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Abstract

Aims: The causes of distinct patterns of reduced cortical thickness in the common

human epilepsies, detectable on neuroimaging and with important clinical consequences,

are unknown. We investigated the underlying mechanisms of cortical thinning using a

systems-level analysis.

Methods: Imaging-based cortical structural maps from a large-scale epilepsy neuroimag-

ing study were overlaid with highly spatially resolved human brain gene expression data

from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analy-

sis and cell-type enrichment analyses were used to identify differences in cell-type distri-

bution. These differences were followed up in post-mortem brain tissue from humans

with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in

cortical thinning, cell-type-specific depletion was used in a murine model of acquired

epilepsy.

Results: We identified elevated fractions of microglia and endothelial cells in regions of

reduced cortical thickness. Differentially expressed genes showed enrichment for micro-

glial markers and, in particular, activated microglial states. Analysis of post-mortem brain

tissue from humans with epilepsy confirmed excess activated microglia. In the murine

model, transient depletion of activated microglia during the early phase of the disease

development prevented cortical thinning and neuronal cell loss in the temporal cortex.

Although the development of chronic seizures was unaffected, the epileptic mice with

early depletion of activated microglia did not develop deficits in a non-spatial memory

test seen in epileptic mice not depleted of microglia.

A SYSTEMS-LEVEL ANALYSIS HIGHLIGHTS MICROGLIAL ACTIVATION
AS A MODIFYING FACTOR IN COMMON EPILEPSIES
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Conclusions: These convergent data strongly implicate activated microglia in cortical

thinning, representing a new dimension for concern and disease modification in the epi-

lepsies, potentially distinct from seizure control.

K E YWORD S

cortical thinning, gene expression, MRI, post mortem

1 | INTRODUCTION

Significant progress is being made in understanding disease processes

in the epilepsies. Many genetic variants causing or associated with

rare and common epilepsies have been reported [1, 2], with discovery

continuing apace [3]. Numerous direct structural causes of epilepsy

have been revealed by brain magnetic resonance imaging (MRI).

Several structural abnormalities are now themselves known to have a

genetic basis [4]. As a result, the proportion of causally explicable

epilepsies is growing rapidly. Conversely, the mechanisms whereby

these identified causes promote epileptogenesis and seizures remain

obscure for most human epilepsies. Moreover, beyond causation and

epileptogenesis, the epilepsies involve many other processes: some

lead to clinically apparent consequences, such as developmental

delay or memory dysfunction, whereas others, without necessarily

obvious symptoms, may be detected only on investigation—cerebellar

atrophy is one example. The natural history of any given epilepsy

need not be a single linear dynamic from causation to a unique,

predictable, final outcome: for example, the epilepsies are associ-

ated with shortened longevity (even if seizures stop) [5] and

increased risk of particular comorbidities [6]. Known causes per se

may not explain all the observed outcomes, suggesting that many

epilepsies could be conceptualised as intricate matrices of causa-

tion, processes and outcomes [7], with complex inter-dependencies,

such as a likely link between reduction in cortical thickness and

disease duration [8].

Through the ENIGMA-Epilepsy consortium, we recently showed

that across a wide range of common human epilepsies, which

are known to have both distinct and shared genetic architecture

[2, 3, 9, 10], there are also shared, pan-syndrome, and distinct,

syndrome-specific, regional patterns of altered cortical thickness

and altered subcortical grey matter volumes [8]. The causes of the

structural changes in these epilepsies are not known. The findings

suggest that structural losses may reflect an initial insult, subse-

quent epileptogenesis or progressive neurodegeneration, or some

combination, and show robustly that the common epilepsies cannot

necessarily be considered entirely benign at the structural level.

We sought to identify processes underlying the structural findings.

The pathophysiology of neurological disease has been success-

fully revealed using powerful combinations of brain MRI findings,

regionalised brain-specific gene expression and gene co-expression

networks, in a systems biology framework to implicate candidate

genes [11–14]. Here, we used the findings from the in vivo ENIGMA-

Epilepsy imaging study [8] in combination with the post-mortem atlas

of gene expression in the brain from healthy subjects, curated by the

Allen Institute [15, 16] to direct interrogation of regionalised brain

cell-type composition and generic biological processes that might

underlie thickness or volume reductions across the studied epilepsy

syndromes. We hypothesised that this approach could suggest dis-

ease mechanisms causing the observed structural changes. We further

explored the findings with a series of additional experiments in both

human and animal tissues. We demonstrated experimentally in a

murine model of acquired epilepsy that depletion of the implicated

cell type, microglia, can successfully avert cortical thinning and the

concomitant neuronal cell loss and cognitive deficit, without modify-

ing spontaneous seizures. Microglia have been shown to have various

roles in a few rare, severe human epilepsies. Our new results implicate

microglia in the widespread, but largely unstudied, reduction in corti-

cal thickness that accompanies the numerically far more important

common human epilepsies and point to the potential for prevention

of such thinning by manipulation of microglia.

2 | MATERIALS AND METHODS

In order to explore mechanisms underlying cortical thinning in the epi-

lepsies, we designed the study as shown in Figure 1. We obtained sta-

tistical maps from a large structural MRI study comparing people with

epilepsy to healthy controls conducted by the ENIGMA-Epilepsy con-

sortium [8] (Table S1). To determine cell-type composition differences

that spatially correlate with the reported structural changes on MRI,

we used a healthy control dataset, the Allen Human Brain Atlas

(AHBA), comprising densely sampled gene expression across the cor-

tex [15, 16]. The statistical maps were mapped onto the AHBA using

Montreal Neurological Institute (MNI) coordinates. This enabled us to

Key points

• Altmann et al. identify microglia as a population of cells

likely to be involved in the cortical thinning observed in

the common epilepsies.

