A SYSTOLIC ARCHITECTURE FOR AILMOST LINEAR-TIME

SOLUTION OF THE SYMMETRIC EIGENVALUE PROBLEM

*

Richard P. Brent
*%

Franklin T. Luk

TR 82-525
August 1982

Department of Computer Science
Upson Hall

Cornell University

Ithaca, New York 14853

*
Department of Computer Science, Australian National University, Canberra A.C.T. 2600
Australia

*%

Supported in part by the U.S. Army Research Office under grant DAAG 29-79-C0124 and in
part by the Mathematical Sciences Research Centre and the Centre for Mathematical
Analysis, Australian National University






A Systolic Architecture for Almost Linear-Time

Solution of the Symmetric Eigenvalue Problem

Richard P. Brent

Department of Computer Science
Australian National University
Canberra A.C.T. 2600 Australia

Franklin T. Luk*

Department of Computer Science
Cornell University

Ithaca N.Y. 14853 U.S.A.

TR 82-525
August, 1982

Copyright () 1982 the authors

* Supported in part by U.S. Army Research Office under grant
DAAG 29-79-C0124 and in part by the Mathematical Sciences
Research Centre and the Centre for Mathematical Analysis,
Australian National University






Abstract

An algorithm is presented for computing the eigenvalues and
eigenvectors of an n X n real symmetric matrix. The algorithm is
essentially a Jacobi method implemented on a two-dimensional systolic
array of O(nz) processors with nearest-neighbour communication between
processors. The speedup over the serial Jacobi method is e(nz) s SO
the algorithm converges to working accuracy in time 0(nS) , where S

is the number of sweeps (typically s < 10 ).

Key Words and Phrases

Eigenvalue decomposition, real symmetric matrices, Hermitian matrices,
Jacobi method, linear-time computation, systolic arrays, VLSI, real-time

computation.

Short title

A systolic architecture for the eigenvalue problem.






1. Introduction

Recently, several researchers have investigated the problem of
computing the eigenvalues of an n X n real symmetric matrix con a systolic
array. Schreiber [l1] suggests that one first reduce the given matrix to a
matrix of bandwidth w and then apply the QR method. If the GR method
takes I iterations for convergence, then Schreiber's approach requires
O(nl + nz/w) units of time and O(wn) processors. (I is O(n) 1if all
the eigenvalues are to be computed.) Heller and Ipsen [7] consider only
band matrices. They reduce the given watrix to a tridiagonal form and then
apply the QR method with the standard shift. For a matrix of bandwidth
w , their procedure requires O(w) processors and 0(wn2) time. Bojanczyk
et al. [1] outline how one may implement an iteration of the QR method
using O(nz) processors and 0(n) wunits of time, but without discussing
the choice of shifrts.

In this paper we show how one may implement a Jacobi method on a
two-dimensional systolic array to compute all the eigenvalues and the
corresponding eigenvectors. Our architecture uses O(nz) processors and
only  0(n logn) wunits of time. This is within a factor O(logn) of that
required for the solution of n linear equations in n wunknowns on a
systolic array {1,2], and improves on the earlier results quoted above.

Preliminary results are given in Section 2, and the basic idea of
our algorithm is outlined in Section 3. Details are filled in and some
variations and extensions of the basic algorithm are given in Sections 4

and 5. The results of some numerical simulations are given in the Appendix.



2. Serial Jacobi method

We may describe the serial Jacobi method as follows. Denote the

original symmetric matrix by A1 and generate a sequence of symmetric

matrices {Ak} by the relation

(2.1) Aerr T REAkRk’

. , - (k) _ (k)
where is a plane rotation. Let = (r and = (a , and

suppose that represents a rotation in the (1i,j) lane, with 1 < j
P |%

We have
rgg) = cos® rgg) = sind ,
ii ij

(2.2)
r?%) = -sinb rgg> = cosb
Jji 1]

The rotation angle 6 is chosen so as to reduce the (i,j) element
of Ak to zero. If the element is already zero, no rotation will take

place, i.e. 8 =0 . If aii) # 0 , then we use the formulas given by

Rutishauser [10] to compute sinf and cosf

OB
£ = ~JJ 11 ,
2agg)
1]
t = sign() = tanb
2+ /1 + 23 ’
(2.3) i
6 = 1 d
cOoSs = /—l—=+'———t—2 s, an
sing = t.cosB

Note that the rotation angle 9 may always be chosen to satisfy

al < T
(2.4) ol < 3

Lo



The new matrix Ak+1 differs from Ak only in rows and columns i and j .

