{: SCISPACE

formerly Typeset

@ Open access « Proceedings Article « DOI:10.1109/ISCAS.1992.230297

A systolic VLSI architecture for complex SVD — Source link [

Nariankadu D. Hemkumar, Joseph R. Cavallaro

Institutions: Rice University

Published on: 10 May 1992 - International Symposium on Circuits and Systems

Topics: Singular value decomposition, Matrix (mathematics), CORDIC and Jacobi method

Related papers:

Computation of the Singular Value Decomposition Using Mesh-Connected Processors

Matrix computations

Improved SVD systolic array and implementation on FPGA

The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays

CORDIC arithmetic for an SVD processor

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/a-systolic-vlsi-architecture-for-complex-svd-
2uxndzy2fj

https://typeset.io/
https://www.doi.org/10.1109/ISCAS.1992.230297
https://typeset.io/papers/a-systolic-vlsi-architecture-for-complex-svd-2uxndzy2fj
https://typeset.io/authors/nariankadu-d-hemkumar-21j0agplb3
https://typeset.io/authors/joseph-r-cavallaro-49sbj30e5i
https://typeset.io/institutions/rice-university-2wkk7zxp
https://typeset.io/conferences/international-symposium-on-circuits-and-systems-3oh1gx7z
https://typeset.io/topics/singular-value-decomposition-34pa8zhi
https://typeset.io/topics/matrix-mathematics-11qhlpiv
https://typeset.io/topics/cordic-1n4gz9hi
https://typeset.io/topics/jacobi-method-2r4binum
https://typeset.io/papers/computation-of-the-singular-value-decomposition-using-mesh-12i832o7nu
https://typeset.io/papers/matrix-computations-1y0qomgdqv
https://typeset.io/papers/improved-svd-systolic-array-and-implementation-on-fpga-3smgtg1p8b
https://typeset.io/papers/the-solution-of-singular-value-and-symmetric-eigenvalue-38gcctgv39
https://typeset.io/papers/cordic-arithmetic-for-an-svd-processor-phz17wilpc
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-systolic-vlsi-architecture-for-complex-svd-2uxndzy2fj
https://twitter.com/intent/tweet?text=A%20systolic%20VLSI%20architecture%20for%20complex%20SVD&url=https://typeset.io/papers/a-systolic-vlsi-architecture-for-complex-svd-2uxndzy2fj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-systolic-vlsi-architecture-for-complex-svd-2uxndzy2fj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-systolic-vlsi-architecture-for-complex-svd-2uxndzy2fj
https://typeset.io/papers/a-systolic-vlsi-architecture-for-complex-svd-2uxndzy2fj

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, M| 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1345316

A systolic VLSI architecture for complex SVD

Hemkumar, Nariankadu Datatreya, M.S.

Rice University, 1991

UMI

300 N. ZeebRd.
Ann Arbor, MI 48106

RICE UNIVERSITY

A Systolic VLSI Architecture for Complex SVD
by

Nariankadu D. Hemkumar

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

Dr.%ioseit R. Cavallaro, Chairman

Assistant Professor
Electrical andfComputer Engineering

/[gNe=2

Dr. Peter J. Varman
Associate Professor
Electrical and Computer Engineering

L o

Dr. DaAC. Sorensen
Professor
Mathematical Sciences

Houston, Texas

April, 1991

A Systolic VLSI Architecture for Complex SVD

Nariankadu D. Hemkumar

Abstract

This thesis presents a systolic algorithm for the SVD of arbitrary complex madtrices,
based on the cyclic Jacobi method with “parallel ordering”. As a basic step in the
algorithm, a two-step, two-sided unitary transformation scheme is employed to di-
agonalize a complex 2 x 2 matrix. The transformations are tailored to the use of
CORDIC (COordinate Rotation Digital Computer) algorithms for high speed arith-
metic. The complex SVD array is modeled on the Brent-Luk-VanLoan array for real
SVD. An array with O(n?) processors is required to compute the SVD of a 1 X ma-
trix in O(nlog n) time. An architecture for the complex 2 x 2 processor with an area
complexity twice that of a real 2 x 2 processor, is shown to have the best area/time
tradeoff for VLSI implementation. Despite the involved nature of computations on
complex data, the computation time for the complex SVD array is less than three

times that for a real SVD array with a similar CORDIC based implementation.

Acknowledgments

I wish to express my heartfelt appreciation and gratitude to the many people without
whose constant encouragement and support, this thesis would not have been possible.

First and foremost, I deeply acknowledge the tutelage and guidance of Dr. Joseph
R. Cavallaro and thank him for giving me the opportunity to do research. He has
truly been a “friend, philosopher and guide”, in every sense of the phrase.

I am sincerely grateful for the useful comments and suggestions afforded by Dr.
Peter J. Varman and Dr. Dan C. Sorensen and their consenting to serve on the thesis
committee.

Special thanks is due to my friend and fellow graduate student Kishore ‘kotax’
Kota, and my other office-mates Vinay Pai, Jim Carson and Jay Greenwood for
making graduate academic life that much more a joy. I also thank ‘Boots’ and Raghu
for their friendship and fraternity.

Finally, I wish to express my eternal indebtedness to my parents and my brother
for the unflagging encouragement and support that I have received through the years

and to whom I owe a lot.

To Amma and Appa

Contents

Abstract ii
Acknowledgments iii
List of Tables viii
List of Illustrations ix
Introduction 1
1.1 Systolic Array Processors v i i i i 1
1.2 Parallel Architectures for the SVD 2
1.3 Contributions of the Thesis 4
1.4 Overviewofthe Thesis v i i i i ... 5
Parallel Architectures for Real SVD 7
2.1 Singular Value Decomposition 7
2.2 SVD Algorithms i i i e 8
2.3 TheSVD-Jacobi Method 9
24 SVDofaReal2x2Matrix e 12
2.5 Systolic Architecturesfor RealSVD 13
CORDIC Architectures for Real SVD 16
3.1 CORDIC Algorithms o v v it e i i e e e e 16
3.2 Architecture for a Basic CORDIC Processor 30

v

3.3 Cavallaro-Luk Architectures for the Real 2 x 2 Processor..

The SVD of a Complex Matrix

4.1 Complex Number Representation
42 Complex Givens Rotation
43 QRDofaComplex2x2Matrix
44 SVDofaComplex2x2Matrix
4.5 Two-sided Unitary Transformations

4.6 Two-step SVD of a Complex2 x2 Matrix

CORDIC for Complex SVD

5.1 Modified CORDIC for Complex Arithmetic.
5.2 CORDIC for the @ Transformation
5.3 An Architecture for the Complex 2 x 2 Processor
5.4 Area/Time Analysis for the Complex 2 x 2 Processor

A Systolic Array for Complex SVD

6.1 The Brent-Luk-VanLoan Systolic Array
6.2 A Systolic Array for ComplexSVD
6.3 @ Transformations for the EVD of Hermitian Matrices
6.4 Performance of the Systolic SVD Arrays

6.5 Wavefront vs. Systolic Computation

Simulation of the Complex SVD Array
7.1 The Connection Machine I

7.2 Simulation Model i e e e e e e e e e e e

vi

31

37
37
38
39
41
44
47

50
50
53
61
65

71
71
80
87
88
90

vii

7.4 Terminating Computations on the Complex SVD Array 97
8 Conclusions 100
8.1 Summary . . . ottt i e e e e e e e e e e e e 100
82 Future Work. i e e e e 102

Bibliography . 103

3.1
3.2
3.3

5.1
5.2
5.3
5.4
5.9

6.1
6.2
6.3
6.4
6.5

7.1
7.2

Tables

Radius and Angle in Coordinate Systems
Transformations for CORDIC Operation Modes

Area/Time Complexity for Fixed-point SVD Architectures

Complex Multiplication with CORDIC
CORDIC Application of the Unitary Transformation
Pre-Processing Rules for Argument Addition
CORDIC SVD Processor Algorithm-StepI
CORDIC SVD Processor Algorithm -StepII.

Algorithm Interchange e e e
BLV Array : Processor Algorithm
Complex SVD : Processor Algorithm
Relative Performance of Matrix Decomposition Arrays

Step-wise Execution Times of the Matrix Decomposition Arrays . . .

Time-Stamped Snapshots of a 2 x 2 Processor Array

Complex CORDIC SVD Convergence Behavior

viil

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4

Illustrations

Coordinate Systems« v v v i v i e e e e e e 19
Results of CORDIC Iterations 22
Parallel Fixed-point CORDIC Module 32
The Parallel Fixed-point SVD Processor Architecture 33
Parallel Floating-point CORDIC Module 35
CORDIC Complex Givens Rotation Angle Calculation 53
CORDIC Complex Givens Rotation Application 54
Deprettere and van der Veen Complex Rotation in CORDIC 55
Rotation in the Complex Plane 60
Angle and Modulus in Modified Polar Coordinates 62
Diagonalization Step -Iin CORDIC 63
Diagonalization Step - IIin CORDIC 64
Complex 2 x 2 Processor Architecture 66
The Brent-Luk-VanLoan Systolic Arrayo v v 73
Interprocessor Communication Links for Processors 74
Staggering of Computations in the BLV Array 78
Processors for the BLV Array 80

ix

6.5
6.6
6.7
6.8

7.1
7.2

Data Exchange Timing for the BLV Array 81
Staggering of Computations on the Complex SVD Array 82
Data Exchange Timing for the Complex SVD Array 84
Processors for the Complex SVD Array v v v v v v h . 85
Mapping of the Systolic Array ontothe CM2 e 94

Comparative Convergence of Real and Complex SVD Schemes 98

Chapter 1
Introduction

Real-time signal processing concerns combined with the advent of parallel algorithms
and architectures, have pushed systolic arrays to the forefront of special-purpose com-
puting. The Singular Value Decomposition (SVD) is a matrix factorization technique
of considerable importance in engineering applications. Most systolic arrays proposed
for the SVD in the literature, assume real input matrices. In this thesis, a systolic
algorithm for the SVD of an arbitrary complex matrix is presented along with a
CORDIC (COordinate Rotation Digital Computer) based VLSI architecture for the

systolic processor element.

1.1 Systolic Array Processors

Contemporary parallel architectures may be grouped into three different classes [8]
based on structure : vector processors, multiprocessor systems, and array proces-
sors. Vector processors and multi-processor systems belong to the domain of general-
purpose computers while most array processors are designed for special-purpose ap-
plications.

Array processors, as a computing paradigm, are capable of ‘meeting ﬁhe real-time
processing requirements of a variety of application domains. Locally interconnected
computing networks such as systolic and wavefront processor arrays, due to their

massive parallelism and regular dataflow, allow efficient implementation of a large

number of algorithms of practical significance; especially in the areas of image pro-
cessing, signal processing, and robotics [51, 55].

Many definitions of systolic arrays exist in the literature [34, 54, 78]. Kung and
Leiserson [52] define a systolic system as a “network of processors which rhythmically
compute and pass data through the system”. Systolic arrays, as a class of pipelined
array architectures, display regular and modular structures locally interconnected to
allow a high degree of pipelining and synchronized multiprocessing capability [53].
The primary reasons for the use of systolic arrays in special-purpose processing are
simple and regular design, concurrency and communication, with balanced computa-

tion and I/0 [51].

1.2 Parallel Architectures for the SVD

While general-purpose computers require the design of complicated control units and
optimized schemes for the allocation of machine resources, the design of array pro-
cessors requires a good understanding of the relationship between parallel computing
algorithms and optimal computing hardware/software structures. As most imple-
mentations of array processors tend to be VLSI/WSI, this optimization is of greater
concern. Special-purpose arithmetic techniques can greatly improve hardware and
performance efficiency.

The Singular Value Decomposition (SVD) is an important matrix factorization
procedure used extensively in signal and image processing algorithms [3] and is very
well suited to analyzing data matrices from sensor arrays [70]. The singular values can
also be used to determine the rank of a matrix in a numerically reliéble manner (36].

Furthermore, they can be used to find a good low-rank approximation to the original

matrix; a feature that has proven especially useful in image and’ signal processing
problems [69].

Complex data matrices are known to occur frequently in engineering practice. In
particular, several adaptive beam-forming algorithms [46, 64] which determine the
direction or bearing of a signal source, require complex matrix factorizations and can
benefit from a complex SVD array.

SVD algorithms require costly arithmetic operations such as division and square
root in the computation of rotation parameters. Increased efficiency may be obtained
through the use of hardware oriented arithmetic techniques that relate better to
the algorithm [1, 71, 73]. Special VLSI structures have been proposed for the SVD
[29, 62]. The COordinate Rotation Digital Computer (CORDIC) [80, 81] algorithms,
which allow easy computation of inverse tangents and vector rotations, have proven
extremely useful in this context [14, 29, 73].

Brent, Luk and VanLoan [6] proposed an expandable array of simple processors
for 2 >< 2 matrices, to compute the SVD of a larger matrix. The array uses the SVD-
Jacobi method [32, 49] combined with a “parallel ordering” [5] scheme to exploit the
parallelism inherent in the Jacobi method. Cavallaro and Luk [14] have demonstrated
the use of CORDIC in a hardware and performance efficient architecture for the 2 x 2
processor.

Most parallel algorithms and architectures proposed for the SVD assume real
input matrices. Deprettere and van der Veen [79] allowed for complex matrix elements
but assumed a specialized matrix structure. Cavallaro and Elster [12] extended the

Deprettere and van der Veen scheme to the SVD of an arbitrary complex 2 x 2 matrix.

1.3 Contributions of the Thesis

This thesis extends the Brent-Luk-VanLoan systolic array for real SVD to han-
dle input matrices with complex elements. The expandable array structure of the
Brent-Luk-VanLoan systolic array with the 2 x 2 proc’elssors is preserved. The SVD-
Jacobi method with the two-angle, two-sided rotat.ion scheme used in the Brent-Luk-
VanLoan systolic array, is modified to a two-step, twelve-angle! two-sided rotation
scheme to account for complex matrix elements.

The two-step SVD scheme is derived from simple two-sided unitary transforma-
tions developed to ensure hardware and performance efficiency. Each unitary trans-
formation step in the diagonalization procedure, is identical in structure to permit
pipelined systolic execution.

The two-sided unitary transformation step developed is shown to be efficiently im-
plementable in hardware using CORDIC. A few modifications to the CORDIC scheme,
necessary to ensure correct application of the unitary transformations at each step, are
detailed. These modifications extend the range of vector rotations possible through
CORDIC.

An architecture for the complex 2 x 2 processor, based on the CORDIC modules
developed by Cavallaro and Luk [14] for the real 2 x 2 processor, is presented. An
analysis of the area/time complexity of the complex 2 x 2 processor is compared with
a similar analysis for the real 2 x 2 processor. Also, a performance comparison of the
real and complex systolic SVD schemes is shown.

Results from the simulation of the algorithm using the Connection Machine?, a

SIMD (Single Instruction Multiple Data) [31] computer with good inter-processor

lthree left and three right rotation angles per step
2Connection Machine™ ig a registered trademark of Thinking Machines Corporation, Cambridge,
MA.

communication capability, are compared with LINPACK/EISPACK [26, 33] routines
for validation. The simulation also shows the convergence behavior of the complex

SVD scheme.

1.4 Overview of the Thesis

The next two chapters review previous work in the context of systolic arrays for SVD,
CORDIC algorithms and Jacobi-type methods. In the following chapter, the serial
and parallel SVD algorithms are presented. Jacobi methods for the eigenvalue and
the singular value decompositions, which are fundamental to parallel SVD algorithms
are also elaborated. The chapter concludes with a brief survey of the various parallel
architectures that have been proposed for the SVD.

Chapter 3 presents the CORDIC algorithms in detail. The capabilities and the
limitations of the CORDIC algorithms are discussed. Also, the use of CORDIC for
the implementation of the real 2 x 2 SVD processor is motivated. The Cavallaro-Luk
CORDIC based architectures for the real 2 x 2 SVD processor are then presented.

Further chapters contain the original contributions of the thesis. Chapter 4
presents the complex SVD problem. Various techniques useful in the development
of a diagonalization scheme for a complex 2 x 2 matrix are developed. A two-step
diagonalization scheme is then proposed for the SVD of a complex 2 x 2 matrix.

Chapter 5 explains the enhancements to the basic CORDIC algorithm necessary
for the hardware implementation of the two-step diagonalization scheme proposed in
Chapter 4. A performance efficient architecture based on CORDIC for the complex
2 x 2 processor is then proposed.

Chapter 6 reviews the systolic algorithm due to Brent-Luk-VanLoan and details

modifications to the Brent-Luk-VanLoan systolic array necessary to efficiently im-

plement the two-step diagonalization scheme proposed in the previous chapter. The
chapter ends with a comparison of the Brent-Luk-VanLoan systolic array with the
proposed complex SVD array.

Chapter 7 discusses the simulation of the systolic array for complex SVD on the
Connection Machine and the experimental validation of the algorithm. The behavior
of the algorithm is observed to predict the number of sweeps required for convergence.

Finally, Chapter 8 presents the conclusions and summarizes the thesis. Extensions

to the thesis and possible future work are also discussed.

Chapter 2

Parallel Architectures for Real SVD

In the introduction to the thesis, the importance of parallel architectures for real-
time signal processing and the utility of the SVD as a matrix factorization technique
was emphasized. In reviewing the fundamental concepts and previous work in this

context, this chapter lays a foundation for the others that follow.

2.1 Singular Value Decomposition
A singular value decomposition (SVD) of a matrix M € C™*" is given by
M = UZVH, (2.1)

where U € C™*™ and V € C™*" are unitary matrices and £ € R™*" is a real non-
negative “diagonal” matrix. Since M¥ = VETUH, we may assume m > n without
loss of generality. The singular values may be arranged in any order, for if P € Rm*m

and ¢} € B™" are permutation matrices such that P£Q remains “diagonal”, then
M = (UPT)(PEQ)QTVH)

is also an SVD. It is customary to choose P and @ so that the singular values are

arranged in non-increasing order:
0‘1>...20-r>0’ a'r+1=...=0’

where r = rank(M).

If the matrices U, ¥ and V are partitioned by columns as
U = [u1,u2,*,um], B = diag[o1,02,'-+,04] and V' = [v1,v5.,++, 4],

then o; is the ¢* singular value of M, and u; and v; are the left and right singular

vectors corresponding to ;. If M is real, then the unitary matrices U and V are real

and hence orthogonal.

2.2 SVD Algorithms

The importance of the SVD as a matrix factorization technique is underscored by
the variety of algorithms available. They range from serial algorithms to parallel
Jacobi-type methods. On a conventional uniprocessor system, thé most commonly
used procedure is the Golub-Kahan-Reinsch [35, 37] SVD algorithm.

The Golub-Kahan-Reinsch algorithm is implemented both in LINPACK [26] and
EISPACK [33]. The first step in the Golub-Kahan-Reinsch SVD algorithm is the bi-
diagonalization of the matrix. This is followed by an iterative diagonalization of the
bi-diagonal matrix to complete the SVD. The time complexity of the Golub-Kahan-
Reinsch algorithm is O(mn?).

