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Abstract

Aims/hypothesis Metabolomics has opened new avenues for

studying metabolic alterations in type 2 diabetes. While many

urine and blood metabolites have been associated individually

with diabetes, a complete systems view analysis of metabolic

dysregulations across multiple biofluids and over varying

timescales of glycaemic control is still lacking.

Methods Here we report a broad metabolomics study in a

clinical setting, covering 2,178 metabolite measures in saliva,

blood plasma and urine from 188 individuals with diabetes

and 181 controls of Arab and Asian descent. Using multivar-

iate linear regression we identifiedmetabolites associated with

diabetes and markers of acute, short-term and long-term

glycaemic control.

Results Ninety-four metabolite associations with diabetes

were identified at a Bonferroni level of significance

(p<2.3×10−5), 16 of which have never been reported. Sixty-

five of these diabetes-associated metabolites were associated

with at least one marker of glycaemic control in the diabetes

group. Using Gaussian graphical modelling, we constructed a

metabolic network that links diabetes-associated metabolites

from three biofluids across three different timescales of

glycaemic control.

Conclusions/interpretation Our study reveals a complex net-

work of biochemical dysregulation involving metabolites

from different pathways of diabetes pathology, and provides

a reference framework for future diabetes studies with meta-

bolic endpoints.
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Introduction

Metabolomics [1, 2] has been successfully used to identify

molecules associated with diabetes [3], including metabolites

from the three major energy sources (carbohydrates, lipids and

proteins [4–6]) as well as molecules associated with plasma

phospholipids [7, 8] and branched chain amino acids

(BCAAs) [9, 10], and individual molecules such as α-

hydroxybutyrate [11] and 2-aminoadipic acid [12]. To date,

most large-scale, population-based studies have focused only

on metabolites collected from a single biofluid, primarily

blood or urine. However, we recently showed that saliva can

also be used to identify metabolic changes in diabetes [13].

Since metabolic readouts of diabetes-related biochemical pro-

cesses in circulating body fluids are primarily proxies for bio-

chemical processes occurring elsewhere in the body, these

results need to be interpreted in context. We propose that a

systems-wide analysis combining metabolomic measure-

ments obtained across different biofluids isolated from the

same patient would improve our understanding of the interac-

tions between and roles of different organs and tissues in the

development and progression of diabetes.

Impaired glucose metabolism is a hallmark of diabetes, and

episodes of dysregulated glucose levels can be monitored on

different timescales. For studies assessing the associations be-

tween metabolites and diabetes in a case–control design, it is

essential to interrogate metabolites that are specifically asso-

ciated with individual markers of glycaemic control in patients

with diabetes. The most frequently used endpoints for medi-

cally assessing patients with diabetes is the blood HbA1c level,

which reflects the time-averaged blood glucose level collected

over the previous 2–3 months [14] and can be considered a

marker of long-term glycaemic control. The 1,5-

anhydroglucitol (1,5-AG) level is also used as a marker of

time-averaged blood glucose levels, with lower levels of 1,5-

AG being the consequence of frequent episodes of glucosuria

experienced over the previous 1–2 weeks [13, 14]. Finally,

glucose in the urine (glucosuria) is used as a marker of acute

glucose dysregulation over a timescale of 6–12 h. Therefore,

for the purpose of this study, glucose homeostasis in individ-

uals shall be characterised on three different timescales, with

urinary glucose serving as a marker of acute glycaemic con-

trol, plasma 1,5-AG levels as a marker of short-term

glycaemic control and HbA1c as a marker of long-term

glycaemic control.

Gaussian graphical models (GGMs) have proven to be

powerful tools for detecting signatures of biochemical path-

ways in large metabolomics datasets [15, 16]. Using this ap-

proach, the variability in metabolic individuality encountered

in larger population studies represents a natural experiment

that allows one to derive biochemical connections between

correlated metabolites in a purely data-driven manner.

Metabolite–metabolite interactions in these GGMs are identi-

fied by partial correlations between the measured metabolites;

they have been shown to correspond to known biochemical

interactions that can be used for reconstructing metabolic net-

works from data alone [16, 17]. Mapping metabolite–disease

associations onto such networks may then allow for functional

interpretation in a naturally derived biochemical context

[18–20].

In this study, we examined how metabolic systems are

altered in diabetes and how these changes are related to

glycaemic control over three different timescales (acute, short

term and long term) across three biofluids (plasma, urine and

saliva). Using a comprehensive non-targeted metabolomics

approach, we made over 2,000 individual metabolite mea-

sures per individual in plasma, urine and saliva samples from

369 participants of Arabic and Asian ethnicities. Using linear

regression analysis with relevant covariates and stringent

Bonferroni correction, we first identified metabolites in saliva,

plasma and urine that were associated with diabetes. Among

these metabolites, we then identified those associated with at

least one of the three glycaemic control variables in samples

from patients with diabetes. Finally, we derived a GGM for all

metabolites measured in all three biofluids, thereby creating a

biochemical reference network that revealed biochemical con-

nections between all diabetes-associated metabolites across

the different biofluids and timescales of glycaemic control.

Methods

Study design

This study was embedded in the Qatar Metabolomics Study

on Diabetes (QMDiab), a cross-sectional case–control study

with 374 participants [13, 20]. All study participants were

enrolled between February 2012 and June 2012 at the

Dermatology Department of Hamad Medical Corporation

(HMC) in Doha, Qatar. Inclusion criteria were a primary form
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of type 2 diabetes (for patients) or an absence of type 2 dia-

betes (for controls). Sample collection was conducted in the

afternoon, after the general operating hours of the morning

clinic. Patient and control samples were collected in a random

order as they became available and at the same location using

identical protocols, instruments and study personnel. Samples

from patients and controls were processed in the laboratory in

a blinded manner. Data from five participants were excluded

from the analysis because of incomplete records, leaving 176

patients and 193 controls. Of the 193 control participants ini-

tially enrolled, 12 had HbA1c levels above 6.5% (48 mmol/

mol) and were subsequently classified as patients, resulting in

188 patients and 181 controls.