The modified values are defined by

JEHD ) )
ii ii Ui ’
N

i3 i3 ij]

(k+1) _ (k+1)
agk+l) = a(k+l) = cosS.agk)- sinG.a{k))

ig qi iq 19 |

(q # i,3)

a§k+1) = a(g+1) sin@.agk)+ cose.agk)j

Jjq q] iq Jq

However, there remains the problem of choosing (i,j) , which is usually
done according to some fixed cycle. An objective is to go through all the
off-diagonal elements exactly once in any sequence (called a '"sweep') of

n(n - 1)/2 rotations. A simple sweep consists of a cyclic-by-rows ordering:
(2.6) (1,2),(1,3),...,(1,n),(2,3),...,(2,n),(3,4),...,(n-1,n)

Forsythe and Henrici [5] prove that, subject to (2.4), the cyclic-by-rows
Jacobi method always converges.

Unfortunately, the cyclic-by-rows scheme is apparently not amenable
to parallel processing. In Section 3 we present an ordering that enables
us to do [%J rotations simultaneously. The (theoretical) price we pay
is the loss of guaranteed convergence. Hansen [6] discusses the convergence
properties associated with various orderings for the serial Jacobi method.
He defines a certain ''preference factor' for comparing different ordering
schemes. Our new ordering is in fact quite desirable, for it asymptotically
optimizes the preference factor as n » ® . Thus, although the convergence
proof of [5] does not apply, we expect convergence in practice to be

faster than for the cyclic-by-rows ordering. Simulation results (presented

in the Appendix) support this conclusion.



To ensure convergence, we may adopt a threshold approach (13, pp. 277~
278]: associate with each sweep a threshold value, and when making the
transformations of that sweep, omit any rotation if the doomed off-diagonal
element is smaller in magnitude than the threshold. It is well-known that
the serial Jacobi method enjoys ultimate quadratic convergence [12]; in
practice it requires only six to ten sweeps for convergence to working

accuracy (see [10]} and the Appendix).

3. An idealized systolic architecture

In this section we describe an idealized systolic architecture for
implementing the Jacobi method to compute the eigenvalues of a symmetric n
by n real matrix A . The architecture is idealized in that it assumes
the ability to broadcast row and column rotation parameters in constant
time. In Section 5 we show how to avoid this assumption, after showing in
Section 4 how to &ake advantage of symmetry, compute eigenvectors, etc.

Assume that n is even and that we have a square array of n/2 by
n/2 processors, each processor containing a 2 by 2 submatrix of A .

[321-1,2j-1 aZi—l,Zj}

Initially processor Pij contains for i,j=1,

#21,23-1 #21,23
...,n/2 and Pij is connected to its nearest neighbours Pi+1 j
anﬁ Pi 1 (see Figure 1l). In general Pij contains four real numbers
(ai. 8..\
] 1]
’ h e = s 3 ..= 3} ..= .
LYij Gijj where oy = ag, le 6j1 and 81] Y1 by symmetry

The diagonal processors Pii (i=1,...,n/2) act differently from the

off-diagonal processors Pij (i # j, 1 £4i,j € n/2) . Each time step
(C. S,

the diagonal processors Pii compute rotations i 1 l} to annihilate
-s c
v i

Q

thei ff-di = i.e.
eir o iagonal elements 844 and Yii (actually Bii {ii)’ i.e

2
so that ¢, + s, = 1 and
i i



411 %12 213 %14 %15 %16
Py P12 Pi3
421 82 K 323 324 425 426
1\ P
A N »
431 232 333 %34 a a
Pa1 P22 > P %
. 23
341 342 %43 %4s  f€ 245 %46
251 350 || %53 254 @55 56
P3 Py P33
361 362 363 264 265 266