An improvement to the Golub-Kahan-Reinsch procedure was suggested by Chan
[15]. The improved algorithm is more efficient for an m x n matrix, unless m = n.
A comparison of the two procedures is detailed in [36]. Serial SVD algorithms that
have been suggested for complex matrices are due to Businger and Golub [10] and
Bunse-Gerstner and Gragg [9].

The advances in parallel architectures and algorithms have given rise to a number
of paralle] SVD schemes [5, 6, 30, 45, 65, 68]. Algorithms for the computation of

the SVD, specific to some parallel architectures are also known [28, 59]. The parallel

architectures and algorithms are indispensable where real-time processing is required
[72].

On linear systolic arrays, the most efficient SVD algorithm is the Jacobi-like algo-
rithm given by Brent and Luk [5] which requires O(mn logn) time and O(n) proces-
sors. Jacobi-type procedures are extremely amenable to parallel computation [66] as
evidenced by the number of such schemes that have been proposed [5, 59, 65]. They
have been applied to the symmetric eigenvalue problem [5], the QR-decomposition

[57] and the Schur decomposition [74].

2.3 The SVD-Jacobi Method

The classical method of Jacobi uses a sequence of plane rotations to diagonalize a
symmetric matrix M € R™", A Jacobi rotation by an angle § in the %, plane is

denoted by the matrix J(¢, 7, §) where,

jPP = 1 V (p # 21.7) ’
jii = COos ¢ ’ jt'j = sin ¢ ’ (22)
jji = ~sin ¢ y jjj = Cos ¢ ’

and all other j,, = 0.

The Jacobi method systematically reduces the quantity

off(M) = |33 a;, (2.3)
=1 j=1
I

the “norm” of the off-diagonal elements. The basic step in a Jacobi procedure involves
choosing an index pair (Z,) that satisfies 1 < ¢ < j < n, computing a cosine-sine

pair (c,s) such that

? [}
m. m.;. C -8 mi; My cC 8

1 1)

/
mj,- mjj s C mjy; Mj; ~-=S C

10

is diagonal, and overwriting M with
M = JTMJ,

where J = J(¢,3,0). The classical Jacobi algorithm maximizes the reduction of
off(M) in (2.4) by choosing (2, 5) so that m; is maximal.

The drawback of the classical Jacobi scheme is that the updates reduire O(n)
time while the search for optimal (¢, j) is O(n?). This problem is overcome by fixing
the sequence of sub-problems to be solved in advance. Common schemes are the
cyclic-by-row and the cyclic-by-column procedures where the pair (2, §) is chosen in
a row-by-row, or column-by-column fashion respectively. For example, if n = 4 the

pair sequence is repeated as:
(,5) = (1,2),(1,8),(1,4),(2,3),(2,4),(3,4),. ..
Formally, the cyclic-by-row ordering for the pair (i,) may be expressed as

(iO’ .70) = (172)1

(ik,jk-l-l), if ix<n—=1, jr <n,
(Pkt10 Jhg1) = (2 + 1,2 + 2), if ig<n=1, jr=mn,
(1,2), if ig=n—-1, jr=mn,

and the cyclic-by-column ordering as

(t0,J0) = (1,2),
bk + 1, Jx), if 4 < k=1, jk < n,
(ke ditr) = (1,7 +1), if i =jk—1, jk <n,
(1,2), fiv=n—1, j =n.

11

A ‘“parallel ordering” described by Brent and Luk [5] is particularly useful in the
context of parallel architectures and illustrated in the n = 8 case by
(rg) = (1,2), (3,4), (56), (7,8),
(1,4), (2,6), (3,8), (5,7),
(1,6), (48), (2,7), (3,5),
(L8 (6,7), (45), (2,9)
(L,7), (8,5), (6,3), (4,2),
(1,8), (7,3), (8,2), (6,4),
(1,3), (5,2), (7,4), (8,6).
For any even n, n — 1 steps are required for the Brent-Luk “parallel ordering” as
shown below
1 3 -5 - v+ = (n=38) = (n-1)
/ ! (2.5)
2 — 4 — 6 — «+ +— (n—-2) « n

The rotation pairs in each column of (2.5) can be calculated concurrently. This
fact was exploited by Brent and Luk [5] and later Brent, Luk and VanLoan [6] in
the development of systolic arrays where a sweep of the “parallel ordering” could be
executed in O(n) time.

Jacobi methods can be readily extended to the SVD of arbitrary matrices. A two-
sided Jacobi-SVD procedure was first suggested by Kogbetliantz [49]. The theoretical
framework for the two-sided Jacobi SVD method for square matrices was provided by
Forsythe and Henrici [32). The proof and conditions for convergence for the two-sided
cyclic-Jacobi-SVD are given in [32] and the asymptotic convergence rate was shown
to be quadratic by Wilkinson [82].

Hansen [39] discusses the convergence properties associated with various orderings

for the serial Jacobi method. He defines a certain “preference factor” for comparing

12

different ordering schemes. The “parallel ordering” is quite desirable in that it op-
timizes the “preference factor” as n — oco. The “parallel ordering”, like the cyclic
orderings, is ultimately quadratically convergent. The proof of convergence for the
“parallel ordering” was given by Park and Luk [60].

Theoretically, the SVD of a matrix M may be computed from the eigenvalue
decomposition of MTM. However, the numerical difficulties associated with the
computation of MTM makes the approach impractical. Hestenes [43] suggested a
“one-sided” approach, which applies the Jacobi method implicitly, to overcome the
difficulty in the formation of MTM. A discussion on the relative difficulties and ac-
curacies of the different approaches to computing the SVD, and the justification for

a systolic array can be found in [6].

2.4 SVD of a Real 2 x 2 Matrix

The Jacobi eigenvalue procedure was extended to the SVD of a square matrix M €
Cm™*" by Kogbetliantz [49] and Forsythe and Henrici [32]. The matrix is diagonalized
via a sequence of 2 x 2 SVDs. Corresponding to the two-sided rotation described in
(2.4) for the eigenvalue decomposition of a symmetric 2 x 2 matrix, a similar scheme
can be devised for the SVD of an arbitrary 2 x 2 matrix. Discussion of the SVD
procedure for a complex 2 X 2 matrix is postponed until Chapter 4.

The real 2x2 SVD problem can be expressed as the computation of the cosine-sine

pairs (c;,s1) and (cy,s,) such that

R(0,)" [a b] R(6)) = {d’ 0], (2.6)
cd 0 d;
where cosf sind
RO = [—sin() cos 9} &7)

13

is a 2 X 2 rotation matrix and the input 2 x 2 matrix is

ab
L d] . (2.8)

Several approaches to determining the angles 6; and 6, in (2.6) are mentioned in

[6]. The approach suggested in [32] is to first determine @ um and 4i¢; as solutions to

asum = (0,. + 01) - ta,n"l (; i z) y (29)
-b
Hdi.ff = (0,. - 0[) = tan™! (:‘; n a) . (2.10)

The two angles §; and 6,, can then be separated from 8,,,, and faiss. Convergence

for the Jacobi-method with a cyclic ordering is guaranteed if (2.9) and (2.10) hold.
An alternative method is to symmetrize the 2 x 2 matrix by rotation through

01 — 0, followed by diagonalization using (2.4). A real 2 x 2 matrix as defined in (2.8)

can be symmetrized by a one-sided rotation as

ab Pq
R(Osym)” =) (2.11)
cd qr
where 8,y is defined as
b—c
— -1
Osym = tan (a T d) . (2.12)
After symmetrization, the matrix can be diagonalized by (2.4) as
Pq dy 0
R(bdiag)” R(Odiag) = } ; (2.13)
qr 0 d;
where
L — 1 -1 2q
Odiag = 5 tan (7‘ — P) . (2.14)

2.5 Systolic Architectures for Real SVD

The advent of parallel processing and systolic arrays, combined with real-time sig-

nal processing requirements [72], has given rise to a variety of SVD arrays. The

14

architectures that have been proposed range from linear arrays through triangular
configurations and mesh-connected processor structures.

Jacobi-type methods are easily adapted to matrix computations using processor
arrays. Unfortunately, Jacobi-SVD algorithms are applicable only to square matrices.

For an m x n matrix M € R™*™, the obvious strategy is to first compute the QR-

decomposition (QRD)

0
where the matrix @ € R™*™ is orthogonal and the matrix B € R"*" is upper

M=Q [R} , (2.15)

triangular, and then apply an SVD procedure to R. This approach is particularly
suitable for the case where m > n [15].

QRD arrays have been thoroughly studied [2, 4, 34, 41, 47, 58, 65]. However, the
interfacing of QRD and SVD arrays is a difficult problem. The QRD algorithm in [58]
is the only algorithm implementable on the square array of Brent-Luk-VanLoan [6].
Luk [57] has proposed a triangular array that can compute both the QRD and the
SVD of a m x n, m 2> n, matrix. The array uses n? + O(n) processors and requires
O(m + nS) time, where S denotes the number of sweeps. The array is extended
to a rectangular configuration with mn + O(m) processors for the computation of
singular vectors.

"The systolic array of Brent-Luk [5] uses the one-sided orthogonalization method
due to Hestenes [43] on a linearly connected mesh of O(n) processors and requires
O(mn logn) steps to compute a singular value. A two-dimensional array, with O(mn)
processors and a non-planar interconnection structure, that requires O(n logm) time
was also proposed. The method is quadratically convergent and the conjecture is that

6 to 10 iterations provide for sufficient numerical accuracy.

15

In [6], Brent-Luk-VanLoan describe a similar architecture of O(n?) processors
that implements a cyclic Jacobi-method for the SVD in O(m + nlogn) steps. With
reference to the arrays of Brent-Luk-VanLoan, Schreiber in [67)], suggested methods
to cope with problems that do not match the array size.

In [68], Schreiber proposed a kn-processor design which reduces a dense matrix
to upper triangular form of bandwidth % 41 in time O(mn/k). A k(k + 1) processor
array from [41] is used to implement a SVD iteration for (k + 1)-diagonal matrices,
analogous to the Golub-Reinsch iteration for bi-diagonal matrices, in 6n+ O(k) time.

Ipsen [45] suggested systolic arrays for the SVD of an m x n, m > n, matrix A
of bandwidth w. After matrix A is reduced to a bi-diagonal form B by means of
Givens plane rotations [36], the singular values of B are computed by the Golub-
Reinsch [37] iteration. O(wn) processors that can compute or apply a plane rotation
accomplish the reduction to bi-diagonal form in O(np) steps, where p is the number
of superdiagonals. A constant number of processors is then needed to determine
each singular value in 6n steps. The singular vectors are computed by rerouting
the rotations through the arrays used for the reduction to bi-diagonal form, or by
employing another array of O(wm) processors.

In a typical SVD algorithm, costly square root and division operations are required
to apply plane rotations. The co-ordinate rotation algorithms, CORDIC, which allow
easy computation of inverse tangents and vector rotations, have proven extremely
useful in this context by effectively mapping the algorithm to hardware. The next
chapter details the essentials of CORDIC algorithms and presents' various hardware
and performance efficient architectures that have been proposed for the implementa-

tion of special-purposé SVD arrays.

Chapter 3

CORDIC Architectures for Real SVD

Special-purpose hardware oriented arithmetic techniques can improve performance of
scientific algorithms. These techniques are indispensable in the context of hardware
design for special-purpose applications. This chapter reviews the CORDIC algorithms

and architectures which have proven extremely useful in the computation of the SVD.

3.1 CORDIC Algorithms

The COordinate Rotation DIgital Computer (CORDIC) algorithms were first pre-
sented in 1959 by Volder [80]. A similar idea, particularly effective in decimal radix
computations, was presented by Meggitt [61] in 1962. Daggett [18] discussed the use
of CORDIC for decimal-binary conversions. Further theoretical work was done by
Walther [81] in 1971 to realize a unified algorithm and demonstrate the applicability
of CORDIC to various transcendental and hyperbolic functions. Cochran [16] bench-
marked various algorithms and found that CORDIC techniques surpass alternative
methods in scientific calculator applications.

The CORDIC algorithms allow fast iterative hardware calculation of sin, cos, arc-
tan, sinh, cosh, arctanh, products, quotients, square roots, and conversion between
binary and mixed radix number systems. The CORDIC algorithrgs have some limi-
tations which are discussed later in this chapter. However, these limitations do not

overshadow the utility of the technique. By exploiting the properties and tailoring

16

17

the algorithms suitably, it is possible to design efficient hardware/software structures
that present significant gains over conventional architectures. Real-time signal pro-
cessing concerns (1], combined with the performance and hardware advantage in the
VLSI setting, makes CORDIC an attractive alternative to traditional arithmetic units
for special-purpose hardware design.

Plane rotations and generation of rotation angles through inverse tangent calcu-
lations were shown to be fundamental to SVD algorithms in the previous chapter.
In a conventional sequential computer, the calculation of rotation angles through
costly square root and division operations, or computation of sines/cosines in soft-
ware, proves expensive. Also, matrix-vector products involve costly multiplication
and division operations.

In the context of special-purpose SVD architectures, primitive CORDIC operations
like vector rotations and inverse tangent calculations help increase efficiency by more
effectively mapping the algorithm to hardware [71, 73). Special VLSI structures have
been shown possible for the SVD [14, 29, 62].

Coordinate Systems

The range of the CORDIC algorithms is best expressed through the use of a gen-
eralized polar coordinate system. The CORDIC algorithms of interest relate to a
two-dimensional coordinate system. Higher dimensions were considered by Delosme
in [22, 20].

Let (z,y) be the planar orthogonal coordinates for a point P and introduce a

generalized polar coordinate system (R, A) by

R = /zT7F my?, z = R cos (Aym),

3.1
A= (71;) ta.n“l(&fi), Yy (7%) sin(Ay/m). 1)

18

Here m is a fixed constant whose value is one of 1, —1 or 0. When m =1, (3.1)
reduces to the familiar interconversion relations between the orthogonal coordinate
system and the polar coordinate system. We need to impose an interpretation for the

cases when m = 0 and m = —1. Precisely,
A= (%) for m=0, A = tanh™! (%) for m = —1. (3.2)

The resulting radius (R) and angle (A) expressions for the different coordinate systems
characterized by m are tabulated in Table 3.1.
For simplicity, we always assume z > 0, and further z > |y| > 0 for m = —1. It

is easily seen that

S
2R’

where S is the area of the domain surrounded by z axis, the radius vector OP and

A=

the curve of constant radius R passing through P (Figure 3.1).

Fundamental Transformations

Take a linear transformation from a point P; = (z;,y;) to Piy1 = (Tj41,¥;+1) given

by

Tiy1 = z;+mbjy;, (3:3)

Yi+r = Yj — 6,2,

Coordinate Systems |
Mode Radius Angle
General VTT+ my? (;71;) tan~1(£L%)
Circular Vat+y2 tan~1 (%)

Linear z ¥

Hyperbolic | % — 4?2 tanh™! (%)

Table 3.1: Radius and Angle in Coordinate Systems

e

-

Figure 3 .1: Coordinate Systems

20

where m is the parameter of the coordinate system (3.1) and §; is an arbitrary con-
stant. The transformation (3.3) gives

Ajr = Aj—

Rj.|.1 = Rj X kj,
in the generalized polar coordinate system (3.1), where

o = () tan~'(v/m6;), (3.4)

b = [T,

Starting from Pp = (xo,Y0), iterate the transformations (3.3) under a suitable

sequence of constants o, 61,...,0n-1 until P, = (z,,y,). Then
An = AO - an,
R, = Rox K,,
where
n—1 n—1
Cn = E aj, K, = H k;. (3.5)
J=0 j=0

Introducing a third variable z and transforming it as
Zigr = zj+a; | (3.6)
simultaneously with (3.3), the final values are given by

z, = K, [mo cos(any/m) + (&";) sin(an\/m)] ,
yn = K, [yo cos(any/m) — (ﬁl;) sin(an/m)] ,
Zn = Zog+ oy,

where o, and I, are given by (3.5).

CORDIC Operation Modes

Consider the iteration of the transformations (3.3) and (3.6) under a suitable sequence

of constants {§;} in the following two ways

21

CaseI: 1y is forced to zero,

Case IT: zis forced to zero.
The final values of the variables =, y and z are shown in Figure 3.2, where

Ky = ﬁ\/li&? .

j=0
Observing that

ViEteoz=(t-02 = 22 Vi,
e! = cosht +sinht,

and

1 i _1<t+c)
2logc = tanh)

Figure 3.2 contains all elementary standard functions such as square root, log, exp,
sin, cos, and arctan as well as multiplication and division. Iteration of Case I for
m = 0 is essentially the non-restoring division algorithm.

The CORDIC transformations are quite amenable to computer arithmetic. The
key contribution of Volder [80] and Walther [81] was to set &; as a power of the
machine radix. Digital computers use binary arithmetic. It is therefore convenient to
choose

§j =427 (or £27971), j=0,1,2,...,n, (3.7)
where n is the word length or bit-precision of the machine. When m = —1, slight
modification is necessary for convergence [44]. Let

€& = 271, B; = (-\7171—1-) tan~1(27,/m)
§; = =€, o; = sign(6;)B;

(3.8)

The constants B; may be pre-calculated and are necessary only for j up to n/3,

where n is the bit-precision, since

CIRCULAR MODE

— Kl(XcosZ-YsinZ)
— Kl(YcosZ+XsinZ)

-—..0

Z Reduction

LINEAR MODE

), Q—— —_ X

Y — —e Y +XZ

Z— — 0

Z Reduction
HYPERBOLIC MODE

X— — K, (XcoshZ .Y sinh Z)

Y — — K_choshZ+Xsth)

7 — —_— 0

Z Reduction

Figure 3.2: Results of CORDIC Iterations

X ——
Y o —
Z — —_—
Y Reduction
X —n —_—
Y —» —_—
Z — —
Y Reduction
X— ——
Y —» —_—
7z —» —r
Y Reduction

22

K& vH"”
0
Z + arctan(Y/X)

X
0
Z +(Y/X)

K, X-Y)"
0
Z + arctanh(Y/X)

23

may be replaced by ¢; , if €} and higher terms are negligible.

The transformations (3.3) and (3.6) are now modified as

for 6; >0 for 6; <0
Tjp1 = T+ my;277 Tip1 = T;—my;277
J+1 J j ' (3.9) j+1 i Yi ' (3.10)
Yier = Yj — 2277 . Yiv1 = Yj+z;277
zips1 = z;+5; Zig1 = 2 —f;

In Case I, select (3.9) if y; > 0, and (3.10) otherwise. In Case II, select (3.9) if
z; < 0, and (3.10) otherwise. The CORDIC operation modes of Cases I and II are
also referred to as y-reduction and z-reduction respectively, for obvious reasons. The
conditions for the choice of transformations (3.9) or (3.10) is tabulated in Table 3.2.

It is remarkable that the transformation (3.9) or (3.10) is possible only by addi-
tion, subtraction, shifting and the use of constants. Thus, CORDIC algorithms greatly
simplify the design of arithmetic units for special-purpose hardware and VLSI imple-

mentation.

