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1. Introduction     

In recent times the presence of vision and robotic systems in industry has become common 
place, but in spite of many achievements a large range of industrial tasks still remain 
unsolved due to the lack of flexibility of the vision systems when dealing with highly 
adaptive manufacturing environments. An important task found across a broad range of 
modern flexible manufacturing environments is the need to present parts to automated 
machinery from a supply bin. In order to carry out grasping and manipulation operations 
safely and efficiently, we need to know the identity, location and spatial orientation of the 
objects that lie in an unstructured heap in a bin.  
Historically, the bin picking problem was tackled using mechanical vibratory feeders where 
the vision feedback was unavailable. This solution has certain problems with parts jamming 
and more important they are highly dedicated. In this regard if a change in the 
manufacturing process is required, the changeover may include an extensive re-tooling and 
a total revision of the system control strategy (Kelley et al., 1982). Due to these 
disadvantages modern bin picking systems perform grasping and manipulation operations 
using vision feedback (Yoshimi & Allen, 1994). 
Vision based robotic bin picking has been the subject of research since the introduction of 
the automated vision controlled processes in industry and a review of existing systems 
indicates that none of the proposed solutions were able to solve this classic vision problem 
in its generality.  One of the main challenges facing such a bin picking system is its ability to 
deal with overlapping objects. The object recognition in cluttered scenes is the main 
objective of these systems and early approaches attempted to perform bin picking 
operations for similar objects that are jumbled together in an unstructured heap using no 
knowledge about the pose or geometry of the parts (Birk et al., 1981). While these 
assumptions may be acceptable for a restricted number of applications, in most practical 
cases a flexible system must deal with more than one type of object with a wide scale of 
shapes.  
A flexible bin picking system has to address three difficult problems: scene interpretation, 
object recognition and pose estimation. Initial approaches to these tasks were based on 
modeling parts using 2D surface representations. Typical 2D representations include 
invariant shape descriptors (Zisserman et al., 1994), algebraic curves (Tarel & Cooper, 2000), 
conics (Bolles & Horaud, 1986; Forsyth et al., 1991) and appearance based models (Murase & 
Nayar, 1995; Ohba & Ikeuchi, 1997). These systems are generally better suited to planar O
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object recognition and they are not able to deal with severe viewpoint distortions or objects 
with complex shapes/textures. Also the spatial orientation cannot be robustly estimated for 
objects with free-form contours. To address this limitation most bin picking systems attempt 
to recognize the scene objects and estimate their spatial orientation using the 3D information 
(Fan et al., 1989; Faugeras & Hebert, 1986). Notable approaches include the use of 3D local 
descriptors (Ansar & Daniilidis, 2003; Campbell & Flynn, 2001; Kim & Kak, 1991), polyhedra 
(Rothwell & Stern, 1996), generalized cylinders (Ponce et al., 1989; Zerroug & Nevatia, 1996), 
super-quadrics (Blane et al., 2000) and visual learning methods (Johnson & Hebert, 1999; 
Mittrapiyanuruk et al., 2004). The most difficult problem for 3D bin picking systems that are 
based on a structural description of the objects (local descriptors or 3D primitives) is the 
complex procedure required to perform the scene to model feature matching. This 
procedure is usually based on complex graph-searching techniques and is increasingly more 
difficult when dealing with object occlusions, a situation when the structural description of 
the scene objects is incomplete. Visual learning methods based on eigenimage analysis have 
been proposed as an alternative solution to address the object recognition and pose 
estimation for objects with complex appearances. In this regard, Johnson and Hebert 
(Johnson & Hebert, 1999) developed an object recognition scheme that is able to identify 
multiple 3D objects in scenes affected by clutter and occlusion. They proposed an 
eigenimage analysis approach that is applied to match surface points using the spin image 
representation. The main attraction of this approach resides in the use of spin images that 
are local surface descriptors; hence they can be easily identified in real scenes that contain 
clutter and occlusions. This approach returns accurate results but the pose estimation cannot 
be inferred, as the spin images are local descriptors and they are not robust to capture the 
object orientation. In general the pose sampling for visual learning methods is a problem 
difficult to solve as the numbers of views required to sample the full 6 degree of freedom for 
object pose is prohibitive. This issue was addressed in the paper by Edwards (Edwards, 
1996) when he applied eigenimage analysis to a one-object scene and his approach was able 
to estimate the pose only in cases where the tilt angle was limited to 30 degrees with respect 
to the optical axis of the sensor.  
In this chapter we describe the implementation of a vision sensor for robotic bin picking 
where we attempt to eliminate the main problem faced by the visual learning methods, 
namely the pose sampling problem. This chapter is organized as follows. Section 2 outlines 
the overall system. Section 3 describes the implementation of the range sensor while Section 
4 details the edge-based segmentation algorithm. Section 5 presents the viewpoint correction 
algorithm that is applied to align the detected object surfaces perpendicular to the optical 
axis of the sensor. Section 6 describes the object recognition algorithm. This is followed in 
Section 7 by an outline of the pose estimation algorithm. Section 8 presents a number of 
experimental results illustrating the benefits of the approach outlined in this chapter. 