Figure l: Initial configuration (idealized, n = 6)

c. -s.) [a.. B.. c, s, aj, O '
* L i1 11 : = = 1 is diagonal. From (2.3) and (2.53)
S; C,) \Yi: OG.. -s, c, 0 8.
i i ii ii i i ii

with a change of notation we find that

ci 1 1
3.1 ., T (e,

and

where
jo if B, =0
(3.2) 1 T siga()
— if 8_. #0,
I\!éil +/l+§i 1



and

(e

ii

Q..
11

5
Pii

To complete the rotations which annihilate Sii and Yig 0
i=1,...,n/2 , the off-diagonal processors Pij (i £ j) must perform
a,. B.. a;, BI.
the transformations +J o« 1] + , where
] 1]
Yij Sij iy i
ai. i1 LY B. . c, s,
J J = 1 13 1 J J We assume that the diagonal
1 ) -
Yij i3 Sy ¢yl Uryy S350 78y ©;
processor Pii broadcasts the rotation parameters <y and s, to processors

P, in constant time, so that the off-diagonal

ij

processor P,
i]

and Pji (j = 1ly...,0/2)

when required.

has access to the parameters ci, s

, ¢, and s,

J 3
(This assumption is removed in Section 5.)

To complete a step, columns (and corresponding rows) are interchanged

n

between adjacent processors so that a new set of off-diagonal elements is

ready to be annihilated by the diagonal processors during the next time ;step.
First, adjacent columns are exchanged as in the

This is done in two sub-steps.

SVD algorithm described in Sections 3-4 of [3], and illustrated in Figure 2,

n/2 processors.

where each box denotes a column of

|

el

8)

Figure 2: Column interchanges (n =

Next, the same permutation is applied to rows, so as to maintain symmetry.

Formally, we can specify the operations performed by a processor Pij with

inha . ,,..

i

.,inve
i3

1
o

outputs outha,,,...,outh$, ,outva_  ,...,outv5. ., and inputs
1] 1] 1] 1]

by Program 1. Note that outputs of one processor are connected to inputs of

is connected to inha,

adjacent processors in the obvious way, e.g. outhf, . .
1] i,3+1



{gubscripts (1,j) omitted if no ambiguity results}
{column interchanges}
if i = 1 then [outhB « B; outhd « 4]
else if i < n/2 then [outhB + a; outhd « y];

if 1 > ] then [outha « B; outhy « §8];
{wait for outputs to propagate to inputs of adjacent processors}
if 1 < n/2 then [B « inhB; § <« inhd]

else [B « a; S « Y];
if i > 1 then {a « inha; Y « inhy];
{row interchanges}
if j = 1 then [outvy + Y; outvd + §]

else if j < n/2 then [outvy +« a; outvs « R];

if j > 1 then [outva « y; outvf « &];
{wait for outputs to propagate to inputs of adjacent processors}
if j < n/2 then [y + invy; § « inv{]

else [y « a; ¢ « B];

if j > 1 then [a « inva; B « invB];

Program l: Column and row interchanges for idealized processor Pii

(1 £1i$n/2, 1< 3j<nf/2): see Figure 3. Note that, in Figure 3 and elsewhere,
we have omitted subscripts (i,j) if no ambiguity arises, e.g. inva 1is used
instead of invaij
The only difference between the data flow here and that of [3] is that
here rows are permuted as well as columns in order to maintain the symmetry of
A and move the elements to be annihilated during the next time step into the
diagonal processors. Hence, from Section 3 of [3] it is clear that a complete
sweep is performed every n - 1 steps, because each off-diagonal element of A

is moved into one of the diagonal processors in exactly one of the steps.