Convergence Issues

Walther [81] has shown that the domain of convergence of the CORDIC algorithms is

limited by
n-1
ﬁ] - Z lBk S ﬁn-l (j=071’2,"'), (3.11)

k=j+1

Transformation | CORDIC operation mode
Case I | Case I1

Eqn. (3.9) y; =0 2; <0

Eqn. (3.10) y; <0 z; 20

Table 3.2: Transformations for CORDIC Operation Modes

24

where n is the number of iterations of transformations (3.9) or (3.10) used.
When m = 1, it is easy to verify (3.11) for 8; = tan~!(277), since tan~!(z) is
convexin z > 0, i.e.,
tan™! (2‘5) < 2tan™ (2‘“’*‘1)) :
Thus, for the circular mode, the transformations (3.9) and (3.10) always converge,

when

zg < Y tan™! (2‘j) = 1.74... > zzf_, (3.12)

j=0
which covers the closed right half-plane.

When m = —1, the sequence #; = tanh™! (2-9) (j = 1,2,--) does not satisfy the

convergence condition (3.11), since tanh~!(z) is concave in z > 0, i.e.,
tanh™! (2'j) > 2tanh™! (2"(-7"*'1)) .
Walther [81] presented an empirical method to solve the hyperbolic convergence
problem by repeating certain iterations. The method is based on the fact that

n~-1
Pi - (E ﬂk) — Bajr1 < Ba-1 for Bj=tanh™ (279) (>1). (3.13)
k

=j+1
As f3; decreases with j, the convergence condition (3.11) will be satisfied if iterations
at
J = 4, 13, 40, 121,-.-
are repeated. The general formula of the above sequence is given by the recurrence
relation T
Jn = 3Ja1+1, Jo=1
The transformations (3.9) and (3.10) converge if and only if the initial values

(zo, yo) satisfy the condition

tanh™! (y—°> < C = + >) tanh™? (Z‘j) = 1.118... .
Zo 1 j=4,18,

Jj=

25

A discussion on the convergence region for the hyperbolic mode and a proof for (3.13)

can be found in [44].

Circular Mode

In the context of SVD algorithms, application of plane rotations and generation of
rotation angles are of utmost interest. CORDIC in the circular mode (m = 1), allows
easy conversion between orthogonal and polar coordinates. The CORDIC operation

modes of y-reduction and z-reduction have added utility in the circular mode.

Y-Reduction for Inverse Tangent

In the circular mode, the y-reduction can be used to compute inverse tangents.
Consider the results of transformations (3.9) and (3.10) for Case I (y-reduction) and

m = 1 (circular mode) shown in Figure 3.2,

z = I{I\/w%'i'yga

v =0, (3.14)

z = 2o+ tan™! (yo/z0).

If zo is chosen to be zero then (3.14) can be used to compute the quantity

tan=? (yo/zo). The result is available directly without the requirement of re-scaling.

Z-Reduction for Rotations

In the circular mode, the z-reduction can be used to yield a vector rotation or the

sine and cosine of a given angle. Again, consider the results of transformations (3.9)

26

and (3.10) for Case II (2reduction) and m = 1 (circular mode) shown in Figure 3.2,

z = I{ (zocos 2o — Yosinzg),
y = K (yocos zo + zgsin zo), (3.15)
z = 0.

The values of z and y in (3.15) represent rotation of the vector (zg,%o) in the
two-dimensional plane by the angle 2. However, unlike y-reduction, the final values
are scaled by K.

As a special case, the z-reduction can be used to calculate the sine and cosine of

the angle zo. Suppose zo = K7 and yo = 0, then (3.15) may be re-written as

z = K1Ki'cos(zp) = cos(zp),
y = K1K{'sin(z) = sin(z), (3.16)

z = 0.

Scale Factor Considerations

The CORDIC formulation is not yet complete since the vector (z¢,yo) is not only
rotated but also scaled at each iteration. This scaling is by a constant k; given by
(3.4). Thus, the final values of the variables and y need to be adjusted for the
z-reduction (Case II) CORDIC operation mode and the variable z for the y-reduction
(Case I) CORDIC operation mode if desired.

From (3.4), it is clear that scaling is not a concern as far as the linear mode
(m = 0) is concerned. Since the CORDIC mode of interest, as far as computing the
SVD is considered, is the circular mode; further discussion is restricted to the case
when m = 1. The basic ideas, though, easily extend to the hyperbolic mode.

In a digital computer with a finite word length or bit-precision n, only n iterations

of the transformations (3.9) and (3.10) are required. This is due to the fact that n

27

iterations guarantee n bits of accuracy and additional iterations prove extraneous.
However, log n bits are necessary to guard against round-off errors.
After n iterations, the values of the variables x and y for the z-reduction (Case

IT) CORDIC operation mode are given by

2n = Ky Zgina

Yn = I(n Yfinal

where 2 finai and Yfinai are the desired final values and K, is given by (3.5).

In many cases, fewer than n iterations are necessary for z to converge to zero. The
storage of K, for all possible values of n is necessary if early termination is permitted.
This limitation of the CORDIC algorithms is presented in the discussion of techniques
for latency reduction by Bridge, Fisher and Reynolds [7].

For the circular mode (m = 1), substituting (3.4) with (3.7) in (3.5) and using

the fact that from (3.8)
tan (8;) = 27

we have

n—-1 n-1 n-1
Ko =]k = J[]V1+2-% =]] secB; . (3.17)

7=0 7=0 j=0

As a last step in the CORDIC z-reduction operation, a scale factor correction needs

to be performed to yield

Ksretn = KspcKaZfina = Cfinaly (3.18)

Ksrcyn = KsrcKnYfinat & CYfinal,
where the scale factor correction constant Kgpc = CK!. The constant C is either

1 or a power of the machine radix, r, so that it can be easily cleared by a simple shift

to yield z finas and Yyinai-

28

Single Scale Factor Correction

The single scale factor correction techniques proposed in the literature fall into two
classes. They include either special scale factor compensation iterations [24, 40] or
modified repetitive angle sequences [1, 21]

The most direct scheme, due to Walther [81], involves a multiplication by K 7!
using the CORDIC hardware in the linear mode. The scheme is costly since it may
require a full CORDIC “cycle” of n shifts and n additions. However, the binary
representation of K1 can be used to determine which shifts and additions truly need
to be performed. The CORDIC processor is modified to perform special iterations for

both the = and y variables of the form
T — T + 2,277, (3.19)

where selected multiples of z,, and y, are accumulated. Approximately (n/2) itera-
tions are required to correct for the scale factor.
Haviland and Tuszynski [40] proposed a method whereby the special scale factor

correction iterations,

T — z — z277 (3.20)

are performed for both the = and y variables. This scheme also causes a multiplication
of z, and yn by K;1. Again, approximately (n/2) iterations are required for this
method.

Ahmed [1], seeks to make the constant, C' (3.18), a power of the machine radix by
repeating certain full CORDIC iterations. A final shift is used to clear the remaining
scale constant. The proposed scheme uses almost n extra CORDIC iterations to
achieve C = 2. As an extra benefit the method extends the domain of convergence

of the CORDIC algorithm. However, as all CORDIC operations can be made to fall

29

within the basic CORDIC domain of convergence, the time penalty caused by almost
n extra iterations does not make Ahmed’s method attractive for the SVD.

Delosme [21] combines the methods of Ahmed and Haviland and Tuszynski by
repeating both CORDIC rotation iterations and special scale iterations to produce a
low overhead scale factor correction scheme. In this method, approximately (n/4)
iterations are required and a C = 2 is generated.

Yang and Bohme [83] suggested a scheme for single scale factor correction requiring
ng = [n/4] additional iterations. A computer program was devised to systematically
examine all relevant combinations of the shift sequences S(i) = (: =0,1,...,n - 1)
with differences S(z+1)—5(2) € {0,1,2} for more optimization freedom. For efficient
scaling correction, they proposed an additional sequence n shift-add operations,

2-T(0) f[[1+9()2 TP Ky = 14+ AK (T() € Ln(j) = £1).
j=1
These additional scaling iterations are parametrized by the set of signed integers
{T(0),n(1)T(1),...,n(nk)T(ni)} with |AK| < 2-7.

The above schemes require numerical methods to determine the appropriate se-
quence for a given word length. The number of iterations is chosen to reduce the
approximation error to less than 2~". A detailed discussion on the various single
scale factor correction schemes and a systematic approach to the two-sided scale fac-

tor correction as required for the SVD can be found in [11].

Cavallaro-Luk Two-Sided Scale Factor Correction

In the computation of the SVD, two vector rotations are performed for the diagonal-
ization of the real 2 x 2 matrix (2.6). If the correction for the scale factor is postponed

to the end of the second vector rotation, then the new scale factor is a square of the

30

single vector rotation scale factor K. From (3.17),
n—1
K = };'[()k;z g m H cos? B; , (3.21)
the observation was made that each term in (3.21) resembles the special scale factor
iterations shown in (3.20). If the CORDIC processor performs special iterations of

the form (3.20), then the scale factor correction constant will be
Kipe =] (1-27%) ~ 2K;?,

where

C=2 and J = {1,3,5,...,(2r§]_1)} for n > 0. (3.22)

The scale factor as in (3.18) is removed, and a final shift will cancél the above factor
of 2. A total of only [n/4] extra iterations for the complete two-sided rotation is
required since many terms cancel when the products are formed.

The systemaitic calculation of the scale factor correction sequence is possible from
(3.22) for any value of n. The Cavallaro-Luk two-sided rotation scheme greatly im-
proves performance of the CORDIC two-sided vector rotation and results in a factor

of 2 speedup over two applications of Delosme’s single scale factor correction scheme.
P p g

3.2 Architecture for a Basic CORDIC Processor

In § 3.1, CORDIC algorithms were shown to greatly simplify the design of VLSI and
and special-purpose hardware. Efficient architectures, for the hardware implementa-
tion of the CORDIC recurrence relations (3.9) and (3.10), which minimize area/time
complexity are necessary to exploit the performance advantages of the CORDIC al-

gorithms to the fullest.

31

Ahmed [1] has investigated different architectures for a basic CORDIC processor
capable of implementing the CORDIC recurrence relations in hardware. A fully par-
allel fixed-point CORDIC processor architecture due to Ahmed is shown in Figure 3.3.

Three parallel data paths are provided for the z, y and 2 recurrence equations.
The processor is composed of several registers to hold the final and temporary values
of z, y and z. For a fixed-point implementation, shifters are used in the z and y data
paths to produce multiplication by 27,

A read-only memory (ROM) is used to store the angles shown in Table 3.1 for
the three CORDIC modes wviz., the circular (m = 1), the linear (m = 0) and the
hyperbolic (m = —1) modes. Three fixed-point adders provide the additions required
in the CORDIC recurrence relations (3.9) and (3.10).

Finally, a control unit oversees the overall sequencing and angle selection depend-
ing on which of the six CORDIC operational modes is chosen. The control unit is
responsible for choosing between (3.9) and (3.10), based on the values in the y and 2

registers for the y-reduction and z-reduction operation modes respectively (Table 3.2).

3.3 Cavallaro-Luk Architectures for the Real 2x2 Processor

The SVD-Jacobi method (§ 2.3) requires the diagonalization of a 2X2 matrix as a basic
step. The procedures for diagonalization were detailed in § 2.4. Based on the methods
described in § 2.4 and using the basic fixed-point CORDIC processor architecture
shown in § 3.2, Cavallaro and Luk [13] proposed four architectures, each with a
different area/time complexity, for a real 2 x 2 CORDIC SVD processor. CORDIC has
also been applied to the real SVD by Delosme [23]

To recapitulate, two diagonalization procedures for a real 2 x 2 matrix were pre-

sented in § 2.4. The first method is a direct two-angle two-sided rotation (2.6,2.9),

T _. 4/
x
[Shift
24 Control
Unlit
PLA
Shift
/-
Yy
&
— Z /-
Angle PR |
e Memory

Figure 3.3: Parallel Fixed-point CORDIC Module

32

Q m— CORDIC
- arctan

b Module

C semie]

d — 6sum

arctan

D Module

C ———

d m— edlt‘l’

20

= |

[=20

LI

Shift

CORDIC
Rotatlon
Module
with

Scale
Factor
Correction

20

Figure 3.4: The Parallel Fixed-point SVD Processor Architecture

Shift

33

34

and the latter is a two-step method which requires symmetrization of the 2 x 2 ma-
trix (2.11,2.12) followed by a one-angle two-sided rotation (2.13,2.14) to complete the
diagonalization.

The first three architectures, viz. the Symmetrization-diagonalization method ar-
chitecture, the Approximation method architecture and the Semi-parallel method ar-
chitecture implement diagonalization using the two-step method while the fourth viz.
the Parallel-diagonalization method implements the direct two angle rotation method.
The fixed-point CORDIC architecture for the Parallel-diagonalization method due to
Cavallaro and Luk is shown in Figure 3.4.

A detailed discussion on the motivations for the different approaches and archi-
tectures can be found in [11]. A area/time complexity analysis of the different archi-
tectures as presented in (11} is tabulated in Table 3.3 where T¢ is the time required
for one CORDIC vector rotation and Ag is the area occupied by a basic fixed-point
CORDIC processor. The extra time of 0.25T¢ is for two-sided scale factor correction.

A VLSI implementation of the real 2 x 2 processor for the Brent-Luk-VanLoan
systolic array which uses CORDIC arithmetic has been reported in the literature [42].
A detailed analysis of the implementation and other issues relating to the use of

fixed-point CORDIC for SVD computations is discussed in [50].

[Architecture | Area | Time
Symm.-Diag. 3Ac | 4.25T¢
Approx. 3Ac | 3.251¢
Semi-parallel 4Ac | 3.25T¢
Parallel-Diag. | 2A¢ | 3.2671¢

Table 3.3: Area/Time Complexity for Fixed-point SVD Architectures

| S __’ o | +/-
x
-»-1 Exponent ‘, —a | F1. Pt.
Subtraction ‘
X, Control
Unit
PLA
Exponent l
»| Subtraction feme—p| _,
y ‘ '

— P FL Pt.

Figure 3.5: Parallel Floating-point CORDIC Module

35

36

The CORDIC algorithms were originally described for fixed-point data. However,
for practical systems, a floating-point format is preferable. Walther [81] has dealt
with the conversion from fixed-point to floating-point formats. Ahmed [1] points out
that the shifting required in the fixed-point algorithm gets converted to exponent
subtraction and mantissa alignment in floating-point.

Muller [63], Johnsson [48] and Ercegovac and Lang [27] have addressed the issue
of floating-point CORDIC. Floating-point architectures were also considered in [11].
Cavallaro and Luk proposed a hybrid architecture that uses fixed-point angle memory
with floating-point data paths (Figure 3.5).

In the next chapter, the SVD of an arbitrary matrix with possibly complex data
elements is discussed. The SVD-Jacobi method when extended -to a matrix with
complex data, requires the diagonalization of a complex 2 x 2 matrix. A methodology
for the diagonalization of a complex 2 x 2 matrix which is efficiently implementable

in hardware, especially using CORDIC, is developed.

Chapter 4

The SVD of a Complex Matrix

Complex arithmetic and matrix transformations require a significantly greater number
of computational steps than the corresponding real operations. Following a review of
techniques known for complex matrix transformations, a hardware and performance

efficient scheme for the diagonalization of complex matrices is proposed.

4.1 Complex Number Representation
Stating Euler’s Formula as:

e? =cos@+isind, , (4.1)
a complex number, 2 = 2, + 7 2; may be written as

z = R,e'% (4.2)

where

R, = 22422, 0, = tan™! (_z_,_) (4.3)

2y
Equation (4.3) is a polar co-ordinate system representation of z in the complex plane

and the range of 4, is

0 < 6, <2r. (4.4)

An alternate polar coordinate representation can be defined where the range of 4, is

37

38

restricted to the principal values of arctangent

T T
—_ - <Z < — -
2 -— 0 - 2 Y (4-9)

if (4.3) is modified as

R, = sign(z)\/2,2+ 22, 8,=tan™? (;-) . (4.6)

4.2 Complex Givens Rotation

The Givens rotation [36] is an important technique which is used to selectively intro-
duce a zero into a matrix. Givens rotations can be used in the QR Decomposition
and are similar to the rotations used in the Jacobi [32] method for the symmetric

eigenvalue decomposition (2.4) and the SVD (2.6). A real Givens rotation is given by

[—} H) [o] ! (47)

f = tan'l(g), ¢ = cosd, s = sinfand r = Va2 + b2,

where
The Givens rotation can be generalized to handle the case of complex arithmetic.

a, + ta; Aefa
b +ib; | | Bet

be an arbitrary complex vector. A complex Givens rotation can be described by two

Let

rotation angles as formulated in Coleman and Van Loan [17] as

Ccos sin 8, (e a, + ta; Ty +oiry
I | FOot L DA B

—siny (e=*%) cos#d, b, + 15 0

The above rotation matrix is derived by first applying the simple unitary transfor-

e~
U = [] (4.9)

mation

0 e~

39

to convert the complex numbers to real values. This is followed by a real Givens
rotation (4.7) to zero out the second component. However, in order to avoid four
complex rotations, the complex conjugate of (4.9) is applied to the left side of the
real Givens rotation, giving the complex Givens rotation in (4.8).
In the expanded form (4.8) may be written as
eifa 0 cosf; sinf,] [e~¥% 0 cosf; sinby(e?)
[0 ewb] [-—sin 61 cosﬂl] [0 e"“’b] B [—sinl(e"oﬁ) cos 6,] '

The angles 6, and 0, can be determined from the input vector as follows

A=1la2+a?, 0,=tan™! (g—‘-)) (4.10)

B=/t2+b?, 8,=tan"! (-g—'—)

r

Then from the above angles and radii,

6, = tan~! (%) and 0; = 6, — 0. (4.11)

4.3 QRD of a Complex 2 x 2 Matrix

The QR-Decomposition of a real m x n matrix (2.15) was discussed in § 2.5. The

QR-decomposition (QRD) of a m X n matrix M € C™*™, is given by
R
M = Q , (4.12)
0

where the matrix @ € C™*™ is unitary and the matrix R € C™*" is upper triangular.

Let

(4.13)

M2 [ar+z'a,- b,+ib,-} [Ae“’** Be""b] l

cr+ic; dr+1id; Ce®¥ De'ba
be a complex 2 x 2 matrix. Using the complex Givens rotation [17] as described in

§ 4.2, the QR decomposition of a complex 2 x 2 matrix (4.13) can be computed as

Ca 54687 [Ae' Beif Weilv Xeits
. . = 1 (4.14)
—sqe~% ¢, Ce® Deia 0 Ze's

40

where

0p = 0,—0. and tana = T

Deprettere and van der Veen [79] define a three angle complex rotation

e 0 c s
R(07¢11¢2) é‘ [:I []) (415)

0 e | | —sc

where ¢ = cos 8 and s = sin§. The QR decomposition of a complex 2 X 2 matrix M

(4.13) can also be defined in terms of (4.15) as

Aeia Beits) Weibe Xeif=
) = 4.1
Cei%: Deia E(6, 61, ¢2) 0 Zeibs |’ (4.16)
from which
8 et Cleibe
tanO = -(; = EDewd. (417)

To ensure that tanf is real, ¢; and ¢, are chosen to make the numerator with respect

to the denominator in (4.17), real. This requires that
¢ = =0, ¢2 = by, (4.18)

and

§ = tan~! (%) (4.19)

in (4.16). Given that (4.18) and (4.19) hold, (4.16) can be rewritten as
Aeifa Beits Weifo Xeifs
[Ceioc Deita A]
where Z = /C? + D2.

Lotkin [56] and Greenstadt [38] have also suggested transformations for the trian-

R(0,01,62) = [(4.20)

gularization of a 2 X 2 matrix to be used in the Jacobi [32] method for the Eigenvalue

Decomposition of arbitrary matrices.

41

4.4 SVD of a Complex 2 x 2 Matrix

The complex SVD can be approached by using the SVD-Jacobi algorithm [32, 49]
discussed in § 2.3. As a basic step in the complex SVD-Jacobi algorithm, a 2 x 2
matrix, possibly with complex data elements, is transformed into a real diagonal
matrix. v |

Several two-sided unitary transformations have been suggested in the literature
[32, 49] to diagonalize a complex 2 x 2 matrix. The Forsythe and Henrici [32] two-sided

unitary transformation to diagonalize a complex 2 x 2 matrix is

[c¢e‘9° —s¢e“’ﬁ] [Ae“’" Be“’b] [c,pe‘aé s,;,e"""] [We“’“' 0

|

sge'r cyeits Ce% Deitd —syei cyeite 0 Ze¥
where
AC sin(0a - 0,:) + BD Sin(ob - Gd)
tan(f, — 05) = — 9
a1 (6a — 0) AC cos(0, — 0,) + BD cos(f, — 6g) (422)
_ ABsin(6, — 6) + CDsin(0. — 04)
tan(fr~00) = ~ FBcos(@, —8,) T CDcos (0. =8’
Bei(ga"l'ou'*'eb) _I. Cei(ap'l'en'f'ec)
ten(ls = 0y) = — B otmrorey — Aotatonin
and
Bel'(ou+9w+9b) - Cei(9p+9n+0c)
tan(fp + 0y) = — Dep+0u+0a) 1 AgiBatbntia)’
When the matrix M is real, condition (4.22) simplifies to
by = 85 = 0, = 05 = 0, (4.23)
and
B+C
ta.n(0¢, - 0¢) = - (m-) N (4.24)
B-C
tan(9¢,+0,,,) = — (m) .

This result is identical to the direct two-angle, two-sided rotation, diagonalization

scheme (2.6,2.9), described in § 2.4 for the SVD of a real 2 x 2 matrix.

42

Another scheme for the diagonalization of an arbitrary 2 x 2 matrix is due to
Kogbetliantz [49]. He defines a two-sided unitary transformation to compute the

SVD of a complex 2 x 2 matrix as
[yEce ks, } l:Ae“’“ Bewb:l l:'yi'cz —-'ﬁ'sz:} [Wew'“ 0

=

J . (4.25)

—*ﬁs(: 'yi'c‘;: Cee Deibe | | v3s, ~y¥cy 0 Ze
where
2= ptid 2 = p—id
¢ = &+in, (' = {~iy,
and

v = sech 2¢.

The left and right transformation matrices in (4.25) are unitary since
(Il + IsI°) = 1.

There are four real equations in the four real unknowns ¢, ¢, £, and 7 for (4.25) to
hold.

Deprettere and van der Veen [79] considered input matrices with a specialized

A Be'®
S = [jl (4.26)
0 D

for a CORDIC SVD array based on the SVD-Jacobi method. The diagonalization of

structure as

§ is accomplished in two steps. In the first step, a transition to an all real element

data matrix is made. Formally,
e~ 0 A Be® 7 [es 0 AB

, , = ’ (4.27)
0 e] |0 D 0 eie 0D

from which 84 = 6,/2. Next, the real 2 X 2 matrix diagonalization scheme discussed

in § 2.4 is used to complete the SVD. Precisely, the transformation

R(H,)T[A BJR(G,) = [a’ 0}
0D 0 o9

43

is used, where R(f) is given by (2.7), and
B
tan(ﬁ,. —0{) = (.D_—Z)) (4.28)

B
tan(o,. + 91) = (m) .

A generalization of the complex CORDIC SVD scheme in van der Veen and
Deprettere [79] is presented in [12]. An input matrix M of the form (4.13) is as-
sumed. Several transformations are performed to diagonalize M.

First a complex Givens rotation (4.8) is applied to introduce a zero into M. This

transforms the matrix as

a1 s1(c2 + 2s2)] [Ae¥s Beis Weibo Xeil= (4.29)
= . 4.29
—s1(ca — i52) c1 Ce'fe Deifa 0 Ze:
A unitary transformation _
et 0
U= [, J, (4.30)
0 6,06
where 6., = —0, and 5 = —0,, is then applied to make the diagonal elements real.

This transforms the result of (4.29) as
[eio., 0] [Weiow Xei&,] [I'V Xei(9,+9-,):l I:W X'e¥

. - (431)
0 Zei 0 Zz 0 Z

0 eiod

Next, a two-sided unitary transformation

10 W X' 7 1 0 w X'
| | = , (4.32)
0 eife 0 Z 0 e'% 0 Z
where . = 0, and 0; = -0, is applied to make the 2 x 2 matrix real. Finally, a real
2 x 2 SVD is performed using (2.13) with
XI
tan(f, — 9)) = (Z — W)) (4.33)
X’

tan(é, + 6)

(\N]
+
<

44

4,5 Two-sided Unitary Transformations

The various methods proposed for the SVD of a complex 2 x 2 matrix in § 4.4 have
shortcomings. They are either, too cumbersome to implement in special-purpose
VLSI using CORDIC or traditional arithmetic units like the Forsythe-Henrici scheme
(4.21) and the scheme due to Kogbetliantz (4.25), or they assume a specialized matrix
structure as in the Deprettere-van der Veen scheme (4.27,4.28). The scheme due to
Cavallaro-Elster (4.29-4.33), though implementable in CORDIC, does not efficiently
adapt to systolic computation.

Two-sided rotations are used in the diagonalization of a real 2 x 2 matrix in the
Brent-Luk-Van Loan systolic array [6]. In the development of a systolic scheme to
diagonalize a complex matrix, it is important to express the methods of the previous
sections as two-sided unitary rotations/transformations. This has' been the primary
motivation for the transformations developed in this section.

Additionally, the two-sided transformations need to be structured in a manner
that is easily amenable to implementation in hardware, preferably using the CORDIC
processor architectures discussed in § 3.2 and § 3.3. The discussion on implementation
using CORDIC is postponed until § 5.2.

Any 2 x 2 unitary matrix may be expressed as

cieifa s, ei0s
’ . ’ R (4.34)
—s4eir cyeits
where 04, 0p,0.,05 and 04 are real numbers with
0 — 03 — 04 + 05 = 0 (mod 27). (4.35)

The transformations described below, each, assume an input data M matrix of

the form (4.13). Also, from (4.34) and (4.35) the equations (4.36-4.40) are, clearly,

unitary transformations. The transformations described below are each identified

45

by an alphabetic character to preserve ease of notation and at the same time hint
at the nature of the transformation. The transformations defined below are by no
means special or unique; they are presented mainly to motivate the derivation of more

complicated transformations.

The I Transformation

An 7 transformation, is a simple two-sided unitary transformation that interchanges

the arguments of the elements of M, along a diagonal. It is expressed as

ew., 0 Aeio, Be"ab eiea 0 Aeiod Beifs
: . . : = . . (4.36)
0 e=a CeW De'a 0 e~ Cete Detba
or _ _ , . ' .
es 0 Ae% Beif] [e~s (Ae'ts Beile
0 e % | [Ce% Dei 0 e | Ceit Deide |’
where
0, = (_GL';L)andgﬁ = &%_0_")_

The R and C Transformations

Given an arbitrary complex 2 X 2 matrix, a two-sided unitary transformation can be
defined to convert any two elements of M to real values. If the elements belong to

the same row then, the transformation R is defined as

[efa 0 Ae Be] [eis A B
’ , . ‘ = ‘ . (4.37)
| 0 % | | Ce¥ Dei 0 e~ifs Ceifs De':
or 3 13 . . [} ' »
[0+ 0 Ae% Bei] [eifs AeWw Beils
| 0 e | [Ce® Deita| | 0 %] | ¢ D |
where
—(0y + 0, 0y — 0, —(04 +0.) 04 — 0.)
90, = (—2————2', 0,@ = L—é—-—_)—, 0», = —2——-—— and 05 = '(——2———'

46

If the elements belong to the same column then, the transformation C is defined

el 0 Aei%a Bei®] [e% 0 A Be'=
' . . _ = ; (4.38)

0 e~ia| | Ce¥ Deib 0 eifs C De'x

et 0 Ae'%s Beifv] e 0 Ae®v B

0 e | | Ce¥ De'a 0 e%| |ceD|

where
0c—0a) _9c+0a 04—95 _0d+0
oo Bt g O0) 00 Ly, 040

The D Transformation

If the elements are on the diagonal (main or off) then, the transformation D is defined

as
[eifa Ae®%s Beit] [eils 0 A Bei
. . . . = . (4.39)
i 0 eifa Cech Deita 0 e s Ce D
or . . . ' .
e’g’i 0 Aeigu Beieb 8‘66 0 Ae,gw B
| 0 e | | Ce% De¥s 0 e-its | C Dei |’
where
0“ = M) Hﬁ = (od — 90)’ 0’1 = —(002+ ob) and 05 = (ad ; 06)

2 2

Unlike the transformations R (4.37) and C (4.38), the angles 8, and 8, in D (4.39)

can be interchanged with 85 and 85 respectively, to yield the same effect 2.

The @ Transformation

Any combination of the Z, R, C and D transformations can be used with a real two-

sided rotation to yield a useful two-sided unitary transformation. The transformation

3However, the subsidiary angles 6, and 6;, or 8, and 6, will be different.

47

Q is defined as
coeida —syei®s] [Aeifs Beits cye®r syeir
[S¢eiaa cpei%h } [Ceioc De‘OdJ [_SWM C¢eiao]’ (440)
where 04, 03, 6,, and 05 are chosen according to the combination of (4.36), (4.37),
(4.38) and (4.39) desired.

If either 84 or 6y is zero, and the other angle is chosen as in (4.7), a zero can be
introduced into the 2 x 2 matrix at a desired position by choosing an appropriate
combination of the sub-transformations Z, R, C and D to transform M. Also, if
the sub-transformations chosen render the matrix real, then angles 84 and 6, may be
chosen as in (4.24) to diagonalize M.

The transformations Z, C, D, R and Q can be implemented easily in CORDIC as
will be explained in § 5.2. The Q transformation is used as a basis for the two-step

diagonalization scheme presented in § 4.6.

4.6 Two-step SVD of a Complex 2 x 2 Matrix

The transformations developed in § 4.5 can be used to derive a diagonalization pro-
cedure for an arbitrary complex 2 x 2 matrix M as defined in (4.13). The conditions
for (4.21) as expressed by (4.22) were shown to be necessary and sufficient for the
diagonalization of an arbitrary complex 2 x 2 matrix M. It is clear from the nature
of the transformations developed in § 4.5, that an arbitrary complex 2 x 2 matrix
cannot always be diagonalized by just one @ transformation.

However, two Q transformations are sufficient to compute the SVD. The first Q
transformation essentially performs a QR decomposition of M. The second com-
pletes the diagonalizatién. To illustrate the steps in the diagonalization, each Q

transformation is presented as a combination of sub-transformations used.

48

The first sub-transformation is an R transformation which renders the bottom
row of M real. It is followed by a real Givens rotation which zeros the lower-left

(2,1) element. This completes the first @ transformation which is defined as

cges —sye] [Ae¥s Be' cye®r syeilr Weile Xeifs
. . = R 4.41
sees cyeils Ce'% De®a | | —syei cye®s 0 (t41)
where
0(: = 03 = ___—(ng+ OC) 3
0, = —0; = Qi;_&). ;
and

6, = 0, 8y = tan™! (-D-) .
Next, a D and an I transformation are combined with a two-sided rotation
(2.6,2.9) to generate the Q transformation for the second step. The D transfor-
mation converts the main diagonal elements to real values and the T transformation
takes advantage of the fact that the lower-left (2,1) element is zero, to convert the
upper-right (1,2) element to a real value. After the D and T transformations are
applied, the 2 x 2 matrix is real. Equation (2.6) with (2.9) is then used to diagonalize
the real matrix. Thus, the second Q transformation can be written as

cre'¥t —syen] [Weite Xeids coetlc s, et PO
- L 42)

sye' cyeifn 0 Z —spei ¢ et 0Q

Unlike the first Q transformation?, there are two possible sets of values for the
unitary transformation angles. This is due to the fact that the left and right unitary

angles in a D transformation are interchangeable. The choice is between

0.+ 0, 0z — 0,
0 = —(>), 6, = (5), (4.43)

a—

*The QRD can be accomplished with a @ transformation which uses a C sub-transformation along
with a suitable choice of 84 and 8. It is immaterial how the first Q transformation is structured as
far as CORDIC implementation is concerned.

49

and

8 = _(”2—’) 9, = (%’i) (4.44)

However, the rotation angles for the second @ transformation are given by

X
tan(6y = 0,) = - (z—w)’
and
X
tan(fs +6,) = - (z+w)’

no matter which of (4.43) or (4.44) is chosen for the unitary angles.
The reasons for the choice of (4.43) over (4.44) relates to the implementation of

the @ transformation using CORDIC (§ 5.2). However, it is easy to see that

T

6 < T, Il < I, ‘ (4.45)

E

1bc| <

o3

T
< =
, and |0, £ 5

if the arguments 8,, and 8, are computed using (4.6) from the corresponding orthogo-
nal representations; a fact of considerable importance as far as CORDIC implementa-
tion of the @ transformation is concerned, since the convergence limits of the CORDIC
algorithms (in the circular mode) extend only to the right half-plane.

In the next chapter, the issue of implementing the Q transformation using CORDIC
is examined. Some modifications to the basic CORDIC scheme are necessitated by the
limitation in the convergence range. An architecture for the complex 2 x 2 processor

is also proposed.

Chapter 5

CORDIC for Complex SVD

In Chapter 4, a two-step diagonalization scheme for the SVD of an arbitrary matrix
was presented. The scheme was tailored towards easy implementation using the
CORDIC primitives of vector rotations and inverse tangent calculations, introduced
in § 3.1. However, a few modifications to the basic CORDIC procedure are necessary

to handle complex data.

5.1 Modified CORDIC for Complex Arithmetic

Use of CORDIC algorithms for complex arithmetic has been discussed by Hitotumatu
[44]. He described CORDIC based procedures for the multiplication and division of
two arbitrary complex numbers and a procedure to compute the square root of a
complex number.

From (3.12), it can be seen that the convergence region of the CORDIC trans-
formations in the circular mode, covers the closed right half plane. Therefore, it is
convenient to restrict the argument of a complex number to the interval [— % +§],
and allow negative moduli (4.6).

Restating (4.6), a complex number, z = 2, + i z; may be written as z = R,e'% |

R, = sign(z;)\/z;2+ 22, and 0, = tan™! (-E-'—) ,

r

where

with —7/2 < 6, <=/2.

50

51

Let a +ib and c + ¢d, be two arbitrary complex numbers and the product of a + b
and ¢ + id be p 4 iq. Formally,
p+ig = (a+ib) x (c+1id)
= (ac— bd)+ i (ad + bc)
The CORDIC based algorithm for computing the product of two complex numbers,

(5.1)

due to Hitotumatu [44], is shown in Table 5.1. The CORDIC multiplication scheme
requires the use of traditional multiplication hardware or CORDIC in the linear mode
(m =0). It is less efficient than the direct method that involves the formation of four
products of real numbers (5.1), as it requires 3 product calculations and 2 CORDIC
operations (including scale factor correction).

From the discussion on CORDIC in § 3.1, it is clear that CORDIC operations re-
quire O(n) additions, where n is the word-length or bit-precision of the hardware, as
do multiplications. The area/time complexity of CORDIC operations and multiplica-
tions is thus, similar when multiplications are computed through a series of shift and
add operations; although this may not always be the case.

Architectures based on CORDIC for operations on complex data have also been
proposed in the literature. A CORDIC architecture for the application of the complex
Givens rotation (4.8), is described in [12]. Figure 5.1 shows the generation of the
angles for the complex Givens rotation using CORDIC arctan modules (y-reduction
in the circular mode), and Figure 5.2 shows the application of complex Givens rotation
using CORDIC vector rotation modules (zreduction in the circular mode).

Another CORDIC architecture for complex arithmetic is due to van der Veen and
Deprettere [79]. The architecture as shown in Figure 5.3 applies the 3-angle complex
rotation described by (4.15). It is composed of three vector rotation modules. In
both architectures, operations are performed on complex data with the number being

represented by a real vector composed of the real and imaginary parts.

52

T'ransformation to Polar Coordinates.

Take initial values as

.’L‘o=lcl,
Yo=xd (+ifc>0, and — ifc<0),

20 = 0.
Perform CORDIC Y — Reduction (circular mode). Then,
zy = I1v/c? + d2,

Yn =0,
Zp = 0cg = tan™? (i:-) where (—g < b4 <

[y

Replace
ZTn by —a,if p<O.

Do anticipatory scale factor correction
R, = K{%z,,.

Rotation

Initialize
To=a X Rp,
Yo = b x Rp,
20 = 0cd.

Perform CORDIC Z — Reduction (circular mode). Then,

Ky K KA/ + d2 (acosb.y — bsinb.y) ac—bd ,

xn =
{ Yn = KGKTPK\/c? + d2 (asinf.q + bsin 0ca) ad + be.

Table 5.1: Complex Multiplication with CORDIC

'+ =1 corbIC
Arctan

——*] CORDIC

by CORDIC

by] Arctan

0,

Figure 5.1: CORDIC Complex Givens Rotation Angle Calculation

The complex CORDIC architectures in [12] and [79] do not explicitly address the

Arctan
e!
b, + b:
e en' eb
eb

—— 0,

53

issue of scale factor correction. From earlier discussion in § 3.1, it is apparent that

this can be crucial to the performance and accuracy of the architecture, especially if

single scale factor correction is necessitated.

5.2 CORDIC for the @ Transformation

In § 4.5, the @ transformation (4.40) was presented. A two-step diagonalization
scheme for the SVD of a complex 2 x 2 matrix was then derived, with each step as a

@ transformation. The structuring of the @ transformation is designed for efficient

implementation in CORDIC.

b c, bz + 8, b,
i ———
CORDIC
b2 —_— v
ector
Rotation by - 5,0,
0, — o
C,a,+ 5,2,
a, .
CORDIC
az —
Vectqr
0, Rotation c,a,- s,a,

~—=1 CORDIC
Vector
Rotation

e—

el

it

a
2 CORDIC

et
Vector
Rotation

61

[——————————
b, CORDIC
Vector
——] Rotation

0,

_—
CORDIC

bz
—] Vector
Rotation

—

0

(Real)

(Imag)

(Real)

(Imag)

Figure 5.2: CORDIC Complex Givens Rotation Application

59

¢1
xl [ES—— ——etm X!
(Real) | CORDIC CORDIC | Reaty !
Vector Vector
X, ——= Rotation Rotation | —eem X,
(Imag) (Imag)
¢,
Y, —s] —_
(Real) CORDIC CORDIC (Real)
Vector Vector
¥, ——=] Rotation Rotation |~—— ¥’
(Imag) (Imag)

Figure 5.3: Deprettere and van der Veen Complex Rotation in CORDIC

The Q transformation was motivated primarily by two considerations. Firstly, the
multiplication of two arbitrary complex numbers, as demonstrated by Hitotumatu’s
algorithm (Table 5.1) is more efficiently done using traditional arithmetic units.

If the multiplication algorithm in Table 5.1 is examined, the need for multipli-
cation hardware arises at two points, viz., first at the scale factor correction step,
and secondly, at the initialization of data for the rotation step. If the two steps
could somehow be circumvented, through suitably structuring a transformation, then
Hitotumatu’s algorithm can be adapted to efficiently compute complex vector rota-
tions.

The scale factor correction may be handled using any of the schemes discussed in

§ 3.1. And, the multiplication required at the initialization of data for the rotation

56

step, could be avoided if the modulus of one of the two complex numbers involved, is
known to be unity. However, for numerical reasons the computation of the modulus
is to be avoided altogether.

Secondly, the CORDIC primitives of use are vector rotations and inverse tangent
calculations. From § 3.1, we know that vector rotations are not complete until the
results are corrected for the scale factor introduced by the CORDIC iterations. In the
discussion on scale factor considerations in § 3.1, it was mentioned that a two-sided
scale factor correction [14] is preferable over a single scale factor correction, both for
the systematic approach and the performance advantage of the scheme.

Therefore, any transformation used must be amenable to two-sided scale factor
corrections; i.e. only an even number of rotational transformations should be used
at each step. If at any step in the diagonalization procedure a one-sided rotation is
employed, then a more costly single scale factor correction is necessitated.

The @ transformation
) (5.2)

sgeifa cyets CeWe Deibe | | —sye®® cyeids
is recalled to present a scheme for the implementation using CORDIC. The Q trans-

formation may be rewritten as
cs —s4] [e% 0 Ae'a Bei®] e Cy Sy 5.3
5.3
86 C4 0 e¥ | [Cei% Deia 0 &% | | —sy cy ’
to hint at a procedure for the use of CORDIC in the application of the @ transforma-
tion.
As indicated by (5.3), the @ transformation can be performed in two steps. First,
the inner two-sided unitary transformation is completed, followed by the two-sided
rotational transformation. The inner unitary transformation, essentially affects only

the arguments of the complex data elements. Precisely,

ea 0 Aei®s Be] e 0 Aei Bei
. , , , = - ! (5.4)
0 e | | Cei Deiba 0 e% Ce¥ De'

57

where

0, = 0a+0a+0y 6 = 05+0s+0s,

and

0, = 0.4+05+0,, 0, = 04+05+0;.

We assume that the input matrix has the complex data elements represented in
orthogonal coordinates. Since the inner transformation affects only the arguments of
the complex data, it is convenient to compute the polar coordinate representations
of the data elements. The unitary transformation angles can then be used to modify
the arguments appropriately. A transformation back to the orthogonal coordinate
system completes the unitary transformation.

Let

m = m,+im; = Me

be representative of a data element in the 2 x 2 complex matrix and 8, be the shift
in the argument necessitated by the unitary transformation®. The exact procedure in
CORDIC to implement the inner unitary transformation, is given in Table 5.2.

Once the inner rotation of the Q transformation has been completed, the outer
two-sided rotation needs to be computed. From the arithmetic of complex numbers,
it is easy to observe that the two-sided rotation may be applied independently to the

real and imaginary parts of the data elements. Thus, the outer transformation may
Cy Sy
S¢ C¢ —Sy Cy

cs —s4 [a. b, Cy Sy o [ee —s6] [ai b; Cy Sy
= ' + (’y)’
S¢ Cg ¢, d, —Sy Cy S¢ Co c; d; | L—sycy

5The quantities M and 8, are computed as per the modified polar coordinates (4.6)

be computed as
co —sy| [a,+ia; b, +ib;
c.+ic; d.+1id;

58

Transformation to Polar Coordinates.

Take initial values as

mo:lmrl’
Yo =% m; (+if m, 20, and - if m, < 0),

20 = 0.
Perform CORDIC Y — Reduction (circular mode). Then,
Ty = K14/ m2 + m?,
yn =0,
—"l'-) where (=% < 0, <3).

Zp = 0y = tan™1 (m’_

Replace
Zy by — 2z, if m, < 0.

Rotation

Update
20 = 2y + 0.

Perform CORDIC Z — Reduction (circular mode). Then,

zn = Kfy/m2 4+ m? [cos(0n +8y) —sin (O + 0,)],
Yn = KE\/m2 4+ m? [sin(Om + 6,) + sin (8, + 6,)].

Two — Sided Scale Factor Correction
Perform scale factor iterations

T — g - g2 n
Y~y — y2i } forJ = {1,3,5,...,(2[-4-]—1)}

followed by a final right shift (C = 2).

The final values are

Tn = (fm2+m? [cos(Opm + 0y) — sin (6, + 6,)]
Yn = /mi+ m? [sin(m + 6,) + sin (0 + 8y)] =

Table 5.2: CORDIC Application of the Unitary Transformation

= Re {Me(o"""o")} ,
Im {Me(""'+"")} .

where

¢, +ic; d,+id;

is the result of the inner two-sided unitary transformation. The application of the

[a;+ia:- b +ib;]

outer transformation, for the real or imaginary parts, involves two vector rotations.
The vectors are given by the rows for the left rotation and by the columns for the right
rotation. Scale factor correction is postponed until both the left and right rotations
are applied to employ two-sided scale factor correction.

The update of the z register by @, at the beginning of the rotation step in Table 5.2,
is not a straight-forward addition. The problem arises because the update could
possibly rotate the data element into a different quadrant of the complex plane.
Figure 5.4 illustrates the problem for the case when the data element m lies in the
first quadrant (right half-plane) and the update causes the argument to increase
beyond 7/2, rotating m into the second quadrant (left half-plane).

In the modified polar coordinate representation (4.6) of a complex number, the
range of the argument is restricted to the principal values of arctangent. For purposes
of mathematical correctness, information about the half-plane of the complex data
element must be stored along with the value of the argument. This information may
be encoded by an additional bit representing the half-plane of the argument.

A set of pre-processing rules can then be derived, to handle the addition of complex
arguments, at the beginning of the rotation step in Table 5.2. The rules are tabulated
in Table 5.3, where H is the bit-value representing the half-plane of the argument, R
the sign of modulus, and 4 the value of the argument restricted to the closed right
half-plane (Figure 5.5).

60

Im
m
M
m'
-M eu
T- (0,+0,) < 8 .
— (-
LY
m= Me
K- (0py+0y)
m = -Me =

Figure 5.4: Rotation in the Complex Plane

To handle subtraction of arguments, a unary negation is also defined in Table 5.3.
The update affects not only the z variable, but also the z variable, because the
modified polar coordinate representation (4.6) allows for negative moduli.

In addition to applying the @ transformation, a scheme for generating the rotation
and unitary angles is also required. From the discussion in § 4.5, it can be seen that
any unitary angle that may be required, can be obtained at the end of the transfor-
mation step in Table 5.2. Rotation angles, can be computed using the CORDIC in

the inverse tangent (circular mode y-reduction).

61

Unary Negation

(H/R [E-/R" [Arg [Arg"
[E[& [0 [-9

Addition

if [044+0: < w/2

osum = 01 + 02

| Hl/Rl l H2/R2 | Hsum/Rsum I
h h h
h h 1

else

aaum = -sz'_qn (01 + 02) (1!' - Iol + 02')

| HI/RI I H2/R2 | Hsum/Rsum l
h h 1

h h 0

Table 5.3: Pre-Processing Rules for Argument Addition

5.3 An Architecture for the Complex 2 x 2 Processor

In § 4.6 a two-step diagonalization scheme was presented. The scheme is composed of
two Q transformations. § 5.2 discussed the use of CORDIC in generating angles for and

applying the Q transformation. Based on these previous discussions an architecture

for a complex 2 x 2 processor can be derived.

62

Re

0<o<m/2

\

Figure 5.5: Angle and Modulus in Modified Polar Coordinates

Figures 5.6 and 5.7 show the various stages of computation and the respective
CORDIC modules involved in each of the two @ transformations of the two-step
diagonalization scheme presented in § 4.6. The CORDIC polar transformation module
essentially performs the transformation step in Table 5.2 and the CORDIC complex
rotation module performs the rotation step in Table 5.2, The CORDIC complex
rotation module uses the pre-processing rules described in Table 5.3 to compute the
argument and sign of the modulus for the result.

In the application of the @ transformation using CORDIC, a basic CORDIC proces-
sor like those presented in § 3.2, is required for each complex data element. However,
additional complexity in control is required to handle extra computations required for

complex data manipulations (Tables 5.2 & 5.3). To achieve maximum parallelism in

2, —pm| CORDIC e A
Polar
Transformation
a; =1 Modula —0,
b, —] CORDIC >
‘ransformation
by — ule _"ob
- i O
anaiin- O
€. wmpe] CORDIC e C - %
Polar o -0,
Transformation o - -—D-G.
Cf il ule eien. O
d¢] CORDIC D
'll,‘OI"f ti
ransformation
d; —»1 Module e 0§ e
0
"
i T
A —p
e g?ﬁﬁif) CORDIC e CORDIC wmepm-| CORDIC
L Rotation Vector Vector Two-sided
O] Module — g Rotation Rotation Scale Pactor
0y i - — —1 Correction
] ¥
B g} , -
O —mf Compiex | b= CORDIC coroic |—w-] SORDIC
%4 ——pe] Rotation B }‘/eﬁgr Vector Seale Facior
0, —pm] Module — D i otation — {| =] Rotation —| Comrection
y ¥
CORDIC *>1 coroic J—w-] corDIC
L i s,
Rotation - Rotatlon e—p=N Correction
y ¥
coroic f——" | coroic J—a] corDIC
Xedﬁl‘ Vector g::lo-'l{’de?n
olation o R i e Factor
- =1 Comection

Figure 5.6: Diagonalization Step - I in CORDIC

63

64

W, ~——pmj CORDIC - W
Polar
Transformation
Wy —»1 Module —t-) 0
L__,. - 1 corpic
4/ i 01 Arctan - 0,
- —0p Module
x, = CORDIC [T J— o —-0
' Polar
x Transformation 0
i =% Module -0,
Ay § Y | e (Y + X)— CORDIC
Transformation SRS . = (Z. - W)
y‘ —d Module —----»9y ol %) ﬁ:ﬁ?ﬂ __»0x
po— —(7 4 W)
zr —m| CORDIC ez —
Polar
Transformation P
z; ==—#§ Module - Uy
BL e’
), . R
O] Eomx | v—| coroc |——>] cororc CORDIC. | —amp,
LI Rougon Vector Vector &o:liggi“
0, —» Module —w — Rotation ; Rotation e P,
Y]
X - ' S -
0] Compex il CORDIC CORDIC coroic | py,
Opwe—nd Rotation o Vector Vector Two-sided
0, =] Module i - Rotation - -1 Rolation Comecicn -
] 7
Y i ' -
0, —) SORDIC R—m Yee—s~| corpIC CORDIC coroic {—pr,
Oy i Rotation , l‘{ec'vgf Vector ’g:/do:gglm
8, —mf Moduls — Y e otation -~ Rotation e T .
Y ¥
Z] ,)
O] Comy T CORDIC ——1 corpiC gorotc g,
0, —=§ Rotation ecior Vector o8
e: ——pe] Module — 7 — Rotation ——pe] Rotation gﬂgﬁr q,

Figure 5.7: Diagonalization Step - IT in CORDIC

65

the application of the @ transformation for the complex 2 x 2 problem, four CORDIC
modules are needed.

The choice of floating-point (Figure 3.3) vs. fixed-point data path (Figure 3.5)
CORDIC modules is not obvious. An argument for the floating-point data path
CORDIC module may be made, considering that the negation of variables is necessi-
tated in the application of the @ transformation using CORDIC (Tables 5.2 & 5.3).

The reason lies in the fact that, unary negation of floating-point data requires
only the inversion of the sign bit, which can be done by the control unit implicitly;
while a similar operation for fixed-point data requires the use of arithmetic hardware
to compute the two’s complement. However, floating-point operations have greater
latency compared to fixed-point data manipulations.

Figures 5.6 and 5.7, indicate an adjacency in the pattern of communication of
data and results of CORDIC iterations between the CORDIC modules. Therefore,
it is more efficient to have register banks shared by neighboring CORDIC modules
rather than a centralized register bank.

Furthermore, the results of some CORDIC operations, like the rotation angles are
needed by all the CORDIC modules. A data bus linking the four register banks is
also required. An architecture for the complex 2 x 2 processor is shf)wn in Figure 5.8.
Tables 5.4 and 5.5 detail the computation sequence and CORDIC module assignments

to execute the two-step diagonalization scheme on the architecture in Figure 5.8.

5.4 Area/Time Analysis for the Complex 2 x 2 Processor

The CORDIC complex 2 x 2 processor as shown in Figure 5.8, is composed of four

CORDIC modules and a central control unit. The CORDIC modules are similar to

Reg Bank #1
Complex e Complex
CORDIC -]~ CORDIC
Module #0 . Module #1
g4 Reg fin-1
Reg #n
Reg Bank #0 Reg Bank #2
Reg #0 Reg #0
Rc? #1 e g(?::?gl ch. 1
: Unit N
TReg a1 ~apesmnmanipe] Reg Hal
Reg #n -RTUI:_
t Extemal I/O \
Reg Bank #3
— e——
Complex :::::? Complex
CORDIC - CORDIC
Module #2 ——— R —— Module #3
Reg #a-1
Reg #n

«+— Intermodular Data Bus
et Global Data Bus

Figure 5.8: Complex 2 x 2 Processor Architecture

66

67

Step -1 (First @ transformation)

Compute in Parallel

CORDIC Module | Computation | Inputs | Result(s) |
[CM #0 Polar Lransformation | ar, a; Ay Ga
CM #1 Polar Transformation byp, bg B, 8,
CM #2 Polar Transformation Cry Ci C, 6
CM #3 Polar Transformation | d,, d; D, 84
CM#2 8 CM#3 exchange C, 8., and D, 4.
Compute in Parallel
CORDIC Module Computation Inputs Result(s) |
OM #2 Add, Subtract, Shift | 6c, 64 | (24ho%), (4525 |
CM #3 Inverse Tangent C, D tan—! (%)

Broadeast results of CM #2 and CM #9 to other CORDIC modules

Gompute in Parallel

CORDIC Module Computation Inputs | Result(s)
CM #0 Complex Rotation, 2-sided SFC | a,, a; Gy, G:
CM #1 Complex Rotation, 2-sided SFC | by, b; by, b;
CM #2 Complex Rotation, 2-sided SFC Cpy Ci c:.. c:-
CM #3 Complex Rotation, 2-sided SFC | d,, d; d,, d;
Compule in Parallel
CORDIC Module | Computation | Inputs | Result(s)
CM #0 Vector Rotation | ay, b, Gy, by
CM #1 Vector Rotation a:-, b:- :’, b:’
CM ##2 Vector Rotation | ¢, d, ¢p, dyp
CM #3 Vector Rotation | ¢;, d; e, dy
Compule in Parallel
CORDIC Module Computation Inputs | Result(s)
CM #0 Vector Rotation, 2-sided SFC | a,, c, Wr, Ypr
CM #1 Vector Rotation, 2-sided SFC | a., ¢ wi, ¥
CM #2 Vector Rotation, 2-sided SEC | b, d, Tr, zr
CM #3 Vector Rotation, 2-sided SFC b:-’, d;’ TR

Table 5.4: CORDIC SVD Processor Algorithm - Step I

68

Step - 11

Compute in Parallel

(Second @ transformation)

CORDIC Module | Computation | Inputs | Result(s) |
CM #0 | Polar Transformation | wr, W W, 6w
CM #1 Polar Transformation Yr, T§ X, 6z
CM #2 Polar Transformation Yry Ui Y, 6y
CM #3 Polar Transformation Zr, 3 Z, 95

Compute in Parallel
[CORDIC Module |~ Computation [Inputs | Result(s) |

CM #0 Subtract, Shift Bu, 0 | (Se5ow), (Buzie)
CM #1 Add, Shift bw, 02 ("-lﬁ#&)
CM #2 Add, Subtract, Shilt W, Z Z+W, Z2-W
CM #3 Add, Subtract, Shift X, Y Y+ X, Y- X

Broadcast results to CORDIC modules that require them

Compute in Parailel

| CORDIC Module |

Computation | Inputs |

Result(s) |

CM #2 Inverse Tangent { W, Z | tan~! (35¢7)
CM #3 Inverse Tangent | X, ¥ | tan™! (237)

Broadcast results of CM #2 and CM #38 to other CORDIC modules

Compute in Parallel

| CORDIC Module [Computation

| Inputs | Resuit(s) |

CM #0 Complex Rotation, 2-sided SFC | wy, w; w,, W,
CM #1 Complex Rotation, 2-sided SFC Tr, Ty z::.. :rz
CM #2 Complex Rotation, 2-sided SFC Yry Vi y:.. y;
CM #3 Complex Rotation, 2-sided SFC Zry 2 2., 2

Compute in Parallel

[CORDIC Module | Computation | Inputs | Result(s)
CM #0 Vector Rotation W, Tp Wy, Tp
CM ##1 Vector Rotation | w,, z. w.,
CM 2 Vector Rotation | v,, =, Yo+ Zp
CM #3 Vector Rotation | y;, 2 vi , 3

Compute in Parallel

| CORDIC Module |

Computation

| Inputs | Result(s) |

CM #0 Vector Rotation, 2-sided SFC W, Y We, Yr
CM #1 Vector Rotation, 2-sided SFC | w; , y;' Wi, Yi
CM #2 Vector Rotation, 2-5ided SFC | =z, z,. Ty, 2r
CM #3 Vector Rotation, 2-sided SFC z:-', ::' Tiy 2

Table 5.5: CORDIC SVD Processor Algorithm - Step II

69

those described in § 3.2 and § 3.3, with modifications in the control units to implement
the schemes in Tables 5.2 & 5.3 for complex arithmetic using CORDIC.

The total execution time for the two-step diagonalization method can be com-
puted from Tables 5.4 & 5.5. Let Ty and Tgz, be the time required to compute
the first and second @ transformations in the computation of the SVD. The time
complexity anélysis presented below .is indicative of the maximum parallelism that
can be exploited in the CORDIC SVD algorithm using the architecture of Figure 5.8.

From Table 5.4 we have,

Tor = Tpr+Tir+ Ter+ 2Tvr + 2Trsre,

where T'pr, Tr7, Tor, Tvr and Trspe, are the times to compute the polar transfor-
mation of a complex number represented in orthogonal coordinates using CORDIC,
the inverse tangent, the complex rotation, the vector rotation and the two-sided scale
factor correction, respectively.

All of the times, except for T'rsrc, mentioned above are about the same as the
time required to compute one CORDIC vector rotation. As in [11], we define this
time for a vector rotation using CORDIC to be T¢. Tc is based on the time required
to compute an addition (T'4pp), the basic operation in CORDIC. T4pp depends on
whether floating-point or fixed-point data paths are used and the technology of the
implementation. |

All further analysis assumes fixed-point data paths. For fixed-point data paths
Tz = n Tapp where n is the word length and from [14], we know that T'rspc = 0.257%.
Thus,

Tor =~ 5.5T¢.

70

A similar analysis for Tg, from Table 5.5, yields

Tqe = Tpr+Tir+Tor+2Tva+ 2Trsro,
~ 5.5Ta.

The total time complexity of the two-step diagonalization method is therefore

Tesvp = Tga+ Tqo,
~ 117c.

The area complexity of the architecture of Figure 5.8 can be expressed in terms of
the area of a basic CORDIC processor, Ac. Assuming that the area complexity of the
central control unit and the register banks is negligible compared to that of a CORDIC
module, Acsvp, the area complexity of the complex CORDIC SVD processor, can be
derived as

Acsvp ~ 4Ac.

The above assumption is reasonable in that each CORDIC module requires a barrel
shifter of O(n?) area complexity with three adders, angle ROM, storage, control and
moderately complex interconnection buses (Figure 3.3).

In the next chapter, the two-step diagonalization scheme proposed in § 4.6, is used
along with the SVD-Jacobi method in deriving a systolic architecture for the SVD
of a complex n x n matrix. The systolic array is based on the Brent-Luk-VanLoan
array for the SVD of a real matrix. Some performance advantage is gained from the

identity of the steps in the diagonalization scheme.

Chapter 6

A Systolic Array for Complex SVD

The two-step diagonalization scheme for the SVD of an arbitrary complex 2 x 2
matrix (§ 4.6) may used as a basic step in the Jacobi-SVD method described in § 2.3
to compute the SVD of larger square matrices. The most effective systolic array
known to implement the Jacobi-SVD method for real matrices is due to Brent, Luk
and VanLoan. This chapter proposes an enhancement of the B;'ent-Luk-VanLoan

systolic array for computing the SVD of arbitrary complex square matrices.

6.1 The Brent-Luk-VanLoan Systolic Array

On linear systolic arrays, the most efficient SVD algorithm is the Jacobi-like algorithm
given by Brent and Luk [5]. The array implements a one-sided orthogonalization
method due to Hestenes [43] and requires O(mnlogn) time and O(n) processors to
compute the SVD of a real m x n matrix.

The Brent-Luk “parallel ordering” [5] described in § 2.3, was extended to a square
systolic array architecture with O(n?) processors by Brent, Luk and VanLoan [6].
The array implements the SVD-Jacobi method discussed in § 2.3. It is capable of
executing a sweep of the SVD-Jacobi method in O(n) time and is conjectured to
require O(logn) sweeps for convergence. The proof of convergence for the Jacobi-
SVD procedure with “parallel ordering” is due to Park and Luk [60).

The Brent-Luk-VanLoan systolic array is prirﬁarily intended to compute the SVD

71

72

of a real n x n matrix, although the SVD of an m x n matrix can be computed in
m + O(n logn) time. The array as described in [6] is similar to the array proposed in
[5] for the eigenvalue decomposition of a symmetric matrix.

The Brent-Luk-VanLoan systolic array is an expandable, mesh-connected array
of processors, where each processor contains a 2 X 2 sub-matrix of the input matrix
M € R™*", Assuming that n is even, the Brent-Luk-VanLoan systolic array is a
square array of n/2 x n/2 processors. Before the computation begins, processor P;

contains
[mzi—l,zj—l Mai-1,25 J

Maj2i-1 124,25

where (z',j =1,..., 3)

Each processor P;; is connected to its “diagonally” nearest neighbors Py, 41,
(1 <ty < -}) The Brent-Luk-VanLoan systolic array, with 16 processors for n =
8, is shown in Figure 6.1. The interconnections between the processors facilitate
data exchange to implement the “parallel ordering” of Brent-Luk. The processor
communication links for data interchange are shown in Figure 6.2.

The Brent-Luk “parallel ordering” permits Jacobi rotations (2.2) to be applied,
in parallel, in groups of n/2. The angles for the n/2 Jacobi rotations are generated
by the n/2 processors on the main diagonal of the array. The diagonal processors
Py (z =1,..., %) in the array have a more important role in the computation of the
SVD when compared to the off-diagonal processors P;; (z' #7,1<4,5 < %)

The application of a two-sided Jacobi rotation affects only the row and column of
the diagonal processor generating the angles. In an idealized situation, the diagonal
processors may broadcast the rotation angles, along the row and the column corre-

sponding to their position in the array, in constant time. Each off-diagonal processor

9
)
)
O

!
!
'

P
1 12 3 14

e e P —— P — P
21 22 23 24
! ! i)
ey P e] P
k) | 32 33 34

41 2 43 44

— Matrix Data Elements
- Rotation Angles, Systolic Flow

Figure 6.1: The Brent-Luk-VanLoan Systolic Array

74

in o out B

NN .

invy /) ‘\\\ out &

out y ind

Figure 6.2: Interprocessor Communication Links for Processors

applies a two-sided rotation using the angles generated by the diagonal processors, in
the same row and column with respect to its location in the array.
In general, a processor P;; contains four real data elements
[%‘ ﬂijJ
i 8]
At each time step, the diagonal processors P;; compute the rotation pairs (cf,s?)
and (C,R, sﬁ) to annihilate their off-diagonal elements B;; and ~;;. This is essentially
the SVD of the real 2 x 2 matrix stored at the diagonal processors and can be done

using the methods discussed in § 2.4.

The annihilation of the off-diagonal elements at the diagonal processors may be

cf —sf'] [aiBi] [P s @ 0
- . (6.1)
st cf] Ly 6] [—sfcf 0 &y

The two-sided Jacobi rotations represented by (6.1), which annihilate 8;; and -;

expressed as

for (z =1,..., %), are completed when the off-diagonal processors P;; (i # j), each

75

perform the transformation
[ai; Bi;] ai; B
=)
L5 6ij]
[C{' —S?} [aij Bij] I: Cf S?} [a:'j ﬂ;jjl (6.2)
st o] L 651 L—sfcf Yii 6i;

It is clear from (6.1) and (6.2) that, for the completion of the n/2 parallel two-

] ']
Vij 5;;‘

where

sided Jacobi rotations in constant time, the rotation angles 8F and 67 generated by
a diagonal processor P, must be broadcast along the i** row and the i** column
respectively, in constant time. The broadcast would permit an off-diagonal processor
P;; to have access to the rotation angles 67 and ! when required.

A step in the “parallel ordering” (2.5) is complete when columns and correspond-
ing rows are interchanged between adjacent processors so that a new set of n off-
diagonal elements is ready to be annihilated by the diagonal processors during the
next computational step. The communication links at each processor (Figure 6.2) are
interconnected as shown in Figure 6.1 to facilitate the data exchange as required by
the “parallel ordering”.

Formally, the interconnections may be specified as

inay,; fi=1,j=1 in o, 41 fi=1,j<%
infijo1 ifim=1,7>1 in f; ; fi=1,j=2
out aj; &) i oo , out fB;; & . i o LR (6.3)
invyi-,; ifi>l,j=1 invi-,41 fi>Li<y
infiag,jm1 fi>1,i>1 infi-1,j ifi>1,j=4%
and
inaip,; Hi<Pi=1 inaigigp i< P i<P
inficyj41 i< Bji>1 inBig,j fi< g ji=3%
out v;; & . = . 2’_ , out éj; &) . f" f
in v, fi=%,j=1 in 7,41 fi=4,j<%
indijp Mfi=3i>1 in 8, i=8,j=%

Since a processor in the array stores a 2 X 2 sub-matrix, each processor must per-

form some diagonal data interchange to ensure that the “parallel 6rdering” is properly

76

implemented. This interchange depends on the location index of the processor P;; in

the array. The algorithm is shown in Table 6.1.

' . o fout @ «— a; out B « f]
lf Z—la‘nd]—l then .out,), e 7; Out(s'(— 6-‘
et et then [out @ « B; out B « a]
lout v «~ 4; outd +]

. fout @ — v4; out B « §]
elseif j=1 then lout ¥ — o outéd « B
fout @ « §; out B « 4]

else then out v — B; outé ~ o

{wait for outputs to propogate to inputs of adjacent processors}

na « a; inf « B

then [in'y — 7 inéd «~ ¢

Table 6.1: Algorithm Interchange

It cannot realistically be expected that the rotation angles can be broadcast in
constant time for any array size. However, by assuming that the rotation parameters
can be transmitted between adjacent processors in constant time, Brent-Luk-VanLoan
specify a scheme to stagger computations that precludes the need for broadcast of
rotation parameters, but still completes a sweep of the “parallel ordering” in O(n)
time.

Let A;; = |¢ — j| denote the distance of processor P from the diagonal. The

operation of processor P;; is then delayed by A;; time units relative to the operation

(s

of the diagonal processors. This is to allow sufficient time for the rotation parameters
to be propagated at unit speed along each row and column of the processor array.
Also, a processor cannot commence a rotation until data from earlier rotations
are available on all its input lines. Processor P;; needs data from its four neighbors
Pig1,j1 (1 <1,5< %) . Dependencies for other processors can be seen from Figure 6.1.

Since

[Aiy; — A ja] £ 2,

it is sufficient for processor P;; to be idle for two time steps while waiting for processors
P;i1,5+1 to complete their possibly delayed steps. Figure 6.3 illustrates the staggering
of computations to avoid broadcast of rotation parameters. The communication links
for the processors have to be augmented to handle the systolic flow of the rotation
angles. The processors are modified, depending on their position relative to the
diagonal, as shown in Figure 6.4.

The algorithm, due to Brent-Luk-VanLoan, for the computation at each processor
of the array, assuming that computation begins at time step T' = 0, is given in
Table 6.2. Also, it is assumed that each time step has non-overlapping read and write
phases. The result of a write step T is available at the read phase of step T+1, T +2,
and T + 3 in a neighboring processor, but does not interfere with a read step at T in
a neighboring processor.

Figure 6.5 shows the timing of the systolic data and rotation angle exchange on
the Brent-Luk-VanLoan systolic array with staggered computations. The numbers on
the communication links correspond to the first time steps at which data is available

on various processor input lines.

78

OO0
o000
B OOOE
0O00g O
OoOOdO

»

ODoOORO
ODOHEOR
OEORD
HOHOLD
o000

»

OoooeE
OooeEd
D00
OO0
HOO0O0

ORO0OO0R
B OOR O
OO & OO
Ol 0O0OR
HOORO

|

B OO O
O0KNOR
OORO
FMORDOO
OB OOE

«

00K OO
OO0O0
NOOOR
OO00KO3
O0OR OO

00800
ORO00
EO000=
O00® O
OOEOO

»

MOORO
00RO R
UEOR O
=1 L1 = 0O O
Ok OO

*

O & OO K
{O0ORO
OoeOn0
OR0O0W
OO RO

Figure 6.3: Staggering of Computations in the BLV Array

79

if (T > A) and (T'—A = 0(mod 3)) then
begin
. af
if T # A then [’75] — [

in inﬂ]
'

iny iné
if A =0 then {Diagonal Processor} ,
Use (2.13) to determine 8, g and [f; g] — [C(!) g,]

else {Off — Diagonal Processor}

begin
0 —1in h; Or —in v;
$ 15 - [24
st cf I Ly 60 L—sf % i
end;

out h «— 0r; out v « Op;
if 2 > j then set out § as in Algorithm Interchange;
if ¢ < j then set out v as in Algorithm Interchange;
end
elseif (T 2 A) and (T'-A = 1(mod 3)) then
begin
if (i=1) or (j =1) then set out « as in Algorithm Interchange;

if (i = %) or (j = -'21) then set out « as in Algorithm Interchange;

end
elseif (' > A) and (' ~A = 2(mod 3)) then
begin
if (¢>1) or (j > 1) then set out « as in Algorithm Interchange;
if (¢ <j) then set out B as in Algorithm Interchange;
if (¢ 2 j) then set out 7 as in Algorithm Interchange;

if (z < -.}) or (j < g) then set out 6 as in Algorithm Interchange;
end

else
Do nothing this time step.

Table 6.2: BLV Array : Processor Algorithm

80

out v
ino out p
out a‘A A %ﬂ B
out h —=gH p - aut k

iny \quts
}out‘y MYV lns\

Diagonal Processor

inv ut v
ino

outr.::\A v W’%lnp outt:z\\mm OA Wtﬂ/’mﬁ

out h -y P) in & in h P B out &

ind

in'r%‘ V lna\\““s "% hiAv \\?uts

out ¥ out v out

Sub-diagonal Processor Super-diagonal Processor

Figure 6.4: Processors for the BLV Array

6.2 A Systolic Array for Complex SVD

Although the Brent-Luk-VanLoan systolic array can be adapted in a straightforward
manner to compute the SVD of a square, arbitrary complex matrix and each proces-
sor, now diagonalizes a complex 2 X 2 matrix as opposed to a real 2 x 2 matrix, there
are some fundamental differences.

With the use of the two-step diagonalization scheme proposed in this thesis in
§ 4.6, and the CORDIC implementation of the scheme as presented in § 5.2, it is
clear that the number of rotational parameters that are generated at each step of the

Jacobi-SVD method is significantly greater than the real SVD case.

3 /-\3 4 4 5/\5
P P P P
11 12 13 — 14
A=0 t A=1 2 A=2 3 A=3
3 4 5 5
3
11 2 2 1 3 3 2 4 4 k) >
3 4 5 5
P P P
21— 22 24
A=1 1 A=0 1 A=1 2 A=2
4 3 4 4
3 2 3
2 ,l 2 1 3 2 >
4 3 4 i
P P
31 32 33 — 34
A=2 2 A=1 1 A=0 1 A=1
5 4 3 3
4 3 2
3 . 2 3>< r 1)
5 4 3 3
P P P
1 e 42 43 44
A=3 3 A=2 2 A=1 ! A=0
s 5 4 4 3 3

Figure 6.5: Data Exchange Timing for the BLV Array

81

82

O0HEO
D E RO
Bl EOE =
HOHERO
OBBOO

*

OO0 &
O0HA H
OEAOO
HMEHODO
BHEOOO

.

ODOo0o0OH
OO0O0RO
ODOE0O
0000
HOO0OO0OO

OBE®OO
HEODOO
HOOO®
O000& El
OOEBDO

«
B E OO
BOOR O
O8O0
O O0OE
M OO E

|

EHOOR &
O0R & &
ORR KO
M &R OO
B R OOE

EEO0®
EO0OB O
OO0 OO
ORO0 &
FO0& G

»

Oe& OO
NOOO
RIOOOR
ODO00OR~R
DO O

»

00N & O
UNEOR
& O R
B OR RO
O ROO

Figure 6.6: Staggering of Computations on the Complex SVD Array

83

The two-step diagonalization scheme was shown to be composed of two Q trans-
formations. Each Q transformation requires the generation and application of six
angles, four unitary angles and two rotational angles. Thus, the total count of the
angles amounts to twelve in all; eight unitary and four rotational angles.

In a direct adaptation of the Brent-Luk-VanLoan systolic array for systolic com-
putation of the SVD of a complex matrix, six angles must be propagated along both
the rows and columns of processors on the main diagonal. These processors are
responsible for the generation of the angles, in addition to applying them to diag-
onalize the 2 X 2 matrices stored on them. Also, while the diagonal processors are
computing the second Q transformation, the immediately off-diagonal processors are
idle; even though the rotational parameters needed for the application of the first Q
transformation are available at the diagonal processors.

The realization that a single step computation of the SVD (of complex 2 x 2 ma-
trices) using (4.21 or 4.25) would be infeasible for practical computation on special-
purpose hardware motivated the repeated use of a powerful but implementable trans-
formation (the Q transformation) and the two-step diagonalization scheme (§ 4.6).
Also, the identity of the steps in the two-step diagonalization scheme was intended
to prompt an overlapping of computation across the array.

The novel scheme proposed then, is to chase the first and second Q transformations
down the diagonals, one behind the other as shown in Figure 6.6. Thus, while the
processors on the main diagonal are still computing the parameters for the second Q
transformation step, the immediately off-diagonal processors are applying the first Q
transformation.

The pipelining of Q transformations as shown in Figure 6.6, imposes a problem

in that now data can only be exchanged a computation step later than in the Brent-

84

4 5
P P P P
11 > 12 13 —] 14
A=0 1.2 A=1 %3 A=2 3 A=3
4 5 6
ll'z 3 4 1 “23 s 5 1134
l 4 5 6
P P P P
21 '1_.2_ 22 23 ™ > 24
A=1 A=0 12 A=1 g A=2
5 4 5
23 4 12, 12 4 “ s
4
5 P 4 [
P
31 e 32 - 33 —_— 34
A=2 23 A=1 2 A=0 12 A=1
6 s 4
34 5 23 12 LI |
1 Y 4>< vy 3 12
) 6] 4
P P P P
41 e 42 » 43 -— 44
A=3 34 A=2 23 A=1 12 A=0

Figure 6.7: Data Exchange Timing for the Complex SVD Array

85

ifd
g E ° 3 out P
N ME
ot 1l byt = out ulh
et p =10 out riy
::::r."" '>:::m
ut &
iny // *** \\°
oy » p n Ind
Bk
Diagonal Processor
» » St A
ina Egg out p ina iagouﬂ
SNEIT . L1
Otat ul et = {nulh inull el =TT
out riy ~egf= P et [nrh inrk P - otat 4
Ot U2 b~ L I8 u2h inuzh —i =00t u2h
iny 5 iny out &
ZAEIIBSE T X
T F§E me - I B
E H E L8 8
Sub-diagonal Procsssor Supar-dlagonal Procsssor

Figure 6.8: Processors for the Complex SVD Array

Luk-VanLoan systolic array. The availability of data to implement the data exchange
as per the “parallel ordering” of Brent-Luk, is shown in Figure 6.7.

The change in the timing of data exchange also affects the processor algorithm
(Table 6.2). The algorithm that governs the behavior of a processor in the complex
SVD array is shown in Table 6.3.