2. System overview 

The operation of the system described in this chapter can be summarized as follows (see Fig. 
1).  The range sensor determines the depth structure using two images captured with 
different focal settings. This is followed by the image segmentation process that decomposes 
the input image into disjoint meaningful regions. The resulting scene regions from the 
image segmentation process are subjected to an orthographic projection that aligns them  to 
be perpendicular to the optical axis of the sensor. This operation will determine 2 degrees of 
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freedom (DOF) for each object (rotations about x and y axes). The recognition framework 
consists of matching the geometrical primitives derived from the segmented regions with 
those contained in a model database. The object that gives the best approximation with 
respect to the matching criteria is then referred to the pose estimation algorithm which 
constrains the object rotation around the optical axis of the range sensor (z axis) using a 
Principal Components Analysis (PCA) approach. Once the object pose is estimated, the 
grasping coordinates of the identified object are passed to the bin picking robot.  
 

 

Fig. 1.  Overall system architecture (Ghita & Whelan, 2003). 
 

3. Range sensor 

The range sensor employed by this application is based on active depth from defocus (DFD). 
This ranging technique has been initially developed as a passive ranging strategy by 
Pentland (Pentland, 1987). The principle behind DFD range sensing extends from the fact 
that the scene objects are imaged in relation to their position in space. In this fashion, the 
objects that are placed on the focal plane are sharply imaged on the sensing element of the 
camera, while the points situated on the surface of the objects shifted from the focal plane 
are refracted by the lens into a patch whose size is in direct relationship with the distance 
from the focal plane to the imaged object. It has been demonstrated in (Subbarao, 1988; 
Nayar et al., 1995) that the diameter of the defocus (blur) patch is dependent on the object 
distance u, lens aperture D, sensor distance s and focal length f. While one image is not 
sufficient to solve the uncertainty whether the scene object is placed in front or behind the 
focal plane, the depth can be uniquely estimated by measuring the blurring differences from 
two images captured with different focal settings. In our implementation the defocused 
images are captured by changing the sensor distance s  (Ghita et al., 2005).  
Since the level of blurriness in the image can be thought of as a convolution with a low pass 
filter (that is implemented by the point spread function (PSF)), to estimate the level of 
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blurriness in the image we need to convolve the image with a focus operator that extracts 
the high frequency information derived from the scene objects (Pentland, 1987). Nonetheless 
this approach returns accurate results only if the scene objects are highly textured. When 
dealing with weakly and non-textured scene objects this approach returns imprecise depth 
estimation.  To address this issue, a solution is to project a structured light onto the scene 
that forces an artificial texture on all visible surfaces of the scene. While the artificial texture 
has a known pattern, the focus operator is designed to respond strongly to the dominant 
frequency in the image that is associated with the illumination pattern (Girod & Scherock, 
1989; Nayar et al., 1995; Ghita et al., 2005).  
 