Each sweep takes time O(n) so, assuming that a constant number of sweeps is



required for convergence (see Section 2), the total time required to

diagonalize A to working accuracy is 0(n)

outvOL,}A J' inva outvgr lian

inho ——y {—s outhfB

outho ¢— * ° [ &— inhpB
Pij

inhy —y —> outhd

outhy é— Y ° 4&— inhé

inv‘Y]t lputvy invﬁlr lputv@

Figure 3: Input and output lines for idealized processor Pij with

nearest-neighbour connections

4. Further details

¢

Several assumptions were made in Section 3 to simplify the exposition.
In this section we show how to remove these assumptions (except for the
broadcast of rotation parameters, discussed in Section 5) and we also

suggest some practical optimizations.

4.1 Threshold strategy

It is clear that a diagonal processor Pii might omit rotations if

its off-diagonal elements B8,

. Y.. were sufficiently small. All that is
ii ii

(c. 1)
required is to broadcast |Sl = 0} along processor row and column 1
\ i \



10

As discussed in Section 2, a suitable threshold strategy guarantees
convergence, although we do not know any example for which our ordering

fails to give convergence even without a threshold strategy.

4.2 Computation of eigenvectors

If eigenvectors are required, the matrix Q of eigenvectors can be
accumulated at the same time as A 1is being diagonalized. Each systolic

processor Pij (1 £ i,j € n/2) needs four additional memory cells

Hig Vij

. T , and during each step sets
ij ij

‘s V.. . V.. C. s,
Hij ij] o M1 ij 3 ]
a,. T, . a,. T..) 1 =-s. c,

ij ij ij ij 3 J

Y
W ] values to adjacent processors in the

Each processor transmits its (G T

B

same way as its [a 5] values (see Program l). Initially
Mig T Vyq =033 =Ty =0 I 143, and =T, =1, 0y =y, =0

After a sufficiently large (integral) number of sweeps, we have Q defined

to working accuracy by

921-1,25-1  Y2i-1,23 ij ij

921,25-1 921,23 935  Tij

4.3 Diagonal connections

In Program ! we assumed that only horizontal and vertical nearest-
neighbour connections were available. Except at the boundaries, diagonal

connections are more convenient. This is illustrated in Figures 4 and 5

(with subscripts (i,j) omitted).



11

iny outd

AN

out iné

Figure 4: Diagonal input and output lines for processor Pij

)
Pl P12 i P13
_—
; N /‘
\
\ y
|
Fa1 P22 P23
/ AN
//
qL________J/ N 4
P3; P32 ! BERET
;‘ ‘ L i !
/ /
f ) j
\ \, ‘ , \ j
! ! ! |
! 1 i
Pi1 P42 ! Prs | Py
| o < o .
i s S~ \

Figure 5: ''Diagonal' connections, n = 8

(here and below &——» stands for:::)



Diagonal outputs and inputs are connected in the

in Figure 5,

(s .
iny, 1,541
inai crl if

e.g. outf,, is connected to { -]

1] ing, ) o if
J.nBi’j if

obvious way, as shown

i>1l, j <n/2
i=1, j <n/2
i>1, j =n/2

i=1, j =n/2

Program 2 is equivalent to Program | but assumes a diagonal connection

pattern as illustrated in Figures 4 and 5. Subsequently we assume the diagonal

connection pattern for convenience, although it can easily be simulated if only

horizontal and vertical connections are available.

{subscripts (i,j) omitted for clarity}
if (i = 1) and (§ = 1) then louta « o3 outB <« B;

louty + Y; out$ « §;

3 |
else if i = 1 then [outa « B; outB < o]
{guty « §; outd « v;
else if j = 1 then louta « y; outB <« §;
louty « a; outd « B;
else louta « &3 outB <« v;];

louty « B; outd <+ ;)

{wait for outputs to propagate to inputs of adjacent processors}

ina « a; inB « B;

iny « v; iné <« §.

