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Abstract

A major challenge for stem cell engineering is achieving a holistic understanding of the molecular 

networks and biological processes governing cell differentiation. To address this challenge, we 

describe a computational approach that combines gene expression analysis, prior knowledge from 

proteomic pathway informatics, and cell signaling models to delineate key transitional states of 

differentiating cells at high resolution. Our network models connect sparse gene signatures with 

corresponding, yet disparate, biological processes to uncover molecular mechanisms governing 

cell fate transitions. This approach builds upon our earlier CellNet and recent trajectory-defining 
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algorithms, as illustrated by our analysis of hematopoietic specification along the erythroid 

lineage, which reveals a role for the EGF receptor family member, ErbB4, as an important 

mediator of blood development. We experimentally validate this prediction and perturb the 

pathway to improve erythroid maturation from human pluripotent stem cells. These results exploit 

an integrative systems perspective to identify new regulatory processes and nodes useful in cell 

engineering.

Stem cell biology, cell engineering, and regenerative medicine often invoke developmental 

principles to differentiate cells toward target identities. However, much remains to be learned 

about how signaling pathways integrate to determine cell fate1. The past decade of cell 

engineering has shown that expression of individual genes, or sets of genes, is often 

insufficient to functionally reprogram cell identity2,3, underscoring the need for new 

approaches to quantitatively describe and manipulate cell state. We previously established 

CellNet4–6 to assess the fidelity of engineered cells by interrogating key gene regulatory 

networks (GRNs) that define native populations. CellNet extracts cell type–specific GRNs 

from transcriptional profiling data, compares the GRNs to those of bona fide primary cells 

and tissues to assign a similarity metric, and identifies dysregulated transcriptional 

regulators that account for the differences between engineered cells and their native 

counterparts. The network-level CellNet algorithm confers robustness to biological and 

technical variability and encodes topological information about regulator-target 

relationships. A limitation of CellNet is that training data consisting of a small number of 

terminal cell and tissue types obscures the phenotypic heterogeneity that arises during 

dynamic biological processes like cell differentiation. More recent efforts have aimed to 

describe intermediate developmental states using trajectory-based methods, which employ 

cell-cell similarity metrics to infer dynamics7–10. However, these algorithms rely on single-

cell transcriptomics to provide sufficiently powered datasets and largely forgo network 

analytics.

Here we extend CellNet to quantitatively define network dynamics along a differentiation 

pathway. We show that publicly accessible gene expression datasets capture population-level 

differentiation states with high dynamic resolution and broad biological scope, including 

responses across a spectrum of experimental variables like chemical and genetic 

perturbations. Our pipeline goes beyond the establishment of GRNs to enable quantification 

of differentiation dynamics and identification of key signaling pathways governing cell fate 

changes. We apply this otherwise general approach to characterize erythropoiesis, a dynamic 

process that generates red blood cells (RBCs) throughout the lifetime of the organism. We 

focused on this system because its temporal stages of differentiation, defined by distinct 

immunophenotypes, have been comprehensively characterized11. Our analyses confirm key 

processes involved in distinct stages of erythropoiesis and elucidate novel dynamic patterns 

of gene expression. To improve erythroid maturation in vitro, we constructed an interaction 

network connecting the dynamic molecular signatures that stratify late erythroblasts from 

reticulocytes. Our network analytics identifies a role for ErbB signaling during 

erythropoiesis, which we validate in human, murine and zebrafish models and apply to iPS-

derived RBC maturation.
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RESULTS

CellNet delineates stem cells and progeny

To analyze the dynamics of stem cell differentiation, we began by establishing GRNs for 

hematopoietic stem cells and differentiated progeny using CellNet as previously 

described4–6. We augmented the original CellNet compendium4 of microarray datasets from 

16 human cell and tissue types to include 164 publicly available erythroid microarray 

datasets (Supplementary Tables 1–2). The corresponding data represented a broad 

phenotypic range, including those manually classified by the discrete designations of early 

(CFU-E), intermediate (IntE) and late (LateE) erythroid progenitors, as well as reticulocytes 

and the K526 erythroleukemia cell line (Supplementary Table 3). Our rationale for 

augmenting the original compendium arises from the paucity and lack of biological 

variability in publicly available erythroid-specific sequencing datasets at the time of data 

compilation and manuscript submission.

Application of the original CellNet classifier identified erythroid cells as hematopoietic stem 

and progenitor cells (HSPCs) with high probability (Supplementary Fig. 1a). However, after 

re-training the classifier with the augmented compendium and establishing an erythroid-

specific GRN, CellNet robustly distinguished HSPCs and erythroid cell types 

(Supplementary Fig. 1b,c), with little overlap between the two GRNs other than cofactors 

mediating the canonical “GATA switch”12 that governs erythroid specification from HSPCs 

(Supplementary Fig. 1d–e,g). The erythroid GRN comprised 235 genes that were highly 

enriched for biological processes such as hemoglobin synthesis, oxygen transport, cell cycle, 

and hematopoietic development (Supplementary Fig. 1f), with subnetworks governed by 17 

transcription factors, including canonical erythroid factors13 such as GATA1, LMO2, TAL1, 

and KLF1. We also identified several factors not fully characterized in erythropoiesis, 

including HES614, CDT115, and SREBF116. These data demonstrate that the CellNet 

algorithm can be readily augemented by the addition of new classifiers and accurately 

distinguishes biologically relevant GRNs, even among closely related cell types.

GRNs capture cell state dynamics

The augmented CellNet algorithm classified all stages of erythropoiesis with high 

probability4, (Supplementary Fig. 1h–j). We hypothesized that, analogous to the extraction 

of cell type-specific GRNs, we could identify subnetworks, or smaller gene modules, within 

the erythroid GRN that would enable us to classify distinct stages of differentiation. To 

dissect the erythroid GRN, we projected the data into a Principal Component space (Fig. 