Ethics statement

This study was conducted following the World Medical

Association Declaration of Helsinki – Ethical Principles for

Medical Research Involving Human Subjects. It was ap-

proved by the Institutional Review Boards of HMC and

Weill Cornell Medical College – Qatar (WCMC-Q; research

protocol no. 11131/11). All study participants provided writ-

ten informed consent.

Phenotyping

Information regarding age, sex, ethnicity, BMI and diabetes

history was obtained by trained researchers using question-

naires and standardised protocols (Table 1). Saliva, plasma

and urine specimens were collected and processed using

standardised collection protocols and stored on ice for trans-

portation. Within 6 h of collection, all samples were clarified

by centrifugation at 2,500g for 10 min, aliquoted and stored at

−80°C. Duplicate blood samples were sent directly to the hos-

pital’s clinical biochemistry laboratory for comprehensive

analysis including HbA1c level, lipid profile, general chemis-

try and a complete blood count [13].

Metabolomics

Metabolic profiling was achieved using ultra-HPLC and GC

separation, coupled with tandem MS using established proce-

dures and technology (at Metabolon, Durham, NC, USA;

Table 2) [21, 22]. The essential steps of this process are pro-

vided as electronic supplementary material (ESM) Methods.

Median process variability, as determined by repeated mea-

surements of pooled samples, was 15.3% in saliva, 15.8% in

plasma and 9.8% in urine. In the initial sample set of 374

participants, 147 metabolites were detected in saliva, plasma

and urine, 391 were detected in only two sample types and

1,030 were detected in a single sample type. Thus, a total of

2,253 individual metabolite signals were measured in the three

biofluids (603 in saliva, 759 in plasma and 891 in urine) when

counting the same molecule in different biofluids as separate

entities, or a total of 1,568 unique metabolites when counting

detection of the same molecule in multiple fluids only once.

After excluding metabolite measures with fewer than 50 valid

detections in a single fluid (13.6%), many of which were

xenobiotics related to medication, 2,178 distinct metabolite

measures were used for analysis (ESM Table 1).

Statistical analysis

Regression analysis Metabolite levels were scaled by run-

day medians, normalised using osmolality (saliva and urine

data only), log-transformed and then z-scored. Missing values in

metabolites with more than 20% missing data points were im-

puted to the smallest detected value since it can be assumed that

they are probably below the detection limit of themethod. Values

for metabolites >4 SD from the mean were excluded from the

analysis. Multivariate linear regression, adjusting for age, sex,

ethnicity and BMI, was used to assess the statistical significance

of the association of metabolites with diabetes, as previously

described [5]. A stringent Bonferroni level of significance of

p<2.3×10−5 (=0.05/2,178) was used to infer association.

Glycaemic control By limiting the analysis to Bonferroni

significant diabetes-associated metabolites (n=94), we exam-

ined their association with acute glycaemic dysregulation (6–

12 h) and short- (1–2 weeks) [13] and long-term (2–3 months)

[14] glycaemic control; only diabetes patients were included

in this case. Acute glycaemic dysregulation was defined by

MS detection of glucose in urine (66 out of 188 cases; a

dichotomous variable). Note that metabolomics measure-

ments only provide semiquantitative measures of glucose in

urine. Therefore, a physiological cut-off to define glucosuria

could not be applied. However, in only two of the 181 controls

was glucose detected in urine. We therefore consider the de-

tection limit of the MS measure a viable proxy. Short- and

long-term glycaemic control scales were defined by 1,5-AG

and HbA1c levels in plasma, respectively (continuous vari-

ables) [14]. As in the previous regression analysis, multivari-

ate linear regression adjusting for age, sex, ethnicity and BMI

was performed. A Bonferroni level of significance of p<1.8×

10−4 (=0.05/(94×3)) was used to infer association (94 metab-

olites and three measures of glycaemic control).

GGMs Based on the complete quality-checked and imputed

metabolomic datasets (369 individuals and 2,178 metabolite

measures), we computed partial correlation values adjusting

for diabetes state, age, sex, ethnicity and BMI to construct the

GGMs. A stringent Bonferroni level of significance of

p<2.1×10−8 [=0.05/([2,178×2,177]/2)] was applied to deter-

mine significant partial correlation edges. In the resulting

GGM with 3,742 edges (significant partial correlations)

connecting each of 1,907 metabolites with at least one other

Diabetologia (2015) 58:1855–1867 1857



metabolite, we only kept the 546 metabolites nominally asso-

ciated (p<0.05) with diabetes and removed all other metabo-

lites with their edges. Thus, a total of 33 GGM subnetworks

(with at least three metabolites in a network) were obtained

(Fig. 1). All statistical analyses were performed using the R

statistical package (version 2.14, www.r-project.org/) and the

GeneNet package in R (http://cran.r-project.org/web/

packages/GeneNet/).

Results

Of 2,178 metabolite measures in saliva, plasma and urine,

94 were associated with diabetes at a Bonferroni level

of significance

Of the 2,178 individual metabolite associations in the three

biofluids tested, 546 displayed nominal significance (p<0.05)

with diabetes after adjusting for covariates (Table 3 and ESM

Table 2). Ninety-four of the 546 metabolite associations

Table 1 General characteristics

of the participants Characteristic Type 2 diabetes (n=188) Controls (n=181) p value

Age (years) 53.8 (35.0–70.7) 38.5 (23.6–62.3) <0.001

Sex (female [%]) 81 (43.1) 99 (54.7) 0.03

Ethnicitya (%)

Arab 93 (43.1) 113 (62.4)

South Asian 74 (39.4) 39 (21.5) 0.002

Filipino 14 (7.4) 22 (12.2)

Other or mixed 7 (3.7) 7 (3.9)

BMI (kg/m2) 29.5 (21.6–42.6) 27.6 (21.7–39.1) 0.004

Waist circumference (cm) 101.0 (83.0–128.0) 94.5 (74.0–116.1) <0.001

Hypertension (%) 103 (54.8%) 27 (14.9%) <0.001

Total cholesterol (mmol/l) 4.95 (3.03–6.88) 5.13 (3.74–6.61) 0.11

HDL-cholesterol (mmol/l) 1.13 (0.71–1.78) 1.22 (0.77–1.90) 0.02

LDL-cholesterol (mmol/l) 2.79 (1.45–4.45) 3.07 (1.55–4.67) 0.02

Triacylglycerol (mmol/l) 1.77 (0.76–4.69) 1.38 (0.63–3.61) 0.002

Creatinine (μmol/l) 75.0 (48.4–112.6) 69.0 (50.0–99.0) 0.01

HbA1c (%) 7.8 (5.6–11.5) 5.5 (4.7–6.2) <0.001

HbA1c (mmol/mol) 62 (38–102) 37 (28–44) <0.001

Duration of diabetes (years) 8.0 (1.0–31.7) N/A N/A

Diabetes medication (%)

Insulin 39 (20.7) 0 (0.0) N/A

Oral hypoglycaemic medication

Metformin 120 (63.8) 0 (0.0) N/A

Sulfonylureas 70 (37.2) 0 (0.0) N/A

Thiazolidinediones 6 (3.2) 0 (0.0) N/A

Dipeptidyl peptidase-4 inhibitors 19 (10.1) 0 (0.0) N/A

Other 15 (8) 0 (0.0) N/A

Oral corticosteroids 6 (3.2) 1 (0.6) 0.12

Data represent median (90% range) or number of participants (%)

p values are based on the Mann–Whitney U or χ2 test
aClassified as Arabs (from Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Morocco, Oman, Palestine, Qatar,

Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen) or as South Asians (from

Bangladesh, India, Nepal, Pakistan and Sri Lanka)

N/A, not applicable

Table 2 Number of samples and metabolites detected

Samplea Participants (n) Metabolites (n)

Saliva 328 581

Plasma 359 720

Urine 356 877

Total 1,043 2,178

aAt least one type of sample was collected from each of the 369 study

participants. Reasons for missing samples are that some patients did not

provide blood or urine; in some cases, no saliva could be collected be-

cause of technical problems with the collection kit
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remained significant after stringent Bonferroni correction

(p<2.3×10−5). These 94 associations were found across the

three biofluids as follows: three in saliva, 28 in plasma and 63

in urine, with a total of 24 associations representing metabolites

of unknown biochemical identity (unknowns). Eleven of the 94

associations were statistically significant in more than one

biofluid. The 94 metabolite associations covered 59 distinct

metabolites of known identity and 23 of unknown identity.

Sixteen of the known and 22 of the unknown metabolites have

not previously been reported in association with diabetes.

Of the 94 diabetes associations, 65 were also identified

as specifically associated with acute, short-term

or long-term glycaemic control within the diabetes group

By limiting the analysis to the 94 diabetes–metabolite associa-

tions, and further to samples collected only from patients with

diabetes, we identified 65 associations—at a Bonferroni level of

significance (p<1.8×10−4=0.05/[94×3])—with at least one of

the three glycaemic control timescales investigated here:

presence/absence of glucose in urine (glucosuria) as an acute

marker; 1,5-AG in plasma as a short-term marker; and HbA1c

as a long-term marker of glycaemic control (Table 4). Among

the 65 metabolite associations (one in saliva, 21 in plasma, 43 in

urine), 59 were associated with glucosuria, 56 with 1,5-AG in

blood plasma, 54 with HbA1c and 49 with all three timescales

(Fig. 2). Twenty-nine of the 94 diabetes–metabolite associations

did not associate with any timescale of glycaemic control.

GGM subnetworks identify key biochemical

perturbations associated with diabetes

We identified 3,742 significant partial correlations (p<2.1×10−8

after Bonferroni correction) between all 2,178 metabolite

measurements, which define the edges between the metabolites

in the GGM network (Fig. 1). In total, 1,907 (87.6%) metabolite

measures were connected to at least one other metabolite mea-

sure by a significant partial correlation edge. For interpretation in

the context of this study, GGM nodes were limited to the 546

metabolite measures nominally associated with diabetes

(p<0.05) and the edges between thesemetabolites. This resulted

in 33 subnetworks containing at least three nodes, of which 18

subnetworks comprise five or more nodes (see ESM Table 4).

Many of the identified subnetworks connect metabolites from

the same metabolic pathway (pathway annotation is shown in

ESM Table 2). For example, some contain mostly bile acids

(subnetworks 7 and 15), medium-chain fatty acids (subnetwork

5), acylcarnitines (subnetwork 12) or carbohydrates (subnet-

work 9). Other subnetworks connect metabolites from multiple

pathways, such as glycolysis to BCAAmetabolism (subnetwork

3). Four of the largest GGM subnetworks are of specific interest

for further analysis because they contain many well-established

diabetes biomarkers and reflect major pathways known to play

roles in diabetes. These four subnetworks (Fig. 3) are: the sub-

network containing 1,5-AG (subnetwork 1, termed 1,5-AG

subnet in the following discussion); the subnetwork containing

BCAAs and glycolysis-related metabolites (subnetwork 3; gly-

colysis–BCAA subnet); the subnetwork that includes several

urine ketone bodies (subnetwork 8; urinary ketone body subnet);

and the subnetwork containing plasma carbohydrates (subnet-

work 9; carbohydrates subnet). The complete set of GGM

subnets is provided in digital format as ESM Data.

Discussion

Of the 94 metabolite associations with diabetes found in this

study, many have been previously reported in association with

Fig. 1 Workflow for the generation of the GGM. Starting with 2,178

metabolites and 2.3 million partial correlations, two steps were conduct-

ed. (a) Step 1: filtering on significant partial correlations (3,742) by re-

moving metabolites with no significant correlation to any other

metabolite, leaving 1,907 metabolites in the GGM network. (b) Step 2:

filtering on metabolites nominally associated with type 2 diabetes

(p<0.05), i.e. 546 metabolites, resulted in 33 subnetworks containing at

least three metabolites and covering 243 metabolites

Diabetologia (2015) 58:1855–1867 1859



Table 3 Metabolites associated with type 2 diabetes

Metabolitea Superpathwayb Pathway Saliva Plasma Urine Reported association

with a diabetes-related

phenotypedβc Sig β Sig β Sig

Alanine Amino acid Alanine and aspartate metabolism 0.196 0.110 0.541 † [24]

N-acetyl-β-alanine Amino acid Alanine and aspartate metabolism n.d. 0.188 0.517 † Not previously reported

Creatinine Amino acid Creatine metabolism n.d. −0.103 −0.558 † [5]

2-Hydroxybutyrate Amino acid Cysteine, methionine, SAM,

taurine metabolism

0.158 0.703 † 0.881 † [4, 6, 11, 33, 41]

Cysteine Amino acid Cysteine, methionine, SAM,

taurine metabolism

n.d. 0.186 0.654 † [6, 25]

α-Ketobutyrate Amino acid Cysteine, methionine, SAM,

taurine metabolism

−0.032 0.592 † n.d. [11, 25]

Homocysteine Amino acid Cysteine, methionine, SAM,

taurine metabolism

n.d. n.d. −0.639 † [41, 42]

Pyroglutamine Amino acid Glutamate metabolism −0.305 * −0.471 † −0.331 * Not previously reported

Glutamate Amino acid Glutamate metabolism 0.119 0.209 −0.478 † [43]

5-Oxoproline Amino acid Glutathione metabolism 0.241 −0.235 −0.753 † [41]

β-Hydroxypyruvate Amino acid Glycine, serine and threonine

metabolism

n.d. 0.986 † 0.909 † Not previously reported

1-Methylhistidine Amino acid Histidine metabolism n.d. −0.593 † −0.598 † [44, 45]

Trans-urocanate Amino acid Histidine metabolism 0.121 n.d. −0.533 † [46]

Pipecolate Amino acid Lysine metabolism 0.281 0.697 † 0.822 † [28, 41]

3-methoxytyrosine Amino acid Phenylalanine & tyrosine

metabolism

n.d. −0.526 † −0.279 * Not previously reported

4-Hydroxyphenylpyruvate Amino acid Phenylalanine & tyrosine

metabolism

−0.219 0.490 * 0.581 † Not previously reported

Vanillylmandelate Amino acid Phenylalanine & tyrosine

metabolism

n.d. n.d. −0.651 † Not previously reported

Homovanillate Amino acid Phenylalanine & tyrosine

metabolism

n.d. n.d. −0.523 † Not previously reported

Phenylalanine Amino acid Phenylalanine & tyrosine

metabolism

−0.006 0.109 0.573 † [5, 25]

Kynurenate Amino acid Tryptophan metabolism n.d. −0.322 * −0.531 † [47]

3-Hydroxyproline Amino acid Urea cycle; arginine-, proline-,

metabolism

n.d. n.d. 0.647 † [48]

Citrulline Amino acid Urea cycle; arginine-, proline-,

metabolism

0.148 −0.588 † n.d. [4, 5]

Homocitrulline Amino acid Urea cycle; arginine-, proline-,

metabolism

n.d. −0.207 −0.541 † [5]

Ornithine Amino acid Urea cycle; arginine-, proline-,

metabolism

0.077 −0.378 * 0.525 † [41, 49]

Proline Amino acid Urea cycle; arginine-, proline-,

metabolism

−0.010 0.196 0.654 † [4, 5]

3-Hydroxyisobutyrate Amino acid Valine, leucine and isoleucine

metabolism

n.d. 0.541 † 0.529 † [50, 51]

α-Hydroxyisovalerate Amino acid Valine, leucine and isoleucine

metabolism

−0.022 0.066 0.683 † [51]

Isobutyrylcarnitine Amino acid Valine, leucine and isoleucine

metabolism

0.203 −0.067 −0.532 † [52, 53]

Isoleucine Amino acid Valine, leucine and isoleucine

metabolism

0.090 0.179 0.589 † [4, 5]

Leucine Amino acid Valine, leucine and isoleucine

metabolism

−0.071 0.126 0.613 † [4–6]

Fructose Carbohydrate Fructose, mannose, galactose,

starch, and sucrose metabolism

−0.172 0.878 † 0.177 [4, 6]

Mannose Carbohydrate Fructose, mannose, galactose,

starch, and sucrose metabolism

−0.091 1.136 † 0.731 † [4, 5, 41]

1,5-AG Carbohydrate Glycolysis, gluconeogenesis,

pyruvate metabolism

−0.998 † −1.287 † 0.161 [4, 5, 13, 41, 54]

1,3-Dihydroxyacetone Carbohydrate Glycolysis, gluconeogenesis,

pyruvate metabolism

0.140 0.631 † n.d. Not previously reported

Glucose Carbohydrate Glycolysis, gluconeogenesis,

pyruvate metabolism

0.159 1.158 † 0.913 † Diagnostic for diabetes
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Table 3 (continued)

Metabolitea Superpathwayb Pathway Saliva Plasma Urine Reported association

with a diabetes-related

phenotypedβc Sig β Sig β Sig

Lactate Carbohydrate Glycolysis, gluconeogenesis,

pyruvate metabolism

0.063 0.474 * 0.584 † [4, 24, 41, 55]

Pyruvate Carbohydrate Glycolysis, gluconeogenesis,

pyruvate metabolism

0.188 0.718 † −0.190 [23, 41]

Arabitol Carbohydrate Nucleotide sugars, pentose

metabolism

−0.274 0.095 −0.546 † Not previously reported

Gluconate Carbohydrate Nucleotide sugars, pentose

metabolism

−0.249 0.949 † 0.185 Not previously reported

Ribose Carbohydrate Nucleotide sugars, pentose

metabolism

0.007 n.d. −0.603 † Not previously reported

Xylonate Carbohydrate Nucleotide sugars, pentose

metabolism

−0.112 0.079 −0.507 † Not previously reported

Threonate Cofactors and vitamins Ascorbate and aldarate

metabolism

−0.118 0.094 −0.539 † [41]

2-Methylcitrate Energy Krebs cycle n.d. n.d. −0.624 † [56]

Malate Energy Krebs cycle −0.103 0.303 * 0.715 † [4]

7-Ketodeoxycholate Lipid Bile acid metabolism n.d. n.d. −0.549 † Not previously reported

Adipate Lipid Fatty acid, dicarboxylate n.d. n.d. −0.584 † [57]

Ethanolamine Lipid Glycerolipid metabolism −0.046 n.d. −0.546 † [6, 41]

Myo-inositol Lipid Inositol metabolism −0.140 0.126 0.887 † [5, 11, 41]

3-Hydroxybutyrate Lipid Ketone bodies −0.065 0.271 * 0.917 † [5, 6, 41, 58]

Acetoacetate Lipid Ketone bodies −0.053 n.d. 0.584 † [59]

Heptanoate (7:0) Lipid Medium-chain fatty acid −0.018 −0.577 † n.d. [4, 5]

N1-methyladenosine Nucleotide Purine metabolism,

adenine containing

n.d. −0.074 −0.495 † Not previously reported

Pro-hydroxy-pro Peptide Dipeptide n.d. −0.548 † −0.601 † [5]

Glycylglycine Peptide Dipeptide −0.175 n.d. −0.621 † Not previously reported

γ-Glutamylglutamine Peptide γ-Glutamyl n.d. −0.503 † n.d. [60]

γ-Glutamylleucine Peptide γ-Glutamyl −0.093 −0.026 0.551 † [5]

Benzoate Xenobiotics Benzoate metabolism −0.109 −0.539 † −0.276 * [6]

Glycolate (hydroxyacetate) Xenobiotics Chemical −0.232 0.086 −0.478 † Not previously reported

Metformin Xenobiotics Drug 0.601 † 1.042 † 1.116 † Diabetes medication

X-11333 Unknown Unknown n.d. n.d. −0.603 † Not previously reported

X-10593 Unknown Unknown n.d. n.d. −0.554 † Not previously reported

X-11315 Unknown Unknown −0.555 † −0.820 † n.d. [4]

X-11429 Unknown Unknown n.d. −0.824 † −0.186 Not previously reported

X-11540 Unknown Unknown n.d. −0.580 † n.d. Not previously reported

X-12170 Unknown Unknown n.d. n.d. −0.539 † Not previously reported

X-12253 Unknown Unknown n.d. n.d. −0.557 † Not previously reported

X-12682 Unknown Unknown n.d. n.d. 0.583 † Not previously reported

X-13431 Unknown Unknown n.d. −0.225 −0.629 † Not previously reported

X-13840 Unknown Unknown n.d. n.d. −0.520 † Not previously reported

X-14331 Unknown Unknown n.d. n.d. 0.741 † Not previously reported

X-14625 Unknown Unknown n.d. n.d. 0.750 † Not previously reported

X-14955 Unknown Unknown n.d. n.d. 0.665 † Not previously reported

X-15497 Unknown Unknown −0.103 0.575 † n.d. Not previously reported

X-15503 Unknown Unknown n.d. −0.261 * −0.810 † Not previously reported

X-17299 Unknown Unknown n.d. −0.412 * −0.560 † Not previously reported

X-17323 Unknown Unknown n.d. n.d. −0.483 † Not previously reported

X-17629 Unknown Unknown n.d. −0.669 † n.d. Not previously reported

X-17676 Unknown Unknown n.d. n.d. −0.884 † Not previously reported

X-18221 Unknown Unknown n.d. 1.011 † n.d. Not previously reported

X-18475 Unknown Unknown n.d. n.d. −0.627 † Not previously reported
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diabetes and are confirmed here in a different population. In

addition, many metabolites found to be associated with diabe-

tes at a stringent level of significance in one biofluid were also

associated at a nominal level of significance in the other

biofluid(s). These associations thus provide quality control

for the present study and also for the first time a

metabolome-wide view of diabetes associations across several

body fluids. For instance, perturbations in the glycolysis path-

way are reflected by increased pyruvate [23] and lactate levels

[24], and perturbations in phenylalanine and tyrosine metab-

olism have been also found [25]. Increased proteolysis with

aminoaciduria is reflected by increased urinary BCAAs and

aromatic amino acids [26]. The presence of subclinical

ketoacidosis in some patients is indicated by increased levels

of 3-hyroxybutyrate and 3-hydroxyisobutyrate [27]. Our study

also identified established biomarkers in more than one

biofluid, such as 1,5-AG (GlycoMark, GlycoMark, New

York, NY, USA) and 2-hydroxybutyrate (Quantose,

Metabolon, Durham, NC, USA). The commonly used diabetes

drug, metformin, was found to be associated with diabetes in all

three biofluids. Of the 16 newly identified metabolite associa-

tions, many are in pathways that play a role in diabetes, includ-

ing β-hydroxypyruvate (glycine, serine and threonine metabo-

lism), 3-methoxytyrosine and 4-hydroxyphenylpyruvate (phe-

nylalanine and tyrosine metabolism), 1,3-dihydroxyacetone

(glycolysis pathway) as well as arabitol, gluconate, ribose and

xylonate (nucleotide and pentosemetabolism), thus linking the-

se metabolites for the first time to diabetes.

Interpretation of large lists of associations can be challeng-

ing and requires computational support to place biochemically

related metabolites into context. In order to identify biochem-

ical interactions between metabolites and their role in

diabetes-related dysregulation, we used Gaussian graphical

modelling [15, 16]. Four larger networks are of particular

interest and shall be discussed in more detail (Fig. 3). For

instance, metabolites in the 1,5-AG subnet reflect the process

of limited glucose reabsorption capacity of the kidney in pa-

tients with diabetes, linking decreased 1,5-AG levels to

elevated urine glucose, pipecolate and proline levels [28],

and linking these to other processes, such as ketoacidosis

( v i a t h e GGM l i n k t o a c e t o a c e t a t e a n d 4 -

hydroxyphenylpyruvate, a keto acid involved in tyrosine me-

tabolism), perturbed BCAA metabolism (reflected by α-

hydroxyisovalerate) and hyperglycemia (reflected in de-

creased urate levels [29–32]). The glycolysis–BCAA subnet

connects metabolites associated with increased proteolysis

and aminoaciduria to ketoacidosis (via 3-hyroxybutyrate and

3-hydroxyisobutyrate [27]) and perturbed glycolysis (via py-

ruvate and lactate). This subnetwork connects the previously

reported increased plasma α-ketobutyrate to increased plasma

2-hydroxybutyrate in diabetes [11] by a direct GGM link.

The glycolysis–BCAA and urinary ketone body subnets

together highlight the relation of the known diabetes marker

2-hydroxybutyrate [11, 33] with elevated BCAAs, glycolysis

and ketoacidosis, which may be interesting for further inves-

tigations since 2-hydroxybutyrate is part of the new Quantose

clinical test [34]. 3-Hydroxyisobutyrate, known to be associ-

ated with ketoacidosis [27] and a product of valine catabolism,

is upregulated in both plasma and urine. The links between

plasma 3-hydroxyisobutyrate to plasma metabolites of 2-

hydroxybutyrate and α-ketobutyrate in the glycolysis–

BCAA subnet, in which a set of diabetes predictors are con-

nected (BCAAs, tyrosine, phenylalanine [35] and 2-

hydroxybutyrate [33]), and the link between urinary 3-

hydroxyisobutyrate to urinary 2-hydroxybutyrate in the uri-

nary ketone body subnet may indicate of a pivotal role for 3-

hydroxyisobutyrate in insulin sensitivity and complications

associated with diabetes.

Connections between metabolites across the different

biofluids were also identified in the GGM subnets. One ex-

ample is the association of 1,5-AG in plasma and saliva with

glucose and ketone bodies (acetoacetate) in urine, as well as to

BCAA metabolism in urine (via α-hydroxyisovalerate).

Another example is the association of BCAAs, tyrosine and

phenylalanine in urine with 2-hydroxybutyrate and ketone

bodies in plasma. Moreover, both the glycolysis–BCAA

Table 3 (continued)

Metabolitea Superpathwayb Pathway Saliva Plasma Urine Reported association

with a diabetes-related

phenotypedβc Sig β Sig β Sig

X-18887 Unknown Unknown −0.023 n.d. −0.653 † Not previously reported

X-19437 Unknown Unknown −0.060 −0.846 † 0.367 * Not previously reported

aLimited to associations at a Bonferroni level of significance of p<2.3×10−5 (†); nominal significant associations (p<0.05) in other body fluids are

included (*); metabolites not detected (n.d.) in the matrix are reported
bMetabolites are sorted by pathway classification
cEstimators of effect size (β) are expressed as differences in SD between patients and controls, using z-scored and log-scaled data; positive β values

indicate higher metabolite concentrations in diabetes patients compared with controls
dWhere available, previously published associations of these metabolites with a diabetes-related phenotype are cited

SAM, S-Adenosylmethionine; Sig, statistical significance
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subnet and urinary–ketone body subnet reflected several rela-

tionships among metabolites in plasma that were also ob-

served in urine. For example, the association of increased

cysteine–methionine metabolism with BCAA metabolism

(i.e. GGM link between 2-hydroxybutyrate and 3-

hydroxyisobutyrate) in plasma in the glycolysis–BCAA

subnet is also seen in urine in the urinary ketone body subnet.

Many of the 16 newly reported markers display a clear

biochemical link by GGM edges to known markers of diabe-

tes. β-Hydroxypyruvate is an example of a strong association

of a newly reported metabolite with hallmark processes in

diabetes. It shows concordant upregulation with diabetes in

two biofluids, as in the concordant up- or downregulation of

the known markers 1,5-AG, glucose and 2-hydroxybutyrate.

In addition, both its plasma and urine metabolites are directly

linked in the 1,5-AG subnet to 1,5-AG, and its urine

metabolite is directly linked to glucose in urine. This suggests

that β-hydroxypyruvate should be further investigated in fu-

ture studies because it is an intermediate in glucose production

f rom se r i ne [36 ] . O the r mol ecu l e s such a s 4 -

hydroxyphenylpyruvate and 1,3-dihydroxyacetone also have

GGM links to 1,5-AG, ketone bodies and urine glucose in the

1,5-AG subnet. A group of catechols in the tyrosine pathway,

namely 3-methoxytyrosine (a product of L-DOPA) [37], is

associated with diabetes, possibly reflecting dopamine defi-

ciency, which was previously reported to be associated with

visual dysfunction in diabetic rodent models [38]. Also, the

links of gluconate to glucose and mannose in the carbohy-

drates subnet, as well as the link of glycolate to 3-

hydroxyisobutyrate in the urinary ketone body subnet, suggest

their relevance to diabetes-related metabolic processes repre-

sented by these GGM subnetworks. Given the stringent

Table 4 Metabolites associated with the three timescales of glycaemic control

Timescale of

dysregulation

of glycaemic controla

Metaboliteb β −log(p) GGM subnetwork

Acute Short term Long term Acute Short term Long term

Acute 3-Hydroxyisobutyrate (urine) 0.696 0.558 0.106 5.3† 2.3 2.0 Urinary ketone body

Isoleucine (urine) 0.706 0.388 0.078 5.4† 1.3 1.2 Glycolysis–BCAAs

Leucine (urine) 0.799 0.573 0.100 5.9† 2.0 1.6 Glycolysis–BCAAs

α-Hydroxyisovalerate (urine) 0.810 0.637 0.116 6.6† 2.6 2.1 1,5-AG

Pyruvate (plasma) 0.919 0.993 0.213 8.5† 6.3† 6.6† Glycolysis–BCAAs

Lactate (urine) 0.921 0.630 0.159 9.7† 2.9 4.2† Urinary ketone body

3-Hydroxybutyrate (urine) 1.056 1.182 0.248 12.5† 9.1† 9.7† Urinary ketone body

2-Hydroxybutyrate (urine) 1.165 1.138 0.211 15.4† 8.3† 6.8† Urinary ketone body

Acetoacetate (urine) 1.299 1.241 0.244 18.8† 9.6† 8.8† 1,5-AG

Mannose (urine) 1.285 1.372 0.289 20.1† 12.7† 13.1† 1,5-AG

β-Hydroxypyruvate (urine) 1.622 1.507 0.301 35.1† 14.1† 13.6† 1,5-AG

Glucose (urine) 1.864 1.574 0.342 – 17.4† 19.8† 1,5-AG

Short term Glycolate (hydroxyacetate) (urine) −0.266 −0.828 −0.130 1.1 4.9† 2.9 Urinary ketone body

3-Hydroxyisobutyrate (plasma) 0.437 0.908 0.155 2.3 5.7† 3.9† Glycolysis–BCAAs

α-Ketobutyrate (plasma) 0.607 1.050 0.185 4.2† 7.7† 5.5† Glycolysis–BCAAs

2-Hydroxybutyrate (plasma) 0.575 1.217 0.189 3.7 10.2† 5.6† Glycolysis–BCAAs

1,5-AG (saliva) −1.159 −2.141 −0.327 7.3† 18.6† 6.4† 1,5-AG

1,5-AG (plasma) −1.222 −2.632 −0.432 16.3† – 36.3† 1,5-AG

Long term 1,3-Dihydroxyacetone (plasma) 0.692 0.876 0.209 4.9† 5.0† 6.5† 1,5-AG

Fructose (plasma) 1.048 1.296 0.317 11.6† 11.3† 15.9† Carbohydrates

β-Hydroxypyruvate (plasma) 1.263 1.561 0.351 16.2† 14.8† 18.0† 1,5-AG

Gluconate (plasma) 1.081 1.290 0.338 13.2† 11.8† 18.9† Carbohydrates

Glucose (plasma) 1.362 1.686 0.389 21.3† 20.7† 26.4† Carbohydrates

Mannose (plasma) 1.282 1.743 0.389 18.9† 23.4† 27.5† Carbohydrates

aMetabolites are grouped by the timescale that displayed the strongest association and sorted by p value
bA selection of 24 out of 65 significantly associated (Bonferroni level) metabolites is shown here, excluding unknown metabolites and limited to

metabolites that are part of one of the four larger GGM subnetworks discussed in this paper. The full list is reported in ESM Table 3

Data represent adjusted regression coefficients (β) and negative log10-scaled p values (−log(p)) for the association between metabolites and acute

glycaemic dysregulation (presence/absence of glucose in urine), short-term (1,5-AG in plasma) and long-term glycaemic (HbA1c) control
†Bonferroni significant associations (p<1.8×10−4 or −log(p)>3.75)
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Fig. 3 Selected GGM subnetworks. (a) 1,5-AG subnet, (b) glycolysis–
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Included are metabolites nominally associated with diabetes (p<0.05);

edges indicate significant partial correlations (2.1×10–8) between two

metabolites. Node size is proportional to the absolute β value in the

regression analysis with diabetes. Node colour and shape denote the

biofluid: white triangle, saliva; red circle, plasma; yellow diamond, urine;

arrows indicate the direction of the association (upward, higher in diabe-

tes; downward, lower in diabetes); star indicates an association with all

three glycaemic timescales; number indicates an association with

glucosuria (1), 1,5-AG (2) or HbA1c (3). For metabolites that are only

nominally associated with diabetes, no associationwith glycaemic control

was tested.
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significance cut-off applied in this study, we expect that all 16

associations represent true positives. These may have been

seen in this study for the first time because we collected sam-

ples from undersampled ethnicities with the potential of

displaying very different lifestyles and thus different metabol-

ic patterns.