• They show that experimental microglial depletion pre-

vents cell loss and cortical thinning in an animal model,

opening new areas for brain preservation approaches in

the epilepsies.

• Seizures and microglia-dependent cortical thinning may

be dissociable processes.
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investigate how the spatial distribution of gene expression in the

healthy brain correlates with regional vulnerability in the diseased

brain. Our primary hypothesis was that cell types causing structural

changes observed on human brain MRI could be identified using the

design shown in Figure 1A. Briefly, cortical brain regions were classi-

fied as vulnerable to, or relatively protected from, cortical thinning

based on the previous imaging results [8]. Then two complementary

approaches were used to identify cell types with association to

reduced cortical thickness: (i) AHBA microarray expression data were

de-convolved into cell-type fractions, and these fractions were tested

for differences between brain regions; (ii) a standard differential

expression analysis was carried out for each gene expression probe,

and cell types were identified using enrichment analyses (for details

on pre-processing, atlas mapping, quality control and the statistical

approach, see Supporting Information Methods, section A). The analy-

sis code for the gene expression analyses is available (https://github.

com/andrealtmann/AHBA_Epilepsy).

We hypothesised that cell types identified from the in silico anal-

ysis of data on the spatial distribution of gene expression in the brain

from non-epileptic donors would also show compatible differences in

spatial distribution in tissue samples obtained from people with epi-

lepsy. Therefore, immunostaining of microglia in post-mortem human

brain tissue was carried out to substantiate the cell-type findings from

the in silico work. The human post-mortem cases were classified into

different epilepsy groups and control groups according to clinical and

pathology criteria. The final sample size was based on availability of

tissues for certain epilepsies (as characterised by clinical data including

electroencephalography [EEG] and MRI) and whether regional tissue

paraffin-embedded block samples were available in each case from

multiple brain regions (see Supporting Information Methods,

section C). Briefly, the labelling index (LI) sums overall microglia pres-

ence in terms of cell bodies as well as microglial processes (as cell bod-

ies may not be present in every section, but processes are likely to be

important in microglial roles), overcoming issues of microglial

F I GU R E 1 Analysis overview. (A) The ENIGMA-Epilepsy study identified ‘vulnerable’ and ‘relatively protected’ brain regions indicated in red

and blue, respectively (second column; top) [8]. Cortical samples of the AIBS dataset (purple dots; first column, bottom) were marked as either

‘vulnerable’ (red dots) or ‘relatively protected’ (blue dots) depending on their location (second column; middle). Brain cell-type fractions were

estimated from the gene expression data, and the differential analysis showed an increased fraction of microglia and endothelial cells in

‘vulnerable’ compared with ‘relatively protected’ regions. Differential gene expression analysis between the two groups followed by pathway

analysis confirmed the enrichment for marker genes for microglia as well as immune activation-related pathways. (B) LD score regression

estimating the enrichment of immune response eQTL signatures in different epilepsy GWAS finds strong enrichment in disease severity (drug-

resistant vs drug-susceptible) but not in disease risk (cases vs controls). eQTL, expression quantitative trait locus; GWAS, genome-wide

association study; IFN, interferon; LD, linkage disequilibrium; LPS, lipopolysaccharide

A SYSTEMS-LEVEL ANALYSIS HIGHLIGHTS MICROGLIAL ACTIVATION
AS A MODIFYING FACTOR IN COMMON EPILEPSIES
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clustering, overlap and aggregation around vessels that can confound

individual cell counts. LI also covers all microglial cell types regardless

of morphology, size and shape. LI was measured across 14 regions of

interest (ROIs) in post-mortem brain tissue derived from 55 individuals,

comprising individuals with non-lesional epilepsy (EP-NL, n = 18),

lesional epilepsy (EP-L, n = 21) and non-epilepsy controls (NEC,

n = 16). No sample size calculations were performed because this was

not a discovery sample, but a previous similar study of regional corti-

cal pathology achieved a significant statistical result compared with

controls with nine post-mortem cases, whereas this study included

55 individuals [17]. Staining was repeated on the same cases in differ-

ent immunohistochemistry runs for comparison.

Further, in order to assess whether cortical thinning can be

prevented by manipulating microglia, we used a well-established

murine model of epilepsy induced by convulsive status epilepticus

(SE) provoked by intra-amygdalar injection of kainic acid in C57/BL6N

adult male mice (30 g; Charles River, Italy) [18–21]. This model mimics

features of mesial temporal lobe epilepsy (MTLE) with hippocampal

sclerosis, with neuronal damage also observed in extrahippocampal

areas [19–21]. To explore the importance of microglia in brain struc-

tural changes and pathologic outcomes, mice were treated with the

CSF1R inhibitor PLX3397 in a controlled experiment. We assessed

the effect of PLX3397 treatment on cognitive performance using the

novel object recognition test (NORT), regional brain volume estimates

from post-mortem MRI, abundance of microglia and neurons quanti-

fied using immunohistochemistry and Nissl staining, respectively. The

sample size was determined a priori based on previous experience

with the same epilepsy model [18, 20]. A simple random allocation

was applied to assign a subject to a particular experimental group.