  
                                                    (a)                                              (b) 

 
(c) 

Fig. 2. Depth estimation for a scene defined by textureless, textured and mildly specular 
objects. (a) Near focused image. (b) Far focused image. (c) Depth estimation. 

In our implementation we used an illumination pattern defined by evenly spaced opaque 

and transparent stripes and the focus operator is implemented by a tuned Gabor filter (full 

details about the implementation of our range sensor are provided in Ghita et al. 2005). Fig. 

2 depicts the depth map obtained when the range sensor was applied to estimate the depth 

of a complex scene containing textureless, textured and specular objects. 
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4. Scene segmentation process 

An important decision in developing robotic systems is to decide which sensorial 

information is better suited for a particular application. Henderson (Henderson, 1983) 

suggested to approach the scene segmentation using the information about the objects that 

define the scene. In this regard, if the scene objects are highly textured and depth 

discontinuities are significant best results will be achieved if range data is analysed. 

Conversely, if the scene is defined by small textureless objects better results may be obtained 

if the segmentation process is applied on intensity images (Ghita & Whelan, 2003).  

While our application deals with the recognition of a set of textureless polyhedral objects, 

we developed an edge-based segmentation scheme to identify the visible surfaces of the 

scene objects.  Edges are associated with sharp transitions in pixel intensity distribution and 

they are extracted by calculating the partial derivatives in the input data. Edge detection is 

one of the most investigated topics in computer vision and to date there is no edge detector 

that is able to adapt to problems caused by image noise and low contrast between 

meaningful regions in the input data. Thus, the edge structure returned by the edge detector 

is either incomplete, gaps are caused by the low variation in the distribution of the input 

data, or contains false edges that are caused by image noise, shadows, etc. Thus after the 

application of edge detection, additional post-processing is applied to eliminate the spurious 

edge responses and bridge the gaps in the edge structure (this operation is referred to as 

edge linking). Approaches that have been used to bridge the gaps in the edge structure 

include morphological methods (Hajjar & Chen, 1999), Hough transform (Davies, 1992), 

probabilistic relaxation techniques (Hancock & Kittler, 1990), multi-scale edge detection 

methods (Farag & Delp, 1995) and the inclusion of additional information such as colour 

(Saber et al., 1997). From these techniques the most common are the morphological and 

multi-scale edge linking strategies.  In general, the morphological edge linking techniques 

use the local information around edge terminators while multi-scale approaches attempt to 

bridge the gaps in the edge structure by aggregating the information contained in a stack of 

images with differing spatial resolutions (Ghita & Whelan, 2002). The main disadvantage 

associated with multi-scale approaches resides in the high computational cost required to 

calculate the image stack and in our implementation we developed a morphological edge 

linking scheme that evaluates the direction of edge terminators in identifying the optimal 

linking decisions.  

4.1 Edge linking 

To extract the surfaces of the imaged scene objects we have developed a multi-step edge 

linking scheme that is used in conjunction with an edge detector that extracts the partial 

derivatives using the ISEF (Infinite Symetrical Exponential Filter) functions (Shen & Castan,  

1992). The reason to use the ISEF-based edge detector was motivated by the fact that its  

performance in detecting true edges matches that achieved by the more ubiquitous Canny 

edge detector (Canny, 1986), but the computation of the ISEF edge detector entails a lower 

computational cost than that associated with the Canny edge detector. In our 

implementation we have set the scale parameter to 0.45 and the threshold parameters 

required by the hysteretic threshold are selected using a scheme that minimise the incidence 

of small edge segments that are usually generated by image noise.  
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As mentioned earlier, the edge structure returned by the ISEF detector will be further post-
processed using a multi-step morphological edge linking strategy. The first step of the edge 
linking algorithm (Ghita & Whelan, 2002) involves the extraction of the edge terminators 
(endpoints). The edgepoint extraction requires a simple morphological analysis where the 
edge structure is convolved with a set of 3×3 masks (Vernon, 1991).  The second step of the 
algorithm determines the direction of the edge terminators by evaluating the linked edge 
points that generate the edge terminators. The application of the edge linking process for 
two iterations is illustrated in Fig. 3.  
 

