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Abstract

Purpose: Coronavirus disease 2019 (COVID-19) is expected to continue to cause worldwide fatalities until
the World population develops ‘herd immunity’, or until a vaccine is developed and used as a prevention.
However, the vaccine may prove ineffective due to rapid changes in viral antigenic determinants. Bacillus
Calmette—Guérin (BCG) vaccine has been recognized for its off-target beneficial effects on the immune
system, therefore, can be exploited to boast immunity and protect from emerging novel viruses.

Methods: We developed a systems biology workflow capable of identifying small-molecule antiviral drugs
and vaccines that can boast immunity and impact a wide variety of viral disease pathways to protect
from the fatal consequences of emerging viruses.

Results: We show that BCG affect the production and maturation of naive T cells, which results in
enhanced long-lasting trained innate immune responses to tackle novel viruses. Our workflow identified
small-molecule BCG mimics, including antiviral drugs such as raltegravir and lopinavir as high confidence
hits. Strikingly, top hits emetine and lopinavir were validated to inhibit the growth of SARS-CoV-2 in vitro.

Conclusions: Our results provide systems biology support for using BCG and small-molecule BCG mimics
as a protection measure from the lethal consequences of emergent viruses including SARS-CoV-2.

Introduction

Few months after the declaration of COVID-19 pandemic by the World Health Organization (WHO), the
disease-causing virus is still sweeping the globe, causing more fatalities, failing health care systems, and
resulting in severe economic losses. Currently there are no approved drugs to treat COVID-19, and new
vaccine development is expected to take at least 12-18 months, with growing fears of possible failure
associated with rapid changes in viral antigenic determinants. Additionally, the highly specific virus-
neutralizing antibodies in recovered patients may be short lived and ineffective in preventing the disease
caused by the emerging variable strains of the virus. With these uncertainties regarding an eminent
specific SARS-CoV-2 vaccine, we should start thinking about alternatives, such as exploiting the unique
capabilities of our innate immune system.

Recent immuno-oncology success stories indicate that the best cancer-fighting strategies results from
unleashing the patients’immune power. And there is an increased awareness that harnessing innate
immune responses, opens up new possibilities for long-term, multifaceted tumor control[1,2] and
infectious disease prevention[3-5]. Therefore, next generation antiviral vaccines should be capable of
boosting innate immune responses to tackle a wide range of novel pathogens very early after exposure,
as single treatments or adjuvants to traditional vaccines targeting the adaptive immune system.

Accumulating evidence from the biomedical literature indicates that SARS-CoV-mediated pathology, a
very similar pathology to SARS-CoV-2, was mainly caused by ineffective innate immune responses,
associated with a severe reduction in the number of T cells in the blood[6]. Recent evidence indicated that
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SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) share unique similarities in terms of host protein
interaction partners, and both pathogens infect lung tissues[7]. On the other hand, old
‘polypharmacological vaccines’, such as the BCG vaccine for tuberculosis (TB), has shown promising
therapeutic effects on a wide range of infectious and non-infectious diseases including bladder
cancer[8—10]. Studies showed that BCG’s polypharmacological effects were not limited to memory T cell
immunity, but promoted strong, beneficial, and long-lasting effects on innate immunity. The WHO has
also recognized these beneficial ‘off-target’ effects of BCG, calling for a further investigation to repurpose
for other orphan life-threatening diseases[11]. There are 35 clinical trials reported on clinicaltrials.gov,
testing BCG for non-TB conditions including COVID-19. Additionally, few recent peer-reviewed reports
have pointed to an epidemiological relationship between BCG and COVID-19 without providing
substantial evidence. Therefore, the results of the randomized clinical trials (RCTs) will provide more
clues soon.

Herein, we describe a unique drug and vaccine repurposing workflow, and list high confidence proteins
and pharmacological classes of compounds, that work as BCG mimics on the systems level by inducing
beneficial long lasting trained immune response. Thus, BCG mimics can be used as alternatives to BCG in
protecting from COVID-19 and other emergent infectious diseases, or as treatments for bladder cancer
and other tumors.