Group 1: medicated diet (supplemented with PLX3397), n = 5 and

placebo (non-medicated) diet, n = 5; Group 2: medicated diet (sup-

plemented with PLX3397), n = 6 and placebo (non-medicated) diet,

n = 5 (experimental design in Figure S1A). Respective sham mice

(n = 8) were prepared for behavioural testing and post-mortem ana-

lyses. These groups were run 15 days apart. Group 3: placebo diet

mice exposed to SE, n = 8 (run in parallel with Group 1, n = 4 and

Group 2, n = 4) and respective sham mice, n = 8. Group 3 mice were

prepared to compensate for potential dropouts during the longitudinal

experiment (Figure 3C). Limited PLX3397-supplemented diet availabil-

ity prevented further experiments. To verify the reproducibility of the

experimental findings, we compared several EEG measures between

the different placebo-diet mouse cohorts, namely, SE onset and dura-

tion, temporal distribution of spikes during SE, number and duration

of spontaneous seizures. For all these measures, statistical analysis

showed that replication was successful. The data were collected by

anonymising samples, and the assessor was blinded to diagnosis (for

both human tissue and experimental mouse model data). For detailed

materials and methods and mouse treatment protocols, see

Supporting Information Methods (section D).

3 | RESULTS

3.1 | Cortical regions at most risk of reduced

thickness are characterised by higher density of

microglia and endothelial cells

The AHBA provided gene expression profiles for all cortical ROIs [15,

16]. This gene expression atlas is unique in that from 158 to 348 dif-

ferent brain structures have been sampled from each control individ-

ual (n = 6), none of whom had epilepsy, covering in total

414 different structures, and that sampling has been precisely mapped

to MNI space, enabling linkage of the expression data to external

MRI-brain maps in MNI space (see Supporting Information Methods,

section A). Thus, the gene expression profiles used in this analysis

were highly regionally specified. However, only two out of the six

brains have been sampled in both hemispheres: therefore, we

restricted our analysis to the left hemisphere, which was available for

all subjects [22].

We focussed on the regions where thickness was reduced and

sought to identify mechanisms that underlie this cortical regional

‘vulnerability’ to damage; areas without significant loss of thickness

compared with controls were considered ‘relatively protected’,

remaining like normal cortex. To identify the molecular basis of this

T AB L E 1 Association between inferred cell-type fractions and reduced cortical thickness

Cell type T-value P-value PFDR Pperm

Astrocytes 2.080608 0.037 0.043 0.17

Endothelial 4.426344 1.0 � 10�5 7.67 � 10�5 0.026

ExNeurons �3.855666 1.15 � 10�4 3.08 � 10�4 0.051

InNeurons 0.684069 0.49 0.49 0.37

Microglia 4.081655 4.5 � 10�5 1.79 � 10�4 0.032

Oligodendrocytes 2.456355 0.014 0.019 0.053

OPC 2.758717 5.8 � 10�3 0.014 0.068

Unknown 2.690987 0.007 0.011 0.066

Note: Columns represent the cell type, the t-value from the association analysis, the corresponding P-value and the corrected P-value using false discovery

rate (FDR). The least column lists a P-value obtained from 1000 permutations of the vulnerable/protected status of 34 regions of interest in the left

hemisphere.

Abbreviation: OPC, oligodendrocyte progenitor cell.
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regional vulnerability in the broad spectrum of epilepsies, we focussed

our analyses on the shared pan-syndrome MRI findings [8]. Of the

34 cortical regions in the left hemisphere profiled within the

ENIGMA-Epilepsy dataset, eight were considered vulnerable to

reduced cortical thickness, whereas 26 were considered relatively

protected [8] (Table S1).

Using linear mixed effects models, we compared these two types

of cortical region for significant differences in cell-type fractions,

inferred from gene expression using Scaden [23]. We identified

increased ratios of endothelial cells (T = 4.4; P = 1 � 10�5) and

microglia (T = 4.1; P = 4.5 � 10�5) in vulnerable regions, along with a

decreased ratio of excitatory neurons (T = -3.9; P = 1.2 � 10�4) in

vulnerable regions (Table 1). We confirmed these cell-type enrich-

ments by a complementary two-step approach. The first step was a

gene-wise association screen, showing that, out of 14,138 tested

genes, 3182 genes were more highly expressed in vulnerable regions

(at PFDR < 0.05) and 2223 genes were expressed significantly less in

vulnerable regions (at PFDR < 0.05; Dataset S1). In the second step,

these gene-wise results were subject to threshold-free (i.e., not relying

on lists of significantly differentially expressed genes) gene set enrich-

ment analyses using cell-type-specific gene sets from different data

sources (Dataset S2). This analysis confirmed the enrichment of endo-

thelial cells and microglia in vulnerable regions and neurons in protec-

ted regions. We noted that both analyses provided qualitatively the

same result when using all 1628 AHBA samples from both hemi-

spheres, where 18 of 68 ROIs were considered vulnerable (Table S2;

Figure S15). Thus, regions vulnerable to cortical thinning were

characterised by elevated proportion of microglia and endothelial

cells.