Program 2: Diagonal interchanges for processor Pi




13

4.4 Taking full advantage of symmetry

Because A is symmetric and our transformations preserve symmetry, only

l nn
a triangular array of E—.—z-(—z-

for the eigenvalue computation. In the description above, simply replace any

+ 1) = n(n + 2)7/8 systolic processors is necessary

reference to a below-diagonal element aij (or processor Pij) with 1 > j
by a reference to the corresponding above-diagonal element aji (or processor
Pji ). Note, however, that this idea complicates the programs, and cannot be
used if eigenvectors as well as eigenvalues are to be computed. Hence, for

clarity of exposition we do not take advantage of symmetry in what follows,

although only straightforward modifications would be required to do so.

4.5 0dd n

So far we assumed n to be even. For odd n we can modify the

program for processors P. ., and Pi (1= l,...,f%}) in a manner analogous

1i

to that used in [3], or simply border A by a zero row and column. For

1

simplicity we continue to assume that n is even.

4.6 Rotation parameters

In Section 3 we assumed that the diagonal processor Pii would compute
c, and S5 according to (3.1) , and then broadcast both <y and
s along processor row and column 1 . It may be preferable to broadcast
only ti (given by (3.2)) and let each off-diagonal processor Pij compute
Cy s S, O and sj from ti and tj . Thus communication costs are
reduced at the expense of requiring off-diagonal processors to compute two
square roots per time step (but this may not be significant since the diagonal
processors must compute one Oor two square roots per step in any case). In

what follows a '"rotation parameter' may mean either L, or the pair

(ci, si).



14

5. Avoiding broadcast of rotation parameters

The most serious assumption of Section 3 is that rotation parameters
computed by diagonal processors can be broadcast along rows and columns in
constant time. We now show how to avoid this assumption, and merely transmit
rotation parameters at constant speed between adjacent processors, while
retaining total time O(n) for the algorithm.

Let Aij = |i- j| denote the distance of processor Pij from the
diagonal. The operation of processor Pij will be delayed by Aij time
units relative to the operation of the diagonal processors, in order to
allow time for rotation parameters to be propagated at unit speed along each
row and column of the processor array.

A processor cannot commence a rotation until data from earlier
rotations is available on all its diagonal input lines. Thus, processor Pi

and P

needs data from processors Pi—l,j—l s Pi—l,j+1 s Pi+l,j—l i1, §+1

if 1<i<n/2, 1< j<n/2 (for the other cases see Section 4.3). Since

]Aij - Aiil,jtl'

it is sufficient for processor Pij to be idle for two time steps while
waiting for the processors Pitl,jtl to complete their (possibly delayed)
steps. Thus, the price paid to avoid broadcasting rotation parameters is
that each processor is active for only one third of the total computation
time. A similar inefficiency occurs with many other systolic algorithms,
see e.g. [1,2,8,9]. (The fraction one-third can be increased almost to
unity if rotation parameters are propagated at greater than unit speed.)

A typical processor Pij (1 < j £1i < n/2) has input and output lines
as shown in Figure 6 (with subscripts (i,j) or (i,i) omitted). Figure 6
differs from Figure 4 in that it shows the horizontal and vertical lines

inht, outht, invt, outvt for transmission of rotation parameters. Processors

interconnect as shown in Figure 7.



Subdiagonal (1 < j < i < n/2) Diagonal (1 < i < n/2)

ina invt outh ina outvt outR
outd \\\ Y inB outa - N T y inf
R\\ - . £ k// \\\ = 4 L Ve
N 4
outht é&—- Pij #— inht outht &— Pii f——youtht
—-{
/,./ R \J / — \\.;
iny k(/j L N outd iny Z//, AN outd
outy ) ind outy v ind
outvt outvt

Figure 6: Input and output lines for typical subdiagonal and diagomnal

processors

Figure 7: Interprocessor connections (n = 8)

(The first times at which inputs are available are indicated.)