Results

Drug and vaccine repurposing workflow

To study BCG's polypharmacology and potential beneficial effects of this vaccine in preventing the fatal
consequences of COVID-19, we have devised and implemented a ‘network biology’ workflow (Figure 1) to
interrogate the hypothesis that BCG vaccination may protect from COVID-19 fatalities. This workflow is
based on our drug repurposing chemocentric informatics workflow[12], which has been validated
previously for small-molecule drug repurposing. The current workflow is tweaked towards vaccine
repurposing by employing novel bioinformatic approaches to computationally model and connect
molecular networks in an effort to understand the underlying ‘network’ biology of vaccines, and pinpoint
the regulatory genes and proteins responsible for causing the observed beneficial multitherapeutic
effects. Although we are not the first group to use network biology approaches to study the
transcriptional changes of vaccines, to our knowledge, this is the first study that uses these approaches
to support vaccine repurposing, specifically for COVID-19.

BCG consensus gene signature

Our workflow starts with the prioritization of a gene signature to study BCG's network pharmacology.
First, we derived a consensus gene signature (CGS) for BCG based on GEQ'’s dataset GSE58636[13].
Details on BCG-CGS signature are found in table S1 (Supporting Information). Twenty-two differentially-
expressed genes across all 4 experiments (2 Groups x 2 time points discussed in Methods) formed BCG's

consensus gene signature (BCG-CGS) shown in Figure 2A.
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BCG protein-protein interactions (PPIs)

All 22 genes in BCG-CGS were used as seed nodes to build a protein-protein interaction network for
signature genes (Figure 2B). Interactions were extracted from STRING database and included high
confidence interactions including: physical interactions (e.g., binding), functional interactions (e.g.,
activation, inhibition, catalysis), or gene co-expression. Two types of networks were generated: 1) high-
confidence ‘core’ network restricted to BCG signature genes as network nodes and high confidence
(interactions as network edges, and 2) medium-confidence interaction network obtained from expanding
the core network by 20 additional nodes (Figure 3).

Enrichment analysis results performed in Cytoscape, using STRING's protein-protein interactions,
indicated that BCG-CGS is enriched in inflammatory cytokines and immune response modulators (Figure
2B). Some signature genes are also involved in the negative control of important viral processes (e.g.,
(FCN1, TNF and CCL3), and others are involved in the response to viral infections (e.g., IFNG, RNASES, IL6
and TNF). The complete lists of enriched pathways are included in tables S2 and S3 (Supporting
Information).

Identification of key hubs

We identified 291 key hubs using the causal reasoning method which seeks to identify molecular
regulators that will directly cause the observed transcriptional changes in response to BCG vaccination.
Key regulators can be transcriptional factors and proteins with potentially altered activity that explains
the transcriptional changes. Top five statistically significant inhibited key hubs were: HEY1, DSIPI (GILZ),
Jagged1, HAND1 and miR-129-1-3p. And top five statistically significant activated key hubs were: PHF20,
TAFII70, Glutaredoxin, RUNX2 and NOTCH1 (NICD). Top 30 causal key hubs are shown in table 1 and all
identified 291 key hubs are included in table S4 (Supporting Information).

Table 1. Top twenty key hubs predicted by causal reasoning.
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T Predicted activity of the key hub by causal reasoning is denoted by - if the hub is inhibited, and denoted by + if
the hub is activated.

1 Correct/total network predictions: correct for the genes in the dataset predicted correctly; total for the total
number of genes in the causal reasoning network.

§ Calculation distance: Using causal reasoning one-step key hubs are defined as statistically significant
transcriptional factors that are associated with experimental differential expressed genes regulation. Two-step
and three-step key hubs are distant key hubs that regulate one-step transcriptional factors.

* P-value calcualted for the polynomial test.