3.2 | Selected processes and microglial signatures

are implicated amongst genes associated with reduced

cortical thickness

Using our gene-level association results, we next investigated the bio-

logical processes that could underpin regional differences in vulnera-

bility to reduced cortical thickness in epilepsy. In the first instance, we

investigated enrichment of differentially expressed genes in Gene

Ontology (GO) terms and Kyoto Encyclopaedia of Genes and

Genomes (KEGG) and REACTOME pathways using a threshold-free

approach based on the area under the receiver operator characteris-

tics curve (AUC) [24]. Amongst genes with higher expression in rela-

tively protected cortical regions, the most significant terms we

identified related to RNA processing (REACTOME: RNA polymerase II

transcription, AUC = 0.429, PFDR = 1.19 � 10�11) and synaptic func-

tion (GO: postsynaptic specialisation organisation, AUC = 0.270,

PFDR = 3.95 � 10�4; Dataset S3). Conversely, amongst genes with

higher expression in vulnerable cortical regions, the most significant

terms related to electron transport (GO: electron transport chain,

AUC = 0.74, PFDR = 3.45 � 10�18) and immune function and regula-

tion (REACTOME: innate immune system, AUC = 0.59,

PFDR = 1.46 � 10�15; GO: antigen processing and presentation,

AUC = 0.65, PFDR = 7.98 � 10�13; Dataset S3), the latter being con-

sistent with our results obtained using cell-specific gene sets. There

was also strong enrichment for the KEGG pathways related to neuro-

degenerative diseases (Alzheimer’s disease: AUC = 0.65,

PFDR = 3.53 � 10�6; Parkinson’s disease: AUC = 0.75,

PFDR = 4.55 � 10�12; Huntington’s disease: AUC = 0.66,

PFDR = 1.80 � 10�7). Moreover, this approach also enabled us to

obtain more specific process-related information and suggested the

importance of the interferon gamma signalling pathway (GO: response

to interferon gamma, AUC = 0.597, PFDR = 1.42 � 10�3; GO: inter-

feron gamma-mediated signalling pathway, AUC = 0.621,

PFDR = 6.71 � 10�3; Dataset S3).

A number of cell types showed enrichment in vulnerable regions.

But both cell-type analysis and the observed pathway enrichments

implicated microglia and immune processes, respectively, prompting

us to investigate microglia in more detail, given existing evidence for a

role for microglia in epilepsy [25] and in neurodegeneration in general

[26]. More precisely, because microglia can exist in a range of activa-

tion states within the context of epilepsy [25], we sought to identify

the microglial cell states of greatest importance in reduced cortical

thickness. We collated gene signatures for distinct microglial states

from the existing literature and also inferred signatures of microglial

state through co-expression network analyses (see Supporting Infor-

mation Methods, section A). Although there were significant overlaps

in gene membership across the 16 microglial signatures used

(Figure S2), each of the gene lists was distinct. We identified a signifi-

cant enrichment for 13 of the 16 signatures with genes overexpressed

in vulnerable cortex. This included the microglial signature generated

by Srivastava et al. [27] (AUC = 0.68, PFDR = 1.45 � 10�12;

Dataset S4), which was positively correlated with seizure frequency in

a particular mouse model of chronic epilepsy. Strong enrichments

were also identified for an inferred human microglial signature

enriched for type 1-like microglial markers (AUC = 0.73,

PFDR = 7.27 � 10�18; grey60; Dataset S4), as well as signatures for

aged, late activation and de-activated microglia. However, we saw lit-

tle evidence for enrichment within signatures of early activation

(‘Early Response’ signature [28], AUC = 0.53, PFDR = 0.062). Similar

microglial states have recently been implicated in various forms of

chronic neurodegeneration [28–30], but more data are needed to

definitively determine whether similar underlying processes and

microglial states are indeed involved.

3.3 | Genetic evidence supports immune activation

as a modifying, but not causal, factor in the common

epilepsies

In the ENIGMA-Epilepsy imaging study, region-specific reduced corti-

cal thickness across the common epilepsies was correlated with dis-

ease duration and age of onset of epilepsy [8]. Given that the analyses

of gene expression data from healthy donors described above suggest

the importance of microglia responses in vulnerability to reduced cor-

tical thickness, we hypothesised that genetic variants affecting
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microglial responses would also impact upon the severity of epilepsy.

Although no microglial expression quantitative trait locus (eQTL)

dataset exists to date, eQTL analyses have been performed using

monocytes at rest, and also monocytes treated with interferon γ (IFN-

γ) or lipopolysaccharide (LPS) [31]. We postulated that these eQTLs

would be enriched for heritability of risk loci for epilepsy that is drug

resistant (one surrogate for disease severity) but not for epilepsy per

se. To investigate this, we used genome-wide association study

(GWAS) data on epilepsy susceptibility [2] and separate GWAS data

on the phenotype of drug-resistant epilepsy from the EpiPGX

consortium (www.epipgx.eu). Using linkage disequilibrium (LD) score

regression, we sought enrichment in heritability for these phenotypes

within state-specific monocyte eQTLs [31] (Supporting Information

Methods, section B). We found no significant enrichment in the heri-

tability of epilepsy in this form of annotation, suggesting that suscep-

tibility to common epilepsies is less likely to be driven by immune

processes (Figure 1B, Table 2). However, eQTLs regulating the

response to IFN-γ were highly enriched for drug-resistant epilepsy vs

drug-responsive epilepsy loci (P = 0.00045; PFDR = 0.0095, Table 2).

This result was particularly striking given the small size of the EpiPGX

drug-resistant epilepsy GWAS (2423 drug-resistant cases vs 1626

drug-responsive cases). Thus, we provide genetic evidence in support

of microglial-mediated responses as a modifying factor in severity of

epilepsy, but not its susceptibility.

3.4 | Widespread regionalised over-representation

of microglia is present in brain tissue from people with

epilepsy

On the basis of the analyses of regional gene expression patterns in

healthy brains above, we hypothesised that brain tissue from individ-

uals with various forms of epilepsy would have regionalised higher

densities of microglia as compared with tissue from non-epilepsy

controls and that this would be apparent beyond the context of acute

seizure activity. Using Iba1 immunolabelling, we found that single

ramified microglia and processes were found throughout the cortex;

scattered perivascular macrophages were also labelled (Figure 2A).

Enlarged and more complex/branching microglia, focal aggregates and

amoeboid/macrophage forms were noted in some ROIs (Figure 2A).

Consistent with our hypothesis, the Iba1 LI was significantly higher

in all epilepsy (EP-NL and EP-L together) than NEC for all ROIs

(P = 4.0 � 10�13) and for both subgroup comparisons (EP-NL

[P = 3.7 � 10�13] and EP-L [P = 3.5 � 10�13]) against NEC.

Regional differences were noted within the epilepsy groups and for

individual ROIs compared between epilepsy and control groups

(see Figures 2 and S16 and Table S3). We noted that the Iba1 LI

was similar across EP-NL, EP-L and NEC in BA17, as compared

with pulvinar and BA22 where the Iba1 LI was higher in EP-NL

and EP-L groups than in NEC. Thus, these results are consistent

with the view that there is an over-representation of microglial

footprint in brain tissue from people with chronic epilepsy and that

such microglial responses may occur in a regionally specific man-

ner. This observation was supported by evidence of region-specific

microglia expansion in epileptic mice as reflected by the increased

number of Iba1-positive cells in entorhinal cortex but not in

perirhinal cortex (Figure S3). Moreover, in sham mice, we also

observed that the temporal cortices have a higher microglia density

than the hippocampus, denoting regionalised microglia enrichment

at baseline (Figure S3).

3.5 | Experimental evidence supports microglial

activation as a modifying factor for cortical thickness

in a mouse model of acquired epilepsy

The analyses so far have shown (i) elevated expression of microglia-

related genes in brain regions, deemed ‘vulnerable’ from the

ENIGMA-Epilepsy imaging study, in healthy brains and (ii) widespread

regionalised over-representation of microglia in brain tissue from peo-

ple with epilepsy compared with tissue from non-epileptic controls.

To provide proof-of-concept evidence causally linking microglia acti-

vation to cortical thinning, we used a mouse model of acquired epi-

lepsy where convulsive seizures originate and spread in the limbic

system and also involve the neocortex [18–21]. Spontaneous seizures

develop a few days after the acute insult (mean � SEM, onset,

6.2 � 0.5 days, n = 21 mice of Figure 3C) and recur for months

(Figure S4B,C) and are drug resistant [20]. Microglia are

T AB L E 2 Results from stratified linkage disequilibrium score regression estimating the enrichment of immune response eQTL signatures

(rows) in different epilepsy GWAS (columns)

eQTL type

GWAS

ILAE (epilepsy vs HC) Drug-resistant vs HC Drug-resistant vs drug responders

P PFDR P PFDR P PFDR

Naïve monocytes 8.73 � 10�2 1.63 � 10�1 3.43 � 10�2 8.12 � 10�2 2.85 � 10�3 2.00 � 10�2

IFN-γ-treated 1.56 � 10�2 8.12 � 10�2 5.09 � 10�2 1.06 � 10�1 4.53 � 10�4 9.52 � 10�3

LPS-treated (2 h) 1.43 � 10�1 2.32 � 10�1 2.70 � 10�1 3.90 � 10�1 3.48 � 10�2 8.12 � 10�2

LPS24-treated (24 h) 3.17 � 10�2 8.12 � 10�2 1.97 � 10�2 8.12 � 10�2 1.27 � 10�3 1.33 � 10�2

Note: Bold font marks significant enrichments at PFDR < 0.05.

Abbreviations: eQTL, expression quantitative trait locus; GWAS, genome-wide association study; HC, healthy controls; IFN-γ, interferon γ; ILAE,

International League Against Epilepsy study (The International League Against Epilepsy Consortium on Complex Epilepsies, 2014); LPS, lipopolysaccharide.
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morphologically activated (CD11b-positive area, hippocampus: mm2,

sham, 0.09 � 0.01; 1 week after SE, 1.67 � 0.48, P = 0.0002, Mann–

Whitney test; n = 10–11 mice) and proliferate by 2.0-fold on average

within 1 week after SE as assessed in a different cohort of mice by

analysis of Iba1-positive cells in the forebrain (number of cells, hippo-

campus: sham, 614.4 � 7.1; 1 week after SE, 1347 � 68.6,

P = 0.0011, Mann–Whitney test; n = 10–11 mice).

First, we studied whether the thickness and volume of selected

cortical brain regions were reduced, and those of the lateral ventricles

increased (directions of change as predicted by the ENIGMA-Epilepsy

findings in humans) in placebo (non-medicated)-diet-fed epileptic mice

(n = 10) vs sham mice (not exposed to SE, n = 16) as assessed by

post-mortem MRI (experimental design in Figure S1A). In the post-

mortem MRI analysis (Figures 3A, S5 and S6), we also included addi-

tional placebo-diet-fed epileptic mice (n = 8) run in parallel with mice

depicted in Figure 3C (n = 10). These additional mice were video-EEG

monitored only in the terminal disease phase (Days 55–90), and their

seizure frequency (0.91 � 0.26, n = 8) was similar to mice depicted in

Figure 3C (1.65 � 0.75, n = 10; P = 0.41 by the Mann–Whitney test).

These additional epileptic mice were also included in the histopatho-

logical brain analysis (Figure 3B) and for behavioural testing

(Figure 3D). We found that the lateral ventricles were enlarged by

twofold (P = 0.0006 by analysis of variance [ANOVA] followed

by Tukey’s test; Figure S5A): this effect was associated with a signifi-

cant reduction in the volume of the entorhinal (P = 0.043; Figure S5E)

and perirhinal (P = 0.025 by ANOVA followed by Tukey’s test;

Figure S5F) cortices. No significant changes were observed in other

brain areas such as the hippocampus, caudato-putamen and the thala-

mus, although their average volumes trended lower than the

corresponding values in sham mice (Figure S5B–D). Notably, a signifi-

cant reduction in the thickness of entorhinal (P = 0.0001 by ANOVA

followed by Tukey’s test; Figure 3A) and perirhinal (P = 0.046 by

ANOVA followed by Tukey’s test; Figure S6) cortices was also mea-

sured in the same mice.

F I GU R E 2 Presence of excess activated microglia in post-mortem brain tissue from people with epilepsy. (A) High magnification of

morphological types of Iba1-labelled cells including (bottom row; left to right) ‘rod’ cells, ramified microglia, perivascular macrophage and

amoeboid forms. Fixation time in illustration of ramified microglia was 467 days (bar = 30 microns). Top row shows Iba1 labelling in randomly

selected regions from cases in the study (representing all three groups) with a range of immunostaining quantified from 0.5% to 6.5% field

fraction with progressive increase in complexity, number and size of ramified microglial (all taken at �20). (B) Scatter graph of all data points from

709 sections including all brain regions showing mean and standard deviation for labelling index in the four main groups: Epilepsy-ALL (EP-ALL),

Epilepsy Non-Lesional (EP-NL), Epilepsy-Lesional (EP-L) and non-epilepsy controls (NEC). EP-ALL, EP-NL and EP-L are all significantly greater

than NEC (* respective P-values: 4.0 � 10�13, 3.7 � 10�13, 3.5 � 10�13). (C) Iba1 immunolabelling shown in 10 Brodmann areas and thalamus in

each hemisphere, colour coded for the mean percentage labelling index in the three groups as in (B). (D) Scatter graph of the mean Iba1 LI in the

same Brodmann areas and thalamus (averaged over both hemispheres) in the four groups as in (B)
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Next, we measured brain region volumes and cortical thickness in

mice fed with medicated diet, supplemented with PLX3397, in order

to deplete microglia by >90% (Figure S7) during the initial disease

development (i.e., until Day 7 after spontaneous seizure onset; experi-

mental design in Figure S1A). Importantly, this decrease in microglia

was induced transiently, because microglia re-populated the forebrain

within 1 week after switching mice to a placebo non-medicated diet

[32]. This protocol was followed in order to assess the impact of

microglia activation in the initial phases of the disease on the struc-

tural brain changes detected in the epileptic mice. We found that the

decrease in thickness of the entorhinal cortex of epileptic mice under

placebo diet vs sham mice was prevented in mice that were depleted

of microglia in the early disease phase (P = 0.022 vs placebo by

ANOVA followed by Tukey’s test; Figure 3A). This indicates that early

microglia depletion prevented the entorhinal cortical thinning deter-

mined in the chronic disease phase. Microglia depletion did not affect

the thinning of the perirhinal cortex (Figure S6) or the ventricle and

subcortical volume changes occurring in epileptic mice (Figure S5).

Evaluation of neuronal cell number in the entorhinal cortex of epilep-

tic mice receiving placebo diet showed a significant decrease in both

neuronal cell density (P = 0.0001 vs sham by ANOVA followed by

Tukey’s test; Figure 3B) and their average cell body size (P = 0.037 vs

sham by ANOVA followed by Tukey’s test; Figure 3B). The reduction

in cell density, but not of the average cell body size, in epileptic mice

was prevented by microglia depletion in the early disease phase

(P = 0.006 vs placebo diet by ANOVA followed by Tukey’s test;

Figure 3B). Similarly, microglia depletion affected the reduction in dis-

crimination index (a measure of non-spatial memory deficit dependent

on entorhinal cortex function) [33] observed in epileptic mice fed with

placebo diet (P = 0.0004 epileptic mice vs sham by ANOVA followed

by Tukey’s test; P = 0.049 epileptic mice on the PLX3397 diet vs pla-

cebo diet by the Mann–Whitney test) (Figure 3D). The total explora-

tion time of objects during the familiarisation phase did not differ in

the various experimental groups (sham, 24.07 � 2.6 s; SE + placebo,

28.4 � 4.7 s; SE + PLX3397, 29.7 � 5.9 s; P = 0.25 sham vs placebo;

P = 0.5 SE + placebo vs SE + PLX3397). Notably, microglia depletion

in the early disease phase did not modify the onset, duration and

severity of SE (Figure S4A). Moreover, both frequency and duration of

spontaneous seizures were unaltered by early microglia depletion as

compared with placebo non-medicated diet-fed mice (Figure 3C;

Figure S4C vs B).

4 | DISCUSSION

The epilepsies are complex conditions with multiple facets including

various causes, differing responses to treatment and unpredictable

outcomes. Most attention has been paid to causation and processes

of epileptogenesis across the broad constituent spectrum of syn-

dromes. In contrast, disease progression has not been a primary focus

of research even though for some rare epilepsies (the developmental

and epileptic encephalopathies [DEE]), the window of opportunity to

ameliorate disease may be open for longer than expected, as disrupted

patterns of gene expression last into adulthood [34]. Here, we show

that across the broad spectrum of the more common epilepsies (spe-

cifically excluding DEE), gene expression-predicted microglial density

F I GU R E 3 Effects of microglia depletion in the early disease phase on entorhinal cortex thickness and neuronal cell loss and on cognitive

deficit in epileptic mice. The experimental design is depicted in Figure S1A. Grey symbols represent sham (n = 6–8) and epileptic mice fed with

placebo diet (n = 8) run in parallel with experimental mice of (C) (see text for details). (A) Box-and-whisker plots depicting median, minimum,

maximum and single values related to the entorhinal cortex thickness, as assessed by quantitative post-mortem magnetic resonance imaging