The added systolicity and pipelining due to the staggering of computations, im-
proves performance and reduces the communication load per step for the propagation
of rotational parameters through the array. The processor utilization increases to 50%

from 33% for the Brent-Luk-VanLoan systolic array due to the fact that processors

86

if (T 2 A) and (T—- A = 0(mod 4)) then
begin
. af ina inf|,
if T # A then [7 6] — [in'y in&]’
if A = 0 then {Diagonal Processor}
Compute first Q transformation using (4.41)
Generate 04, 6p, 0y, 05, 84 and 6y.
else {Off — Diagonal Processor}
begin
0o = in ulh; O «in u2h; 04 «— in rh;
0y «—in ulv; 05 — in u2v; @y — in rv;
Apply Q transformation.
out ulh «—0y; out u2h —0p; out rh « 0y;
out ulv «—0,; out u2v «— 05; out rv — fy;
end;
end
elseif (T > A) and (T'— A = 1(mod 4)) then
begin
if A = 0 then {Diagonal Processor}
Compute second Q transformation using (4.42)
Generate 0, 0y, 0¢, 0u, 0x and 6,.
else {Off — Diagonal Processor}
begin
O¢ «—in ulh; 0, «—in u2h; 605 — inrh;
B¢ —in ulv; Oy —in u2v; 60, — in rv;
Apply @ transformation.
out ulh — f¢; out u2h «—40,; out rh — ,;
oul ulv «—0¢; out u2v —40,; outrv— f,;
end;
if > j then set out B as in Algorithm Interchange;
if # < j then set out v as in Algorithm Interchange;
end
elseif (T > A) and (T— A = 2(mod 4)) then
begin
if ({=1) or (j=1) then set out « as in Algorithm Interchange;
if (i=%) or (j=2) then set out « as in Algorithm Interchange;
end
else if (' > A) and (T'- A = 3(mod 4)) then
begin
if ({>1) or (> 1) then set out « as in Algorithm Interchange;
if (i < j) then set out B as in Algorithm Interchange;
if (i > j) then set out v as in Algorithm Interchange;
if (i< %) or (j< %) then set out & as in Algorithm Interchange;
end
else
Do nothing this time step.

Table 6.3: Complex SVD : Processor Algorithm

87

along any diagonal are now active twice very four computation steps as opposed to
once every three computation steps in the Brent-Luk-VanLoan systolic array.

The communication links for the processors in the complex SVD array need addi-
tional links to handle the increase in the number of rotational parameters exchanged.
The processors for the Brent-Luk-VanLoan systolic array (Figure 6.4) are modified

for the complex SVD array as shown in Figure 6.8.

6.3 Q Transformations for the EVD of Hermitian Matrices

Cavallaro and Elster [12] discuss the extension of the Brent-Luk-VanLoan systolic
array [5] for the eigenvalue decomposition (EVD) of a Hermitian matrix. The ba-
sic step in the algorithm for computation of the eigenvalues involves the symmetric

diagonalization of a complex 2 x 2 matrix. Precisely,

effa A Be®] [e~¥a
0 e-iba Beite D 0 efa -

0s
-

AB

.t (6:4)

where

x =

“~

followed by a real 2 x 2 SVD (2.13) to complete the diagonalization of the 2 x 2
Hermitian matrix.
The eigenvalue decomposition of a 2 X 2 Hermitian matrix can be computed

through the use of a Q transformation (4.40), where

b, =0 b _ 6,
a—-é-’ﬁ— 2’7_ 2 and&—z’
B
tan(0y=04) = = (5=7).

and

tan(fy + 0y) = - (%{),

88

since (6.4) can be expressed as a combination of an R and a C transformation.
The scheme for the computation of the EVD on the architecture of Figure 5.8 is
similar to the computation of the Q transformation for Step - II of the SVD scheme

(Table 5.5). A data exchange timing similar to Figure 6.5 is then required.

6.4 Performance of the Systolic SVD Arrays

In comparing the relative performance of the Brent-Luk-VanLoan systolic array and
the complex SVD array, the convergence of the SVD-Jacobi method and the time to
compute a sweep of the “parallel ordering” are the determining factors. For reasons
that will be made clear in the next chapter, it may be assumed that the convergence
behavior of the SVD-Jacobi method on the Brent-Luk-VanLoan systolic array with
real data elements and the complex SVD array with complex data elements is similar.

A measure of the computational speed of the two arrays is the time required
for processors on the main diagonal to start processing new data after completing a
diagonalization. These times for the different SVD arrays are tabulated in Table 6.4,
where A,ep, tefers to the number of computation steps before the main diagonal

starts processing data again.

| Array | Agteps | # CORDIC Cycles (T¢) | Rel. Speed
Real SVD 3 9.75 T 1.0 Trsvp
Complex SVD (Direct) 3 33.0 T 3.38 Thrsvp
Complex SVD (Staggered) 4 22.0 Tc 2.26 Trsvp
Herm. EVD (Direct) 3 16.5 T¢ 1.69 Trsvp

Table 6.4: Relative Performance of Matrix Decomposition Arrays

The data in Table 6.4 needs explanation. Systolic arrays are characterized by

synchronized multiprocessing. All processors active during a computation step must

89

synchronize at completion before initiating the next step. This implies that processors
that finish early idle until the slowest active processor finishes computation. Balanced

computation and I/O is thus important.

| A | RealSVD | Com. SVD (D) | Com. SVD (S) [Herm. EVD (D) |

1| 3.25 T¢ 11.0 T 5.5 1g 5.5 1¢
2 | 3.25 Te 11.0 To 5.5 To 5.5 T
3 | 3.25 Tg 11.0 T 5.5 Tc 5.5 Tc
4 - - 5.5 Tg R

Table 6.5: Step-wise Execution Times of the Matrix Decomposition Arrays

The fastest computation of the SVD for a real 2 x 2 matrix using CORDIC was
shown to require 3.25 T (Table 3.3). From the discussion of the area/time complexity
of the complex CORDIC SVD processor in § 5.4, we know that a Q transformation
requires 5.5 T¢. Again, both the times mentioned above include the time to generate
the respective rotation parameters involved.

In all of the systolic arrays listed in Table 6.4, generation of the rotational pa-
rameters is done only along the main diagonal. For the direct scheme, the processors
along any diagonal are active once every three computation steps while in the stag-
gered schemes the same processors are active twice every four steps. Table 6.5 shows
the stepwise split-up of the times shown in Table 6.4.

The last column of Table 6.4 shows the time to complete a sweep of the “parallel
ordering” relative to the real SVD array. The staggering of computations in the

complex SVD array allows

i.e., a 50% speedup over the direct scheme. Also, despite the involved nature of com-
putations needed by the complex SVD scheme, with the staggering of computations,

it requires less than three times the computation time for the real SVD array.

90

6.5 Wavefront vs. Systolic Computation

A drawback of systolic arrays is that data movement is governed by global timing.
Synchronization is achieved by inserting extra delays to ensure correct timing. This
problem is compounded in the case of large arrays, where the burden of synchronizing
the whole array becomes infeasible.

A solution is to exploit the locality of control-flow in addition to the data-flow
locality inherent in most systolic algorithms. In doing so, array processing becomes
self-timed and data-driven. The central idea is to trade correct timing for correct
sequencing. Systolic array processors which exhibit the data-driven property are
termed wavefront array processors. The principal advantage of wavefront arrays over
systolic arrays is speed.

In the context of the SVD arrays, wavefront type processing can improve speed up
by allowing further overlap of the computation steps. Since the rotation parameters
are obtained at the main diagonal processors before they are applied to the data,
they may be transmitted to the immediately off-diagonal processors as soon as they
become available.

The time to apply a real two-sided rotation is 2.25 T¢ while the time to generate
and/or apply the inner unitary transformation of the Q transformation is 2.25 T
with additional time to perform some pre-processing (Table 5.3). The latter result is
due to the fact that the arguments of the complex data elements are obtained as a
by-product of the polar transformation sub-step (Table 5.2) in the application of the
unitary transformation. It is therefore possible to reduce the off-diagonal processing
times by up to 1.0 T¢.

Also, by overlapping the application of the Q@ transformation across diagonal pro-

cessors, the additional pipelining effect will improve processor utilization and reduce

91

idle time. Thus, there is definitely some performance advantage to be gained by trans-
mitting the rotation parameters sooner than in the systolic scheme and adopting a
wavefront type of scheduling. However, extra synchronization is necessary to ensure
proper sequencing of computations.

In estimating the relative speed of the real and complex SVD arrays, it was as-
sumed that the rate of convergence for the SVD-Jacobi scheme does not depend on
the nature of the matrix data (real or complex). The next chapter discusses the com-
puter simulation of the systolic algorithms. The simulation is then used to study the
convergence behavior of the SVD-Jacobi method and to verify the correctness of the

systolic algorithms.

Chapter 7
Simulation of the Complex SVD Array

In the previous chapters, a systolic scheme for the SVD of an arbitrary complex ma-
trix was developed. The iterative nature requires simulation of the algorithm on a
computer so that the convergence behavior may be studied for various matrix/array
sizes. Since a parallel algorithm is to be simulated, a computer with suitable multi-

processing capability should prove to be advantageous.

7.1 The Connection Machine

The distinguishing features of systolic arrays map well onto the SIMD [31] paradigm
of computation. Although there are significant differences between systolic arrays
and SIMD computers [25] the architectural similarities provide excellent hardware
support for the simulation of systolic arrays. The Connection Machine, a SIMD
computer which supports the data parallel model of computation with good inter-
processor communication capability, was chosen for the simulation of these arrays.
The Connection Machine employs the data parallel model (SIMD) of computa-
tion. Each instruction is executed by all processors in parallel. However, each pro-
cessor may be selectively activated or deactivated. Variations in computations across
the processor elements (PEs) is accommodated by selective activation of processors.
Memory on the Connection Machine is distributed with each prbcmsor possessing

local memory. The Connection Machine communication primitives allow transfer of

92

93

data from one processor’s memory to another. Parallel transfer of data in regular
patterns is a very useful feature of the Connection Machine hardware.

The programming environment of the Connection Machine supports parallel ver-
sions of several common high level languages. The operations on the Connection
Machine hardware are specified using Paris (PARallel Instruction Set). The
Connection Machine hardware essexitially operates as a co-processor to a host or front-
end computer. Currently VAX and Sun architectures can serve as front-ends to the
Connection Machine. For Lisp programming, a Symbolics Lisp machine can serve as
a front-end [76].

Most of the simulation was written in C/Paris [75], a front-end C compiler with
a Paris interface to control the Connection Machine hardware. The use of C/Paris
for most of the simulation improved code efficiency and performance due to the low
level control of the Connection Machine hardware possible through Paris. The control
code is written in C* (version 6.0) [77], a parallel C language compiler. The syntax
of C* is quite powerful while preserving ease of notation.

In [19], a simulation of the Brent-Luk-VanLoan real SVD array using the RPPT
(Rice Parallel Processing Testbed) is described. Each PE in the array was modeled
both as a simple instruction set processor and as an MC68020 processor. Processor
arrays up to matrix dimensions of 30 x 30 were simulated using 4-way and 8-way

meshes.

7.2 Simulation Model

The logical unit of simulation is the PE. Each PE is represented in hardware by a
processor on the Connection Machine (Figure 7.1). All PEs in a systolic array are

identical. They perform similar computations with minor variations depending on

94

the location in the index set of processors. In the simulation of the complex SVD
array, each processor is modeled as a set of registers. The simulation code allows the

specification of the array configuration and register allocation per PE.

™
Connection Machine Model 2

l | N
I
C 1
| I | I
Systolic Array

Figure 7.1: Mapping of the Systolic Array onto the CM2

Registers may store fixed or floating point data of user defined bit precision. This
is possible due to the special bit-addressable memory and bit-serial math capabil-
ity of the Connection Machine processor. Interaction of processors is through the
exchange of data stored in these registers. As most systolic designs tend to have lo-
cal interconnections, near-neighbor communication is predominant in systolic arrays.
Random communication patterns are rare. However, both forms of communication

are supported in the simulation model.

95

The state of a processor at any time during computation is characterized by the
data in its registers. A snapshot is the cumulative state of all the processors in the
array at any time during simulation. Snapshots capture significant details of array

activity and are extremely useful in the verification of the design and the correctness

of the algorithms.

| Array @ t = 00

1.000 + 2.000 i | 3.000 + 4.000 i || 5.000 + 6.000 i | 7.000 + 8.000 1
2.000 4 4.000 i { 6.000 +- 8.000 i || 6.000 + 4.000 i | 2.000 + 4.000 i
8.000 + 7.000 i { 6.000 + 5.000 i || 4.000 + 3.000 i | 2.000 + 1.000 i
4.000 + 2.000 i | 4.000 + 6.000 i || 8.000 + 6.000 i | 4.000 -+ 2.000 i

| Array @ t = 1 sweep |
2.726 + 0.0001i | 0.000 + 0.000 1 || 1.796 + 0.272 1| -2.634 - 0.399 1
-0.000 - 0.0001 | 8.036-0.0001 |f -1.865-1.903 1| -1.271 - 1.298 i

-1.653 4 1.288 1| 0.766 - 0.635 i || 4.877 + 0.000 i | 0.000 + 0.000 i
0.925 - 0.368 i | 1.875-0.746i | 0.000 + 0.000 i | 25.792 + 0.000 i

L Array @ t = 2 sweeps
[1.302 - 0.000 1 | -0.000 - 0.000 1]| 0.008 - 0.0001 | -0.367 + 0.000 1
-0.000 + 0.000 i | 8.896 + 0.000 1 || 0.322 - 0.0001 | 0.007 - 0.000 1

0.027 -'{1- 0.000 i | -0.438 - 0.000 i || 5.722 + 0.000 i | 0.000 + 0.000 i
-0.376 - 0.000 i | -0.023 - 0.000 1 || -0.000 - 0.000 i | 26.035 - 0.000 i

| Array @ t = 3 sweeps |

1.307 + 0.000 i | -0.000 +- 0.000 i | 0.000 + 0.000 i | -0.030 + 0.000 i

0.000 + 0.000i | 8.941 4 0.000 i || 0.000 +4 0.000 i I 0.000 + 0.000 i
0.000 + 0.000i | -0.000 + 0.000 i {f 5.678 + 0.000 i [0.000 4 0.000 i

-0.027 4 0.000 i | -0.000 + 0.000 i || 0.000 + 0.000 i | 26.040 -+ 0.000 1

Table 7.1: Time-Stamped Snapshots of a 2 x 2 Processor Array

Table 7.1 shows the state of a complex SVD 2x 2 processor array at the completion

of each of three sweeps required during computation of the SVD. The contents of the

96

array show the diagonal elements in the processors along the main diagonal converging
to the singular values while the data elements in the off-diagonal processors converge

to zero. The numbers beside the title in each snapshot indicates the time-stamp.

7.3 Simulation Experiments and Results

The principal aims for simulating the complex SVD array are verification of the data
interchange timing and observance of the convergence behavior in terms of the number
of sweeps required for a given matrix (array) size. A similar study was also performed
by Brent, Luk and VanLoan [6] to observe the convergence rate for the real SVD using
“parallel ordering” and the two-sided rotation scheme for diagonalizing a real 2 x 2
matrix (2.6).

In their study, Brent, Luk and VanLoan used random n X n matrices M, whose
elements were uniformly and independently distributed in [—1,1]. The stopping cri-
terion used was that of f(M) as computed in (2.3) was reduced to 10~12 times its
original value. A similar experiment was performed for the two-step diagonalization
scheme (§ 4.6) with the systolic scheme described in § 6.2.

Table 7.2 shows the average and maximum number of sweeps required for the
convergence of the two-step diagonalization scheme. A comparison of the number of
sweeps required for convergence of the real SVD scheme with similar matrix (array)
sizes is shown in Figure 7.2. The singular values obtained from the simulation runs
for a few sample cases per matrix size, were validated using LINPACK routines.

The convergence behavior of the SVD-Jacobi method with “parallel ordering” for
real data matrices is given in [6]. Figure 7.2 includes a plot of logarithms to the base

2, to validate the conjecture that O(logn) sweeps are required for convergence.

97

| n | Trials | Avg. # Sweeps [Max. # Sweeps |

4 100 4.650833 5.250000

6 100 9.484500 5.950000

8 100 6.118214 7.035714
10 100 6.381667 7.361111
12 100 6.681818 7.454545
14 100 6.904231 7.826923
16 100 7.065500 8.033334
18 100 7.078970 7.897059
20 100 7.218553 8.263158
40 10 8.115385 8.459784
60 10 8.411017 8.786517
80 10 9.006330 9.173082
100 1 9.128788 -

Table 7.2: Complex CORDIC SVD Convergence Behavior

The number of sweeps required for the convergence of the complex SVD scheme
is greater than that for the real SVD, but the convergence behavior is identical. Also,
since the time required to complete a sweep in the complex SVD array is 2.26 times
greater than the real SVD array (Table 6.4), the overall time for computation is less

than three times that for the real SVD array.

7.4 Terminating Computations on the Complex SVD Array

In the previous chapter, the issue of terminating computations on the complex SVD
array was not addressed. However, from the simulation results it is clear that for
most matrix dimensions in practice, we may assume a constant number of sweeps to
guarantee convergence. In doing so, the need for global communication of results is
not required to ensure the satisfaction of suitable threshold criteria.

The simplest scheme for termination then, is to perform a pre-determined number

of sweeps S (from Figure 7.2, S = 10 seems reasonable). This implies that processor

98

Comparative Convergence for Real and Complex SVD

10
o EUSUOTOTOORO0S SGRPHROTIIPUOOIS UUSIOTSTPIPOONS NUOUSPIVUROMUNYE SUNUOOVTIOROTIOS HUTPUUSNUIURINE NOPOPON WO SISt e -
e NN T
- veeeeroretestrtereetarereneeren ._.:._...;._\..-‘s-:'.:.’.’.‘.'.'.-.:.-.: -
= A N 0 R S S pawrott o e S S R
S I VR E N S I R S o
C 2 I S N o 0 S S S SRS LL o
WD Bl biee e @ s sarseforssrsrsssssarse fararescarensenes _u—"""-'—' .. -
R Y A R et T N et
R Y A D S S SR Ly i
= -
S VRO ASTUUTNE VP AUONE NUUNOIUPTROUOE SV OV NUTTTTTOTITOE SOSTUUTOOOTE ST HOTTTOROOOE FUUOTOE ST .
"""" —_"Complex "
............ Reél
SPSSPSTPPIN AAINS SN [2 €14 WIS SRS Npmpeeomee |

50 60 70 80 90 100

Matrix dimension (n)

Figure 7.2: Comparative Convergence of Real and Complex SVD Schemes

P;; ceases computation at time step T;; where
Tij = Aatepas (n - 1) + Ac‘j + Astcpaa

since a sweep takes Ayeps (n — 1) time steps. The value of A,eps is either 3 or 4
depending on the staggering of computations (Table 6.4) and A;; = |i — j| represents
the distance of the processor from the main diagonal.