 

Fig. 3. The edge linking process. The algorithm evaluates all linking decisions around each 
edge terminator and the optimal linking path minimises the cost function depicted in 
equation (1).  In this diagram the edge pixels are marked in black and the edge terminators 
are marked with black squares.  

The third  step of the edge linking scheme attempts to find the possible paths to bridge the 
gaps in the edge structure by analysing the edge pixels at the side indicated by the endpoint 
direction in an 11×11 neighbourhood. In this way, for each edge point situated in the 
endpoint’s neighbourhood a linking factor is calculated using the following cost function, 

 dired kkepetdistkepCost ++= ),()(  (1) 

where et and ep are the co-ordinates of the endpoint and the edge pixel under analysis and 
dist defines the Euclidean distance.  In equation (1) kd, kdir and ke are some pre-defined 
parameters (a detailed description of these parameters and a discussion in regard to their 
optimal selection is provided in Ghita & Whelan, 2002). The cost function is calculated for 
each edge pixel situated in the neighbourhood indicated by the endpoint direction  and the 
minimal value determines the optimal linking path. The gap in the edge structure between 
the edge terminator and the edge pixel that returns the minimum linking factor is bridged 
using the Bresenham algorithm (Bresenham, 1965). Fig. 4 illustrates the performance of the 
edge linking algorithm when applied to an image detailing a cluttered scene.  
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                                (a)                                          (b)                                            (c) 

Fig. 4. The results of the scene segmentation process. (a) Input image. (b) Edge information. 
(c) Edge linking results. Note the removal of unconnected edge segments.  

5. Data formatting 

Our application implements a vision sensor able to determine the information required by a 
bin picking robot to perform object manipulation. Since the objects of interest are polyhedral, a 
convenient representation is to describe them in terms of their surfaces that are identified by 
the scene segmentation algorithm detailed in the previous section. Thus, the object recognition 
task can be formulated in terms of matching the objects’ visible surfaces with those stored in a 
model database. Although conceptually simple, this approach is quite difficult to be applied in 
practice since the geometrical characteristics of the object’s surfaces are viewpoint dependent. 
To address this problem, we need to align all visible surfaces resulting from the scene 
segmentation process to a planar that is perpendicular to the optical axis of the range sensor. In 
this fashion, we attempt to constrain two degrees of freedom (rotations about x and y axes) 
using the 3D information returned by the range sensor.  
The first operation of the data formatting procedure involves the calculation of the normal 
vector for each surface resulting after the application of the scene segmentation procedure. 
Since the object surfaces are planar, the normal vector can be calculated using the knowledge 
that elevation (z co-ordinate) is functionally dependent on the x and y co-ordinates. Then given 
a set of n points from range data that belong to the segmented surface, the normal vector can 
be statistically computed by a planar fitting of the 3D points as follows,  

 
2

1 321 )ˆˆˆ()ˆ( ∑ =
−++=

n

i iii zayaxaaErr   (2) 

where ]ˆ,ˆ,ˆ[ˆ
321 aaaa = are the estimated values. Equation (2) generates a simultaneous 

system where the unknown values are â . The normal vector associated with the surface 

under analysis is represented in homogenous form as TT
zyx aannnN ]1,1,ˆ,ˆ[]1,,,[ 21 −==  

(Ghita et al., 2007).  As mentioned previously, our aim  is to calculate the rotations about x 
and y axes. The rotation angle about x axis (Ax) is calculated using the following expression: 
Ax= tan2-1(ny,nz). The rotation angle about y axis (Ay) is computed using the transform 
NRx=RxN=[nrx,nry,nrz,1]T, Ay=-tan2-1(nrx,nrz), where tan2-1 is the four quadrant inverse 
tangent. Once the angles Ax and Ay are estimated, the required transformation that is applied 
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to align the surface under analysis to the planar perpedicular to the axis of the range sensor 
can be formulated as follows, 

 oxyo TRRTH 1−=   (3) 

where T0 is the transformation that translates the 3D points that define the surface about the 
origin and Rx and Ry are the rotation matrices about x and y axes. Fig. 5 illustrates the results 
obtained after the application of the orthographic projection.  
 