1b). PC1 (35.2% variance) was highly correlated with the GSEA hallmark pathway for 

hemoglobin metabolism (Pearson’s r = 0.91; Fig. 1b, Supplementary Fig. 2a), and PC2 

(19.5% variance) correlated with MYC targets (Pearson’s r = −0.8; Fig. 1b, Supplementary 

Fig. 2b). Unsupervised Gaussian Mixture Model (GMM)–based clustering identified six 

discrete phenotypes, which were significantly enriched for manual, literature-based 

designations of erythroid stage—C1–C2: CFU-E/early proerythroblast; C3–C4: intermediate 

proerythroblast; C5: late erythroblast; C6: reticulocyte (Fig. 1c, Supplementary Table 3). 

K562, an erythroleukemia cell line, clustered in C1, and studies of hemoglobin-perturbed 

cells clustered in C3, a PC1-shifted intermediate cluster. We therefore focused on clusters 
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C2, C4, C5 and C6 for the purpose of studying physiological and developmental 

erythropoiesis.

In contrast to whole genome–based dimensionality reduction techniques commonly used in 

trajectory algorithms, the erythroid GRN served as a feature selection upstream of PCA, 

which identifies genes correlated with developmental stages. By GMM clustering, erythroid 

network genes clustered into 3 distinct groups (Supplementary Table 4), with early (G1) and 

intermediate (G2) differentiation clusters associated with cell cycle and hemoglobin 

synthesis, respectively (Fig. 1d, Supplementary Table 5). The reticulocyte cluster (G3) 

comprised genes that were not significantly enriched for any biological processes. Likewise, 

ranking gene importance to each phenotypic cluster (Supplementary Fig. 2d–g; 

Supplementary Table 6) failed to yield annotations for the reticulocyte cluster (C6). We also 

implemented K-means clustering to identify sets of genes with similar dynamic expression 

across biological clusters (C2, C4, C5 and C6) and identified coordinated regulation of 

genes related to processes such as stress responses, autophagy, and apoptosis during 

differentiation (Supplementary Fig. 2h).

We confirmed that dimensionality reduction similarly captured biologically meaningful 

clusters in developmentally staged, purified populations analyzed by bulk RNA-seq 

(GSE53983). Sample localization in the PCA space was driven by similar genes, as shown 

by significant correlations with biological analogues from microarray data—proerythroblast: 

C2/S1/S2; intermediate erythroblast: C4/S3; late erythroblast: C5/S4; positive Pearson’s r, 

with p<0.05 (Supplementary Fig. 3C). Of note, expert knowledge was required for the 

interpretation and comparison of biologically analogous samples across microarray and 

RNA-seq datasets (e.g. C4 and C5 both correlate with S3; C2 correlates with both S1 and 

S2), likely because the granularity and variance are strongly tied to the data source and 

experimental design. This further highlights the need for large data compendia, including 

purified populations, primary cells, in vitro–differentiated cells, genetically perturbed cells, 

and rare/unique populations (i.e. reticulocytes), to fully sample the biological space within a 

given cell type. We also demonstrated that, in addition to compatibility with different data 

types, our pipeline is generally applicable to other biological systems (Supplementary Fig. 4, 

Supplementary Tables 7–9).

To derive dynamic network models, we exploited topological regulatory information 

encoded in the erythroid GRN as a secondary layer atop the lineage-correlated loadings (Fig. 

1e). Early erythropoiesis is dominated by a few, highly connected regulators, with more 

distributed regulation during the proerythroblast (C4) and late erythroblast (C5) stages (Fig. 

1e). Canonical regulators, such as GATA1 and E2F2, are also highly connected in the mature 

(C6) network, suggesting that early regulators impart persistent influence (Fig. 1f). Indeed, 

GATA1 has been implicated in erythroid maturation, with a distinct network from that of 

early erythroid specification17. E2F2 also recurs as a central regulator in both the 

intermediate erythroblast (C4) and reticulocyte (C6) stages; however, there is a clear re-

wiring of its targets from a diffuse cluster of co-regulated genes to a more compact network 

during maturation (Fig. 1f). Thus, the integration of network biology and GRN-based feature 

selection with dimensionality reduction uncovers dynamic changes in network activity and 

architecture accompanying cell fate changes.
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Identification of pathways mediating cell fate transitions

We further explored the capacity for network analytics to identify biological processes that 

mediate stem cell differentiation. We focused on the late erythroblast (C5) to reticulocyte 

(C6) transition, as relatively little is known about the integrated mechanisms controlling 

terminal erythroid maturation. Moreover, microarray datasets derived from the in vivo 

reticulocyte transcriptome18 (Supplementary Fig. 5) provided comparisons that are not 

readily accessible, owing to such transient and mobile populations.

To construct signatures of this transition, we employed the Least Absolute Shrinkage and 

Selection Operator (LASSO), as a feature selection method that minimizes covariate 

correlation. The resulting 27 gene signature (Fig. 2a; Supplementary Table 10) accurately 

predicted the late erythroblast and reticulocyte cell states without overfitting, based on a 

Partial Least Squares Discriminant (PLSDA) model (Supplementary Fig. 6). This method 

produced a sparse gene set that lacked unifying annotations. We therefore adopted a 

‘bottom-up’ approach using local network information to connect our signature genes (Fig. 

2b). This propagation of LASSO targets is similar to network biology approaches to predict 

drug targets and disease-associated genes and is based on the hypothesis that genes in close 

proximity topologically are functionally related19–21.