Identifying BCG ‘mimics’

In order to identify experimentally validated upstream regulators that cause transcriptional changes
similar to those induced by BCG, we queried the Connectivity Map (CMap)[14] database of the Broad
Institute with BCG-CGS and identified proteins and small-molecule drugs that have strong connectivity
scores with BCG (Figure 1). The CMap approach enabled us to compare BCG-CGS with ‘experimentally’
predefined signatures of therapeutic compounds and genetic perturbations (i.e., over expression or
knockdown) included in the CMap and ranked according to a connectivity scores (ranging from +100 to
-100), representing relative similarity to BCG-CGS. The connectivity score itself is derived using a
nonparametric, rank-based, pattern-matching strategy based on the Kolmogorov-Smirnov statistic[15]. All
instances in the database are then ranked according to their connectivity scores with BCG-CGS; those at
the top (+) are most strongly correlated to the query signature and looked at as BCG mimics, and those at
the bottom (=) are most strongly anticorrelated and can reverse BCG's gene signature.

Our analysis identified three highly enriched classes of genetic knockdown (KD) perturbagens and one
pharmacological class of drugs that have positive connectivity scores in alveolar A549 cells (i.e., caused
similar transcriptional changes to those induced by BCG in alveolar A549 cells). These hits can be
considered as BCG mimics capable of inducing transcriptional changes similar to those caused by BCG
vaccine. Therefore, we suggest that BCG mimics can be used as alternatives to BCG vaccination to
promote long-lasting beneficial effects on immune cells. The three enriched protein classes are: protein
phosphatases (with best positive connection for PPP4C KD), histone deacetylases (with best positive
connection for HDAC10 KD followed by HDAC11 KD), and mediator complex proteins (with best positive
connection for MED6 KD followed by MED7 KD). Additionally, protein kinase C (PKC) activators were
enriched as a drug class; and top 3 PKC activators with highest CMap connectivity scores to BCG-CGS
prostratin, phorbol-12-myristate-13-acetate, and ingenol. It is evident that all of the above 4 classes of
proteins share one common feature: they participate in the transcriptional and metabolic regulation of
immune cells in response to environmental cues including responses to pathogens[16—19]. All top-
scoring PKC activators from the CMap, are also known to have antiviral effects or affect T cell
activation[20-24].
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Remarkably, analyzing top ten CMap positive connections with BCG-CGS obtained from nine cell lines
indicated that two compounds are approved antiviral drugs: raltegravir (top 3" positive connection, an
HIV integrase inhibitor) and lopinavir (top 6™ positive connection, an HIV protease inhibitor). More
interestingly, emetine (top 41" positive connection) and lopinavir were recently validated to inhibit SARS-
CoV-2 replication in vitro[25]. We also found evidence in the biomedical literature indicating that MST-
312[26], narciclasine[27] and verrucarin-a[28] possess antiviral activities. All CMap hits are provided in
tables S5 and S8 (Supporting Information).

In order to prioritize high confidence BCG genetic mimics, we integrated hypotheses derived
independently from the CMap with those predicted by causal reasoning, and accepted common hits only
(i.e., CMap positive connections with BCG-CGS that are also predicted as beneficial drug targets by causal
reasoning). This analysis resulted 30 high confidence common hits reported in table S9 (Supporting
Information).

Any validation for functional connections with SARS-CoV-2?

We tested whether BCG-CGS, CMap positive connections, or predicted key hubs will have any impact on
COVID-19 by identifying overlaps with SARS-CoV-2 interactome, i.e., human proteins that were
experimentally validated to interact with SARS-CoV-2 and extracted from two recent reports[29,30]. This
analysis (Figure 4A) validated 3 proteins hits to have physical links to SARS-CoV-2. The three proteins are
transcribed by: BRD4, PRKACA and SIRT5; they all were positive connections from the CMap, predicted as
statistically significant key hubs, and were also validated SARS-CoV-2 interacting proteins|[7].

Additionally, 14 high-confidence CMap positive connections, were validated to make physical interactions
SARS-CoV-2 proteins. These proteins are: PSEN2, PABPC1, HMOXT, CIT, PLAT, IGF2R, RIPK1, NDUFS3,
NDUFAS5, GGH, NEU1, SCARB1, CSNK2B, F2RL1. And two positive connections, MARK2 and MARK3, were
reported to have interactions with corona viruses[29]. Predicted causal key hubs, SIGMAR1 and GNB1,
were also validated to have physical links to SARS-CoV-2[7], and a third key hub PPIA was known as
human protein interacting with proteins from corona viruses[29].

Additionally, we mined the biomedical literature to identify evidence for linking BCG small molecule
mimics with SARS-CoV-2, corona viruses or viral infections in general. We found that two out of ten top
positive compound connections (emetine and lopinavir), were recently validated to inhibit SARS-CoV-2
replication in vitro[25]. Other compounds we found to inhibit the growth of corona viruses, or had general
antiviral activities (Table 2).

Table 2. Small-molecule BCG mimics with potential antiviral effects.
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Compound Scoret Description Validationt

prostratin 98.65 PKC activator Antiviral[21]
ingenol 98.52 PKC activator Antiviral[20]
raltegravir 97.85 HIV integrase inhibitor Antiviral[54]
emetine 97.25 Protein synthesis inhibitor SARS-CoV-2[25]
phorbol-12-myristate-13-acetate 96.72 PKC activator Antiviral[23,24]
mebendazole 95.32 Tubulin inhibitor Antiviral[55]
lopinavir 95.06 HIV protease inhibitor SARS-CoV-2[25,26]
MST-312 95.04 Telomerase inhibitor Antiviral[23,24,26]
narciclasine 94.71 Coflilin signaling pathway activator Antiviral[27]
verrucarin-a 94.51 Protein synthesis inhibitor Antiviral[56]
anisomycin 94.40 DNA synthesis inhibitor Corona viruses[57]
azacitidine 94.29 DNA methyltransferase inhibitor = Antiviral[58]
cytochalasin-b 93.90 Microtubule inhibitor Antiviral[59]
cephaeline 93.88 Protein synthesis inhibitor Antiviral[60]
homoharringtonine 93.42 Protein synthesis inhibitor Antiviral[61]
ruxolitinib 92.81 JAK inhibitor COVID-19 CT§
HU-211 92.64 Glutamate receptor antagonist Unknown
vinblastine 92.36 Microtubule inhibitor Unknown
RO-28-1675 92.12 Glucokinase activator Unknown
vincristine 91.61 Tubulin inhibitor Unknown

tScore refer to the CMap score. It represents the level of similarity between transcriptional effects induced by
BCG and each of the compounds.

t Validation refers to the presence of any supporting evidence from the biomedical literature that the predicted
BCG mimics have any antiviral activities. Antiviral means there is evidence that the compound is used as or has
antiviral activity; SARS-CoV-2 means that the compound should antiviral activity against SARS-CoV-2; Corona
viruses means that the compound showed antiviral activity against corona viruses other than SARS-CoV-2.

§ COVID-19 CT: there is evidence that the compound is being tested in clinical trials for COVID-19. There are 12

Studies found for Ruxolitinib in COVID-19 on clinicaltrials.gov.

Discussion

Our results indicate that BCG-CGS, key regulatory hubs and BCG-mimics identified from the CMap enrich
common biological pathways important for key viral processes such as viral RNA synthesis and
processing, virus-host interactions, positive regulation of viral genome replication, and are also important
for the immune response mounted against the virus. Evidence from the biomedical literature confirms
that BCG has many beneficial ‘off-target’ effects that can protect humans from emerging novel
pathogens by boasting their innate immune responses[31]. Our studies suggest that BCG can potentially
reverse or prevent some of the detrimental consequences, caused by SARS-CoV-2 on vital regulatory
processes, by promoting wide-range transcriptional and metabolic changes that are capable of producing
a balanced immune response against SARS-CoV-2. BCG can accomplish that mainly by increasing the

Page 8/22



production of thymus-generated short-lived undifferentiated CD4+ cells known as naive T cells (Thy), and
triggering their differentiation into the long-lived mature naive T cells (MNTSs), such as CD4+ and CD8+ T
cells[32]These conclusions are supported by the enrichment results produced using the ‘Compare
Experiment’ algorithm in MetaCore from Clarivate Analytics, which looks for significant coordinated gene
expression effects across all experiments to test whether the pathway is being up- or down-regulated in a
manner that is unlikely to be accounted for by random chance. The top enriched pathway map, with
upregulated genes in response to BCG, is ‘Immune response T cell subsets: secreted signals’ (Figure 4B).
As a validation, a recent study showed that SARS-CoV-2 reshapes central cellular pathways, such as
translation, splicing, carbon metabolism and nucleic acid metabolism[32].

A recent publication[33] in Lancet has questioned whether BCG's effects can last for a long time. Our top
enriched pathway map (Figure 4B) indicates that BCG's effects can be long-lasting if the effects were
exerted on thymus-generated Thy cells, which can occur to a greater extent very early in life before
reaching thymic involution by puberty. This pathway map indicates that BCG is capable of affecting both
the numbers and the types of produced innate immune cells, as well as their maturation to long-lived
memory T cells (i.e., what is known as trained immunity). This is very significant in the context of BCG’s
protective effects from SARS-CoV-2 and other emergent novel viruses; where the individual’s ability to
eradicate such viruses is dictated by the number and diversity of naive T cell reservoir[34,35] And this is a
clear indication that BCG protects individuals from lethality by novel pathogens by priming their trained
immunity to fight such pathogens, including SARS-CoV-2.

Supporting evidence for this hypothesis is found in the literature[36] indicating that the protective effects
of the BCG against TB, can last from 15 to 60 years after vaccination, with longer lasting effects when
the vaccine is administered during the first year of life.[32] A recent study indicated that “school-aged BCG
vaccination offered moderate protection against tuberculosis for at least 20 years, which is much longer
than previously thought”[32]. Another 60-year follow-up study, showed that BCG vaccine efficacy
persisted for 50 to 60 years after a single dose of BCG.[33] These studies serve as additional evidence
from the literature supporting our claim that a single dose of an ‘effective’ BCG vaccination to infants can
have a very long duration of protection against pathogens including SARS-CoV-2.

Our findings provided systems biology support for using BCG to protect from COVID-19. BCG is currently
on WHO's List of Essential Medicines; it is considered one of the safest and most effective medicines
needed in a health system. Therefore, we propose BCG administration to all newborns will act as a
protection measure from SARS-CoV-2 and other emerging pathogens. BCG can be given to newborns
according to the regulations known for TB prevention. We also recommend that multiple doses of the
vaccine are necessary to protect adults from COVID-19 since the protective effects of BCG are weaker if
the vaccine is given after the first year of life and especially after puberty[33]. Since this is an approved
vaccine for TB, it can directly enter Phase lll testing for the protection from COVID-19 caused fatalities.
However, we caution that running these experiments during an active COVID-19 outbreak, might expose
participants to aggravated immune responses if they contract COVID-19 during the study. We also advise
that clinical study design takes into account several factors that are known to affect the performance of
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BCG vaccineg, such as: the age of the participants, geographies, ethnicities, route of administration and
the mycobacterium strain used in the vaccine. It is equally important to run experimental validation
studies to evaluate the effects of BCG mimics, in preventing COVID-19 or for treating urological cancers.
BCG mimics can solve problems associated with potential supply shortages of BCG, or even address
some of the problems associated with the use of attenuated live vaccines.