(MRI) analysis performed in epileptic mice at the end of electroencephalography (EEG) monitoring (placebo are mice fed with non-medicated diet:

n = 18; PLX3397 are mice fed with medicated diet supplemented with PLX3397: n = 7) and in sham mice (not exposed to status epilepticus;

n = 16). MRI images depict representative slices showing the region of interest (ROI) used to quantify the cortical thickness. Four mice in the

PLX3397 group did not undergo MRI analysis, and therefore, they were not included in the subsequent histological (B) and behavioural analyses

(D). The white line within the ROI was manually drawn to measure the cortical thickness. **P = 0.0001 vs sham; �P = 0.022 vs placebo by

analysis of variance (ANOVA) followed by Tukey’s test. Scale bar: 1 cm. (B) Representative Nissl-stained sections (top row) of the entorhinal

cortex in the experimental groups (top row; sham, n = 14; placebo, n = 15; PLX3397, n = 7), and the relative quantification of the number and

the average size of Nissl-stained neurons (bottom row). Two sham and three placebo mice were excluded from the analysis due to poor quality of

Nissl staining. Data are shown by box-and-whisker plots depicting median, minimum, maximum and single values *P = 0.0037, **P = 0.0001 vs

sham; ��P = 0.006 vs placebo diet by ANOVA followed by Tukey’s test. Scale bars: 100 μm. (C) Box-and-whisker plots depicting median,

minimum, maximum and single values of the number of spontaneous seizures/day and their average duration during Days 1–7, 8–15 and 55–90

from epilepsy onset (Day 1) in the placebo (n = 10) and PLX3397-supplemented diet (n = 11) experimental groups (protocol in Figure S1A).

Friedman’s two-way nonparametric ANOVA (P = 0.041) followed by post hoc multiple comparisons test with Bonferroni correction: P-values for

Number of seizures/day: P = 0.363, Days 1–7; P = 0.339, Days 8–15; P = 0.965, Days 55–90; P-values for Seizures duration: P = 0.799, Days 1–7;

P = 0.325, Days 8–15; P = 0.262, Days 55–90. Outliers were identified only for the Number of seizures/day in the placebo group (n = 1 in Days

1–7) and in the PLX3397 group (n = 2 in Days 8–15 and n = 2 in Days 55–90); however, their omission did not change the results of the primary

statistical analysis; therefore, the values were not removed from the corresponding dataset (P-values for sensitivity analysis: P = 0.831, Days 1–7;

P = 0.375, Days 8–15; P = 0.084, Days 55–90). (D) Novel object recognition test (NORT) in epileptic mice fed with placebo- (n = 13) or

PLX3397-supplemented diet (n = 7), and sham controls (n = 13). Three sham and five placebo diet epileptic mice were excluded from the analysis

because they showed a total exploration time < 6 s during the familiarisation phase. Memory was evaluated by measuring the discrimination

index, which was calculated as time spent (seconds) exploring the familiar (F) and the novel (N) object as follows: (N�F)/(N+F). Data are shown

by box-and-whisker plots depicting median, minimum, maximum and single values, differences significant at **P = 0.0004 vs sham by ANOVA

followed by Tukey’s test; *P = 0.049 vs placebo by the Mann–Whitney test
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spatially correlated with reduced cortical thickness; the related genes

newly implicate innate immunity and, particularly, microglial activation,

as contributors to the underlying cause of cortical thinning. We also

show that this molecular signature of innate immunity activation is

significantly enriched for a gene set already causally linked to seizure

frequency in a mouse model of chronic epilepsy [27], though we note

our model differs from the model in that study. Further, our data add

new evidence supporting the general concept that microglial activa-

tion is associated with at least some of the structural changes seen in

brain areas involved in seizure circuitry, in that microglial depletion in

mice early during disease development can directly prevent associated

cortical thinning in the entorhinal cortex. Notably, microglial depletion

in mice also prevented neuronal cell loss in the entorhinal cortex, and

this neuroprotective effect was associated with improvement of

cognitive deficit measured by the non-spatial memory test, that is sen-

sitive to entorhinal cortex function [33].

Furthermore, we tested the hypothesis that microglial/monocyte

activation is a key modulator of the severity of epilepsy using both

genetic and functional approaches. We used the availability of GWAS

data for resistance to anti-epileptic drug treatment, a marker of

disease severity, to investigate enrichment in heritability at genetic

loci already known to influence the expression of genes involved in

monocyte activation. We find a highly significant enrichment in the

heritability of epilepsy severity amongst these immunomodulatory

loci, despite the absence of a significant enrichment for heritability of

epilepsy per se. Finally, in keeping with these observations, experi-

mental microglial depletion timed to coincide with a period of epi-

leptogenesis in a murine model of acquired epilepsy can prevent

regionalised cortical thinning, but does not influence the eventual

development of seizures themselves in our model. Data from the

experimental model also demonstrate that the cortical thinning is at

least partly due to reduced neuronal cell density and average neuronal

size: reduction of neuronal density can be prevented by appropriately

timed microglial depletion while neuronal size changes were not res-

cued, which may explain the observation that entorhinal volume

changes are not completely prevented by microglial depletion. We,

and others [35–40], find that activated microglia are present in excess

in brain tissue from people with epilepsy, compared with brain tissue

from healthy controls, providing evidence for translation to human

epilepsies of our assertions from the experimental model data. We

selected Iba1 as a robust immunomarker for microglia in formalin-

fixed tissue [41]. Like HLA-DR and CD68, Iba1 labels all phenotypes

of microglia from ramified and amoeboid forms to macrophages and is

therefore suited to structural studies of normal cortex in the absence

of focal pathology [42]. We recently reported increased Iba1 labelling

in central autonomic cortical regions in SUDEP, which also associated

with increased seizures prior to death [43]. Together, these findings

separate important processes occurring in the course of the epilepsies

and incriminate potentially modifiable microglial activation states in

the hitherto largely ignored feature of cortical thinning in the common

human epilepsies. Unsurprisingly, our results also suggest that other

factors are likely to be involved, which we have not explored

further yet.

