes in our

lipidome analysis was phosphatidylinositol (PI) (Figure S7C). PI is

an essential phospholipid with multiple roles in the biosynthesis

and metabolism of phosphoinositides (PIP), inositol polypho-

sphates (IPs), complex sphingolipids and glycerophosphoinositols

(GPIs) (Figure 5D) [48]. It has been previously reported that

phosphorylated derivatives of PI species (mainly PI(4,5)P) are well-

conserved second messengers involved in the regulation of the

actin cytoskeleton in Pkc1-dependent manner (Figure 6A) [48,49].

Therefore, to examine one of the physiological consequences of

altered levels of PI, we tested if cantharidin affects the actin

cytoskeleton. Microscopy of FITC-phalloidin stained cells revealed

that crg1D/D strain treated with 250 mM cantharidin for 1 hour

lacked actin patches and displayed highly disorganized actin cables

compared to wild type. Overexpression of CRG1 in crg1D/D strain

restored the number of actin patches close to that seen in the wild-

type strain without cantharidin (Figure 6B). These results

demonstrate that Crg1 is critical for both actin patch and actin

cytoskeleton integrity during cantharidin stress. Although, the

observed role of Crg1 in cytoskeleton organization might be

Figure 5. Crg1 is important for lipid homeostasis during
cantharidin stress. (A) CRG1 is synthetically lethal with lipid-related
genes in the presence of cantharidin. Cells were normalized to an
equivalent OD600,10-fold diluted, spotted onto synthetic complete
defined medium containing cantharidin and incubated at 30uC. (B)
Comparative phospholipid profiles of wild type and crg1 mutants in
response to cantharidin. Cells grown to mid-exponential phase in YPD
were treated with cantharidin (250 mM) for 2 hours. Lipid standards
were added to the cells, and extracted lipids were measured using ESI-
MS/MS. The quantities of lipid species are expressed as ion intensities
relative to the levels in DMSO, and converted to a log2 scale. Data are
the average of three samples. Statistical significance in the abundance
of lipid species in the presence of cantharidin between wild type and
mutants was determined using Kruskal-Wallis test, *P-value ,0.05
(Table S4). (C) A simplified diagram of phospholipid biosynthesis linked
to sphingolipid biosynthesis. PIs species contribute to biosynthesis of
complex sphingolipids, GPI anchors, and PIPs. (D) Comparison of
sphingolipid profiles of wt, crg1D/D and CRG1-overexpressing crg1D/D
mutants in the presence of cantharidin (250 mM). The suffixes -B, -C, and
-D on IPC and MIPC denote hydroxylation states, having two, three, or
four hydroxyl groups, respectively. Statistical significance in the
abundance of lipid species in the presence of cantharidin between
wild type and mutants was determined using Kruskal-Wallis test, *P-
value ,0.05 (Table S4).
doi:10.1371/journal.pgen.1002332.g005
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indirect, in our genome-wide screen (without cantharidin) we

found that positive genetic interactions (alleviating) of CRG1 were

significantly enriched for the genes involved in the actin

cytoskeleton, bud emergence, and cell polarity (P-value

,1.061025; Figure S8A; Dataset S5). In particular, the deletion

of RVS167, a well-characterized actin patch and lipid-interacting

protein, manifested fitness defects that are suppressed by the

deletion of CRG1 (Figure S8B) [50,51]. These findings further

support the role of Crg1 in actin-related biological process.

CRG1 Transcription Is Regulated via the Cell Wall Integrity
(CWI) Pathway
Finally, to determine how Crg1 is regulated at the transcrip-

tional level in response to cantharidin, we explored which

pathways, if any, are required for cantharidin resistance. Based

on our observation that the homozygous deletion strains slt2D/D

and bck1D/D (both CWI kinases) are hypersensitive to cantharidin

[14,15], combined with the fact that the promoter region of CRG1

contains a binding site for Rlm1 (a transcriptional regulator of

CWI pathway) [52], we asked if CRG1 expression is activated by

cantharidin via the CWI pathway. We found that deletion of these

genes blunted the increase of CRG1 transcript in response to

cantharidin (250 mM) compared to the wild type (Figure 6C),

indicating that CWI pathway components are required for CRG1

expression in the presence of cantharidin. The CRG1 promoter

also contains a binding site for Yap1, a transcription factor

required for cadmium tolerance and the oxidative stress response.

In contrast to Rlm1 and Slt2, the relative amount of CRG1

transcript in the yap1D/D mutant was unchanged in the presence

of cantharidin (Figure S9A). While these data suggest that Crg1

may be regulated via the CWI pathway and is transcriptionally

responsive to numerous cell wall stressing agents (Figure S9B), we

did not detect any drastic fitness defects when crg1 mutants were

grown in the presence of cell wall perturbing agents (Figure S9B).

However, overexpression of CRG1 in the crg1D/D mutant did

confer resistance to lithium chloride and fenpropimorph, both of

which are known perturbants of the cell membrane and other lipid

processes (Figure S9C) [53–58]. Together these results supports a

model in which Crg1 is involved in lipid-related processes that

indirectly impinges on cell wall integrity.

Discussion

In this study we demonstrated that yeast genetic and chemical

genome-wide approaches, when combined with rigorous biolog-

ical follow-up, can effectively characterize a novel gene that,

despite being subject to numerous large-scale phenotypic studies,

had little functional annotation. Our previous work demonstrated

that Crg1, a putative SAM-dependent methyltransferase, was a

novel mediator of resistance to the protein phosphatase inhibitor,

cantharidin [14]. Here we show that the mechanism of Crg1-

cantharidin interaction is through direct methylation of the

compound, and that, furthermore, Crg1 plays an essential role

in the cellular response to cantharidin-induced lipid alterations.

Our initial observation that cantharidin cytotoxicity is sup-

pressed by overexpression of CRG1 suggested a specific, although

not necessarily direct, cantharidin-Crg1 interaction in vivo [14].

Here, we demonstrate that Crg1 is able to interact with

cantharidin in vitro, resulting in the formation of a methylated

Figure 6. Crg1 is important for actin patch formation during cantharidin treatment. (A) Diagram showing how PIP species are involved in
Pkc1-dependent changes in actin cytoskeleton. (B) Crg1 is important for actin patch integrity during cantharidin stress. Wt, crg1D/D mutant and
CRG1-overexpressing crg1D/D cells were grown to mid-exponential phase at 30uC in YPD in the presence of cantharidin (250 mM) or DMSO for 1 hour.
Cells fixed with formaldehyde were stained for actin with FITC-phalloidin and visualized by fluorescence microscopy. Bar, 5 mm. The number of actin
patches per cell in each sample was quantified. Values are the mean of three independent replicates (n = 270–1000), error bars are the standard
deviation; * P-value,0.025, ** P-value,0.0002 (Student’s t-test). (C) Cantharidin induces CRG1 transcription via the Cell Wall Integrity (CWI) pathway.
Cells grown to mid-exponential phase were treated with cantharidin (250 mM) in YPD for indicated time. Total RNA was extracted, cDNA was
prepared and analyzed by qRT-PCR. CRG1 transcript levels were normalized to ACT1. The simplified diagram of CWI pathway is shown. Slt2 is a kinase,
Rlm1 is a transcriptional activator governed by the CWI pathway. (D) A preliminary model describing Crg1-cantharidin interaction. See text for details.
doi:10.1371/journal.pgen.1002332.g006
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cantharidin species. Modification by methylation is known to

remove negative charges on diverse molecules which can alter

hydrophobicity and modulate cellular pathways and processes.

Given the clear phenotype of Crg1-deficient cells and the results

from our in vitro biochemical characterization of Crg1, we

hypothesize that methylation of cantharidin alters its physical

properties such that it is no longer harmful to cells. In a manner

similar to other methyltransferases that are known to detoxify

small molecules [17,59–62], chemical modification of cantharidin

provides some insight regarding how its methylation may modify

its activity. For example, endothall, an unmethylated, ring-opened

form of cantharidin, has been assayed for protein phosphatase

inhibition [26] and the methyl, ethyl, and propyl esters of

endothall are still potent inhibitors of PP1 and PP2A. Several

lactol derivatives of norcantharidin (the anhydride form of

endothall) formed by reducing one of the carbonyl groups to a

hydroxyl group have been synthesized and characterized. Modifi-

cation of the free hydroxyl to form methyl, ethyl, and propyl ethers

sharply reduced the ability of the drug derivatives to inhibit protein

phosphatases. While the unmodified lactol form inhibited PP2A

with an IC50 of 5 mM, the IC50 for the methyl ether lactol form was

.1000 mM. Collectively, these observations suggest that methyla-

tion of closed-ring forms, not open-ring forms, reduces cellular

toxicity. Cantharidin is more sterically hindered than norcanthar-

idin, and as such, we would expect that its equilibrium would favor

the closed-ring anhydride form more than that of norcantharidin.

Accordingly, we are intrigued by the possibility that the methyl

cantharidin product of the reaction catalyzed by Crg1 resembles the

closed-ring lactol ether compounds that are less potent inhibitors of

both growth and protein phosphatase activity. Further study to

elucidate the structure of this product will enhance our under-

standing of how the methylation of cantharidin by Crg1 facilitates

its detoxification.

Looking ahead, it will be interesting to explore if similar

mechanisms of cellular detoxification in mammalian cells are

mediated by methyltransferases, such as METTL7A or

METTL7B, which both share sequence homology to CRG1.

Interestingly, METTL7B, also known as ALDI, was reported to be

highly expressed in kidney and liver, and associated with hepatic

lipid droplets [63], providing a provocative link between Crg1-like

methyltransferases cantharidin toxicity and lipid process.

In addition to characterizing the direct interaction of Crg1 with

cantharidin, we investigated cellular pathways of Crg1-mediated

cantharidin resistance using cells sensitized with a crg1 deletion

allele. This analysis revealed that genes involved in lipid-related

processes are required for survival under cantharidin-induced

stress in the absence of CRG1 (CHO2, OPI3, ERG6, SAC1, ARV1,

GUP1, PER1, MOT3, DEP1). Because CRG1 is both not essential

and also shows very few genetic interactions under standard

laboratory conditions, the identification of these genes required

condition-specific assays. Our chemogenomic data are supported

by lipidome-wide analysis, which demonstrated that cantharidin-

induced alterations in glycerophospholipids and sphingolipids

occur in a CRG1 gene dose-dependent manner. Specifically, we

observed the accumulation of short chain phospholipids in the

crg1D/D mutant, suggesting that the drug affects fatty acid

elongation in a Crg1-dependent fashion. Consistent with this

result, we also observed that overexpression of CRG1 confers

resistance to lipid stressing agents such as lithium ions and the

ergosterol inhibitor fenpropimorph (Figure S9C). Resistance to

fenpropimorph is acquired by mutations in the fatty acid elongase

FEN1 (ELO2), which is known to be involved in sphingolipid

biosynthesis [64]. Thus, it will be informative to test if CRG1 and

FEN1 have overlapping functions in lipid biosynthesis.

Another possible explanation for our observation that can-

tharidin-induced lipidome alterations can be suppressed by

increasing the gene dose of CRG1 can be found in the

transcriptional changes that occur in these strains. Genes

involved in methionine biosynthesis are differentially expressed

in CRG1-overexpressing strains in the presence of the drug

compared to wild type and the crg1D/D mutant. This is of

particular interest because changes in methionine metabolism can

regulate methylation reactions by altering levels of SAM, a

methyl donor [65,66]. For example, Tehlivets et al. showed that

defects in methionine cycling enzymes result in an imbalance of

phospholipid and triacylglycerol synthesis [67,68]. The mecha-

nisms underlying these relationships are not yet clear, but it is

possible that cells sense that the level of SAM is depleted via Crg1

activity, which results in transcriptional changes in methionine

biosynthesis genes, in particular, the cystathionine beta-lyase

Str3. These findings suggest that overexpression of Crg1 may

buffer cantharidin-treated lipidome alterations in part through

changes in the methionine cycle.

To define the ‘core’ buffering network to CRG1 in the presence

of cantharidin, we compared the transcriptome and cantharidin

SGA profiles. Although we did not find any obvious overlap in

GO term biological processes between these datasets, in our

cantharidin SGA one of the most sensitive mutants was MET22

(Figure 4C), a gene with a role in sulfur assimilation and

methionine biosynthesis. This gene was also differentially ex-

pressed in CRG1-overexpressing mutant vs. wild-type strain (P-

value ,0.02; Table S2).

Our chemical genomics results were corroborated by traditional

SGA analysis. This analysis demonstrated that CRG1 has an

alleviating (suppressing) genetic interaction with RVS167. It is well

established that a similar phenotype is observed when RVS167 is

deleted in combination with genes involved sphingolipid biosyn-

thesis (e.g. SUR1, SUR2, FEN1, ELO3 and IPT1), implicating

sphingolipid biosynthesis in the regulation of the actin cytoskeleton

[49,50,69–71]. Similarly to S. cerevisiae and C. albicans, studies in the

ciliate Tetrahymena showed that cantharidin treatment also influences

PI metabolism and the actin cytoskeleton [72], demonstrating the

conservation of cantharidin-lipid-actin interactions.

Understanding the transcriptional regulation of CRG1 during

cantharidin stress adds many layers to the picture of the complex

physiological roles of this methyltransferase. CRG1 transcription is

activated by cantharidin via the conserved MAPK family

components of the CWI signaling pathway [52,73]. Hoon et al.

previously demonstrated that deletion of slt2 and bck1 results in

cantharidin sensitivity, suggesting that this pathway is critical for

cantharidin resistance [14]. In mammalian cells, several studies

have reported that the MAP kinases ERK and JNK are also

activated by cantharidin [27,29], likely as a consequence of the

inhibition of protein phosphatases. Moreover, other studies

reported that an intact CWI cascade is essential for maintaining

lipid homeostasis [74]. It remains to be determined what specific

steps are involved in the activation of CRG1 by cantharidin. One

possible scenario is that the CWI pathway is activated by the

accumulation of aberrant lipid species in a manner analogous to

previous reports that suggest that long chain bases induce the

Pkc1-MAPK CWI pathway in yeast [75,76].

Based on our observations, we propose the following mecha-

nism for Crg1-cantharidin interaction (Figure 6D). Cantharidin

treatment inhibits PP2A and PP1, resulting in the perturbation of

both lipid homeostasis and actin cytoskeleton organization. This

perturbation activates the CWI pathway, which in turn induces of

CRG1 transcription. The resulting Crg1 protein directly methyl-

ates cantharidin, alleviating its cytotoxicity and restoring lipid
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homeostasis, actin cytoskeletal architecture, as well as other

cantharidin-associated effects.

In summary, our study demonstrates the value of combining

classic biology approaches and chemical genomics with other

‘‘omic’’-based methods for de-orphaning proteins and elucidating

previously unknown mechanisms of therapeutics action.

Materials and Methods

Strains, Plasmids, and Growth Conditions
Yeast strains and plasmids used in this study are described in

Table S5 and Table S6. Unless otherwise stated, wild-type (wt)

strain is BY4743; crg1D/D was derived from BY4743. Yeast cells

were grown in YPD (2% yeast extract, 1% peptone, 2% glucose)

or in synthetically defined medium, SD (0.67% yeast nitrogen

base, 2% glucose, and amino acids). Cantharidin, norcantharidin,

cantharidic acid, and fenpropimorph were purchased from Sigma

Aldrich (Toronto, Canada). Lithium chloride was purchased from

Teknova (Hollister, CA, USA). Cantharidin, cantharidic acid,

norcantharidin, and fenpropimorph were dissolved in DMSO and

stored at 220uC. The IC20 of cantharidin in YPD for wild-type is

250 mM, in SD it is 5 mM, both determined in liquid culture as

described [77].

Site-Directed Mutagenesis of CRG1
CRG1 was amplified from wild-type strain using primers (Table

S7) with homology to the vector p426-GAL1-TAP at the 59 end.

The amplified CRG1 and HindIII linearized vector were directly

co-transformed into a crg1D/D mutant and transformant colonies

were selected in synthetic defined media lacking uracil (SD-URA).

CRG1 was cloned downstream of a GAL1 inducible promoter and

in frame with the TAP coding sequence. Transformants were

screened by PCR and for cantharidin resistance. CRG1 missense

mutants were prepared using the QuickChange Lightning Site-

directed mutagenesis kit (Stratagene - Agilent Technologies

Company, La Jolla, CA, USA). Clones were sequenced to verify

the mutations. To express Crg1, transformants were grown to

mid-exponential phase in SD-URA and raffinose (2%), then

induced by the addition of galactose to a final concentration of

2%. 30 mM of cantharidin was used to test sensitivity of mutants.

Cells were harvested after 3 hours of induction, and Crg1

expression was verified by Western blots of 12% SDS-PAGE gels

using anti-TAP antibodies (OpenBiosystems – Thermo Fisher

Scientific, Huntsville, AL, USA).

RNA Isolation, cDNA Preparation, and Quantitative Real-
Time PCR Analysis
Cells grown to mid-exponential phase in YPD medium were

incubated with or without cantharidin (250 mM) for various

amounts of time, harvested by centrifugation, frozen in liquid N2

and stored at 280uC. RNA was extracted with hot acidic phenol

[78] and treated with the Turbo DNA-free kit (Ambion – Applied

Biosystems, Austin, TX, USA). RNA purity was tested using a

spectrophotometer and integrity was evaluated by denaturing gel

electrophoresis. First-strand cDNA was synthesized from 1 mg of

DNase-treated RNA with 0.5 mg of oligo(dT12–18) primers

(Invitrogen, Burlington, ON, Canada) using 200 units of

Superscript II Reverse transcriptase (Invitrogen, Burlington, ON,

Canada). Real-time PCR analysis was conducted with Power

SYBR Green PCR master mix (Applied Biosystems, Foster City,

CA, USA) and gene-specific primers (Table S7) at a final

concentration of 250 nM. qRT-PCR was carried out on a

7900HT Fast system (Applied Biosystems) using Sequence

Detection System software version 2.3. Fold change in CRG1

transcript level normalized to ACT1 was calculated using the

22DDCt method. At least three independent replicates of each

reaction were performed. Student’s t-test was applied for statistical

analysis (paired for drug vs. DMSO treatments, and unpaired for

mutants vs. wild type).

Microarray Analysis
Cells grown to mid-exponential phase in YPD medium were

incubated with or without cantharidin (250 mM) for 1 hour,

harvested by centrifugation. Isolation of RNA and hybridization to

the tiling arrays was performed as described [79], except that

actinomycin D was added in a final concentration of 6 mg/mL

during cDNA synthesis to prevent antisense artifacts [80]. Two

independent replicates were used for the analysis. Hybridization to

Affymetrix Tiling Arrays using the GeneChip Fluidics Station 450

(Affymetrix) was followed by the extraction of intensity values for

the probes using the GeneChip Operating Software (Affymetrix).

Acquisition and quantification of array images were performed using

the Affymetrix tiling analysis software (http://www.affymetrix.

com/support/developer/downloads/TilingArrayTools/index.affx).

The resulting .BAR files containing probe position and intensities

were further analyzed by aligning the probes that match the

position of the S. cerevisiae Genome Database list of defined

ORFs (http://downloads.yeastgenome.org/chromosomal_feature/

saccharomyces_cerevisiae.gff). The log2 of signal intensity of each

ORF was defined as the average across the probes associated with

the ORF. Quantile normalized datasets were clustered with a

correlation similarity metric and the average linkage method using

Cluster 3.0 software (http://bonsai.hgc.jp/,mdehoon/software/

cluster/software.htm). The cluster was visualized using TreeView

software (http://jtreeview.sourceforge.net/). The significance for

differential expression was set as log2 (drug/DMSO).1 and,21,

P-value ,0.05 as determined by Student’s t test. Significantly up-

and downregulated transcripts were further tested for Gene

Ontology (GO) biological process enrichment using FunSpec

(http://funspec.med.utoronto.ca/) with P-value cutoff of 0.01

and multiple testing correction (Bonferroni) (Table S1; Dataset

S6). The probability was calculated using a test employing

hypergeometric distribution (see below). To detect cantharidin-

specific genes the genes involved in ESR [36] were eliminated

from the gene-set.

Expression and Purification of Crg1 Fusion Protein
Purification of 6xHis-Crg1 was performed as previously

described [81]. Wild-type yeast strain Y258 carrying a vector

pBG1805-GAL1-CRG1 with a triple affinity tag at C-terminal

(His6-HAepitope-3Cprotease site-ZZprotein A) was grown in 660 mL of

synthetically defined medium (SD-URA and 2% raffinose) to mid-

exponential phase at 30uC. To induce expression of CRG1 340 mL

of 3x YP (yeast extract and peptone) and 6% galactose was added

to a final concentration of 2%. Cells were harvested by

centrifugation at 3,000 rpm for 5 min. All steps following harvest

were performed at 4uC. Cells were washed with PBS buffer,

resuspended in 7 mL of resuspension buffer (20 mM HEPES

pH 7.5, 1 M NaCl, 5% glycerol), and lysed using an acid washed

Zirconia beads in the presence of protease inhibitors (1 mM

Pefablock, 2.5 mg/mL pepstatin A, 2.5 mg/mL leupeptin, 1 mM

PMSF). The cell lysate was centrifuged at 20,000 rpm for 45 min,

and diluted two fold with binding buffer (20 mM HEPES pH 7.5,

40 mM imidazole, 5% glycerol). 300 mL of Ni Sepharose 6 Fast

Flow beads (50% slurry in 20% ethanol) was added to the sample

and rotated for 1.5 hours, followed by three washes with 40 mL of

wash buffer (20 mM HEPES pH 7.5, 40 mM imidazole, 5%

glycerol, 0.5 M NaCl). To elute Crg1 the Ni beads were
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resuspended in 1 mL of elution buffer (20 mM HEPES pH 7.5,

250 mM imidazole pH 7.7, 5% glycerol, 0.5 M NaCl), and Crg1p

was released by rotating the mixture for 15 min at 4uC. The

protein was further concentrated with Amicon Ultra tubes (10 K)

(Millipore, Etobicoke, ON, Canada) to 100 mL.

Purification of TAP-tagged wild-type and mutant forms of Crg1

was performed in BY4743 carrying p426-GAL1-CRG1-TAP as

described in Rigaut et al. [82]. Cell growth, induction of Crg1 with

galactose (2%), and preparation of cell lysates were performed as

described for the Crg1-6xHis fusion. 300 mL IgG-agarose was

added to the extract and incubated for 2 hours followed by a triple

wash with 25 mL of Low Salt and High Salt Wash Buffer (50 mM

HEPES pH 7.5, 10% glycerol, 150 mM/750 mM NaCl, 0.1%

Tween20). The final wash was performed with 15 mL TEV

Cleavage Buffer (10 mM, Tris pH 8.0, 150 mM NaCl, 0.05%

Tween20, 10% glycerol, 0.5 mM EDTA, 1 mM DTT). The

extract was incubated overnight with 100 U TEV protease

(Invitrogen, #12575-015). 1.2 mL CaM Binding Buffer (10 mM

Tris pH 8.0, 150 mM NaCl, 0.05% Tween20, 10% glycerol,

1 mM MgOAc, 1 mM imidazole pH 8.0, 2 mM CaCl2, 1 mM

DTT) and 2.4 mL 1 M CaCl2 were added to the protein eluates.

The eluates were then incubated with 400 mL (50% slurry)

Calmodulin Sepharose in 5 mL CaM Binding Buffer for 2 hours,

followed by a wash with 25 mL CaM Binding Buffer and elution

with 56200 mL Elution Buffer (10 mM Tris pH 8.0, 150 mM

NaCl, 0.05% Tween20, 10% glycerol, 1 mM MgOAc, 1 mM

imidazole pH 8.0, 2 mM EGTA, 1 mM DTT). Protein eluates

were stored at 220uC in the presence of 50% glycerol. Recovery

of Crg1 was determined using Bradford reagent (BioRad

Laboratories, Mississauga, ON, Canada) and its integrity and

purity was assessed with 12% silver-stained SDS-PAGE gel.

Preparation and Analysis of Radiolabeled In Vitro Crg1
Reactions
In vitro enzymatic reactions were prepared with 0.09 mg 66His-

tagged Crg1, 0.2 mM cantharidin dissolved in DMSO (Sigma

Aldrich, St. Louis, MO, USA), and 20 mM S-adenosyl-

[methyl-14C]methionine (55.8 mCi/mmol) (GE Healthcare, Piscat-

away, NJ, USA) in 0.1 M sodium phosphate, pH 7.4 with a final

volume of 50 mL and 2% DMSO. The complete reactions and

relevant controls were incubated at 30uC for 2 hours. Following

incubation, the enzymatic reactions were separated by reverse-

phase high-performance liquid chromatography (Series II 1090

Liquid Chromatograph, Hewlett Packard, Palo Alto, CA, USA).

The chromatography gradient was adapted from [83], except that

the flow rate was 1 mL/min. Mobile phase A contained 0.1%

trifluoroacetic acid in water and mobile phase B was 0.1%

trifluoroacetic acid in acetonitrile. A BetaBasic-18 column

(250 mm64.6 mm; 5-mm particle size) (Thermo, Waltham, MA)

was used. 40 mL was injected, 2-minute fractions were collected,

and 350 ml of each fraction was mixed with 5 mL of Safety-Solve

(Research Products International, Mt. Prospect, IL, USA) before

quantification of radioactivity with a LS6500 liquid scintillation

counter (Beckman Coulter, La Brea, CA, USA). Each fraction was

counted three times for 3 minutes.

Other in vitro reactions were prepared in an identical manner

with 0.09 mg of either mutant or wild-type TAP-tagged Crg1 and

varying concentrations of cantharidin (USB, Cleveland, OH,

USA). After incubation at 30uC for 2 hours, 40 mL 2 N HCl was

added to each 50 mL reaction. Immediately, 80 mL of this mixture

was transferred to a 1.9-cm69-cm folded piece of filter paper in

the neck of a scintillation vial containing 5 mL of Safety-Solve and

the vials were capped. After 4 hour incubation at room

temperature, the pieces of filter paper were removed from the

neck of each vial and the acid-labile volatile radioactivity was

quantified with a liquid scintillation counter as described above

[84].

Preparation of In Vitro Enzymatic Reactions for Analysis
by Mass Spectrometry
In vitro enzymatic reactions using unlabeled SAM (Sigma

Aldrich) were prepared in a similar manner with 0.09 mg of

6xHis-tagged Crg1, 200 mM cantharidin (Sigma Aldrich), and a

SAM concentration of 1.6 mM. These reactions were quenched

with addition of 200 mL acetonitrile, and 12.5 mL of 15%

ammonium bicarbonate was added to reduce product degrada-

tion. After concentration with a vacuum centrifuge and resuspen-

sion in 50 mL of water, these reaction mixtures were analyzed by

liquid chromatography-tandem mass spectrometry (1100 Series

Liquid Chromatograph, Agilent, Santa Clara, CA; QSTAR Elite

Mass Spectrometer, Applied Biosystems, Foster City, CA) in

positive ionization mode with a Turbo Spray source. 8 mL of

sample was injected onto a reverse-phase column (Luna C18 (2),

150 mm61 mm, 5-mm particle size, Phenomenex, Aschaffenburg,

Germany) with a flow rate of 50 mL/min and the following

gradient: t = 0–1 min, 2% mobile phase B; t = 10 min, 35% B;

t = 14–16 min, 90% B; t = 16.5–35 min, 2% B. Mobile phase A

was 0.1% formic acid in 98% water and 2% acetonitrile, while

mobile phase B was 0.1% formic acid in 98% acetonitrile and 2%

water. Spectra were collected with the instrument information-

dependent acquisition mode (full scan: m/z= 70–600, 1.000071 s;

3 product experiments: m/z= 65–500, ,2 s per experiment). The

following mass spectrometer parameters were used: declustering

potential, 85 V; focusing potential, 300 V; declustering potential

II, 15 V; ionspray voltage, 5500 V; ion source gas, 45 units; ion

source gas II, 5 units; curtain gas, 45 units; collision gas, 7 units.

Fitness Profiling of Double Deletion Mutants with
Cantharidin
A pool of double deletion mutants (crg1DxxxD) was prepared by

generating viable double deletion mutants using Synthetic Genetic

Array (SGA) technology with crg1D as a query strain [40] (Text

S1). ,4800 viable double deletion mutant colonies were collected,

normalized to 50 OD’s/mL and stored at 280uC in media

containing 7% DMSO. Two independent pools were generated

for the analysis. Each was tested in triplicate. The pooling of the

strains was possible due to the presence of strain-specific sequence

tags flanking each gene deletion region [5]. The double deletion

pool was treated with 30 mM of cantharidin, a dose which inhibits

growth of the crg1 double deletion pool by ,20%. Fitness analysis

using a tag-specific algorithm that takes into account the intensities

of each tag in cantharidin-treated cells compared to non-treated

cells was performed as described [41]. Hybridization to Affymetrix

Gene Chips using GeneChip Fluidics Station 450 (Affymetrix) was

followed by the extraction of intensity values for the probes using

the GeneChip Operating Software (Affymetrix). The data was

quantile normalized, outliers (one standard deviation off) were

omitted, and fitness defect scores as the log2 ratio between the

mean signal intensities of the control (DMSO) and the drug were

calculated for each deletion strain in the pool as previously

described [41]. As a control, the relative fitness of the double-gene

deletion mutants exhibiting high sensitivity to cantharidin (log2

(drug/DMSO) ,21; P-value ,0.05) was compared to the relative

fitness of the corresponding single gene deletion mutants. For a

given double deletion mutants, the resulting interaction was

evaluated using comparison of the observed double mutant growth

rate to the expected assuming that there is no interaction exists.
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Log2 ratio,21 represents those strains with a measurable growth

defect (or lethality) and log2 ratio .1 demonstrates resistance to

the drug. Cantharidin-specific CRG1 negative genetic interactors

were further verified as individual clones in liquid growth assays

and/or by spot dilutions. To evaluate the chemogenomic dataset

for statistical significant enrichment for general biological

processes (Gene Ontology Slim mapper), we used a standard

hypergeometric test, that asses the probability that the intersection

of given list with any given functional category occurs by chance.

Obtained P-values were corrected for multiple testing correction

(Bonferroni) by multiplying P-values with the number of genes in

the test. The probability was calculated as follows: the P-value of

observing x genes, belonging to the same functional category, is:

P~

X

max(M:n)

i~x

M

i

� �

N{M

n{i

� �

N

n

� �

where M is the total number of genes involved in a functional

category, n is the total number of genes in the cluster, and N is the

total number of yeast ORFs.

Lipidome Analysis by Liquid Chromatography-Tandem
Mass Spectrometry
Cells were grown to mid-exponential phase and treated with

cantharidin (250 mM) for 2 hours. Lipids were extracted from 25

OD600-equivalent of cells and analyzed as described [43]. All lipid

standards were obtained from Avanti Polar Lipids (Alabaster, AL,

USA), with the exception of dioctanoyl glycerophosphoethanola-

mine, which was obtained from Echelon Biosciences (Salt Lake

City, UT, USA). Quantification of individual molecular species

was carried out using multiple reaction monitoring (MRM) with

an Applied Biosystems 4000 Q-Trap mass spectrometer (Applied

Biosystems, Foster City, CA, USA). 25 ml of samples were

subjected to analysis as described previously [43,85]. Lipid levels

in each sample were normalized to internal standards. For each

lipid species, the mean normalized signal from the wild type and

mutant strains grown in the presence or absence of cantharidin

were calculated. Three independent experiments were used for

analysis. Lipid levels were calculated relative to relevant internal

standards. The quantities of lipids are expressed as ion intensities

relative to the levels without cantharidin, and then converted to a

log2 (drug/DMSO) scale. The difference in levels of individual

lipid species in DMSO vs. cantharidin was determined with

Kruskal-Wallis test (Table S4). Similarly, the difference between

wild type and mutants was assessed statistically using the Kruskal-

Wallis test, with a P-value cutoff of 0.05.

Actin Staining
Cells were grown to mid-exponential phase in YPD media, and

treated with and without cantharidin (250 mM) for 1 hour. Cells

were then fixed by addition methanol-free formaldehyde (Poly-

sciences, Warrington, PA) to 4% for 1 hour, centrifuged at

3,000 rpm 5 min and washed with PBS buffer three times. Cells

were permeabilized with 0.2% Triton X-100 in PBS at 25uC for

15 min, washed with PBS three times and a normalized number of

cells were stained with Alexa Fluor 488 phalloidin (Invitrogen,

Burlington, ON) in the dark at 25uC for 1 hour. Cells were

observed with 1006 objective, and fluorescence images were

acquired using AxioVision software on an Axiovert 200 M

fluorescence microscope (Carl Zeiss) using a 1.5 s exposure for

all images. The average number of actin patches per cell was

determined by dividing the total number of actin patches per total

number of cells (N=3, n$300 cells).

Supporting Information

Dataset S1 Chemical SGA. Fitness profiling of wild-type double

deletion mutants (ura3DxxxD) with cantharidin.

(XLS)

Dataset S2 Chemical SGA. Fitness profiling of crg1 double

deletion mutants (crg1DxxxD) with cantharidin.

(XLS)

Dataset S3 Glycerophospholipid and sphingolipid analysis by

liquid chromatography-tandem mass spectrometry in S. cerevisiae.

(XLS)

Dataset S4 Glycerophospholipid and sphingolipid analysis by

liquid chromatography-tandem mass spectrometry in C. albicans.

(XLS)

Dataset S5 SGA scores for crg1 double deletion mutants in the

absence of cantharidin.

(XLS)

Dataset S6 Transcriptome profiling of crg1 mutants upon

exposure to cantharidin treatment (250 mM for 1 hour).

(XLS)

Figure S1 (Related to Figure 1.) (A) CRG1 gene dose is

important for cantharidin tolerance. Wt, crg1D/CRG1 heterozy-

gous, crg1D/D homozygous and CRG1-overexpressing crg1D/D
mutants were assessed in the presence of cantharidin in YPD.

Growth curves were obtained by plotting OD600 vs. time at the

tested concentrations of cantharidin. At least three independent

replicates were analyzed and the representative growth curves are

shown. (B) Cantharidin is more potent in SD media than in YPD.

Wt, crg1D/D and CRG1-overexpressing crg1D/D mutants were

assessed in the presence of cantharidin in SD medium. Dose-

response curves were obtained by plotting OD600 at saturation

point vs. tested drug concentrations. Values are means of three

independent replicates, and error bars represent standard

deviation. (C) Crg1 is important for resistance to the cantharidin

analogues cantharidic acid and norcantharidin. Growth of wt,

crg1D/D mutant and crg1D/D cells overexpressing CRG1 was

assessed in the presence of cantharidin analogues in YPD. Dose-

response curves were obtained by plotting OD600 at saturation vs.

drug concentration. Values are the mean of three independent

replicates, and error bars represent the standard deviation.

(PDF)

Figure S2 (Related to Figure 1.) (A) Cantharidin induces CRG1

transcription in a gene-dose dependent manner. Wt, crg1D/CRG1

heterozygous, crg1D/D homozygous deletion mutants and CRG1-
overexpressing crg1D/D mutant grown to mid-exponential phase

were incubated with or without cantharidin (250 mM) for 1 hour.

Total RNA was extracted, cDNA synthesized and the relative

abundance of CRG1 transcript was analyzed by qRT-PCR. Data

are the mean of at least three independent experimental replicates,

and error bars are the standard deviation. (B) GFP-tagged Crg1 is

localized to the cytosol after 1 hour treatment with cantharidin (in

low fluorescence medium at 4 mM). Bar, 2.5 mm (see Text S1). (C)

Chemical inhibition of protein phosphatases with calyculin A

results in the transcriptional induction of CRG1. Wt cells grown to

mid-exponential phase in YPD were treated with calyculin A

(2 mM) for 30, 60 and 120 min. Total RNA was extracted, cDNA

synthesized and the relative abundance of CRG1 transcript was

analyzed by qRT-PCR. Data represent the mean of at least three
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independent experimental replicates, and error bars are the

standard deviation. (D) CRG1 is a stress-responsive methyltrans-

ferase. Expression profile of CRG1 was compared with other yeast

genes during 174 diverse environmental stresses [36]. Expression

profiles of CRG1, ACT1 and SSE2 are shown. (E) Crg1 protein

level was not altered by mutations in methyltransferase domain.

Cells were collected after induction with galactose (2%) for

3 hours. The cell lysates were analyzed by western blotting with

anti-TAP antibody. Tubulin was used as an internal loading

control and detected by an anti-tubulin antibody.

(PDF)

Figure S3 (Related to Figure 1.) (A) Viability of crg1 mutants

treated with cantharidin for 1 hour. Wt, crg1D/CRG1 heterozygous,

crg1D/D homozygous deletion mutants and CRG1-overexpressing
crg1D/D mutants grown to mid-exponential phase were incubated

with or without cantharidin (30 mM and 250 mM, the IC20 for

crg1D/D and the IC20 for wt, respectively) for 1 hour. Cells were

normalized to an equivalent OD600, 10-fold diluted, spotted onto

YPD solid medium and incubated at 30uC. (B) The comparison of

GO term Biological processes for the genes that are upregulated and

downregulated (log2 ratio .1 and ,21) in a crg1D/D mutant

treated with cantharidin (30 mM and 250 mM) for 1 hour. (C) Heat

map of the transcriptional profiles of wt, crg1D/D and CRG1-

overexpressing crg1D/D mutants in response to cantharidin were

compared. (D) Hierarchical clustering was used to group all

significantly expressed genes (at least two fold) in at least one of

the strains in the presence of cantharidin (250 mM). Clusters of genes

exhibiting highly similar profiles across the strains are boxed. The

overrepresentation of GO Biological processes in these gene clusters

are indicated on the right. (E) Cantharidin significantly induces

STR3 transcript levels in CRG1-overexpressing crg1D/Dmutant. Wt,

crg1D/CRG1 heterozygous, crg1D/D homozygous deletion mutants

and CRG1-overexpressing crg1D/D mutants grown to mid-exponen-

tial phase were incubated with or without cantharidin (250 mM) for

1 hour. Total RNA was extracted, cDNA synthesized and the

relative abundance of STR3 transcript was analyzed by qRT-PCR.

Data are the mean of at least three independent experimental

replicates, and error bars are the standard deviation. (F) Treatment

of cells with the non-specific methyltransferase inhibitor SAH

increases sensitivity to cantharidin. Wt cells were grown in SCmedia

with or without cantharidin (4 mM) and SAH (50 mM).

(PDF)

Figure S4 (Related to Figure 3.) (A) Silver stained 12% SDS-

PAGE of purified TAP-tagged wild-type and mutated Crg1 (see

Materials and Methods for details). (B-E) Single ion chromatograms

of the major species identified in the spectra shown in Figure 3.

(PDF)

Figure S5 (Related to Figure 4.) (A) Two independent replicates

for crg1D/xxxD pools are highly correlated. Only strains with

significant log2 (drug/DMSO) (P-value ,0.05) are included in the

analysis. (B) The deletion of DBF2 suppresses CRG1 sensitivity to

cantharidin. Cells were normalized to an equivalent OD600,10-fold

diluted, spotted onto synthetic complete medium containing

cantharidin (10 mM) and incubated at 30uC. (C) CRG1-dependent
changes ofDBF2 transcript levels in the presence of cantharidin.Wt,

crg1D/CRG1 heterozygous, crg1D/D homozygous deletion mutants

and CRG1-overexpressing crg1D/D mutants grown to mid-expo-

nential phase were incubated with or without cantharidin (250 mM)

for 1 hour. Total RNA was extracted, cDNA synthesized and the

relative abundance of DBF2 transcript was analyzed by qRT-PCR.

Data are the mean of at least three independent experimental

replicates, and error bars are the standard deviation.

(PDF)

Figure S6 (Related to Figure 5.) (A) GO term enrichment

analysis of cantharidin-specific CRG1-interactors before and after

MDR gene filtering. Only the terms with significant P-values

(,0.05) are shown. Bonferroni correction was applied to the

MDR-filtered terms. (B) Representative images of cells stained

with Nile Red for lipid droplets. Cells were grown at 30uC for

42 hours to reach stationary phase, and inoculated into fresh

medium with cantharidin (250 mM) for 2 hours. Cells were fixed

and stained with Nile Red. Bar, 2.5 mm. (C) Sterol species are not

affected by the deletion of CRG1 and cantharidin treatment (see

Materials and Methods for details).

(PDF)

Figure S7 (Related to Figure 5.) The C. albicans functional

homolog of CRG1, orf19.633, has a role in lipid homeostasis. (A)

orf19.633, a putative methyltransferase, is required for cantharidin

resistance. Fitness of wt (SN87) and orf19.633D/D mutant were

measured in liquid YPD medium in the presence of cantharidin

(2 mM, the IC20 for wt). Dose-response growth curves were

obtained by plotting OD600 at saturation point in liquid versus

tested drug concentrations. (B) Comparative lipidomics of canthar-

idin-treated C. albicans wild type and orf19.633D/D mutant. The

cells were treated with 2 mM cantharidin (2 hours) and further

prepared as described in Figure 5. Only those lipid species with

significant changes in their abundance between wt and orf19.633D/

D mutant are shown (P-value,0.05, Student’s t-test). (C) PI species

are significantly affected by cantharidin in Crg1-dependent manner.

Cells were prepared as described in Figure 5. Only those PI species

with significant changes in their abundance between wt and crg1D/

D mutant are shown (P-value ,0.05, Student’s t-test). The PI

content of CRG1-overexpressing mutant is not significantly different

form the one in wild-type strain (P-value .0.05).

(PDF)

Figure S8 (Related to Figure 5.) The genetic interactome of CRG1

reveals functional networks required for buffering the absence of

CRG1 in standard laboratory condition. (A) Genetic interactors of

CRG1 identified through SGA analysis. The double deletion

mutants crg1DxxxD were generated by SGA as previously described

[86]. The double and single mutant fitness (based on colony sizes)

from two independent SGA screens were used to quantify the

strength of genetic interaction between CRG1 and other gene.

Quantification was performed using the quantitative SGA scoring

algorithm as described in [87]. The significant genetic interactors

(P-value ,0.05) common between two SGA screens were

considered as hits. The mutants with SGA score .0.08 are

significant positive or alleviating interactors, the ones with ,0.08

are significant negative or aggravating interactors. (B) Deletion of

CRG1 suppresses fitness defect of rvs167Dmutant. Double and single

mutants were grown in synthetic complete (SC) medium to the

saturation. ura3D his3D is used as the control strain.

(PDF)

Figure S9 (Related to Figure 6.) (A) Transcriptional activator

Yap1 is not required to activate CRG1 transcription during

cantharidin stress. Sample treatment and qRT-PCR analysis were

performed as described in Figure 1B. (B) CRG1 is transcriptionally

activated by cell wall perturbing agents, however, it is not required

for the growth in their presence. qRT-PCR analysis was

performed as described in Figure 1B. Cells normalized to equal

OD600 were 10-fold diluted, spotted onto solid YPD medium

containing various cell wall and membrane perturbing agents, and

incubated at 30uC for 2–3 days. (C) Overexpression of CRG1

confers resistance to fenpropimorph. Mid-exponentially grown

cells were normalized to equal OD600 were 10-fold diluted, spotted
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onto solid YPD medium containing fenpropimorph (250 mM), and

incubated at 30uC for 2–3 days.

(PDF)

Table S1 Significantly enriched (P-value ,1.061026) Gene

Ontology Biological processes for significantly up- and downreg-

ulated genes (log2 .1 and ,21) in the presence of cantharidin.

(XLSX)

Table S2 Differentially expressed genes of methionine biosyn-

thesis in crg1 mutants under cantharidin stress.

(XLSX)

Table S3 Cantharidin-specific genetic interactors of CRG1.

(XLSX)

Table S4 Statistical analysis (Kruskal-Wallis test) of lipid

abundance in crg1 mutants exposed to cantharidin.

(XLSX)

Table S5 Yeast strains used in this study.

(DOC)

Table S6 Plasmids used in this study.

(DOC)

Table S7 Primers used in this study.

(DOC)

Text S1 Supporting Materials and Methods.

(DOC)
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