   
(a)                                              (b) 

   
                                                      (c)                                              (d) 

   
                                                      (e)                                              (f) 
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                                                      (g)                                               (h) 

Fig. 5. Orthographic projection of the segmented scene regions. (a-b) Input image and scene 
regions resulting from the segmentation process (normal vectors relative to the range sensor 
position). (c-d) Orthographic projection of the first region (Ax= 26.790, Ay =-18.610).  (e-f) 
Orthographic projection of the second region (Ax= -36.190, Ay =-4.760). (g-h) Orthographic 
projection of the third region (Ax= 6.080, Ay =2.680). 

6. Object recognition 

As indicated in the previous section, the recognition of the scene objects is formulated as the 
recognition of their visible surfaces resulting after the application of the scene segmentation 
process using an approach that calculates features that sample the geometrical properties of 
the object surfaces.  While the geometric characteristics of the object surfaces are dependent 
on their orientation in space, in order to eliminate the viewpoint distortions the segmented 
surfaces were subjected to a 3D data formatting procedure that aligns them to a planar 
whose normal vector is aligned to the optical axis of the range sensor (z axis).  The next step 
of the algorithm deals with the extraction of geometrical primitives that are used to perform 
the scene to model recognition process. Approaches that have been used include the 
extraction of local features such as junctions, lines and partial contours (Bolles & Horaud, 
1986; Lowe, 2004) and macro features such as area, perimeter and statistical features (Ghita 
& Whelan, 2003). Local features may appear better suited when dealing with scenes affected 
by clutter and occlusions than macro features. But it is useful to note that approaches based 
on local features rely on a detailed structural description of the objects of interest and when 
dealing with complex scenes a large number of hypothesis are generated, a fact that requires 
the development of complex scene to model matching procedures. While our goal is the 
recognition of a set of polyhedral objects, macro features represent a better option since the 
segmented surfaces are planar and they can be easily indexed to describe the object 
structure. To this end, we have adopted features such as area, perimeter, shape factor and 
radii (maximum and minimum) distances calculated from the surface’s centroid to the 
surface border (Ghita & Whelan, 2003). 
The developed object recognition algorithm consists of two main stages. The training stage 
consists of building the database by extracting the aforementioned features for each surface 
of the object. Since the features involved have different ranges, to compensate for this issue 
we have applied a feature normalisation procedure where each feature is normalised to zero 
mean and unit variance (Duda et al., 2001). The matching stage consists of computing the 
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Euclidean distance between the normalised features calculated for scene surfaces and object 
surfaces contained in the model database.  

 niforiYiXdist
n

i jj ,..,1])[][(
1

2 =−= ∑ =
  (4)     

where Xj is the jth pattern contained in the model database and Y defines the pattern derived 
from an input region. The input scene surface is contained in the database if the minimum 
distance that gives the best approximation is smaller than a predefined threshold value.    
One problem with this approach is the fact that most scene surfaces are affected by 
occlusions. As the object recognition algorithm is included in the development of a robotic 
application, we focus the attentions only on the topmost objects since they can be easily 
manipulated and their surfaces are not affected by severe occlusions. The selection of the 
topmost object is achieved by eliminating the surfaces that are affected by occlusions based 
on the 3D information supplied by the range sensor. The scene to model verification 
procedure is applied only for surfaces that pass the 3D selection criteria (for additional 
details refer to Ghita & Whelan, 2003). 

7. 3 DOF pose estimation 

The orthographic transformation illustrated in equation (3) can constrain only two degrees 
of freedom (DOF), the rotations about x and y axes. The surfaces subjected to this 
orthographic transformation are perpendicular to the axis of the range sensor and the 
estimation of the surface rotation about z axis can be carried out using Principal 
Components Analysis (PCA). This procedure involves the calculation of an eigenspace 
representation from a set of training images that are generated by rotating the object 
surfaces in small increments. To estimate the rotation about z axis, all recognized scene 
surfaces are projected onto the eigenspace and their projections are compared to those 
stored in the model database (whose rotations about the z axis are known). The minimal 
distance between the projection of the input surface and those contained in the model 
database gives the best match.  

