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Abstract

Background: Because metabolism is fundamental in sustaining microbial life, drugs that target

pathogen-specific metabolic enzymes and pathways can be very effective. In particular, the

metabolic challenges faced by intracellular pathogens, such as Mycobacterium tuberculosis, residing in

the infected host provide novel opportunities for therapeutic intervention.

Results: We developed a mathematical framework to simulate the effects on the growth of a

pathogen when enzymes in its metabolic pathways are inhibited. Combining detailed models of

enzyme kinetics, a complete metabolic network description as modeled by flux balance analysis, and

a dynamic cell population growth model, we quantitatively modeled and predicted the dose-

response of the 3-nitropropionate inhibitor on the growth of M. tuberculosis in a medium whose

carbon source was restricted to fatty acids, and that of the 5'-O-(N-salicylsulfamoyl) adenosine

inhibitor in a medium with low-iron concentration.

Conclusion: The predicted results quantitatively reproduced the experimentally measured dose-

response curves, ranging over three orders of magnitude in inhibitor concentration. Thus, by

allowing for detailed specifications of the underlying enzymatic kinetics, metabolic reactions/

constraints, and growth media, our model captured the essential chemical and biological factors

that determine the effects of drug inhibition on in vitro growth of M. tuberculosis cells.

Background
System-level networks of biological processes and func-
tions allow us to draw inferences about the phenotype of
an organism that cannot be made by considering each of
its individual components [1-4]. In particular, metabolic
networks are made up of hundreds to thousands of dis-
tinct but interconnected chemical reactions, each process-
ing particular metabolites in different locations of the cell
that, taken together, ultimately allow the cell to function
and grow [5]. The metabolic network of an organism is
assembled, through automated and manual procedures

[6,7], based on known chemical reactions collected from
genome annotation databases, such as the Kyoto Encyclo-
pedia of Genes and Genomes [8]. Currently, assemblies of
metabolic networks are available for several bacterial spe-
cies [9-13], yeast [14], and humans [15].

Several quantitative approaches have been developed to
study different aspects of metabolic networks [16,17].
Kinetic models comprised of explicit sets of reactants and
reactions can be constructed and solved via ordinary dif-
ferential equations (ODEs), provided the rate constants
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for each reaction are known. Kinetic models are typically
restricted to a selected set of reactions used to study, for
example, metabolism in human red blood cells [18], core
components of the anaerobic metabolism in Escherichia
coli [19], and the relation between single nucleotide poly-
morphisms and anemia [20]. Kinetics of inhibiting
enzymes can be incorporated into such models [21].
However, due to the limited number of reactions mod-
eled, only parts of the metabolic network can be taken
into account and the whole organism's response (i.e., its
phenotype) to the inhibitor cannot be modeled. In more
comprehensive studies of the entire metabolic network of
organisms for which kinetic information of all reactions is
not available, flux balance analysis (FBA) can be used to
obtain the optimal steady-state reaction flux distribution
and the organism's growth rate under constraints imposed
on the directions of the reactions, stoichiometry, and
maximal transport fluxes [22]. FBA can predict experi-
mentally determined cellular growth rates in different
media [10-12,23-25] and identify genes, which, when
removed, prevent cellular growth [10,11,14,26-29].
Going beyond steady-state conditions of the traditional
FBA, cell growth dynamics can be taken into account in a
dynamic flux balance model [25,30]. Such dynamic flux
balance models provide a link between temporal changes
of nutrient concentrations in a given medium and cell
growth, as nutrients are consumed by the cell. Because
these conditions are typically encountered in experimen-
tal studies of bacterial growth, dynamic flux balance mod-
els provide an important mechanism for understanding
and representing experimental observations.

Enzyme inhibition kinetics, FBA of metabolic networks,
and cell growth dynamics have each been studied sepa-
rately before. Moreover, enzyme inhibition kinetics has
been incorporated into a portion of a metabolic network
[21], and FBA of a metabolic network has been combined
with cell growth dynamics [30]. However, integration of
all three components has not been attempted before.
Here, we present a framework that links together all these
three components - enzyme inhibition kinetics, FBA of a
metabolic network, and cell growth dynamics - to model
the growth inhibition of Mycobacterium tuberculosis, the
causative agent of tuberculosis (TB).

TB is a major infectious disease in the world with over 9.2
million new cases and 1.7 million deaths in 2006, and it
is estimated that one-third of the human population is
infected with the disease [31]. Mycobacteria are aerobic
organisms classified as acid-fast Gram-positive bacteria
due to their lack of an outer cell membrane. They are a rel-
atively slowly dividing organism compared with other
bacteria. Most treatments for tuberculosis directly inter-
fere with mycobacteria-specific physiology [32]. M. tuber-
culosis is a prototrophic and metabolically flexible

organism capable of surviving in a variety of environ-
ments. Bacteria that reach the lung alveoli are internalized
by resident macrophages, where they are able to replicate
in modified vacuoles [33-35]. At the onset of adaptive
immunity, activated macrophages keep the infection
under control, but the bacteria are not eliminated, and a
state of chronic persistence is established [36]. Survival
under such conditions requires metabolically active bacte-
ria capable of producing counter-immune effectors
[34,37,38].

Worldwide efforts to eliminate TB are confronting many
obstacles, including drug-resistant pathogens, compliance
with complicated drug regimens, and compromised
immune systems associated with human immunodefi-
ciency syndrome or acquired immunodeficiency syn-
drome [39]. Partly to address these issues, renewed efforts
have begun in developing drugs that target the intracellu-
lar metabolism of M. tuberculosis, for example, by analyz-
ing metabolic pathways to identify potential drug targets
that selectively affect M. tuberculosis [40]. Importantly,
using the sequenced genome of M. tuberculosis [41]
together with literature data on known metabolic reac-
tions, extensive metabolic network reconstructions have
been carried out for this organism [42,43]. Analyses of
these networks based on FBA reveal that they contain suf-
ficient information to predict growth rates and identify
genes that are essential for the growth of M. tuberculosis in
select media [42,43].

Novel drug design approaches against M. tuberculosis
metabolism exploit the unique and harsh conditions that
the pathogen is exposed to in the host environment. After
entering a host, pathogens are confronted with a nutrient-
poor environment and are often restricted to utilizing
fatty acids as their main carbon source [32,38]. This is
accomplished by activation of the glyoxylate shunt path-
way and the methylcitrate cycle [44,45]. Consequently,
the ability to inhibit key reactions of these two pathways
makes 3-nitropropionate (3-NP) an effective inhibitor for
the in vitro growth of M. tuberculosis in fatty acid media as
well as for its in vivo growth in mouse macrophage cells
[46]. In addition to presenting a limited carbon source,
the host environment is also deficient in iron, another
nutritional requirement for the invading pathogen. Free
iron is strictly controlled in the host environment via host
iron-binding proteins, such as human transferrin, as a way
to defend against bacterial infections [47]. Thus, many
pathogens synthesize siderophores, chemicals with very
high affinity for iron, to wrestle iron away from the host
[48]. For M. tuberculosis, mycobactin is the necessary
siderophore required for growth in macrophages and
media containing low concentrations of iron [49]. There-
fore, the biosynthesis of mycobactin [50] and the regula-
tion of this iron uptake mechanism [51,52] have been
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extensively studied as a potential drug target. This led to
the discovery that 5'-O-(N-salicylsulfamoyl) adenosine
(sAMS) can function as an inhibitor to M. tuberculosis via
its ability to inhibit mycobactin synthesis [53].

Here we developed a mathematical framework in which
enzyme inhibition kinetics, metabolic network simula-
tion, and cell growth dynamics are considered together to
produce a system that is able to quantitatively model drug
inhibition of cell growth. We separately simulated the
effects of two metabolic inhibitors, 3-NP and sAMS, on
the growth of M. tuberculosis cells, using an in vitro media
model designed to mimic the limited nutritional environ-
ment in a host cell. The predicted dose-response curves
quantitatively reproduced the observed experimental
data, indicating that the developed modular framework
was capable of capturing the effects of metabolic inhibi-
tors on bacterial cell growth.