To identify common regulators, we investigated the local topology of the first-order 

subnetwork in the global CellNet GRN, from which cell type specific GRNs were originally 

identified (Fig. 2c). Contrary to our hypothesis, there was largely a one-to-one connection 

between all connected regulators and LASSO targets (Fig. 2d). The few statistically enriched 

genes belonged to networks of co-regulated transcription factors, such as the pluripotency 

factors (i.e. NANOG, SOX2, LIN28)22,23 which are associated with a single LASSO target, 

SALL2. This topology suggests that LASSO targets are associated with discrete biological 

processes, rather than being downstream of common regulators. Accordingly, this same 

analysis identified common regulators between ontologically related genes (Supplementary 

Fig. 7). However, further dissection of gene modules with modest co-regulation of LASSO 

targets revealed that late erythroblast targets (Fig 2e; Module 1) were associated with 

regulators of hematopoietic differentiation and P53-apopototic pathways, whereas 

reticulocyte LASSO genes (Fig. 2e; Module 2) were downstream of metabolic and lipid 

pathways important for RBC maintenance.

Based on this largely one-to-one topology of the transcriptional regulator-target network, we 

hypothesized that common signaling networks may lie upstream of the transcriptional layer. 

Therefore, we generated an interaction network using the STRING database (Fig. 2f, 

Supplementary Fig. 8, Supplementary Table 11). We employed the Prize Collecting Steiner 

Forest (PCSF) algorithm24, which is particularly suited for modeling multiple, independent 

pathways acting in synergy toward a unified biological response. The resulting network was 

enriched for biological processes such as apoptotic signaling, stress responses, and cell 

cycle, consistent with prior analyses (Fig. 2g). Uniting these processes, P53 is a highly 

interconnected central node (p<0.001; Supplementary Fig. 8f). The network was also 

significantly enriched for Reactome signaling pathways relevant for erythropoiesis, such as 

Notch25, Rho26, TGFβ27 and BCR28, as well as novel candidate pathways, including EGFR/

ErbB4, TLR and RIG-I/MDA5 (Fig. 2h).
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Finally, we used a ‘guilt by association’ approach to define networks that were highly 

correlated with the LASSO signature (Fig. 2i, Supplementary Fig. 9, Supplementary Table 

12). Highly enriched transcription factor binding (ENCODE and ChEA) and kinase 

regulation (LINCS L1000) further implicated proliferative and apoptotic processes (i.e. E2F, 

P53 and FOXM1/WEE1). Moreover, several enriched kinases included members of the 

MAPK/ERK pathway (i.e. SRC, ErbB3/ErbB4), and the ligand activation signatures (EGF, 

TGFA, BTC) further supported a role for ErbB signaling in regulation of the coexpression 

network (Fig. 2j). This analysis demonstrates the utility of combining sparse gene signatures 

with network propagation approaches to identify novel biological processes that potentially 

mediate dynamic fate changes, hence establishing hypotheses to be experimentally 

confirmed.

ErbB4 is necessary for efficient erythropoiesis

Although our network models identified several enriched signaling nodes and candidate 

pathways in erythroid maturation, the preponderance of evidence pointed to ErbB signaling. 

Although significantly enriched, EGFR/ErbB4 was not among the top candidate pathways 

(Fig. 2h; comprehensive list in Supplementary Table 8); however, when combined with 

expert knowledge that ErbB signaling is frequently associated with P5329, and the 

apoptotic30 and proliferative31 processes that were repeatedly identified in our network 

models, ErbB signaling emerged as a lead candidate. To determine whether ErbB signaling 

was necessary for erythroid maturation, we perturbed erythroblasts differentiated from bone 

marrow HSPCs (CD34+) with ErbB inhibitors (Fig. 3a). Maturation (GlyA+CD71-) was 

only affected by pan-ErbB inhibitors (Afatinib, Dacomitinib, Neratinib), implicating ErbB4 

rather than EGFR/ErbB2.

ErbB4 signaling has not previously been implicated in blood development or homeostasis. 

We characterized ErbB4 in human, mouse, and zebrafish erythropoiesis. Using an erythroid 

in vitro differentiation protocol for human HSPCs32, we observed increasing ERBB4 mRNA 

expression as erythroid cells matured (Supplementary Fig. 10a). Native human bone marrow 

erythroid fractions also exhibited increased ERBB4 expression in the most mature 

population (GlyA+CD71−) (Supplementary Fig. 10b). Reciprocally, pharmacological 

inhibition of ErbB signaling with Neratinib for one week shifted the bone marrow 

differentiation profile in mice, with an increase in immature and a decrease in mature 

erythroid populations (Fig. 3b), as well as changes to the peripheral hematopoietic fractions 

(Supplementary Fig. 11).

We next determined whether ErbB4 signaling also functioned during erythroid ontogeny, a 

process which initiates in multiple waves from restricted progenitors during 

embryogenesis33. Morpholino inhibition of ErbB4 in zebrafish embryos significantly 

decreased the frequency of Gata1+ erythroid cells (Supplementary Fig. 12a) and of more 

differentiated globin-expressing cells (Fig. 3c–d) at 48–56 hours post fertilization (hpf), 

without affecting neutrophils (Supplementary Fig. 12b). These data indicate that ErbB4 

signaling is necessary for robust erythropoiesis during embryonic and adult hematopoiesis.
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ErbB4 deficiency induces stress erythropoiesis

To more stringently characterize ErbB4 in adult erythropoiesis, we employed a genetic 

mouse model derived via αMHC-driven expression of human HER4 to circumvent 

embryonic lethality from heart defects in the whole body ErbB4 knockout 

(ErbB4−/−HER4heart)34. Consistent with the effects of Neratinib treatment, we observed an 

increase in early proerythroblast populations, with fewer mature orthochromatic and 

normoblastic cells in the ErbB4−/− bone marrow (Supplementary Fig. 13a,b). Nucleated 

RBCs and a high percentage of reticulocytes were present in peripheral blood, indicating 

moderate stress erythropoiesis in homozygotes, and blood counts revealed significant 

changes in hemoglobin distribution (Fig. 4a, Supplementary Fig. 13c). ErbB4−/− mice had 

enlarged spleens (Supplementary Fig. 13d), a >2-fold expansion of early erythroblasts 

(GlyA+CD71+; gate II) (Fig. 4b) and overcrowded red pulp (Fig. 4c), suggesting 

extramedullary erythropoiesis. Morphological analysis demonstrated early developmental 

blocks across multiple lineages in ErbB4−/− bone marrow (Fig 4d). CD41+ megakaryocytes 

in ErbB4-deficient spleen (p = 0.007 compared to wild type; Fig. 4e) decreased significantly, 

accompanied by a myeloid-skewed leukocyte profile and increased platelets in the periphery 

(Fig. 4f). These results demonstrate dysregulated multi-lineage hematopoietic phenotypes in 

ErbB4−/−HER4heart mice.

Mitotic and proliferative processes downstream of ErbB matures iRBCs

To interrogate the molecular mechanisms downstream of ErbB, we performed global gene 

expression analysis of in vitro differentiated RBCs perturbed with pan versus selective 

inhibitors. Transcriptomic analysis confirmed that the erythroid GRN was modulated by 

pan-ErbB inhibitors, but not by Lapatinib, a dual EGFR/ErbB2 inhibitor (Supplementary 

Fig. 14a,b). Although cells were treated between the intermediate and late erythroblast 

stages, early network cluster genes (G1; Supplementary Fig. 14c) were significantly 

decreased, suggesting that ErbB signaling plays a role during multiple stages of 

differentiation. Analysis of pathways dysregulated by pan-ErbB inhibition revealed 

upregulation of P53 signaling (Fig. 5a), with concomitant downregulation of mitotic and 

proliferative pathways (Fig. 5b). Consistent with our prior computational analysis, these data 

connect ErbB signaling with P53 and proliferative pathways in human erythropoiesis.

As mechanistic analyses identified the Wnt pathway as a putative downstream target of 

ErbB4 (Fig. 5b), we exploited the pharmacologic accessibility of this pathway to enhance 

erythropoiesis in vitro. A critical barrier to blood generation as a cell-based biotechnology 

stems from a block in erythroid maturation from iPS cells (iRBCs), often requiring the use 

of feeder cells. We promoted maturation of iRBCs in a feeder-free system using bioprocess-

compatible hematopoietic progenitors, which undergo continuous expansion under 

doxycycline-induced overexpression of 5 transcription factors (Fig. 5c)35. Activation of Wnt 

signaling via the agonist CHIR99021 increased the maturation of iRBCs, resulting in a 1.8 

fold (p=4.8×10−5) increase in GlyA+CD71− orthochromatic erythroblasts (Fig. 5d). 

Concomitantly, cells decreased in size with an increased nuclear-to-cytoplasmic ratio (Fig. 

5e). Collectively, these data demonstrate that systems-level identification of druggable 

signaling pathways in developmental processes, such as erythropoiesis, is directly applicable 

to stem cell biomanufacturing and regenerative cell therapies.
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DISCUSSION

Here we establish the utility of systems-level analytics to elucidate biological processes that 

mediate dynamic stem cell and developmental transitions. Our computational pipeline 

provides a roadmap for the derivation of network models that connect sparse gene signatures 

with corresponding, yet disparate, biological processes, to captures the multi-factorial nature 

of cell state transitions. With cell engineering in hematopoiesis as an example, we highlight 

how to connect critical elements (e.g., LASSO gene signatures) to pathways/processes (e.g., 

networks derived via PCSF and correlation). Our network models suggested and we 

experimentally confirmed a previously unanticipated role for ErbB4 in hematopoiesis.

Our advanced pipeline integrates network topological architecture with pseudotemporal 

information to provide multiple layers of information about cell differentiation, which is 

complementary to purely trajectory-based algorithms7–10 and highlights the changing roles 

of transcriptional regulators across dynamic stages of development. Moreover, the LASSO 

feature reduction as a foundation for network modeling ensures that the resulting models are 

informed by genes most vital to distinguishing divergent cell states. In contrast to traditional 

differential gene expression approaches19–21, LASSO produces a sparse, sharply focused 

gene set and when combined with PCSF produces a signaling network comprised of 

branches associated with distinct biological processes. Together, these approaches provide a 

more global depiction of the systems-level processes associated with cell fate transitions.

By applying our pipeline to study hematopoietic specification, we established a novel role 

for ErbB4 signaling in erythropoiesis in multiple in vitro and in vivo models. Many of our 

computational approaches did not directly identify ErbB4; however, network propagation 

from our maturation signature repeatedly identified ErbB ligands and ErbB-associated 

signaling, including MAPK/ERK, mitotic processes, P53, and apoptosis36,37. This highlights 

the need for future development of unsupervised metrics to prioritize candidates from 

aggregate data, which currently requires expert knowledge as an integral part of the process. 

Although there were no annotated processes enriched within the reticulocyte gene cluster, it 

included the NMDA receptor, GRIN3B, which is commonly implicated, along with ErbB4, 

in neurological development38 and pathophysiology39. Interestingly, anemia is a common 

side effect of antipsychotic drugs40 and studies of glutamate-mediated ion channels supports 

their functional role in erythropoiesis41. This opens the possibility of new avenues of 

crosstalk between neurological and hematopoietic systems, akin to the regulation of 

hematopoietic stem cell (HSC) production by the central nervous system42. Our dynamic 

analyses also revealed that oxidative stress pathways peak at the late erythroblast stage; 

ErbB4 is a known stress responsive pathway in the heart43 and abrogates oxidative damage 

in the brain44. Although a recent meta-analysis of GWAS data identified neuregulin-4 

(NRG4), an ErbB4-specific ligand, as a putative locus in aberrant human RBC 

phenotypes45, the pathway has not been previously characterized in erythropoiesis.

Cell engineering has broadly focused on inducing transcription factors as the emissaries of 

phenotype. To this end, CellNet successfully predicts candidate and aberrant transcription 

factors. However, even the most-studied form of reprogramming, induced pluripotency, 

remains exquisitely sensitive to culture conditions and relies on signaling molecules, such as 
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bFGF46. The advanced CellNet pipeline demonstrated here allows transcriptional targets to 

be complemented with druggable pathways. We demonstrate that the downstream ErbB 

signaling pathway can be exploited as a druggable target for more robust production of 

RBCs from an iPS-derived, bioprocess compatible, progenitor. Such multi-level 

reprogramming strategies may be especially beneficial for establishing and maintaining 

elusive populations, such as HSCs. Although engraftable HSCs can be generated with 

transcription factors alone47, reprogramming is enhanced by perturbation of developmental 

pathways, such as TGFβ and BMP448. Similarly, AKT-activated endothelial cells support 

self-renewal and maintenance of HSCs through angiocrine factors49. The prevalence of 

growth factor supplementation and co-cultures across hematopoietic differentiation 

protocols further highlights the need to identify and recapitulate50 cell-extrinsic signals.

ONLINE METHODS

GRN reconstruction & CellNet analytics

164 erythroid Affymetrix microarrays (Supplementary Tables 1&2) from the HGU133plus2 

platform were acquired from the Gene Expression Omnibus (GEO) and compiled with the 

original human CellNet compendium51. Microarrays were preprocessed, the global gene 

regulatory network (GRN) was calculated via the Context Likelihood of Relatedness 

(CLR)52 inference algorithm, and subnetworks were detected via InfoMap53 community 

detection, as previously described51,54. Unless specified, all high dimensionality data 

analytics were accomplished using the R computational environment (version 3.2.2), with 

specified packages from CRAN and Bioconductor. All graphical representations and 

network analytics were visualized and calculated with the igraph package. Cell and tissue 

specific GRNs were established via enrichment using the chi-squared statistical test. As 

implemented in CellNet, a random forest classifier was trained based on the GRN for each 

cell type and trained with a randomly selected subset comprised of approximately 50% of 

the microarrays. The classification performance was then evaluated on the remaining 

independent subset of microarrays. The sensitivity (true positive divided by the sum of true 

positives and false negatives) at a false positive rate of 5% was calculated as a metric to 

evaluate classifier accuracy. The GRN score, defined as the weighted mean of expression Z-

score, was calculated as previously described51.

PCA and trajectory establishment

To evaluate GRN dynamics, the 235 genes within the erythroid GRN were mean centered 

and scaled to unit variance prior to dimensionality reduction via decomposition of the 

multivariate dataset into Principal Component (PC) space via the prcomp command from the 

stats package. GSEA55 enrichment scores were calculated for each sample as a pre-ranked 

list, relative to the population mean, and correlations with respect to the PC axes were 

calculated via Pearson’s r. All GSEA analyses were run using the Hallmark datasets in the 

Molecular Signatures Database (MSigDB)56. Unsupervised clustering of both microarrays 

and genes were calculated within the PC space via Gaussian Mixture Model-based methods 

from the mclust package.

Kinney et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2020 May 19.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



For global analysis of gene dynamics, differential genes were first identified via the 

following criteria: 1) expression above a minimum threshold of 3.5, 2) variation across the 

dataset using an interquartile range greater than 0.75, and 3) significance between clusters 

via Bonferroni adjusted ANOVA. The remaining 1788 differentially expressed genes were 

clustered via K-means into K=12 groups, with the K determined by calculating Bayesian 

inference criteria (BIC). All enrichment analyses were conducted using standard chi-squared 

or Fisher statistics on Gene Ontology (GO)57,58 defined biological processes.

LASSO & network propagation

The Least Absolute Shrinkage and Selection Operator (LASSO)59 was calculated within the 

glmnet package60 using a binomial classification of microarrays from clusters C5 and C6 

(Fig. 1b), based upon the differential genes (1788 genes) defined via criteria above. The 

value of lambda (λ=0.009), calculated via cv.glmnet, was chosen by minimizing the mean 

square error (MSE), and corresponded to a signature of 27 genes. To validate the LASSO 

model, a 2-component PLSDA model (mixOmics package61) was built based upon the 27 

genes and used to predict the binary classifications into clusters C5 and C6 (Supplementary 

Fig. 6). The calibration accuracy and error rates were calculated by the “Leave One Out” 

(LOO) method and compared to random models by: 1) shuffling the classifications and 2) 

selecting 27 random genes. In each case, the performance of random models was determined 

based on the average of 1000 permutations.

To expand the network without overfitting, three additional models were built based upon: 1) 

CellNet transcriptional regulatory networks, 2) protein-protein signaling networks, and 3) 

coexpression networks (Fig. 2b). The CellNet first order network was derived from the 

amalgamation of all first order connections to the 27-gene signature within the global 

CellNet GRN. P-values corresponding to the overrepresentation of each network regulator 

were calculated based upon Fisher’s test comparing the connections within the first order 

network to those in the global GRN and corrected for multiple hypothesis testing. 

Regulatory modules within the first order network were determined using the walktrap 

community algorithm.

The protein-protein interaction network was derived via querying the STRING database 

(version 9.0)62,63 using the Prize Collecting Steiner Forest (PCSF) algorithm, as previously 

described64. Low confidence interactions with an edge score, s(e) < 0.5 were removed and 

the cost was calculated as 1- s(e). For increased robustness, noise was added to the edge cost 

and the resulting network was the amalgamation of 10 iterations, as previously described65. 