Methods

Integrative Systems Biology Workflow. We developed and applied a systems biology workflow to study
BCG network pharmacology and prioritize small-molecule BCG mimics and antivirals. Our workflow
(Figure1) incorporates three major components: (1) a module for mining and prioritizing gene signatures
representative of a condition or a biological state; (2) a network-mining module to identify genetic
perturbations that induce gene expression profiles that are highly enriched with the genes constituting the
condition gene signature; and (3) a pathway enrichment module to understand the biological processes
involved in the mechanism of action of BCG and highly correlated genetic perturbagens.

BCG consensus gene signature. A consensus gene signature for BCG vaccine was derived from gene
expression profiles in peripheral blood mononuclear cells (PBMCs) in response to a BCG challenge test
reported by Matsumiya et af[37], GSE58636 dataset on NCBI Gene Expression Omnibus (GEO)[14]. All
whole blood samples were collected from healthy human subjects enrolled in phase 1 trial (clinical trials
registration: NCT01194180). For the purposes of this study we used the gene expression profiles
generated from two human subject groups included in the above trial: group 1 (BCG naive), and group 2
(BCG vaccinated; median time since vaccination, 10 years). The consensus gene signature we prepared
to study network pharmacology and query the connectivity map consisted of the genes that showed
significant differential gene expression in response to a BCG challenge test (stimulated) in comparison
with controls (unstimulated) on days 0 and 14 in both groups 1 and 2.

Network Building. A systematic search, for nearest neighbor (NN) genes/proteins of the upregulated and
downregulated genes in BCG’s gene signature, was conducted in Cytoscape[38] version 3.8.0 using the
STRING[39] protein query application. All retrieved protein-protein interactions (PPIs), including both
physical and functional interactions were retrieved from popular databases such as MINT[40], HPRD[41],
BIND[42], DIP[43], BioGRID[44], KEGG[45], Reactome[32], EcoCyc[46], NCI-Nature Pathway Interaction
Database[47], and Gene Ontology (GO)[48] protein complexes. Network building tools in Cytoscape
version 3.7.2 were used to generate PPl networks for BCG-CGS.

Enrichment Analysis. Enrichment analysis was conducted in Cytoscape[38] and MetaCore to identify
pathways and biological processes associated with BCG-CGS and CMap genetic connections. The
significance of the enrichment was determined by the hypergeometric test[49]. All terms from the
ontology are ranked based on their calculated p-values. Ontology terms with p-values less than the p-
value threshold 0.05 are defined as statistically significant and therefore relevant to the studied list of
genes. All terms from the ontology are ranked according to their calculated p-values.
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The Connectivity Map (CMap). The CMap[14,50] is a chemogenomics database that catalogs 1.3 Million
profiles of transcriptional responses of human cells to chemical and genetic perturbations. Currently,
there are 27,927 perturbagens (19,911 small molecules, and 7,494 genetic perturbagens) producing
476,251 expression signatures in 9 human cell lines: PC3, VCAPR, A375, A459, HA1E, HCC515, HT29, MCF7,
HEPG2. This database of cellular signatures has been produced using the L1000 platform[14]; a high-
throughput gene expression assay that measures the mRNA transcript abundance of 978 "landmark”
genes from human cells.

Causal Reasoning. Causal reasoning[51] analysis identify genes and proteins of a ‘topological
significance’ in order to make decisions whether these genes/proteins are eligible for targeting in the
studied phenotype. In this study we applied causal reasoning to identify molecular regulators that most
likely directly cause the observed expression changes in transcriptional profiles in response to BCG. In
this approach, changes in gene expression, both direction and effect of edges in the network are taken
into account. For each node (i.e., gene) in causal reasoning network, observed changes in expression are
matched with the expected changes inferred from network structure given the hypothesis that the
observed gene expression is decreased or increased due to its activity. Each node has outgoing activation
or inhibition effects on other objects in the knowledge database, and a key hub with a predicted increase
in activity shows increased expression for those genes that the hub is known to activate, and it shows
decreased expression for genes it is known to inhibit. Each predicted key hub has a prediction P-value
which is produced as a result of a binomial test used to assess the probability of making a given number
of supportive data out of all defined differentially expressed genes (DEGs) in examined data. It is
noteworthy that causal reasoning examines both direct neighbors of differentially expressed genes, and
remote (several steps away) regulators. All causal reasoning predictions were performed in Key Pathway
Advisor from Clarivate Analytics, using the Pollard method[52].