16

Assuming that the array (a,.) is available in the systolic

ij’1 £ i,j € n
array at time T = 0 , the operation of processor Pij proceeds as described
by Program 3. We assume that each time step has nonoverlapping read and write
phases; the result of a write at step T should be available at the read
phase of steps T+ 1, T+2 and T+ 3 in a neighbouring processor, but
should not interfere with a read at step T in a neighbouring processor.

The first time steps at which data are available on various processors' input
lines are indicated in Figure 7.

Program 3 does not compute eigenvectors, but may easily be modified to
do so (as outlined in Section 4). We have also omitted a termination
criterion. The simplest is to perform a fixed number S (say conservatively
10) sweeps; then processor Pij halts when T = 3S(n - 1) + Aij + 3, since
a sweep takes 3(n - 1) time steps. A more sophisticated criterion is to

stop if no nontrivial rotations were performed during the previous sweep. This

requires communication along the diagonal, which can be done in n/2 time steps.

The simulation results given in the Appendix indicate that S = 0(logn)
is sufficient to ensure convergence to within a fixed absolute error, so our

algorithm takes time O(n logn) .



if (T 2 A) and (T - A = 0 (mod 3)) then

begin

if T # A then |

o 6] - {ina ingy |

ty 8 iny iné&l’

if A = 0 then {diagonal processor}

begin

if 8 =0 then § « 0 else & « (8§ - &)/ (2%3);

if £ = 0 then t « 0 else t *

t' « t;
a+«o - t*; &« & + t*B;
3« 03 Y« 0

end

else {off-diagonal processor}

outht

if 1 > j then set outB as in Program 2;

if i < j then set outyY as in Program 2

end

else if (T 2 A) and (T - 4 = 1 (mod 3)) then

begin
if (4
if (4
end
else if (T 2

begin

if (4 > 1) and (j > 1) then set outd® as in Program 2;

WA

if i

if 1 2

if (1 < n/2) and (j < n/2) then set outd as in Program 2

end

begin
t + inht; t' < invt;
e« 1/V1 F £2; ' « 1//1 + t'3

s * t*c; s' + t'*c';
a Bl _ [c -s|{o B c' s
Y & s cjily &)l=-s' ¢

end;

+ t; outvt « t';

A) and (T - A = 2 (mod 3)) then

3 then set outf as in Program 2;

j then set outY as in Program 2;

else {do nothing this time step}.

Program 3:

IE' +v/1+€2;

1) or (j = 1) then set out® as in Program 2;

n/2) or (j = n/2) then set outd as in Program 2

Program for one time step of processor

P,

1]

17



18

6. Conclusion

We have described how a square systolic array of {%} by !%i processors,
each capable of performing floating-point operations (including square roots)
and with a small amount of local storage, and having connections to nearest
horizontal and vertical (and preferably also diagonal) neighbours, can compute
the eigenvalues and eigenvectors of a real symmetric matrix in time O(n logn).
The constant is sufficiently small that the method is competitive with the usual
0(n3) serial algo;ithms, e.g. tridiagonalization followed by the QR iteration,
for quite small n . The speedup should be significant for real-time computations
with moderate or large n .

In [3] we present a related algorithm for computing the singular value
decomposition on a systolic array. The probleﬁ of computing eigenvalues and
eigenvectors of an unsymmetric real matrix on a systolic array is currently
being investigated; unfortunately, the ideas used for symmetric matrices do not
appear to carry over to Eberlein's methods [4] in an obvious way. However,
everything that we have said concerning real symmetric matrices goes over with

the obvious changes to complex Hermitian matrices.



19

References

[1] A. Bojanczyk, R.P. Brent and H.T. Kung, '"Numerically stable solution of
dense systems of linear equations using mesh-connected processors',
SIAM J. Scei. Statist. Comput., to appear. Also available as Tech.
Report TR-CS-81-01, Dept. of Computer Science, Aust. Nat. Univ., 1981.

[2] R.P. Brent and F.T. Luk, Computing the Cholesky factorization using a
systolic architecture, Tech. Report TR-CS-82-08, Dept. of Computer
Science, Aust. Nat. Univ., August 1982.