PCSF parameters, including μ (node degree penalty), ω (number of trees) and β (node prize 

scaling), were varied to demonstrate that the network generation was robust across a range 

of values (Supplementary Fig. 8). Larger networks (increasing ω and β), exhibited decreased 

density and centralization, with an increase in the number of significant (p<0.05) Gene 

Ontology annotations. This suggests that growing larger networks contributes toward the 

inclusion of discrete but cohesive biological processes, rather than adding random, unrelated 

genes/proteins. Moreover, smaller networks (Supplementary Fig. 8c–e) also exhibit common 

regulatory nodes consistent with our complete LASSO signaling network (Fig. 2f)
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The coexpression network was determined by calculating the Pearson’s r between each of 

the 27 signature genes and all other genes across clusters C2, C4, C5 and C6 (Fig. 1b). An 

absolute cutoff of 0.9 was selected for network reconstruction, based upon the “elbow” of 

network size over the range of thresholds (Supplementary Fig. 9a). The network parameters, 

as well as Gene Ontology annotations were calculated across the full range of cutoff 

thresholds and representative networks spanning the range exhibit similar features in terms 

of predicted transcription factors (ChEA/ENCODE), kinases (LINCS L1000) and ligands 

(LINCS L1000) (Supplementary Fig. 9b–e). Enrichment analyses for the all networks were 

queried via Gene Ontology (GO)57,58 and Enrichr66 in their native implementations.

Statistical analyses

All statistical analyses were calculated in R, using two-sided, unpaired t-test, ANOVA, or 

Fisher’s exact test. Data are presented as standard boxplots representing the median and 

ranging from the 25th to 75th percentiles, with the whiskers extending to 1.5*IQR. The 

sample sizes represent a minimum of three independent replicates, corresponding to distinct 

experiments and/or parallel biological replicates (e.g. animals or cell cultures). The exact 

replicate numbers and statistical tests are specified in the figure legends.

Human CD34+ RBC differentiation

Human CD34+ progenitors derived from mobilized peripheral blood (AllCells) were 

expanded for 4 days in StemSpan SFEM (STEMCELL Technologies) with the addition of 

IL3 (10 ng/mL), IL6 (50 ng/mL), TPO (50 ng/mL), SCF (50 ng/mL) and Flt3 (50 ng/mL). 

Unless specified, all cytokines were from PeproTech. Erythroid differentiation was 

accomplished using a previously published, 3-stage protocol67. Briefly, all stages of 

differentiation consisted of a basal erythroid differentiation medium (EDM) comprised of: 

IMDM with 15% FBS, 1% BSA, 2 mM L-glutamine, 500 μg/mL holo-transferrin, and 10 

μg/mL insulin. Stage 1 consists of EDM plus the addition of dexamethasone (1 μM), β-
estradiol (1 μM), IL3 (5 ng/mL), SCF (100 ng/mL) and EPO (6U) for 5 days (days 0–5). 

Stage 2 consists of EDM plus the addition of SCF (50 ng/mL) and EPO (6U) for 4 days 

(days 5–9). Stage 3 consists of EDM plus the addition of EPO alone (2U) for 8 days (days 

9–17). At all stages, cells are cultured in 24 well plates in 1 mL of media. Cell number 

seeded at the beginning of stages 1, 2, and 3 are: 105, 2×105, and 5×105/well.

iPS-5F generation and RBC differentiation

Human iPS-5F cells were generated as previously described68,69 from MSC-iPS70 obtained 

from the Boston Children’s Hospital Human Embryonic Stem Cell Core (hESC) and verified 

by immunohistochemistry for pluripotency markers, teratoma formation and karyotyping. 

Briefly, iPS cells were differentiated as embryoid bodies using a hematopoietic induction 

protocol71 and CD34+ cells were sorted from bulk embryoid body culture by magnetic 

activated cell sorting (MACS) using human CD34 microbeads (Miltenyi Biotec), as per the 

manufacturer’s instructions. The embryoid body progenitors were seeded on retronectin-

coated (10 μg cm−2) 96-well plates (2 × 104–5 × 104 cells per well) in SFEM (StemCell 

Technologies) containing 50 ng ml−1 SCF, 50 ng ml−1 FLT3, 50 ng ml−1 TPO (all R&D 

Systems), 50 ng ml−1 IL-6 and 10 ng ml−1 IL-3 (both from Peprotech) and infected with 5F 

lentiviral particles. Lentiviral particles for the 5F plasmids (HOXA9, ERG, RORA, SOX4 
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and MYB cloned into pInducer-21 doxycycline-inducible vector) were produced by 

transfecting 293T-17 cells (ATCC) with third-generation packaging plasmids. The 

multiplicity of infection (MOI) for each factor was: ERG MOI = 5, HOXA9 MOI = 5, 

RORA MOI = 3, SOX4 MOI = 3, MYB MOI = 3. Following 24 hours of infection, 5F cells 

were cultured in SFEM with 50 ng ml−1 SCF, 50 ng ml−1 FLT3, 50 ng ml−1 TPO, 50 ng ml
−1 (all R&D Systems) IL-6, and 10 ng ml−1 IL-3 (Peprotech) and 2 μg ml−1 doxycycline 

(Dox; Sigma). Cultures were maintained at a density of <1 × 106 cells ml−1, and the medium 

was changed every 3–4 days.

RBC differentiation from iPS-5F followed a slightly modified protocol that was previously 

optimized for translational approaches aimed at transfusion of in vitro-derived RBCs.72 In 

this protocol, the EDM was instead comprised of: IMDM with 5% inactivated plasma 

(Solvent Detergent Pooled Plasma AB from the Rhode Island Blood Center), 2 mM L-

glutamine, 330 μg/mL holo-transferrin, and 10 μg/mL insulin, 2 IU/mL heparin (Sigma) and 

3 IU/mL EPO. Stage I (days 0–7) was plated at 1–3 × 105 cells/mL and supplemented with 

10 μM hydrocortisone, 100 ng/mL SCF and 5 ng/mL IL-3. Stage II (days 7–11) was plated 

at 1–3 × 105 cells/mL and supplemented with 100 ng/mL SCF. Stage III (days 11–18) was 

plated at 1 × 106 cells/mL in the basal EDM. All analyses were conducted at day 18 of 

differentiation and CHIR99021 (3 μM) was added throughout stage III (days 9 and 13).