Importantly, we note as limitations that we assume a high degree

of similarity in the genetics of gene expression in monocytes and

microglia and that the clue to the possible role for microglial activation

in cortical thinning came from a cross-sectional study of chronic

human epilepsy: although reduced cortical thickness correlated with

disease duration [8], we could not distinguish whether the structural

difference had developed at disease onset (e.g., with causation), dur-

ing epileptogenesis, during the course of the disease or a combination

of these epochs. Our multimodal data, and especially the experimental

model results, allow us to begin to address this question. Notably, we

used spatially resolved whole-brain gene expression data from healthy

controls, rather than from the brains of people with epilepsy specifi-

cally to avoid confounding by secondary effects: some such effects

(e.g., compensatory changes) may be worth exploring, but that was

not our purpose here. The murine model in our study relates to early

processes in epileptogenesis and shows a clear separation for micro-

glial roles in cortical thinning and seizure occurrence, whereas data

from other models relate to the chronic disease state and show an

effect of microglial manipulation on seizure frequency in that chronic

state [27, 44] (cortical thinning was not assessed in those models).

The experimental and human data are not directly compatible, and we

cannot test hypotheses arising from the chronic mouse model in data

from human ENIGMA-Epilepsy. However, taken together, the

data suggest that microglia may have multiple modifying roles during

epileptogenesis and progression of disease across common human

epilepsies, though we find no evidence that they contribute to the

actual occurrence of these common forms of epilepsy (from either our

human or murine data). That seizure frequency and cortical thinning

may be separable processes adds to important epidemiological evi-

dence that seizure frequency is not the only contributor to morbidity

in people with a history of epilepsy [5]. Microglia have many roles in

specific types of epilepsy, demonstrated clearly in a variety of animal

models. Such roles include phagocytosis, which may link consumption

of synapses with cognitive changes in long-term active epilepsy [45],

providing another possible mechanism for actual loss of brain volume

in epilepsy: ‘time is brain’ [46].

Dysregulation of innate immunity is considered possibly to con-

tribute to brain pathology and seizures in some severe human epilep-

sies. Microglial activation is seen in Rasmussen’s encephalitis and in

tissue from epilepsies due to hippocampal sclerosis and mesial tempo-

ral lobe sclerosis, focal cortical dysplasia and tuberous sclerosis

[35–39]. The latter two conditions are known to have genetic, rather

than inflammatory, causes, but the extent of microglial activation in

the chronic disease phase correlates with severity (seizure frequency)

and disease duration in these studies [35, 39] and not just cause,

pointing again to distinctions between processes related to the initial

cause (e.g., genetic disorder) and others that manifest during active

disease. Importantly, resected human brain tissue is only available

from a few cases of a few types of epilepsies (mostly surgical

specimens from MTLE and focal cortical dysplasia [47]), so that it is

impossible to otherwise evaluate the role of microglia using neuro-

pathological data in the majority of common human epilepsies, from

which brain tissue cannot be obtained in life. Brain imaging in animal
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models using a label (TSPO) for microglial activation shows dynamic

upregulation during epileptogenesis, with persistent, although declin-

ing, activity in the chronic phase and correlation with spontaneous

seizures [48]; in chronic human temporal lobe epilepsy, there is

increased TSPO binding ipsilateral and contralateral to seizure foci

[49] and in the interictal phases [50]. Using immunolabelling, we dem-

onstrate that there is over-representation of activated microglia in

human and experimental brain tissue, compared with controls. The

animal data also highlight that microglia expansion in epileptic mice

occurs in the entorhinal but not in perirhinal cortex, and this effect is

mirrored in the rescue of cortical thinning by microglia depletion

(Figure S3). However, neither TSPO imaging nor neuropathological

study is realistically applicable to large numbers of people with epi-

lepsy, especially common epilepsies, while MRI is providing a readily

available means of evaluating clinical translation of the implications of

our findings. We propose, using MRI-derived patterns and correlation

with gene expression, that activated microglia-associated functions

drive the important, but as yet largely neglected, phenotype of cortical

thinning in a broad swathe of common human epilepsies. Subsequent

experimental intervention in an animal model suggests that early

manipulation of microglia has the capacity to rescue disease-related

cortical thinning, neuronal cell loss and cognitive deficits, opening up

new areas for attention and treatment in common human epilepsies.

We note that other cell types and processes are also implicated: these

also need consideration, and suggest the possibility of multiple players

in cortical thinning: we have focussed on one cell type, which does

not diminish the potential utility of its manipulation. Other processes

and cell types will be the subject of future investigations.

Our results point to important roles for neuroinflammatory path-

ways and potentially specific molecular actors, such as IFN-γ. How-

ever, the diversity of microglial states and functions, and the complex,

dynamic, interactions between neurons, astroglia and microglia, that

at the very least can promote epileptogenesis [25] have yet to be fully

resolved. Clinical translation of our key observation of the widespread

role of microglial activation across the breadth of types of epilepsy

into therapeutic options to prevent irreversible loss of brain substance

will require definition of the time course of thinning in the different

types of epilepsy. Translation will also require the development of

safe, effective and tolerable treatments that target precise mecha-

nisms without compromising immune surveillance of brain tissue, a

need across diverse neurological disorders [51].
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