In order to go beyond mere association with the disease

endpoint, we examined how the 94 diabetes-associated me-

tabolites relate to the different timescales of glycaemic con-

trol. Our approach of testing these metabolites for a specific

association with one or more timescales of glycaemic control

can be considered the equivalent of low-, medium- and high-

pass frequency filtering. For instance, the levels of a metabo-

lite strongly associated with HbA1c levels but only weakly

with glucosuria would be expected to be controlled by biolog-

ical processes that act on a longer timescale, such as changes

in body fat composition. In contrast, metabolites strongly as-

sociated with glucosuria but not with HbA1c levels are likely

to be involved in biological processes that respond immedi-

ately to changes in glucose availability.

Table 4 presents a selection of metabolites that were asso-

ciated with one or more timescales of glycaemic control. For

instance, plasma metabolites that were associated with all

three timescales of glycaemic control include pyruvate and

1,3-dihydroxyacetone from the glycolysis pathway; fructose

and mannose as carbohydrates and α-ketobutyrate from the

cysteine pathway; and β-hydroxypyruvate, gluconate, benzo-

ate and heptanoate (7:0). Urine metabolites that were associ-

ated with all three timescales include 3-hydroxybutyrate and

acetoacetate as ketone bodies, 1-methylhistidine and trans-

urocanate from the histidine pathway; xylonate and arabitol

as pentose sugars, vanillylmandelate and homovanillate from

the phenylalanine and tyrosine pathway; and mannose, 5-

oxoproline, kynurenate,myo-inositol andβ-hydroxypyruvate.

Metabolites that are specifically associated with only one or

two t imescales of glycaemic control include 3-

hydroxyisobutyrate and 2-hydroxybutyrate in plasma

(associated with short- and long-term glycaemic control but

not with acute dysregulation); leucine and isoleucine in urine;

and the biochemically related urinary metabolites

α-hydroxyisovalerate and 3-hydroxyisobutyrate, of which

higher levels are associated with the presence of glucose in

urine. Upregulation of malate (Krebs cycle metabolite) in

urine was specific to acute dysregulation and short-term (but

not long-term) glycaemic control, while higher levels of lac-

tate in urine were specific to long-term (rather than short-term)

control. Metabolites that did not show an association with any

marker of glycaemic control but were associated with diabetes

in the case–control design could be associated with effects of

diabetes that are independent of varying glucose homeostasis.

Such metabolites include the urine metabolites of phenylala-

nine, isobutyrylcarnitine, cysteine and alanine, as well as

pipecolate in urine and plasma, and metformin in all three

biofluids; the latter diabetes drug actually confirms this

assumption.

The following limitations of this study need to be consid-

ered: (1) patients and controls were not matched for age, sex,

ethnicity and BMI. However, adjusting for these factors in the

statistical analysis, as we do here, provides an equivalent sta-

tistical power to taking a sample-matching approach [39, 40].

(2) All study participants were enrolled at the Dermatology

Department of HMC. Most patients were not being treated for

acute clinical diabetes dysregulation, so their metabolic state

is most likely to represent the average patient with diabetes on

a day-to-day basis. Several participants were treated for dis-

eases such as eczema and psoriasis and were taking glucocor-

ticoids or immunosuppressive drugs. Patients with diabetes

were taking a wide range and combinations of metabolically

active drugs, such as oral hypoglycaemic drugs, insulin and

statins. (3) Our participants were in a non-defined fasting state

at the time of sample collection. Nevertheless, given the study

setting, most participants did not have a major meal at least 2 h

prior to sampling and therefore were not acutely postprandial.

(4) We collected spontaneous urine samples, rather than ac-

quiring more representative 24 h collections. (5) Diabetes pa-

tients have a higher prevalence of different components of the

metabolic syndrome that may represent confounding factors.

We therefore conducted a sensitivity analysis and demonstrat-

ed that the metabolite–diabetes associations reported in

Table 3 were robust when lipid traits, waist circumference,

WHR or hypertension were adjusted for in the model (ESM

Results). (6) Finally, diabetes-associated complications may

influence metabolite profiles. However, we showed that the

metabolite associations reported in Table 4 are robust when

adjusting for heart disease (n=28), kidney disease (n=17),

retinopathy (n=68), slow-healing wounds (n=29) and neu-

ropathy (n=26; ESM Results).

By accepting these logistical limitations, patient and con-

trol samples could be collected as they became available at the

same location, generally in a random pattern and in large

numbers, using identical protocols, instruments and study per-

sonnel. Some of these limitations probably increased random

error in our data, thus biasing our results toward the null, but

would not create any spurious signals. Had we tried to collect

samples under more ideal conditions of overnight fasting, the

number of participants that could be enrolled in this study

using the available resources would have been considerably

smaller. We therefore feel that our decision to collect samples

as they became available represents a valid trade-off regarding

the overall achievable statistical power by considerably in-

creasing the number of samples at the cost of increasing ran-

dom error in the data. The fact that we could detect 94 metab-

olites associated with diabetes under these conditions under-

lines the robustness of our findings.

To the best of our knowledge this is the first study of this

magnitude to provide a comprehensive association of

Diabetologia (2015) 58:1855–1867 1865



metabolic pathways with diabetes in three biofluids from the

same patients. By going beyond mere associative analyses

with disease and looking at more specific disease-related phe-

notypes (glucosuria, 1,5-AG, HbA1c), we could identify par-

ticular metabolic networks that were perturbed in diabetes,

some of which related to specific timescales of glycaemic

control. Notably, this is also one of the first large-scale meta-

bolomics studies of diabetes to include patients from an Arab

population. We trust that the markers and associations report-

ed here, as well as the freely available GGM network of

diabetes-related metabolic perturbations, will contribute to

the growing picture of metabolic changes associated with di-

abetes, and will improve the functional understanding of the

disease with a view of developing new therapeutic approaches

and diagnostic tools.
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