A more sophisticated criterion for termination is suggested in [6] for the real SVD
array. Termination is made contingent on the performance of no non-trivial rotations

during the previous sweep. A similar criterion can be extended to the complex SVD

99

array where non-trivial @ transformations are detected. However, the scheme requires
communication along the diagonal, that can be done in n/2 time steps.
This completes the discussion on the various aspects of the complex SVD array.

In the next chapter, a summary of the thesis is presented along with directions for

future work.

Chapter 8
Conclusions

The principal contribution of this thesis is the development of a systolic algorithm
and, a hardware and performance efficient architecture implementable in VLSI, for
computing the Singular Value Decomposition of an arbitrary complex matrix. In

concluding the thesis, the discussion in the previous chapters is recapitulated in brief.

8.1 Summary

The Singular Value Decomposition is an important matrix factorization used exten-
sively in engineering applications. It is particularly useful in the context of signal
processing, image processing and robotics applications. Real-time data processing
necessitates the use of special-purpose hardware to sustain the computational speed
required.

Systolic array architectures with inherent parallelism and synchronized multipro-
cessing capabilities are well suited to meet the challenge of real-time data processing.
A variety of systolic arrays have been proposed in the literature for computing the
SVD of a matrix. Most of the systolic algorithms proposed in this context concern
matrices with real data elements. However, complex matrices do oc'cur in engineering
practice; especially adaptive beam-forming algorithms in signal processing applica-
tions are known to require the SVD factorization.

The Jacobi-type methods, which form the basis for most of the systolic algorithms

100

101

are especially amenable to parallel processing. Several methods have been suggested
in the literature to compute the SVD of an arbitrary complex matrix using Jacobi-type
methods. The methods are either limited in their applicability or implementation in
special-purpose hardware, or do not efficiently adapt to systolic processing.

In this thesis, a novel hardware oriented two-step diagonalization scheme for the
SVD of a complex 2 x 2 matrix, the basic step in a Jacobi-type procedure for the
computation of the SVD, was presented. Each step in the scheme was a two-sided
unitary transformation (Q transformation), designed to be efficiently implementable
in hardware using CORDIC. A review of the CORDIC algorithms was also presented
to illustrate the applicability, efficiency of hardware and the perfofma.nce advantage
possible.

An expandable array of 2 x 2 processors due to Brent, Luk and VanLoan is the
best known systolic array for the SVD of real matrices. The array uses a Jacobi-type
method with a “parallel ordering” and requires O(n?) processors tb compute the SVD
of an n x n matrix. A systolic array similar in structure to the Brent-Luk-VanLoan
systolic array, with an enhanced scheduling and data exchange algorithm designed
to efficiently implement the two-step diagonalization scheme was proposed for the
solution of the complex SVD problem. Also, the @ transformation was shown to be
applicable to the symmetric eigenvalue decomposition of a Hermitian matrix using
an array similar to the complex SVD array.

The behavior of a processor in the complex SVD array, illustrating the systolic
computation, was detailed. An architecture for the complex 2 x 2 processor, exploit-
ing the parallelism in the CORDIC implementation of the two-step diagonalization
scheme, was presented. A hardware scheduling algorithm for the architecture, demon-

strating this parallelism was also described.

102

The systolic algorithm was simulated on the Connection Machine to verify cor-
rectness and observe the convergence behavior of the algorithm. The complex SVD
algorithm required more sweeps than the real SVD scheme but the convergence be-
havior was identical in that O(logn) sweeps are required for convergence given an
n X n input matrix. Termination criteria and schemes based on the simulaticn results
were also suggested.

In spite of the involved nature of computations in diagonalizing a complex 2 x 2
matrix, the time for completing a sweep in the complex CORDIC SVD array is less

than three times that for a CORDIC based implementation of the real SVD array.

8.2 Future Work

There are several issues regarding the complex SVD array which were not addressed
in this thesis. The accumulation of the right and left singular vectors can be easily
accommodated during the idle time of the processors. The handling of undersized
and oversized matrix dimensions was not discussed in the thesis. However, several
schemes for the real case as presented in [6] can be extended to the complex SVD
array.

VLSI implementation of the architecture proposed for the complex 2 x 2 processor
and integration of both the real and complex SVD schemes on the same processor
without additional hardware are achievable goals. Also, of particular interest are
fault-tolerance issues and reconfiguration algorithms for load sharing and rerouting

of data around faulty processors.

[1]

[2]

[3]

[5]

[6]

Biblio'graphy

H. M. Ahmed. Signal Processing Algorithms and Architectures. PhD thesis,
Dept. of Electrical Engineering, Stanford Univ., Stanford, CA, June 1982.

H. M. Ahmed, J. M. Delosme, and M. Morf. Highly Concurrent Comput;
ing Structures for Matrix Arithmetic and Signal Processing. IEEE Computer,
15(1):65-82, January 1982.

H. C. Andrews and C. L. Patterson. Singular Value Decompositions and Digital
Image Processing. IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-
24(1):26-53, February 1976.

A. Bojanczyk, R. P. Brent, and H. T. Kung. Numerically Stable Solution of
Dense Systems of Linear Equations Using Mesh-Connected Processors. SIAM
Journal of Scientific and Statistical Computing, 5(1):95-104, March 1984,

R. P. Brent and F. T. Luk. The Solution of Singular-Value and Symmetric
Eigenvalue Problems on Multiprocessor Arrays. SIAM Journal of Scientific and
Statistical Computing, 6(1):69-84, January 1985.

R. P. Brent, F. T. Luk, and C. F. Van Loan. Computation of the Singular
Value Decomposition Using Mesh-Connected Processors. Journal of VLSI and
Computer Systems, 1(3):242-270, 1985.

103

104

[7] C. Bridge, P. Fisher, and R. Reynolds. Asynchronous Arithmetic Algorithms for

Data-Driven Machines. IEEE 5th Symposium on Computer Arithmetic, pages
56-62, May 1981.

(8] F. Briggs and K. Hwang. Computer Architectures and Parallel Processing. Mc-

Graw Hill, 1984.

[9] A. Bunse-Gerstner. Singular Value Decompositions of Complex Symmetric Ma-

trices. J. Comp. Applic. Math., 21:41-54, 1988.

[10] P. A. Businger and G. H. Golub. Algorithm 358: Singular Value Decomposition

[11]

[12]

[13]

[14]

[15]

of the Complex Matrix. Comm. ACM, 12:564-565, 1969.

J. R. Cavallaro. VLSI CORDIC Processor Architectures for the Singular Value
Decomposition. PhD thesis, School of Electrical Engineering, Ithaca, NY, August
1988.

J. R. Cavallaro and A. C. Elster. A CORDIC Processor Array for the SVD
of a Complex Matrix. In R.J. Vaccaro, editor, SVD and Signal Processing IT

(Algorithms, Analysis and Applications), pages 227-239. Elsevier, New York,
1991.

J. R. Cavallaro and F. T. Luk. Architectures for a CORDIC SVD Processor.
Proc. SPIE Real-Time Signal Processing, 698(1X):45-53, August 1986.

J. R. Cavallaro and F. T. Luk. CORDIC Arithmetic for an SVD Processor.
Journal of Parallel and Distributed Computing, 5(3):271-290, June 1988.

T. F. Chan. An Improved Algorithm for Computing the Singular Value Decom-
position. ACM Trans. Math. Soft., 8:72-83, 1982.

[16]

[17]

[18]

[19]

[20]

[21)

[22]

[23]

105

D. S. Cochran. Algorithms and Accuracy in the HP-35. Hewlett-Packard J.,
pages 10-11, June 1972.

T. F. Coleman and C. F. Van Loan. Handbook for Matriz Computations. SIAM,
Philadelphia, PA, 1988.

D. Daggett. Decimal-Binary Conversions in CORDIC. IRE Transactions on
Electronic Computers, EC-8(3):335-339, Sept. 1959.

W. P. Dawkins. Efficient Simulation of Simple Instruction Set Array Proces-
sors. Master’s thesis, Rice University, Department of Electrical and Computer

Engineering, November 1989.

J. M. Delosme. CORDIC Algorithms: Theory and Extensions. Proc. SPIE
Advanced Algorithms and Architectures for Signal Processing, 1152(IV):131-145,
August 1989.

J. M. Delosme. VLSI Implementation of Rotations in Pseudo-Euclidean Spaces.

IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2:927-930, April 1983.

J. M. Delosme. The Matrix Exponential Approach to Elementary Opera-
tions. Proc. SPIE Advanced Algorithms and Architectures for Signal Processing,
696(1):188-195, August 1986.

J. M. Delosme. A Processor for Two-Dimensional Symmetric Eigenvalue and
Singular Value Arrays. IEEE 21th Asilomar Conf. on Circuits, Systems, and

Computers, pages 217-221, November 1987.

[24] A. M. Despain. Fourier Transform Computers Using CORDIC Iterations. /EEFE

Transactions on Computers, C-23(10):993-1001, October 1974.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

106

P. M. Dew and L. J. Manning. Comparison of Systolic and SIMD Architectures
for Computer Vision Computation. Proc. Inter. Workshop on Systolic Arrays,

University of Ozford, July 1986.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. Chapter 11:
The Singular Value Decomposition. In Linpack Users’ Guide, pages 11.1-11.23.
SIAM, Philadelphia, PA, 1979.

M. D. Ercegovac and T. Lang. Redundant and On-Line CORDIC: Application
to Matrix Triangularization and SVD. IEEE Trans. Computers, 39(6):725-740,
June 1990.

L. M. Ewerbring and F. T. Luk. Computing the Singular Value Decomposition
on the Connection Machine. IEEE Trans. on Computers, 39(1):152-155, January
1990.

A. M. Finn. Systolic Array Computation of the Singular Value Decomposition.
PhD thesis, School of Electrical Engineering, Cornell Univ., Ithaca, NY, May
1983.

A. M. Finn, F. T. Luk, and C. Pottle. Systolic Array Computation of the Singular
Value Decomposition. Proc. SPIE. Vol. 3{1. Real-Time Signal Processing V,
pages 34-43, 1982.

M. J. Flynn. Very High Speed Computing Systems. Proceedings of the IEEE,
Vol. 54:1901-1909, 1966.

G. E. Forsythe and P. Henrici. The Cyclic Jacobi Method for Computing the
Principal Values of a Complex Matrix. Transactions of the American Mathemat-

ical Society, 94(1):1-23, January 1960.

107

[33] B.S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matriz Figensystem
Routines ~ EISPACK Guide Extension. Springer-Verlag, Berlin, 1977.

[34] W. M. Gentleman and H. T. Kung. Matrix Triangularization by Systolic Arrays.
Proc. SPIE Real-Time Signal Processing IV, 298:19-26, August 1981.

[35] G. H. Golub and W. Kahan. Calculating the Singular Values and Pseudo-inverse
of a Matrix. J.\"SIAM Ser. B: Numer. Anal. 2, pages 205-224, 1965.

[36] G. H. Golub and C. F. Van Loan. Matriz Computations, Second Edition. Johns
Hopkins Univ. Press, Baltimore, MD, 1989.

[37] G. H. Golub and C. Reinsch. Singular Value Decomposition and Least-squares
Solutions. In J. H. Wilkinson and C. Reinsch, editors, Handbook for Auto-
matic Computation. Vol. 2 (Linear Algebra), pages 134-151. Springer-Verlag,
New York, 1971.

[38] J. Greenstadt. A Method for Finding Roots of Arbitrary Matrices. Math. Tables
Aids Comput., 9:47-52, 1955,

[39] E. R. Hansen. On Cyclic Jacobi Methods. J. Soc. Indust. Appl. Math, 11:448—
459, 1963.

[40] G. L. Haviland and A. A. Tuszynski. A CORDIC Arithmetic Processor Chip.
IEEFE Trans. Computers, C-29(2):68-79, Feb. 1980.

[41] D. E. Heller and I. Ipsen. Systolic Networks for Orthogonal Decompositions.
SIAM J. Sci. Statist. Comput., 4:261-269, 1982.

[42] N.D. Hemkumar, K. Kota, and J. R. Cavallaro. CAPE - VLSI Implementation of

a Systolic Processor Array: Architecture, Design and Testing. Proceedings of the

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

108

Ninth Biennial University/Government/Industry Microelectronics Symposium,

June 1991 (to appear).

M. R. Hestenes. Inversion of Matrices by Biorthogonalization and Related Re-

sults. J. Soc. Indust. Appl. Math, 6:51-90, 1958.

S. Hitotumatu. Complex Arithmetic through CORDIC. Kodai Math. Sem. Rep.,
26:176-186, 1975.

I. Ipsen. Singular Value Decomposition with Systolic Arrays. Proc. SPIE Real-
Time Signal Processing, 495(VII):13-21, August 1984.

D. H. Johnson. The Application of Spectral Estimation Methods to Bearing
Estimation Problems. Proceedings of the IEEE, 70(9):1018-1028, September
1982.

L. Johnsson. A Computational Array for the QR-method. Proc. 1982 Conf. on
Advanced Research in VLSI, pages 123-129, MIT, Cambridge, MA (1982).

S. L. Johusson and V. Krishnaswamy. Floating-Point CORDIC. Technical Re-
port YALEU/DCS/RR-473, Dept. of Computer Science, Yale Univ., New Haven,
CT, April 1986.

E. G. Kogbetliantz. Solution of Linear Equations by Diagonalization of Coeffi-
cients Matrix. Quarterly of Applied Mathematics, 14(2):123-132, 1955.

K. Kota. Architectural, Numerical and Implementation Issues in the VLSI Design
of an Integrated CORDIC SVD Processor. Master’s thesis, Rice University,

Department of Electrical and Computer Engineering, May 1991.

H. T. Kung. Why Systolic Architectures? JEEE Computer, 15(1):37-46, January
1982.

109

[62] H. T. Kung and C. E. Leiserson. Systolic Arrays (for VLSI). Sparse Matriz
Symposium, pages 256-282, STAM, 1978.

[53] S. Y. Kung. VLSI Array Processors. Prentice Hall, 1987.

[64] S. Y. Kung. On Supercomputing with Systolic/ Wavefront Array Processors.
IEEE Proceedings, 72(7):867-884, July 1984.

[65] S. Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. V. Bhaskar Rao. Wavefront
Array Processor: Language, Architecture, and Applications. IEEE Trans. on

Computers, C-31(11):1054-1066, November 1982.

[66] M. Lotkin. Characteristic Values of Arbitrary Matrices. Quarterly of Applied
Mathematics, 14(3):267-275, 1956.

[67] F.T.Luk. A Triangular Processor Array for Computing Singular Values. Journal
of Linear Algebra and Its Applications, 77:259-273, 1986.

[58] F. T. Luk. A Rotation Method for Computing the QR-Decomposition. SIAM
Journal of Scientific and Statistical Computing, 7(2):452-459, April 1986.

[69] F. T. Luk. Computing the Singular Value Decomposition on the ILLIAC IV.
ACM Transactions on Mathematical Software, 6(4):524-539, December 1980.

[60] F. T. Luk and H. Park. A Proof of Convergence for Two Parallel Jacobi SVD
Algorithms. IEEE Trans. on Computers, 38(6):806-811, June 1989.

[61] J. E. Meggitt. Pseudo Division and Pseudo Multiplication Processes. IBM J.,
pages 210-226, April 1962.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

110

J. Moreno. Analysis of Alternatives for a Singular Value Decomposition Proces-
sor. Master’s thesis, Computer Science Department, Univ. of California at Los

Angeles, Los Angeles, CA, October 1985.

J. M. Muller. Methodologies de Calcul des Functions Elementaires. Technical
report, Institute National Polytechnique de Grenoble, December 1985.

C. M. Rader. Wafer-Scale Systolic Array for Adaptive Antenna Processing, IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, pages 2069-2071, April
1988.

A. H. Sameh. Solving the Linear Least Squares Problem on a Linear Array
of Processors. Proc. Purdue Workshop on Algorithmically-specialized Computer

Organizations, 1982.

A. H. Sameh. On Jacobi and Jacobi-Like Algorithms for a Parallel Computer.
Mathematics of Computation, 25(115):579-590, July 1971,

R. Schreiber. On the Systolic Arrays of Brent, Luk, and Van Loan. Proc. SPIE
Real-Time Signal Processing, 431(V1):72-76, August 1983.

R. Schreiber. A Systolic Architecture for Singular Value Decomposition. Proc.
1st Internat. Coll. on Vector and Parallel Computing in Scz'eﬁtz'ﬁc Applications,
Paris, France, March 1983.

Y. S. Shim and Z. H. Cho. SVD Pseudo Inversion Image Reconstruction. JEFE
Trans. Acoustics, Speech, and Signal Processing, pages 904-909, August 1981.

L. H. Sibul. Application of Singular Value Decomposition to Adaptive Beamform-
ing. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2:33.11.1-33.11.4,
March 1984.

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

111

L. H. Sibuland A. L. Fogelsanger. Application of Coordinate Rotation Algorithm
to Singular Value Decomposition. IEEE Int. Symp. Circuits and Systems, pages
821-824, 1984.

J. M. Speiser and H. J. Whitehouse. Parallel Processing Algorithms and Archi-
tectures for Real-Time Signal Processing. Proc. SPIE' Real-Time Signal Process-

ing, 298(IV):2-9, August 1981.

J. M. Speiser and H. J. Whitehouse. A Review of Signal Processing with Systolic
Arrays. Proc. SPIE Real-Time Signal Processing, 431(VI):2-6, August 1983.

G. W. Stewart. A Jacobi-Like Algorithm for Computing the Schur Decompo-
sition of a Nonhermitian Matrix. SIAM Journal of Scientific and Statistical
Computing, 6(4):853-864, October 1985.

Thinking Machines. Connection Machine, Introduction to Programming in

C/Paris. Thinking Machines Corporation, Cambridge MA, 1990.

Thinking Machines. Connection Machine, Model CM-2 Technical Summary.
Thinking Machines Corporation, Cambridge MA, 1990.

Thinking Machines. Connection Machine, Programming in C*. Thinking Ma-
chines Corporation, Cambridge MA, 1990.

J. D. Ullman. Computational Aspects of VLSI. Computer Science Press,
Rockville, MD, 1984.

A. J. Van der Veen and E. F. Deprettere. A Parallel VLSI Direction Finding
Algorithm. Proc. SPIE Advanced Algorithms and Architectures for Signal Pro-
cessing, 975(111):289-299, August 1988.

112

[80] J. Volder. The CORDIC Trigonometric Computing Technique. IRE Trans.
FElectronic Computers, EC-8(3):330-334, Sept. 1959.

[81] J. S. Walther. A Unified Algorithm for Elementary Functions. AFIPS Spring
Joint Computer Conf., pages 379-385, 1971.

[82] J. H. Wilkinson. Note on the Quadratic Convergence of the Cyclic Jacobi Pro-
cess. Numer. Math., 4:296-300, 1962.

[83] B. Yang and J. F. Béhme. Reducing the Computations of the SVD Array given
by Brent and Luk. SPIE Advanced Algorithms and Architectures for Signal
Processing IV, 1152:92-102, 1989.