R-package gplots. gplots[53] v3.0.1.2 was used as for plotting enhanced heatmaps for transcriptional
data (e.g., heatmap representing BCG-CGS in Figure 2). Heat maps were generated using the heatmap.2
function included in this package.
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Figure 1

Workflow for drug and vaccine repurposing. ¥ A gene signature is identified/derived and a consensus
gene signature is prioritized, all genes are nomenclated according to HUGO Gene Nomenclature
Committee (HGNC). [l The consensus gene signature is used to query the CMap to identify positive
connections capable of producing gene signatures similar to BCG-CGS. [ Prioritize genes and compounds
that induce transcriptional changes similar to those induced by BCG: A) key hubs predicted by causal
reasoning; B) Positive genes and compound connections from the connectivity map. [ Prioritize top
enriched pathway map explaining the biological effects of BCG (gene annotations on the pathway map
are assigned by Clarivate Analytics, IFN-gamma is an alias for INFG, GM-CSF is an alias for CSF2, MIP-1-
alpha is an alias for CCL3).

Page 18/22



(A)

MMP1
IL6
CCL3L1
IL1A
CCL20
IL1F9
CSF2
IFNG
CCL3
IL24
TNF

F3
FPR3
FCN1
TGFBI
AlF1
RNASEG6
GPR162
VMO1
LYZ
CCL24
CSF1R

G1_T0

[
l_

-
0 o
4]

G1 T14

E =
Log,FC -7.60 0.00 7.60

Figure 2

(B)
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BCG's consensus gene signature (BCG-CGS) and highly enriched pathways. (A) A heat map of the log2FC
of the gene expression for differentially expressed genes representing BCG's consensus gene signature.

Upregulated genes have positive log2FC denoted in red color, and down regulated genes have negative
values for log2FC denoted in blue color. (B) Core network for BCG-CGS showing highly connected genes
in BCG-CGS, deleting all singleton genes. Nodes are color-coded using a split pie chart coloring scheme
indicating pathway/gene set contribution to each node from the top 5 most enriched pathways/gene
lists. All details about pathway/gene set ID are found in Table S2 (Supporting Information).
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Figure 3

High-confidence expanded network for BCG-CGS. Nodes are color-coded using a split pie chart coloring
scheme indicating pathway/gene set contribution to each node from the top 5 most enriched
pathways/gene lists. Core network is composed of genes in the BCG-CGS that are not singletons. Step 1
expansion, added 10 additional nodes (i.e., genes) to the core network. Step 2 expansion, added another
10 nodes for the first expansion. Step 3 expansion, added another 10 nodes to the second expansion.
Expansions were performed to see which pathways remained most statistically significant, and therefore
are considered high confidence pathways.
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Figure 4

(A) A venn diagram showing overlaps between BCG genetic mimics and key hubs with SARS-CoV-2 and
Corona viruses interactomes. (B) Top “pathway map” with the highest level of enrichment by genes in
BCG-CGS. This map is generated using MetaCore from Clarivate Analytics. Red thermometers indicate
genes overexpressed in response to BCG treatment, and the hight of the red bars is representative of the
differential gene expression level (i.e., log2 values of the fold change). The numbers under the
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thermometers 1- 5 refer to the experiment number: 1) gene expression on day 1 in response to BCG
vaccination to a BCG-naive population on day 1; 2) gene expression on day 1 in response to BCG re-
vaccination to a previously vaccinated population; 3) gene expression on day 1 in response to BCG
vaccination to a BCG-naive population on day 14; 4) gene expression on day 14 in response to BCG re-
vaccination to a previously vaccinated population, and 5) positive connections from the connectivity
map, and the red bar in the thermometer number 5 represents presence of the gene only.
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