Methods
The mathematical framework needed to map the amount
of drug to the collective growth response of the M. tuber-
culosis bacterium required that we connect enzyme inhibi-
tion kinetics, metabolic network modeling, and bacterial
population growth models. If these components could be
modeled and verified by experimental data, we could cre-
ate a computational system to quantitatively predict how
metabolic inhibitors affect bacterial growth. Here, we
present the framework that allowed us to generate and
reproduce the dose-response curves of two metabolic
inhibitors generated from two independent experimental
studies.

The mathematical framework provides the connection
between a) how a particular inhibitor affects the flux(es)
of one or more metabolic reactions [Inhibition Model]
(the affected reactions are referred to as target reactions),
b) how the change in the metabolite flow or flux of the
target reactions decreases the growth rate of the organism
[Metabolic Network], and, finally, c) how the reduced
growth rate results in an effective lower bacterial cell con-
centration [Population Growth Model]. Figure 1 schemat-
ically shows these three components and how they
connect to and depend on each other. With the models
specified and connected as outlined in Figure 1, the com-
putational procedure only depends on the inhibitor con-
centration and the initial substrate and cell concentrations
in the medium under which the organism was grown to
calculate the subsequent bacterial cell concentration. The
details specifying the internal workings of each model are
given below.

Inhibition model

The inhibition model is defined by the enzyme inhibition
kinetics governing the reactants and products of a particu-

lar metabolic reaction (i.e., the target reaction) and relates
the manner by which the inhibitor concentration [I] mod-
ifies or adds constraint to the flux of the target reaction.
The mathematical form of the inhibition model depends
on the particular enzyme kinetics associated with the spe-
cific inhibitor and the metabolic reaction affected by the
inhibitor. Mathematically, the inhibition model relates an
inhibitor concentration [I] to the resulting metabolite flux
ratio in the presence and absence of the inhibitor. Inhibi-
tors affecting more than one reaction can also be consid-
ered.

Metabolic network

The metabolic network is used to self-consistently calculate
the overall biomass growth rate μ, substrate uptake rates
vC, and the fluxes of all metabolic reactions. It is coupled
to the inhibition model and the population growth model. The
inhibition model places constraints on the flux of the target
reactions in the metabolic network that affects the total
biomass growth rate, and the population growth model adds
constraints to the network's substrate uptake rate from the
medium. The effect of enzyme deletions (deletion
mutants) on growth can be incorporated in the metabolic
network model by removal of the particular reactions cat-
alyzed by the specified enzymes [22,54].

The metabolic network developed by Jamshidi and Pals-
son [42] for M. tuberculosis, iNJ661, is able to quantita-
tively reproduce observed growth rates under a number of
different conditions. We used this network, with some
modifications, as the basis for our work (see Additional
file 1: Section S1) and verified that the modifications did
not affect the growth rate of M. tuberculosis, as originally
reported [42].

The rate of growth of the biomass, the substrate uptake
rates, and the reaction fluxes were obtained directly from
the metabolic network by applying the FBA [26]. By using
a linear programming method, FBA can maximize the bio-
mass growth rate subject to steady-state mass balance of
all the intracellular metabolites, and the stoichiometric
constraints defined by the reactions. The maximization of
biomass growth rate is based on the assumption that bac-
teria maximize their growth during the exponential stage
and early stationary stage conditions. This assumption has
been shown by previous studies to generate experiment-
compatible results under such conditions [25,30]. Addi-
tional constraints that can be modeled in the FBA include
specification of reversible and irreversible reactions, as
well as limits placed on substrate uptake and target reac-
tion rates. Here, FBA was performed with the COBRA
Toolbox [55]. We also used the COBRA Toolbox to mini-
mize the reaction fluxes while keeping the calculated max-
imal biomass growth rate. This procedure allowed us to
obtain a unique set of minimum fluxes corresponding to
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the most parsimonious flow of metabolites through the
network [56-58]. These fluxes were then used to constrain
the target reaction rates.

Population growth model

Given the biomass growth rate μ and the substrate uptake
rates vC defined by the metabolic network, the population
growth model provides a mechanism for calculating cell [X]
and substrate [C] concentrations in the specified medium.
This model considers changes in the substrate concentra-
tions over time, which could be used to monitor how dif-
ferent carbon sources are preferentially used in the
metabolic process [30].

Mathematically, the population growth model links the
biomass growth rate μ to the actual cell concentration [X]
of the bacteria as a function of time t. This process needs
to consider the temporal depletion of the limiting sub-

strate C in the medium as cells grow, which is dependent
of the substrate uptake rate vC by the cells. Because the
more cells grow the more they consume the limiting sub-
strate, we represented this coupling through the following
two ODEs:

where the brackets [.] indicate the concentration of "." and
[C] represents the concentration of the limiting substrate
C in the medium. The factor 24 simply converts the time
t from hours to days, since the units of μ and vC are
expressed, respectively, in h-1 and mmol/(h·gDW), that
is, mmol per hour per gram dry weight of M. tuberculosis.

d X

dt
X

[ ]
[ ]= 24m

d C

dt
v XC

[ ]
[ ]= −24

A schematic view of the framework to simulate an inhibitor's effect on bacterial growthFigure 1

A schematic view of the framework to simulate an inhibitor's effect on bacterial growth. Given the inhibitor con-

centration [I], the Inhibition Model describes how the inhibitor affects the reaction flux of the reaction being inhibited (i.e., the 

target reaction). These effects are modeled via explicit constraints on the target reaction flux. Using these constraints and the 

constraints on substrate uptake rate , we analyzed the Metabolic Network to infer the biomass growth rate μ and sub-

strate uptake rate vC. Using the Population Growth Model, we related biomass growth rate μ and substrate uptake rate vC to 

cell concentration [X]. We dynamically coupled the biomass growth rate and the diminished substrate concentration to 

develop a time-dependent model that dynamically infers cell concentration after the introduction of an inhibitor. Once these 

model components were specified, together with the initial substrate [C0] and cell [X0] concentrations in the growth medium, 

the calculations performed within this framework only required input in the form of a specific inhibitor concentration [I] to 

predict cellular growth.

vC
U
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Equation 1 did not include a cellular death rate because
we simulated bacterial growth during exponential stage
and early stationary stage conditions, where cellular
growth plays a more dominant role than cellular death.
Previous studies under similar growth conditions, which
also did not explicitly include a death rate term, obtained
simulation results that were consistent with experimental
data [25,30].

The biomass growth rate μ and the uptake rate of the lim-

iting substrate vC are determined, for a given time point,

by performing a FBA of the metabolic network for a given

inhibitor concentration [I] and an upper limit constraint

on the limiting substrate uptake rate . We formally

introduced a notation to indicate the growth rate μ and

the uptake rate vC outputs of a FBA of a metabolic network

for a given set of input conditions [I] and  as:

We employed the Michaelis-Menten kinetic model [25] to
estimate the upper limit of the substrate uptake rate:

where Vm denotes the maximum initial rate of substrate
uptake and Km represents the Michaelis-Menten rate con-
stant. Moreover, we linked the experimental readout, in
this case the optical density (OD) under 600-nm-wave-
length light [46,53], to the cell concentration [X] by:

where K denotes a proportionality constant. Other exper-
imental readouts can be similarly accounted for.