Flow cytometry & cell sorting

Human erythropoiesis, including differentiation from BM CD34+ cells and native bone 

marrow samples, was analyzed with the following antibody panel: CD71 PE (M-A712; BD), 

and CD235a/Glycophorin A PE- Cy7 (11E4B-7–6; Coulter) or CD235a/Glycophorin A 

FITC (11E4B-7–6; Coulter). Mouse erythropoiesis from Neratinib treated and HER4heart 

mice was analyzed with the following antibody panel: mCD71 FITC (C2; BD), mTer119 

PE-Cy5 (Ter-119; eBioscience). All staining was performed with < 1×106 cells per 100 μL 

staining buffer (PBS + 2% FBS) with 1:100 dilution of each antibody for 30 min at RT in 

dark. Compensation was performed by automated compensation with anti-mouse Igk and 

negative beads (BD). Acquisition was performed on a BD Fortessa cytometer and all sorting 

was performed on a BD FACS Aria II cell sorter using a 70-mm nozzle. Gating strategies are 

depicted in Supplementary Fig. 15.

Inhibitors

All inhibitors were added to cell cultures at 1 μM on days 9 and 13 of differentiation, 

corresponding to the beginning and middle of stage 3 (supplemented with EPO only, as 

described above). DMSO was used for a vehicle control in all cell culture studies. Details on 

ordering information and affinities are provided in Supplementary Table 13.

RNA-sequencing

RNA was extracted after 24 hours of incubation with ErbB inhibitors (day 10 of erythroid 

differentiation) using Trizol reagent (Invitrogen) and the RNeasy Plus kit (Qiagen). Quality 

of RNA was monitored via QC for high RIN values and low levels of DNA contamination. 

RNA-seq libraries were prepared using the SMARTseq v4 kit as per manufacturer’s protocol 

with 10 ng input RNA. Libraries were sequenced using the 200 cycle paired-end kit on the 
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Illumina HiSeq2500 system. RNA-seq reads were analyzed with the Tuxedo Tools following 

a standard protocol on the Harvard Medical School Orchestra Cluster. Reads were mapped 

with TopHat version 2.1.0 and Bowtie2 version 2.2.4 with default parameters against build 

hg19 of the human genome, and build hg19 of the RefSeq human genome annotation. 

Samples were quantified with the Cufflinks package version 2.2.1. Differential expression 

was performed using Cuffdiff with default parameters.

PCR

RNA was extracted as described above and cDNA was synthesized using the SuperScript™ 

VILO™ cDNA Synthesis Kit (Thermo), per manufacturer’s instructions. Real time PCR was 

run using SYBR green technolgoy with QuantiTect primers for the ErbB receptor family 

(Qiagen) on the QuantStudio Flex Real-Time PCR System.

Zebrafish studies

Zebrafish were maintained according to institutional animal care and use committee–

approved protocols. The Tg(globin:eGFP) line was provided by L. I. Zon, Children’s 

Hospital, Harvard Medical School, Boston, MA. MOs (GeneTools) were microinjected at 

the one-cell stage as described previously73. ErbB4 MOs were generated from previously 

published sequences74. Embryos were harvested at 48–56 hours post fertilization (hpf) and 

were processed with matched sibling controls for o-dianisidine staining and evaluation of 

globin:eGFP intensity. Staining intensity was categorized as low, medium or high within that 

experiment, as previously described75; effects were independently confirmed by other lab 

members.

Mouse studies

All mice were housed in pathogen-free animal facilities, and all experiments were performed 

with the approval of the Animal Care and Use Committee at Harvard Medical School and 

Dana-Farber Cancer Institute and/or the BCH animal care committee. At least n=3 animals 

were used per cohort, based on previous studies. For drug treatments, mice were assigned 

randomly to groups and not blinded. Neratinib was delivered to B6 albino mice via oral 

gavage at 60 mg/kg daily for 1 week. Hydroxypropyl methylcellulose (HPMC) was used as 

a vehicle control for Neratinib in mouse treatments.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. GRN dynamics capture cell fate specification.

(a) Schematic overview of computational pipeline. (b) Principal Component Analysis (PCA) 

scores of erythroid microarray datasets, with Gaussian Mixture Model (GMM) derived 

clusters. (c) Distribution of blinded manual classifications (K562 erythroleukemia cell line, 

early erythroblasts: CFU/ProE, intermediate erythroblasts: IntE, late/orthochromatic 

erythroblasts: LateE, and reticulocytes) across unsupervised computational clusters C1–C6 

from part (b), with circular annotations indicative of p < 0.05 by Fisher’s exact test. (d) PCA 

loadings plot for the 235 genes in the erythroid GRN and Gene Ontology biological process 

enrichment for GMM gene clusters, with G1–G3 correlating with early erythroblasts 

(green), intermediate/late erythroblasts (blue), reticulocytes (red), respectively. (e) 

Visualization of regulators from dynamic networks calculated using CLR inference across 

each of the clusters from C2, C4, C5 and C6. Node size correlates with the degree (number 

of targets) and line width corresponds to the CLR Z-score (confidence of interaction) 

between regulators. (f) The average Euclidean distance in the PC loadings space was 

calculated for all targets of each regulator across the dynamic network topologies depicted in 

part (e), with representative plots demonstrating the target distribution for E2F2 across 

networks from erythroblasts (C4) and reticulocytes (C6).

Kinney et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2020 May 19.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2. ErbB signaling is implicated in erythroid differentiation.