8. Experiments and results 

The vision sensor detailed in this chapter consists of four main components, range sensing, 
scene segmentation, object recognition and pose estimation. Our implementation employs 
an active DFD range sensor whose implementation has been outlined in Section 3. To test 
the performance of the developed range sensor we have applied it to recover the depth 
information from scenes defined by textured and textureless objects. The relative accuracy 
was estimated for successive measurements and was formulated as the maximum error 
between the real and estimated depth values. During the operation the range sensor was 
placed at a distance of 86cm above the baseline of the workspace. The relative accuracy 
attained by the developed sensor when applied to scenes containing non-specular objects 
with bright surfaces is 3.4% normalised in agreement with the distance from the sensor.  
The developed bin picking system has been applied to 5 different polyhedral objects that are 
used to create various cluttered scenes. The edge-based segmentation algorithm  detailed in 
Section 4 is applied to identify the object surfaces. The surfaces resulting after the 
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application of the scene segmentation algorithm are subjected to data formatting in order to 
constrain 2 rotational DOF (rotations about x and y axes). Since data formatting involves 3D 
analysis, the precision of this procedure is influenced by the accuracy of the depth 
estimation. The performance of the data formatting procedure is illustrated in Fig. 6.   
The third major component of the algorithm addresses the object recognition task. The 
algorithm was able to identify the topmost objects in all situations and is able to identify 
correctly the scene objects if the occlusion cover less than 20% of the object’s total surface. 
The last component of the algorithm is applied to identify the rotation about z axis. In our 
implementation we have created a PCA model database for each object of interest and the 
object rotation has been sampled uniformly by acquiring 24 training images with the object 
lying flat on a dark worktable. This generates 24 PCA projections that are able to sample the 
object rotation with a resolution of 15 degrees. To increase the resolution of the PCA 
projections we have applied a linear interpolation procedure that generate 30 interpolated 
projections between any adjacent projections generated by the 24 images contained in the 
training set (Ghita & Whelan, 2003; Ghita et al., 2007).  The performance of the pose 
estimation is affected by the accuracy of the data formatting procedure and the experiments 
indicate that the pose is more precise for low values of the tilt angles (rotations about x and 
y axes). This is motivated by the relative low resolution of the range sensor in sampling 
depth discontinuities. In our experiments the rotation about z axis was measured with an 
error of 2.1 degree under the condition that the rotations about x and y axes are smaller than 
25 degrees. 
      

 
Fig. 6. Data formatting estimation accuracy (rotation about x axis). 

9. Conclusions 

This chapter describes the development of a fully integrated vision sensor for robotic bin 
picking. The developed vision sensor is able to provide the information to a bin picking 
robot to perform scene understanding and object grasping/manipulation operations. Our 
implementation employs a range sensor based on active depth from defocus that is used in 
conjunction with a multi-stage scene understanding algorithm that is able to identify and 
estimate the 3D attitude of the scene objects. In this regard, the scene segmentation scheme 
attempts to separate the scene regions that are associated with object surfaces using an edge 
based implementation. The novel part of this scheme is the edge linking procedure that is 
able to return quality connected edge structures. The object recognition scheme performs 
scene to model verification using the global attributes extracted from the segmented scene 
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surfaces. As these features are vulnerable to viewpoint distortions we have devised a data 
formatting scheme that re-format the orientation of the scene surfaces on a planar 
perpendicular to the optical axis of the sensor. This transformation eliminates the viewpoint 
distortions and allows the application of standard PCA to sample the rotation about z axis. 
The experimental results indicate that the approach detailed in this chapter is particularly 
useful in the development of bin picking systems that are applied to the manipulation of 
polyhedral objects. 
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