Sensitivity analysis of parameter values

The presence of a number of parameters in our mathemat-

ical framework warranted a sensitivity analysis as to how

the assigned parameter values affected the final computa-

tional results. We used two different metrics to ascertain

parameter sensitivity. In the first analysis, we gauged the

variation in the results by separately setting each one of

the parameter values to reasonable lower and upper

bounds [10], in this case, ± 50% of the chosen parameter

values. In the second analysis, we computed the sensitiv-

ity coefficient for each of the parameters. This coefficient

provides a measure of the dependency between the com-

puted results and the corresponding parameter. If OD rep-

resents the cell concentration expressed as optical density

under 600-nm-wavelength light and p represents the

parameter analyzed for sensitivity, the sensitivity coeffi-

cient  is defined as follows [59,60]:

Other observables, different from OD, can be substituted

for in Eq. 6. To numerically calculate the sensitivity coef-

ficient  for a parameter p, we started from ∂p = +0.5p

and repeated the process by reducing ∂p and calculating

the sensitivity coefficient until  converged, that is,

until successive values of ∂p yielded the same . We

then repeated the process starting from ∂p = -0.5p until

convergence. In the calculation performed here, both

processes converged to the same numerical value.

To address the different types of parameters in our frame-
work, we classified the modeled parameters into four
groups: group I included parameters obtained from the lit-
erature, group II included those determined by matching
experimental data, group III included those assumed to be
derived from other parameters, and group IV included
those that, by definition, were directly determined once
the other parameters were defined. During the sensitivity
analysis of the parameters in groups I, II, and III, we calcu-
lated dose-response curves while increasing and decreas-
ing each parameter by 50% (except for those whose values
cannot exceed one) and sensitivity coefficients spanning
three orders of magnitude in inhibitor concentration.
Although the parameters in group III were assumed to be
derived from the parameters in groups I and II, during the
sensitivity analysis for the first two groups we held the
parameter values in group III fixed. Also, because the
parameters in group IV were dependent on other parame-
ters and their values changed as we performed sensitivity
analysis on these independent parameters, we did not per-
form analysis for this group.

Results
Modeling cell growth inhibition by 3-NP

Nutrient-poor environment and in-vivo growth

M. tuberculosis faces a hostile and harsh environment
upon infecting a mouse or a human host. The invasion of
M. tuberculosis stimulates the activation of host immunity
systems initiated by the release of macrophages that ingest
pathogen cells. Macrophage-ingested cells are contained
in phagosomes where they confront high pH, antibacte-
rial reactive oxygen and nitrogen, and the lack of carbohy-
drates [38]. Because of the lack of carbohydrate nutrients,
the growth and survival of M. tuberculosis requires fatty

vC
U

vC
U

{ , } ([ ], ).m v g I vC C
U⇐

v
Vm C

Km C
C
U =

+

[ ]

[ ]

[ ]X K OD= ⋅
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C
OD OD

p p
p
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∂

∂
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acids as the principal carbon source [45]. Figure 2 sketches
out the metabolic pathways that represent a portion of the
much larger metabolic network of the organism (not
shown) through which fatty acids are utilized by the bac-
terium. Fatty acids are converted into acetyl-coenzyme A
(CoA) and propionyl-CoA through β-oxidation. The con-
version of acetyl-CoA to other metabolites, like pyruvate,
requires the availability of the glyoxylate cycle (dashed
line in Figure 2) that converts isocitrate to malate through
a glyoxylate intermediate. This pathway is an attractive
drug target because it appears to be absent in mammalian
cells [46]. The metabolism of propionyl-CoA goes
through the methylcitrate cycle (dash-dotted line in Fig-
ure 2), which converts oxaloacetate, through methylci-
trate, to produce succinate.

Figure 2 shows where the 3-NP inhibitor affects two key
reactions in the glyoxylate and methylcitrate cycles [46].
These metabolic reactions are catalyzed by the enzymes
isocitrate lyase 1 (ICL1) and isocitrate lyase 2 (ICL2),
expressed by the icl1 and icl2 genes, respectively. The two
metabolic reactions catalyzed by these enzymes convert a
citrate substrate into succinate and a by-product [44,46].
The inhibitor-targeted metabolic reactions of isocitrate
lyase (ICL) and methylisocitrate lyase (MCL) are defined
as:

It has been experimentally shown that 3-NP inhibits the
growth of M. tuberculosis in fatty acid media and in mouse

ICL isocitrate ICIT succinate SUC glyoxylate GLY: ( ) → ( ) + ( )

MCL methylisocitrate MICIT succinate SUC pyruvate PYR: .( ) → ( ) + ( )

The pathways for utilizing fatty acids, showing the target reactions of the 3-nitropropionate (3-NP) inhibitorFigure 2
The pathways for utilizing fatty acids, showing the target reactions of the 3-nitropropionate (3-NP) inhibitor. 
The fatty acid pathways include the tricarboxylic acid cycle marked by the solid line (oxaloacetate → isocitrate → α-ketogluta-
rate → succinate → malate → oxaloacetate), the glyoxylate cycle marked by the dashed line (oxaloacetate → isocitrate → gly-
oxylate → malate → oxaloacetate), and the methylcitrate cycle marked by the dash-dotted line (oxaloacetate → methylcitrate 
→ methylisocitrate → succinate → malate → oxaloacetate). 3-NP inhibits the enzymes that catalyze the reactions involved in 
converting isocitrate and methylisocitrate to succinate. CoA = coenzyme A.
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macrophage cells [46]. Medium containing propionate
(C2H5COO-) an odd-chain fatty acid as the main carbon
source was used in an in vitro experimental model system
to investigate in vivo inhibition [46]. Here, we similarly
modeled the inhibition effect of 3-NP on the M. tuberculo-
sis growth on in vitro media as a prelude to the more com-
plicated study of modeling drug effects in an in vivo host-
cell environment.

Experiment-specific mathematical framework

Experiments show that 3-NP inhibits the growth of M.
tuberculosis when propionate is the major carbon source in
the medium used to grow the bacterium [46]. To quanti-
tatively model this inhibition effect, we needed to assem-
ble the mathematical framework that was specific to this
medium and inhibition process. The terminology "inhib-
itor," "target reaction," and "substrate" in Figure 1 refer to
3-NP, the reactions ICL and MCL, and propionate, respec-
tively. The appropriate specifications needed for the inhi-
bition model, metabolic network, and population growth
model are described below.

3-NP inhibition model

We used the previously developed kinetic equation for the
3-NP-inhibited ICL reaction [21] to relate inhibitor con-
centration to the flux ratio of the reactants. This assumed
that changes in intracellular enzyme and metabolite con-
centrations are relatively unaffected by the presence of 3-
NP and that the ICL reaction is irreversible [42]. Accord-
ingly, the inhibition model relating the concentration of
the 3-NP inhibitor [3-NP] to the resulting flux ratio
fICL([3-NP]) of the ICL reaction was given by:

where vICL and  denote the inhibitor and inhibitor-

free reaction fluxes, respectively, wICL1 and wICL2 represent

the fractions of the overall inhibitor-free ICL reaction flux

for the ICL1- and ICL2-catalyzed reaction components,

respectively, SUC denotes the succinate substrate, [SUC]

indicate its concentration, and K3-NP, ICL1, K3-NP, ICL2, KSUC,

ICL1, and KSUC, ICL2 denote Michaelis constants [25].

The parameter values for this model can be partially
found in the literature, but some of them need to be cal-
culated or fitted to match experimental conditions. The
values of wICL1 and wICL2 were estimated from the known
rate constants for the ICL reaction catalyzed by the ICL1
and the ICL2 enzymes, respectively. Thus, given the reac-
tion rates of 5.24 s-1 and 1.38 s-1 for ICL1 and ICL2, respec-
tively [44], the fractions of wICL1 and wICL2 were estimated
to be 0.79 and 0.21, respectively. The experimental values
employed for the succinate concentration were used to set

[SUC] to 2.464 mM [21]. Likewise, we directly used the
experimentally determined values of 0.003 mM and 0.11
mM for K3-NP, ICL1 and K3-NP, ICL2, respectively [21,61]. The
value for KSUC, ICL1 was obtained by using the 3-NP specific
mathematical framework to match the experimental cell
concentration at a specific 3-NP concentration of 0.025
mM (this is described in the next subsection "Obtaining
Undetermined Parameter Values"). Based on the experi-
mentally measured range of KSUC, ICL2 values [21], we set
this parameter to 10 × KSUC, ICL1.

Because the kinetic equation for the MCL reaction is not
available, and based on the strong similarity between the
mechanisms of catalysis and 3-NP inhibition of the MCL
and the ICL reactions, we assumed it had the same form
as the ICL reaction:

The variables and parameters in this equation have similar
meaning to those given in Eq. 9. The unavailable values
for K3-NP, MCL1, K3-NP, MCL2, KSUC, MCL1, and KSUC, MCL2 were
set to the same corresponding values used in the ICL
model. The fractions wMCL1 and wMCL2 were set to 0.999
and 0.001, respectively, as the associated rate constants of
the MCL reaction for the ICL1 and the ICL2 enzymes are
1.25 s-1 and <10-3 s-1, respectively [44].

Metabolic network considerations

The metabolic network model must take into account the

appropriate substrate uptake and target reaction con-

straints based on the experimental setting [46]. Here, we

first focus on substrate uptake in propionate medium

used in the experiment. The propionate uptake was con-

strained based on the propionate concentration in the

medium. Because setting the glycerol uptake rate to zero

would have caused the biomass growth rate to be zero

[42], we set this uptake rate to a very small value, 0.001

mmol/(h·gDW). In iNJ661 [42], glycerol is a biomass

component, but there is no pathway to synthesize glyc-

erol, necessitating the addition of a small amount of glyc-

erol uptake to the metabolic network. The uptake rates of

other carbon sources, like glucose, were set to zero. Other

necessary substrate uptake rates, including phosphate,

sulfate, ferric iron, ammonium, and oxygen, were left

unconstrained. In the absence of a 3-NP inhibitor in the

medium, the fluxes of the ICL and MCL reactions in Eqs.

6 and 7 were unconstrained and the inhibitor-free reac-

tion fluxes  and  were obtained from a FBA cal-

culation. When 3-NP was present, the ICL (and MCL)

reaction fluxes were constrained to be no more than the
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product of the flux ratios of fICL([3-NP]) (or fMCL([3-NP])),

determined from the inhibition model, and the inhibitor-

free fluxes fICL  (or fMCL ). We constrained the tar-

get reaction fluxes to upper bounds instead of fixing them

to specific values in order to avoid an artificial coupling of

fluxes. For example, in the case of 3-NP, which inhibits

both ICL and MCL reactions, the resultant fluxes may be

different and may not be equal to but lower than the con-

straints. When the M. tuberculosis deletion mutant

Δicl1Δicl2 was studied, the fluxes associated with the ICL

and MCL reactions were set to zero [11,12]. The devel-

oped metabolic network, including the constrained sub-

strate uptake rates, is available in Systems Biology Makeup

Language (SBML) format (see Additional file 2).

Experimental population growth model

In the experimental study of the 3-NP inhibitor, cell con-

centrations are monitored at different time points during

a 16-day growth experiment in propionate medium with

and without inhibitor [46]. We can computationally

obtain the same growth curves by consistently solving

Eqs. 1-5 with the appropriate specific experimental condi-

tions. For this set of equations, propionate is the limiting

substrate C, vC is the propionate uptake rate, and  is the

upper limit constraint on the propionate uptake rate.

Because the optical density OD was used as the readout of

the experiments, we did not provide absolute values for

the cell concentration [X] [46]. By defining [C'] = [C]/K

and  = Km/K, Eqs. 1-5 can be written as:

The initial values for OD were taken directly from the
experimental data [46]. The population growth model
defined by Eqs. 11-14 were then iteratively solved by
using the results generated from the FBA of the metabolic
network.

Obtaining undetermined parameter values

All parameters needed to calculate cellular growth and

growth inhibition from the mathematical framework in

Figure 1 have not been experimentally determined. How-

ever, we could use the combined formalism of the three

models to self-consistently determine the unknown

parameter values. In particular, we needed to estimate val-

ues for the initial propionate concentration [C'] (t = 0),

the maximum initial propionate uptake rate Vm, the

Michaelis-Menten rate constant for the propionate uptake

 in Eq. 14, and KSUC, ICL1 in Eq. 9.

We first determined the values of three of these four

parameters by matching the inhibitor-free growth curve of

M. tuberculosis. We systematically manipulated the values

for [C'] (t = 0), Vm, and  to reproduce the experimental

cell concentrations (see Additional file 1: Section S2). Fig-

ure 3A (solid line) shows the match between simulation

results and experimental data of inhibitor-free growth

when [C'] (t = 0), Vm, and  were set to 40 mmol/gDW,

2 mmol/(h·gDW), and 30 mmol/gDW, respectively.

Next, we used the experimental cell concentration data for

M. tuberculosis in propionate medium containing 0.025

mM 3-NP inhibitor to estimate the value of the fourth and

last unknown parameter, KSUC, ICL1. This was achieved by

mathematically varying the value of KSUC, ICL1 until we

obtained close agreement between experimental and pre-

dicted growth data, as shown in Figure 3A (dashed line).

This process set the value of KSUC, ICL1 to 1.5 mM (see Addi-

tional file 1: Section S2).

Verification of essentiality of the target reactions

A prerequisite for a good inhibitor is that its target is
essential for the survival and homeostasis of the bacte-
rium. In the experimental study, genes icl1 and icl2 whose
products catalyze the reactions ICL and MCL, respectively,
are deleted from wild-type M. tuberculosis. Figure 3A
shows that in the experiment the resultant deletion
mutant Δicl1Δicl2 exhibits a lack of growth in propionate
medium [46]. We used the mathematical framework to
verify that the two 3-NP-inhibited reactions, ICL and
MCL, are necessary for the growth of M. tuberculosis in this
medium. This was achieved by setting the fluxes associ-
ated with these reactions to zero (see Additional file 1:
Section S3), leading to a model that predicts complete
lack of bacterial growth in the absence of these reactions
(dotted line in Figure 3A).
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Results from the mathematical framework used to study the inhibitory effects of 3-nitropropionate (3-NP)Figure 3
Results from the mathematical framework used to study the inhibitory effects of 3-nitropropionate (3-NP). 
(A) Cell concentration, expressed in units of optical density at 600-nm-wavelength light (OD600), of Mycobacterium tuberculosis 
in inhibitor-free medium (solid line), in medium with 0.025 mM 3-NP (dashed line), and cell concentrations of the Δicl1 Δicl2 
mutant bacterium (dotted line) obtained from our calculation using the described mathematical framework and compared to the 
corresponding experimental results [46]; (B) The calculated cell concentration, expressed as OD600, of M. tuberculosis is shown 
as a function of time for different 3-NP inhibitor concentrations and compared to the corresponding experimental data [46]; 
and (C) The calculated cell concentration, expressed as OD600, of M. tuberculosis after a 16-day growth period as a function of 
3-NP inhibitor concentration compared to experimental values [46].
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Growth predictions

As described above in "Obtaining Undetermined Parame-
ter Values," we used the experimentally determined cell
concentration growth at the lowest (0.025 mM) of the
four measured inhibitor concentrations 0.025, 0.050,
0.100, and 0.200 mM [53] to determine the value of KSUC,

ICL1. With the values of the rest of parameters established,
we then used the mathematical framework to predict the
growth of M. tuberculosis at the other three 3-NP inhibitor
concentrations (0.050, 0.100, and 0.200 mM) and com-
pared the results to the experimental values (see Addi-
tional file 1: Section S4). Figure 3B shows that, for each
inhibitor concentration, the predicted and the experimen-
tal cell concentrations were, overall, in good agreement
with each other. However, Figure 3B also shows that the
simulation results may over- or under-predict the experi-
mental data. This was due to the maximization of biomass
growth rate and also by not including an explicit cellular
death rate, assumptions that are reasonable for modeling
growth in exponential and early stationary stages (see sec-
tion "Development of the Mathematical Framework").
Thus, implementation of our modeling framework under
different conditions or for very long time periods may
cause mismatches when simulating cellular growth. Fig-
ure 3C shows that the simulated dose-response curve,
which links the 3-NP concentrations to the cell concentra-
tions after a 16-day growth of M. tuberculosis, provided
accurate predictions matching the experimental results.

We used linear regression [62] to evaluate the fitness
between the simulation results and the experimental data.
For the 30 experimental data points shown in Figures 3A
and 3B, we used our framework to obtain the correspond-
ing simulated values. A linear regression of the data
yielded a slope (1.0008) and intercept (0.0001) close to
one and zero, respectively. The coefficient of determina-
tion (R2) was 0.9867, indicating a strong and significant
correlation (P value = 8.2050 × 10-28) between the simu-
lated values and experimental data.

The benefit of a quantitative predictive model lies both in
the ability to rapidly make predictions once the model is
properly parameterized and the additional insights gained
in the mechanisms underlying the experimental observa-
bles. With a model, we can accurately predict dose-
response curves in less than one hour, and the mathemat-
ical framework can provide information that cannot be
directly obtained from an experiment. For example, we
knew that 3-NP inhibits both the ICL and the MCL reac-
tions defined in Eqs. 6 and 7, respectively. However, the
degree to which each reaction slows down growth was not
known. This question is experimentally difficult to ascer-
tain, since the two reactions are catalyzed by the same
enzyme. Theoretically, we can use the developed formal-
ism to answer this question by allowing 3-NP to inhibit

only one reaction. The calculated growth of M. tuberculosis
in medium with 0.025, 0.050, 0.100, and 0.200 mM 3-NP
was very similar to the inhibitor-free growth when only
the ICL reaction was affected by the inhibitor. However,
when we assumed that 3-NP only inhibited the MCL reac-
tion, the calculated growth was virtually the same as the
results in Figure 3A (dashed line) and Figure 3B. There-
fore, the simulations suggest that it was primarily the
inhibitory effect of 3-NP on the MCL reaction that limited
M. tuberculosis growth. This observation is compatible
with the metabolism of odd- and even-chain fatty acids.
Both the ICL and the MCL reactions are necessary steps in
transferring extracellular carbon atoms to intracellular
metabolites and obtaining energy from fatty acids. How-
ever, these reactions differ in that the ICL reaction is used
for even-chain fatty acids, the MCL reaction is used for
odd-chain fatty acid with three carbon atoms such as pro-
pionate, and longer odd-chain fatty acids require both
reactions [44]. Because in the studied medium propionate
is the major carbon source, the inhibition of the MCL
reaction is key to the inhibitory effect of 3-NP.

Sensitivity analysis of parameter values

Table 1 shows the four groups of 16 parameters used to

construct the 3-NP inhibition model. Figure 4 shows the

extent of the computed dose-response curve variations for

the seven parameters that materially affected the results:

[SUC] and wMCL1 in group I; [C'] (t = 0), Vm, and  in

group II, and KSUC, MCL1 and K3-NP, MCL1 in group III. Figure

4A shows that, compared with the other six parameters

whose variations influenced the dose-response curve, the

succinate concentration [SUC] had relatively a small

effect, suggesting that it was reasonable to assign [SUC] a

constant value in the model. Figure 4B shows that direct

variations of wMCL1 introduced relatively large variations

in the calculated dose response. Because this parameter

was originally derived from a relative ratio of experimen-

tally determined rate constants, the ± 50% variations of

wMCL1 greatly exaggerated plausible experimental errors.

For this reason, the sensitivity coefficient analysis below

gives a more realistic measure of the importance of this

experimentally determined parameter. Changes in the ini-

tial propionate concentration [C'] (t = 0) (Figure 4C) and

in the maximum initial propionate uptake rate Vm (Figure

4D) had large effects on the dose-response curves because

directly adding or subtracting nutrients and allowing for

different nutrient uptake rates directly affected cellular

growth. Moreover, Figure 4D shows an additional non-

linear effect in the dose-response curve for the largest

uptake rate [Vm = 3 mmol/(h·gDW)] for low inhibitor

concentrations (≤0.003 mM). For large values of Vm, the

′K m
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effective biomass production per unit of propionate

uptake became lower and pushed the bacterium into a

growth regime where propionate could not be efficiently

used. Hence, for low inhibitor concentrations, the cell

concentrations at the largest Vm (dashed line in Figure 4D)

were lower than those at the original Vm (solid line in Fig-

ure 4D). Figures 4E, 4F, and 4G show that independent

variations of , KSUC, MCL1, and K3-NP, MCL1 induced a

similar magnitude change in the calculated dose-response

curves. These parameters show a similar range of varia-

tion, although both  and KSUC, MCL1 were ultimately

derived from matching experimental data, whereas K3-NP,

MCL1 was, in effect, an experimentally determined parame-

ter.

The other parameters of the model had no effect on the
calculated dose-response curves. The parameters wICL1, K3-

NP, ICL1, K3-NP, ICL2, KSUC, ICL1, and KSUC, ICL2, used in the def-
inition of the 3-NP inhibition model in Eq. 8, did not
affect the results because 3-NP primarily inhibited growth
through the MCL reaction and not the ICL reaction (see
previous subsection "Growth Predictions"). Similarly,
KSUC, MCL2 and K3-NP, MCL2, relating to the ICL2 enzyme in
the second term of Eq. 10, did not affect the calculated
dose-response curves.

Table 2 shows the calculated sensitivity coefficient 

for each model parameter at different 3-NP concentra-

tions. The sensitivity coefficients provided a quantitative

measure, allowing us to gauge the relative importance of

each parameter. Interestingly, although the dose-response

curves in Figure 4 indicated that (except for wMCL1) the

′K m

′K m
Cp

OD

Table 1: Model parameters for cell growth inhibition by 3-NP.

Group Parameter Model Equation Source of the value

I wICL1 Inhibition Model 9 Set to be 0.790 from [44]

[SUC] Inhibition Model 9 Set to be 2.464 mM from [21]

K3-NP, ICL1 Inhibition Model 9 Set to be 0.003 mM from [21,61]

K3-NP, ICL2 Inhibition Model 9 Set to be 0.110 mM from [21,61]

wMCL1 Inhibition Model 10 Set to be 0.999 from [44]

II [C'] (t = 0) Population Growth Model 14 Obtained by matching experimental cell growth data

Vm Population Growth Model 14

Population Growth Model 14

KSUC, ICL1 Inhibition Model 9

III KSUC, ICL2 Inhibition Model 9 Assumed (based on [21]) to be 10 × KSUC, ICL1

KSUC, MCL1 Inhibition Model 10 Assumed to be equal to KSUC, ICL1

KSUC, MCL2 Inhibition Model 10 Assumed to be equal to KSUC, ICL2

K3-NP, MCL1 Inhibition Model 10 Assumed to be equal to K3-NP, ICL1

K3-NP, MCL2 Inhibition Model 10 Assumed to be equal to K3-NP, ICL2

IV wICL2 Inhibition Model 9 Equal to 1-wICL1

wMCL2 Inhibition Model 10 Equal to 1-wMCL1

The parameter values were grouped into four groups depending on their origin: group I parameters contained those obtained from the literature; 
group II parameters were obtained by matching experimental growth data; group III parameters were assumed to be related to the parameters of 
the first two groups; and group IV parameters are, by definition, determined once the group I parameters were defined.

′K m
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The influence of the parameter values on the calculated dose-response curveFigure 4

The influence of the parameter values on the calculated dose-response curve. Sensitivity analysis of the calculated 

cell concentration, expressed in units of optical density at 600-nm-wavelength light (OD600), of Mycobacterium tuberculosis after 

a 16-day growth period as a function of 3-nitropropionate (3-NP) concentration. The analysis was performed for the parame-

ters set to their original values (solid lines), those values increased by 50% (dotted lines). (A-G) Sensitivity of the dose-response 

curves for variations in the values of the (A) succinate concentration [SUC]; (B) ICL1-catalyzed fraction of the overall inhibi-

tor-free MCL reaction flux wMCL1; (C) initial propionate concentration [C'] (t = 0); (D) maximum initial propionate uptake rate 

Vm; (E) Michaelis-Menten rate constant for the propionate uptake ; (F) Michaelis-Menten rate constant KSUC,MCL1; and (G) 

Michaelis-Menten rate constant K3-NP,MCL1.
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absolute changes of cell concentration around 10-1 mM 3-

NP were small, the values in Table 2 showed that the cal-

culated sensitivity coefficients at this concentration were

not necessarily smaller than those at other inhibitor con-

centrations.

Although our framework is capable of modeling growth
inhibition as a function of inhibitor concentration, it
would still be desirable to reduce the uncertainty in the
model parameters by directly obtaining accurate parame-
ter values from experimental studies. The predictive power
of our model could be further refined if the relationship
between succinate concentrations [SUC] and the fluxes of
the ICL and MCL reactions inside M. tuberculosis cells
could be ascertained experimentally. This could be done
by jointly measuring intracellular metabolite concentra-
tions and metabolic fluxes, as recently done in a study of
E. coli metabolism [63]. Similarly, values for K3-NP, MCL1

and KSUC, MCL1 could be obtained directly from enzyme
kinetic experiments [64].

Modeling cell growth inhibition by sAMS

The importance of iron sequestration

As a response to the invasion of M. tuberculosis, the host
immune system reduces the iron levels in pathogen-
infected environments by means of iron-binding proteins
[48]. M. tuberculosis responds to the changing environ-
ment by synthesizing and secreting mycobactin, which
has an extremely high iron affinity and helps the pathogen
obtain iron from host proteins [53]. The synthesis of
mycobactin is thus an essential step for the survival and
growth of M. tuberculosis inside the host and provides a
potential drug target with broad anti-bacterial applicabil-
ity.

Table 2: Sensitivity coefficients for the parameters in modeling 3-NP inhibition.

Parameter p
Sensitivity Coefficient  as a Function of [3-NP]

0.001 mM 0.01 mM 0.1 mM 1 mM

wICL1 0.0000 0.0000 0.0000 0.0000

[SUC] 0.0004 0.4657 0.3380 0.0394

K3-NP, ICL1 0.0000 0.0000 0.0000 0.0000

K3-NP, ICL2 0.0000 0.0000 0.0000 0.0000

wMCL1 -0.0007 -1.4741 -3.8957 -0.8557

[C' ] (t = 0) 0.9609 1.2746 0.2596 0.0278

Vm 0.0060 1.3459 0.5908 0.0646

-0.0032 -0.7049 -0.2555 -0.0277

KSUC, ICL1 0.0000 0.0000 0.0000 0.0000

KSUC, ICL2 0.0000 0.0000 0.0000 0.0000

KSUC, MCL1 -0.0004 -0.4657 -0.3377 -0.0393

KSUC, MCL2 -0.0000 -0.0000 -0.0003 -0.0001

K3-NP, MCL1 0.0007 0.7492 0.5432 0.0632

K3-NP, MCL2 0.0000 0.0002 0.0020 0.0008

The sensitivity coefficient  was calculated from a numerical estimate of , where OD is the cell concentration expressed in units 

of optical density at 600-nm-wavelength light and p represents the analyzed parameter.

Cp
OD
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Figure 5 outlines the metabolic pathways extracted from
the complete metabolic network that are required for
mycobactin synthesis. These pathways include the tricar-
boxylic acid cycle, the glyoxylate cycle, and the methylci-
trate cycle outlined in Figure 2, and show that the related
metabolites and additional pathways, such as the amino
acids metabolism, are used to produce mycobactin. Con-
versely, sAMS is an inhibitor that targets mycobactin syn-
thesis [53]. Although the effects of this inhibitor in the
host environment have not yet been reported, its inhibi-
tion of the in vitro growth of M. tuberculosis in an iron-defi-
cient medium, matching the host-cell environment [53],
points to its potential therapeutic value.

Experiment-specific mathematical framework

To implement the mathematical framework outlined in
Figure 1, we customized the models to account for the

action of sAMS ("inhibitor") on the synthesis of mycobac-
tin ("target reaction"). Glycerol, alanine, and salts in the
medium used in the experimental studies of this inhibitor
[53] were modeled as "substrates." The appropriate speci-
fications needed for the inhibition model, the metabolic
network, and the population growth model are described
below.

sAMS inhibition model

sAMS inhibits the enzyme salicyl-AMP ligase (MbtA;
encoded by the gene Rv2384) that catalyzes the synthesis
of mycobactin and is characterized as a tight-binding
inhibitor. Therefore, Morrison's equation can be used to
specify the inhibition model that relates the concentration
of the sAMS inhibitor [sAMS] to the flux ratio of the myco-
bactin synthesis reaction fMS, considering the concentra-
tion of the MbtA enzyme [E] as one parameter [53]:

The metabolic pathways involved in the mycobactin synthesis and subsequent iron uptakeFigure 5
The metabolic pathways involved in the mycobactin synthesis and subsequent iron uptake. The target reaction 
for the 5'-O-(N-salicylsulfamoyl) adenosine (sAMS) inhibitor is indicated at the top right. The connection to the metabolic path-
ways inhibited by 3-nitropropionate (3-NP) in Figure 2 is shown at the lower left. Note that only parts of the metabolic net-
work are indicated in the figure. The entire network consists of 830 metabolites and 1,031 reactions.
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where vMS and  denote the flux of the mycobactin syn-

thesis reaction in the presence and in the absence of the

sAMS inhibitor, respectively, and  is an "apparent"

reaction rate constant whose value is 0.7 nM [53]. To

study the effect of the inhibitor on the isolated MbtA

enzyme, we used the same values taken in the in vitro

experimental assay and set [E] = 20 nM [53]. For intracel-

lular environment studies, the value of [E] is unknown

but can be inferred, as described below (see subsection

"Obtaining Undetermined Parameter Values").

Metabolic network considerations

To duplicate the experimental conditions of the sAMS

inhibitor study, we constrained the substrate uptake based

on the medium used in the experiment [53]. The medium

contained glycerol, alanine, salts, and Tween (GAST) and

the amount of added iron defined the medium condition

as iron-deficient or sufficient [53]. The Tween component

of the medium acts as a detergent in the experimental sys-

tem and was not included as a substrate in the metabolic

network. Glycerol and alanine are major carbon sources

whose uptake rates were constrained to be no more than

1 mmol/(h·gDW) [42]. The uptake rates of the salts, oxy-

gen, and water were unconstrained in the metabolic net-

work. We also modified the biomass composition for

iron-sufficient medium by changing the metabolite

"iron(III) chelated carboxymycobactin T" into iron(III),

since mycobactin synthesis and chelation were absent in

this medium. The constraint placed on the target reaction

followed the approaches used in the 3-NP study. Thus,

when sAMS was present, the reaction flux was constrained

to be no more than the product of fMS and . The devel-

oped metabolic network, including the constrained sub-

strate uptake rates, is available in SBML format (see

Additional file 3).

Experimental population growth model

The experimental study of the sAMS inhibitor reports the
relative cell concentrations, which represent the ratios of
cell concentrations in the presence to the absence of the
inhibitor after eight days of growth [53]. The experimental
data show no apparent lag time between the start of cell
growth and the onset of exponential growth [46,49].
Moreover, because cell growth usually does not enter into
a stationary stage during the first eight days [46,49], we
assumed an exponential growth in which the growth rate

and the substrate uptake rate were nearly constant. There-
fore, the ODE for the cell concentration [X] in Eq. 1 was
directly integrated to give:

where [Xt = 0] denotes the initial cell concentration, which
is the same whether sAMS was present or not. The relative
cell concentration RC after eight days was obtained as:

where [X0] denotes the inhibitor-free cell concentration, t
is set to eight days, and the inhibitor-present biomass
growth rate μ and the inhibitor-free biomass growth rate
μ0 were inferred from the metabolic network using FBA.

Obtaining undetermined parameter values

Among the parameters needed to study the inhibitory
effect of sAMS on M. tuberculosis growth, only the intracel-
lular MbtA-enzyme concentration [E] in Eq. 15 was not
readily available from the experimental data. To obtain
this parameter value, we selected a relative cell concentra-
tion RC of 0.49 at a sAMS concentration [sAMS] of 1.7 μM
from the growth-inhibition experiment in iron-deficient
medium [53] and varied the value of [E] in Eq. 15 until
our framework reproduced this RC value. This point was
selected because 0.49 is close to the mid-range of RC val-
ues, 0 ≤ RC ≤ 1. After trying different values for [E], we
found that [E] = 40 μM yielded good agreement between
the calculated (0.47) and selected (0.49) relative cell con-
centrations (see Additional file 1: Section S5).

Verification of essentiality of the target reactions

To meet the minimum requirements of an inhibitor,
sAMS needs to target a reaction that is essential for cellular
survival and function. From the experimental analysis, we
noted that, as the sAMS concentration increases to a large
value (~103 μM), the measured relative cell concentration
becomes close to zero [53]. Similarly, our mathematical
framework needs to be capable of reproducing the essen-
tiality of the targeted reaction, mycobactin synthesis in the
presence of sAMS, for cellular growth of M. tuberculosis in
iron-deficient GAST medium. Thus, we set the flux of the
mycobactin synthesis reaction to zero, which, as expected,
yielded a relative cell concentration RC of zero (see Addi-
tional file 1: Section S6). This suggests that the essentiality
of the mycobactin synthesis reaction was duplicated in
our framework.

Growth Predictions

The inhibitory effect of sAMS on the mycobactin synthesis
reaction has been experimentally studied in a cell-free in
vitro reaction assay [53]. The measured inhibitory effect in
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the assay is quantified by the flux ratio of the mycobactin
synthesis reaction as a function of sAMS concentration,
which could be predicted by applying the developed inhi-
bition model. We calculated the flux ratio fMS for a series
of sAMS concentrations using the inhibition model given
in Eq. 15, where we set the MbtA enzyme concentration
([E] in Eq. 15) to 20 nM. Figure 6A shows that there was
an overall good agreement between the experimental and
the simulated flux ratios, indicating that the inhibition
model in Eq. 15 was capable of modeling the inhibitory
effect of the target reaction.

We now turn to predicting the response of M. tuberculosis
cells growing in iron-deficient GAST medium exposed to
varying sAMS inhibitor concentrations. We used our
framework and obtained the dose-response curve in Fig-
ure 6B (see Additional file 1: Section S7). The close agree-
ment between predicted and experimental data [53]
indicates that the mathematical framework was successful
in coupling the three underlying models (inhibition, met-
abolic network, and population growth) to quantitatively
predict the inhibitory effect of sAMS on M. tuberculosis
growth in an iron-deficient medium. Moreover, to evalu-
ate the agreement between the experimental data and
their corresponding simulated values, we again performed
a linear regression on the data [62]. The obtained slope
(0.9223), intercept (0.0661), and coefficient of determi-
nation R2 (0.9779) for the 22 data points in Figure 6B (for
growth in iron-deficient medium) were commensurate
with a P value of 4.9331 × 10-18, suggesting a strong and
very similar relation between the simulated values and
experimental data.

Similarly, we repeated the calculations for the inhibitory
effect of sAMS in an iron-sufficient GAST medium. In this
medium, siderophore sequestering is not an issue,
because iron is freely available and the direct impact of
inhibiting the mycobactin synthesis reaction should be
negligible. Accordingly, we predicted that sAMS had no
effect on M. tuberculosis growth in an iron-sufficient
medium (see Additional file 1: Section S7). Figure 6B
shows that our predictions matched the experimental data
under relatively low sAMS concentration (<10 μM). At
higher inhibitor concentration, however, it is speculated
that the growth of M. tuberculosis in iron-sufficient
medium is inhibited by sAMS through some other
unknown mechanism [53]. Since this inhibitory mecha-
nism is not accounted for in our model, we could not cap-
ture this feature. The modeling framework is thus quite
powerful when the mechanism of inhibition is known.
However, as illustrated, it cannot prospectively predict
alternate binding of inhibitors or other cellular inhibition
mechanisms not explicitly detailed in the model.

Sensitivity Analysis of Parameter Values

Table 3 summarizes the five parameters used to model

growth inhibition by sAMS. Four of the five parameters

were obtained from the literature, and the remaining

parameter, intracellular MbtA enzyme concentration [E]

in Eq. 15, was determined by matching experimental

growth data. Figures 7A-E show the calculated dose-

response curves when we increased and decreased each

parameter by 50% in an iron-deficient medium. The

curves were similar to each other and indicated that the

final results were not critically dependent on our choice of

parameter values. In Figure 7A, the dose-response curves

associated with variations of the intracellular enzyme con-

centration [E] were consistent with the intuition that

inhibiting higher concentrations of the enzyme requires

additional inhibitor. The relatively high sensitivity of the

calculated dose-response to the concentration of the MbtA

enzyme in the cell [E] stems from this enzyme being the

direct target of the sAMS inhibitor. Changes of [E] directly

affect the required amount of sAMS to achieve a given

level of inhibition, causing this parameter to strongly

influence the dose-response curve. Figure 7B indicates

that  had no effect on the calculated curves. Figure 7C

shows that the upper limit of glycerol uptake ( ) had

a relatively large effect on the calculated curves. This is

because glycerol is the major carbon source for M. tubercu-

losis and, therefore, changes of its uptake limit 

directly affect the calculated growth rate of M. tuberculosis

and the calculated dose-response curve. Figure 7D illus-

trates that the upper limit of alanine uptake ( ) had a

smaller effect than that of glycerol uptake ( ) in Figure

7C, suggesting that, between the two carbon sources,

alanine was not as important as glycerol for cellular

growth. Table 4 shows the calculated sensitivity coeffi-

cients for all parameters, which also reinforced the obser-

vations that 1) [E], , and t had noticeable effects on

the calculated dose-response curves; 2)  had a rela-

tively small effect; and 3)  had almost no effect.

Among the parameters with large effects, time t could not

be considered to be associated with any experimental var-

iation. The sensitivity analysis identified the most critical

parameters of the model to be [E] and , albeit at dif-

ferent inhibitor concentrations. We could further improve

our framework by minimizing the number of matched
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Results for the study of the inhibitory effects of 5'-O-(N-salicylsulfamoyl) adenosine (sAMS)Figure 6
Results for the study of the inhibitory effects of 5'-O-(N-salicylsulfamoyl) adenosine (sAMS). (A) The flux ratio fMS 

of the mycobactin synthesis reaction as measured in the cell-fee reaction assay as a function of sAMS concentration [sAMS]. 
The calculated values (solid line) using the inhibition model given in Eq. 15 are in good agreement with the experimentally deter-
mined values (squares) [53]. (B) The calculated relative cell concentration RC of Mycobacterium tuberculosis as a function of 
sAMS inhibitor concentration [sAMS] in iron-deficient and iron-sufficient medium compared to the experimental data [53].
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parameter by directly obtaining values for [E] and 

through experiments measuring intracellular enzyme

activity [63] and nutrient uptake rate [65].

Discussion
We developed a mathematical framework connecting
kinetic models of enzyme inhibition with metabolic net-
work analysis and a population growth model. The three
components correspond to the three major steps through
which a metabolic inhibitor affects bacterial growth. First,
the inhibition model describes how the particular inhibi-
tor affects the enzyme kinetics and the flux(es) of one or
more metabolic reactions. Second, the metabolic network
analysis connects the changes in the affected metabolite
flux(es) to the growth rate of the organism. Finally, the

population growth model takes the altered growth rate
and converts it to an effective bacterial cell concentration.
This framework allowed us to quantitatively simulate the
effect of two distinct metabolic inhibitors on in vitro bac-
terial growth under different nutritional conditions.

We applied this framework to model the effect of two sep-
arate metabolic inhibitors, 3-NP and sAMS, on the growth
of M. tuberculosis cells on propionate medium and on
iron-deficient GAST medium, respectively. Both reactions
affected by these two inhibitors are required for the sur-
vival of the pathogen in the host environment and could
potentially become important therapeutic targets. 3-NP
inhibits key reactions in the glyoxylate shunt and the
methylcitrate cycle, effectively blocking the utilization of
fatty acids, the major carbon source of M. tuberculosis in

nGlyc
U

Table 3: Model parameters for cell growth inhibition by sAMS.

Group Parameter
Annotation

Model Eq. Source of the value

I
: apparent reaction rate constant

Inhibition Model 15 Set to be 0.7 nM from [53]

: upper limit of glycerol uptake
Metabolic Network - Set to be 1 mmol/(h·gDW) from [42]

: upper limit of alanine uptake
Metabolic Network - Set to be 1 mmol/(h·gDW) from [42]

t: time length of cellular growth Population Growth Model 17 Set to be 8 days from [53]

II [E]: intracellular MbtA concentration Inhibition Model 15 Obtained by matching experimental data

All parameter values were selected from the literature except for the intracellular MbtA enzyme concentration [E], which was obtained by 
matching experimental data.
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Table 4: Sensitivity coefficients for the parameters in modeling sAMS inhibition.

Parameter p
Sensitivity Coefficient  as a Function of [sAMS]

0.1 μM 1 μM 10 μM 100 μM 500 μM

0.0000 0.0000 0.0000 0.0000 0.0000

-0.0197 -0.1966 -1.9662 -7.8648 -7.8648

-0.0067 -0.0670 -0.6703 -2.6812 -2.6812

t -0.0264 -0.2636 -2.6365 -10.5460 -10.5460

[E] 0.0264 0.2636 2.6365 0.0000 0.0000

The sensitivity coefficient  was calculated from a numerical estimate of , where RC is the relative cell concentration, defined as the 

ratio of inhibitor-present to inhibitor-free cell concentrations, and p represents the analyzed parameter.
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The influence of the parameter values on the calculated dose-response curveFigure 7

The influence of the parameter values on the calculated dose-response curve. Sensitivity analysis of the calculated 

relative cell concentration expressed as the ratio of inhibitor-present to inhibitor-free cell concentration of Mycobacterium 

tuberculosis after an 8-day growth period as a function of 5'-O-(N-salicylsulfamoyl) adenosine (sAMS) concentration. The analysis 

was performed for the (A) intracellular MbtA-enzyme concentration [E]; (B) apparent reaction rate constant ; (C) 

upper limit of glycerol uptake rate ; (D) upper limit of glycerol uptake rate ; and (E) time length of cellular growth t, 

which were each set to its original parameter value (solid line), the value increased by 50% (dashed line), and decreased by 50% 

(dotted line).
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the host environment [45,46]. sAMS inhibits the synthesis
of mycobactin, which is required for iron uptake of M.
tuberculosis within an iron-deficient host environment
[53]. Our model was capable of quantitatively reproduc-
ing the experimentally determined dose-response curves
for both inhibitors. Thus, with the proposed mathemati-
cal framework, we could analyze the studied system under
conditions matching the experimental protocols as they
relate to metabolism. We accounted for the underlying
kinetics of the inhibition, how this was translated via the
metabolic network analysis to metabolite flow and bio-
mass accumulation, and to the growth of the cell popula-
tion that was used as the experimental readout for drug
inhibition. We noted, however, that certain cellular proc-
esses or responses that impact drug action in the cell, for
example, adaptive responses in the form of altered gene
expression of metabolic enzyme and activated drug efflux
transport, were not accounted for in the proposed mode-
ling scheme. These processes may play important roles
and may need to be accounted for when modeling inhib-
itor effects of other than those of 3-NP and sAMS.

In this work, the mathematical framework was used to
model an inhibitor's effect on cellular growth of a patho-
gen in different in vitro environments designed to dupli-
cate aspects of the nutritional conditions encountered in
the host. However, intracellular pathogens have complex
interactions with their hosts [32] and the conclusions
drawn from an in vitro environment may not be operative
in the in vivo host environment [66]. The current models
in our framework could be coupled to other models that,
in turn, determine the medium content by simulating the
metabolic nutrients available in a human macrophage
cell. Such an embedding of the current modeling frame-
work within other schemes could be used to add further
biological complexity to the existing computational plat-
form. Enzyme activity could be further coupled to a gene
expression model to modulate protein/enzyme function
according to microarray gene expression data [67]. The
implementation of additional models is only limited by
the availability of experimental data with which to per-
form rigorous parameter testing and prediction valida-
tion.

For the two inhibitors studied, the essentiality of the pro-
tein targets was a necessary condition. Essentiality of a
gene can be imparted by the network itself or any other
condition that alters of restricts the flux of metabolites in
the network. Thus, some genes become essential only
under specific nutritional conditions, while others may
become essential when one or more nonessential genes
are knocked out. It is also possible to envision certain sce-
narios where drugs affecting parts of the metabolic net-
work induce essentiality to uninhibited enzymes in the
network. Quantitative models, such as the one developed

here, could be used to rapidly investigate such conditions
and assist future experimental studies. For example, using
our framework, we suggested that 3-NP was effective in
fatty acid medium but not in glucose medium (data not
shown), which was supported by experimental observa-
tions [46]. In addition to the two inhibitors examined in
this study, our calculations also suggested that the inhibi-
tor targeting protein TrpD (a drug target discussed in [42])
will only be effective when tryptophan is absent from the
medium (data not shown). This observation calls for fur-
ther experimental verification.

The current work introduces a systems biology approach
using enzyme kinetics, metabolic networks, and popula-
tion growth models that is capable of capturing the essen-
tial chemical and biological variability of the system
under study. This enabled us to simulate and understand
the underlying chemical and biological factors that give
rise to the experimental observables, in this case growth
inhibition of M. tuberculosis cells. Our results suggest that
this type of inclusive modeling approach would be valua-
ble in proposing new experimental studies by extending,
combining, and exploring novel chemical and biological
inhibition concepts.

Conclusion
We implemented a systems biology framework, which
combines detailed models of enzyme kinetics, a complete
metabolic network analysis, and a cell population growth
model, to represent and understand cellular growth inhi-
bition in response to drugs. We used this mathematical
framework to simulate two separate inhibition mecha-
nisms for the growth of M. tuberculosis cells in an in vitro
environment, which was modeled to represent the nutri-
tional challenges encountered in a host cell. We calculated
dose-response curves corresponding to the cellular growth
versus drug concentration for the growth in a medium
whose carbon source was restricted to fatty acids and was
infused with varying concentrations of the 3-NP inhibitor.
Similarly, we obtained dose-response curves for cells
grown in medium with low-iron concentration and
exposed to different amounts of the sAMS inhibitor. These
results quantitatively reproduced experimentally meas-
ured dose-response curves, ranging over three orders of
magnitude in inhibitor concentration. The ability of the
proposed models to capture in vitro drug inhibition con-
firms that relevant features of intracellular metabolism of
M. tuberculosis can be modeled by a metabolic network-
based framework.
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