(a) Gene signature distinguishing clusters C5 (late-E; blue) and C6 (reticulocyte; red) from 

Fig. 2a, as determined by Least Absolute Shrinkage and Selection Operator (LASSO). (b) 

schematic of network propagation approaches across different regulatory layers, including 

(1) nuclear regulators, (2), signaling regulators, and (3) associated targets, corresponding to 

networks from parts (c), (f) and (i), respectively. (c) First order connection network derived 

from connecting the LASSO signature genes within the CellNet global GRN. Significantly 

enriched regulators (p<0.05 by Fisher’s test for connections in the network compared to the 

global GRN) are shown in black, with community-derived (i.e. locally high density) 

modules depicted above in varying colors and the LASSO genes in red and blue, 

corresponding to the representation in part (a). (d) The degree of all regulators and LASSO 

gene module membership. (e) Graphical representation of Modules 1 and 2, with 

significantly enriched regulators (black) and the associated Gene Ontology biological 

process annotations. (f) Protein-protein interaction (PPI) network built from gene signature 

using the STRING database and the Prize Collecting Steiner Tree (PCSF) algorithm. Non-

LASSO nodes (Steiner nodes) are depicted with the size proportional to the degree and 

LASSO nodes (terminals) are depicted in red and blue, corresponding to the representation 

in part (a). Modules within the network are highlighted and annotated with significantly 

enriched biological processes. (g) P-values ranking node enrichment (Fisher’s test for 
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connections in the LASSO network relative to the full STRING network) and corresponding 

Gene Ontology annotations. (h) Enriched signaling pathways from the Reactome database. 

(i) Coexpression network comprising genes highly correlated r > |0.90| with the LASSO 

signature. (j) Enrichment analyses for Reactome processes, kinase perturbation 

(downregulated genes upon kinase knockdown from LINCS L1000) and ligand regulation 

(upregulated upon ligand stimulation from LINCS L1000).
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FIGURE 3. ErbB4 is required for robust erythroid development.

(a) Chemical screen with ErbB inhibitors during in vitro erythroid differentiation from bone 

marrow (BM) CD34+ cells and quantified based upon the relative fractions of GlyA+CD71− 

cells, with representative flow cytometry plots. * = p<0.05 compared to vehicle (DMSO), 

via ANOVA and post hoc Tukey HSD tests. n=3–4 independent experiments. (b) Early 

(CD71+GlyA−) and late erythroid (CD71−GlyA+) progenitor profiles in the bone marrow of 

mice (n=5 per group) treated with vehicle (0.5% hydroxypropyl methylcellulose; HPMC) or 

Neratinib (60 mg/kg) for 7 days. ** = p<0.01 by two-sided, unpaired t-test. (c) o-Dianisidine 

(3,3′-dimethoxybenzidine) staining of zebrafish 54 hpf after ErbB4 MO (Sato et al., PLoS 

One, 2015) injection (left). Quantification of the percentage of zebrafish embryos (n>6 

across 3 clutches) with low hemoglobin (low o-dianidisine staining) relative to uninjected 

controls (right). (d) Transgenic globin-GFP zebrafish embryos (n>6 across 2 clutches) were 

visualized and analyzed via flow cytometry at 54 hpf and 48 hpf, respectively, after MO 

injection. *** = p<0.001 by two-sided, unpaired t-test. Scale bars correspond to 200 μm.

Kinney et al. Page 21

Nat Biotechnol. Author manuscript; available in PMC 2020 May 19.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



FIGURE 4. ErbB4 genetic deficiency leads to blood defects in the ErbB4−/−HER4heart mouse 
model.

Morphology of the (a) peripheral blood from smears stained with May Grunwald Giemsa 

indicating the increased reticulocyte fraction (purple), quantified as Ter119+ Thiazole 

Orange (TO)+ cells (ErbB4+/+ n=3; ErbB4−/− n=5; ErbB4+/− n=4; * = p<0.05 compared to 

wild type by one way ANOVA). (b) Erythroid fractions within the spleen of wild type, 

heterozygous, and homozygous mice, demonstrating increased extramedullary 

erythropoiesis (gate II, CD71+Ter119+). (c) Morphology of the spleen stained with 

hematoxylin and eosin (H&E) showing dense red pulp. (d) Bone marrow composition from 

cytospins stained with May Grunwald Giemsa demonstrating the presence of immature 

fraction hematopoietic fractions across multiple lineages. (e) Proportion of CD41+ 

megakaryocytes in the spleen. (f) Quantification of lymphocytes, neutrophils, and platelets 

in the peripheral blood via Hemavet (ErbB4+/+ n=3; ErbB4−/− n=5; ErbB4+/− n=4; * = 

p<0.05, ** = p<0.01 compared to wild type by one way ANOVA). Scale bars correspond to 

10 μm (a), 100 μm (c), and 50 μm (d).
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FIGURE 5. Modulation of pathways downstream of ErbB signaling augments iPS-derived RBC 
generation.

RNA-seq of BM CD34+ cells treated with Lapatinib (increased affinities for EGFR and 

HER2), as well as Neratinib, Dacomitinib, and Afatinib (pan ErbB inhibitors) for 24 hours. 

Expression of genes from the Hallmark pathways (GSEA) significantly (* = FDR<0.25) (a) 

upregulated and (b) downregulated (compared to DMSO vehicle) and common to pan-ErbB 

inhibitor treated cells. (c) Cell numbers (log fold change) of expanded iPS-derived CD34–5F 

cells35 over 14 days. (d) Erythroid profile with and without CHIR99021 treatment during the 

final week of differentiation, with significantly increased proportion of mature (GlyA+, 

CD71-) erythrocytes. * = p <0.001 by unpaired, two-sided t-test. (e) morphology of May 

Grunwald Giemsa stained, iPS-derived orthochromatic erythroblasts. (c) n=7, (d) n=6 

independent replicates from 2 experiments. Scale bar in (e) = 20 μm.
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