[3] R.P. Brent and F.T. Luk, 4 systolic architecture for the singular
value decomposition, Tech. Report TR-CS-82-09, Dept. of Computer Science,
Aust. Nat. Univ., August 1982.

[4] P.J. Eberlein and J. Boothroyd, ''Solution to the eigenproblem by a norm
reducing Jacobi type method", in [14], 327-338.

[5] G.E. Forsythe and P. Henrici, 'The cyclic Jacobi method for computing
the principal values of a complex matrix", Trans Amer. Math. Soc.
94 (1960), 1-23.

(6] E.R. Hansen, "On cyclic Jacobi methods", J. Soc. Indust. Appl. Math.

1 (1963), 448-459.

[7] D.E. Heller and I.C.F. Ipsen, ''Systolic networks for orthogonal equival-
ence transformations and their applications', Proc. 1382 Cornf. on Advarced
Research in VSLI, MIT (1982), 113-122.

[8] H.T. Kung, "Why systolic architectures", IEEE Computer 15, 1 (1982), 37-46.

[9] H.T. Kung and C.E. Leiserson, 'Algorithms for VLSI processor arrays',
in Introduction to VLSI Systems (by C. Mead and L. Conway), Addison-
Wesley, Reading, Massachusetts, 1980, 271-292. |

[10] H. Rutishauser, '"The Jacobi method for real symmetric matrices', in

[14], 202-211.



[11]

(12]

[13]

[14]

n

R. Schreiber, '"Systolic arrays for eigenvalue computation', Froc. SPIE
Symp. East 1982, Vol. 341 (Real-Time Signal Frocessing V), to appear.
J.H. Wilkinson, '"Note on the quadratic convergence of the cyclic Jacobi

process", Numer. Math. 4 (1962), 296-300.
J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford, 1965.

J.H. Wilkinson and C. Reinsch (editors), Handbook for Automatic

Computation, Vol. 2 (Linear Algebra), Springer-Verlag, Berlin, 1971.



Appendix: Simulation results

We have compared the ordering described in Section 3 with the cyclic-by-

rows ordering (2.6) by applying the Jacobi method with each ordering to randcm

< <

nA

) , where the elements a,, for 1 i = j n

n by n symmetric matrices (a 13

ij
were uniformly and independently distributed in {-1,1] . (Other distributions
were also tried, and gave similar results.) The stopping criterion was that
the sum z a?, of off-diagonal elements was reduced to lO-12 times its

L. 1]
i#j
initial value. Table 1 gives the mean number of sweeps S cr S for

Tow new
the cyclic-by-rows ordering and the ordering of Section 3, respectively, where
a "sweep" is n(n-1)/2 rotations. The maximum number of sweeps required for

each ordering is given in parentheses in the Table.

n trials S S

row new
4 5000 2.96 (4.17) 2.64 (4.00)
6 5000 3.63 (4.87) 3.37 (4.40)
8 2000 4.07 (5.04) 3.79 (4.75)
10 2000 4.39 (5.56) 4.09 (5.47)
20 1000 5.23 (5.93) 4.94 (5.81)
30 1000 5.67 (6.62) 5.41 (6.49)
40 1000 5.92 (6.76) 5.74 (6.54)
50 1000 6.17 (7.13) 5.99 (6.78)
100 175 6.81 (7.43) 6.76 (7.21)

Table 1: Simulation results for row and new orderings

From Table 1 we see that our new ordering is better than the cyclic-by-
rows ordering, perhaps for the reason suggested in Section 2, although the

difference between the two orderings becomes less marked as n 1increases.
For both orderings, the number of sweeps S grows slowly with n . Empirically
we find that S = O(logn) , and there are theoretical reasons for believing this,

although it has not been proved rigorously. In practice S «can be regarded as



22

a constant (say 10) for all realistic values of n (say n < 1000): see {101.
More extensive simulation results for six different classes of orderings will

be reported elsewhere.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif

