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A SZPILRAJN - MARCZEWSKI TYPE THEOREM FOR

CONCENTRATION DIMENSION ON POLISH SPACES

Józef Myjak, Tomasz Szarek and Maciej Ślȩczka

Abstract. Let X be a Polish space. We will prove that

dimT X = inf{dimL X′ : X′ is homeomorphic to X},

where dimL X and dimT X stand for the concentration dimension and the

topological dimension of X, respectively.

1. Introduction

In [11] a new concept of dimension of measures, defined by means of
the Lévy concentration function (see [7]), has been investigated. This
dimension, called concentration dimension, has some important properties.
It is related to mass distribution principle (see [3]), it is relatively easy
to calculate and it is also strongly related to the Hausdorff dimension.
More precisely, the Hausdorff dimension is greater than or equal to the
concentration dimension. Moreover, the Hausdorff dimension of a compact
set K is equal to the supremum of the lower concentration dimension of
measures µ where the supremum is taken over all probability measures µ
such that suppµ ⊂ K.

The connection between the Hausdorff dimension and the topological
dimension was made evident in the case of Rn space by V.G. Nöbeling
(see [14]) and in more general setting by Szpilrajn in 1937 (see [9, 16]).
Similar connections between the concentration dimension and the topolog-
ical dimension have been established in [12] in the case of locally compact
metric spaces. In this paper we will generalize these results to the case of
Polish spaces. Note also that the relation between Hausdorff dimension
and packing dimension was studied in [10] while the generic properties of
concentration dimension have been investigated in [13].
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2. Notation, preliminaries and auxiliary results

Throughout this paper (X, ρ) denotes a Polish (i.e. separable complete
metric) space. By B(x, r) (resp. Bo(x, r), S(x, r)) we denote the closed
ball (resp. the open ball and the sphere) in X with center at x and radius
r. By dimH X and dimT X we denote the Hausdorff dimension and the
topological dimension of X, respectively.

By B(X) we denote the σ–algebra of Borel subsets of X and by M(X)
the family of all finite Borel measures on X. Moreover, by M1(X) we
denote the family of all µ ∈ M(X) such that µ(X) = 1 and by M≤1(X)
the family of all measures µ ∈M(X) such that 0 < µ(X) ≤ 1.

Given a measure µ ∈M1(X) we define the lower and upper concentra-
tion dimension of µ by the formulas

dimLµ = lim inf
r→0

logQµ(r)
log r

,

dimLµ = lim sup
r→0

logQµ(r)
log r

,

where

Qµ(r) = sup{µ(A) : diamA ≤ r, A ∈ B(X)} for r > 0.

Recall that Qµ is the well known Lévy concentration function frequently
used in the theory of random variables (see [7]).

The concentration dimension of X is defined by the formula

(1) dimLX = sup
µ∈M1(X)

dimLµ

Finally, recall that dimH µ for µ ∈ M1(X) denotes the Hausdorff di-
mension of µ, i.e., dimH µ = inf{dimH A : A ∈ B(X) and µ(A) = 1}.

Given an arbitrary function f : A→ [0,∞], where A is a Borel subset of
R, we denote by Ff the set of all Borel measurable functions φ : A→ [0,∞]
such that φ(λ) ≥ f(λ) for λ ∈ A. By the upper integral of f we mean the
value ∫

A

f(λ)dλ = inf
φ∈Ff

∫
A

φ(λ)dλ.

The following result can be found in [11].

Proposition 1. For every µ ∈M1(X) we have

dimH µ ≥ dimLµ.

Moreover
dimH X ≥ dimLX.

The following property of outer measures will be useful for futher con-
siderations.
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Lemma 2. Let µ be a nontrivial outer measure. Then there exists a
compact set K ⊂ X such that µ(K) > 0.

Proof. For A ⊂ X and δ > 0 define

µδ(A) = inf
{ ∞∑

n=1

µ(Un) : A ⊂
∞⋃

n=1

Un,

where Un are closed sets with diamUn ≤ δ
}

and
µ0(A) = lim

δ→0
µδ(A).

It is easy to check that µ0 is a nontrivial outer metric measure (see [15]).
Therefore µ0 restricted to all Borel sets is a measure. From Ulam’s theorem
(see [1]) it follows that there exists a compact set K such that µ0(K) > 0.
Hence there exists δ0 > 0 such that µδ0(K) > 0. Consequently, since K is
compact, there exists x ∈ K such that µ(K ∩B(x, δ0/2)) > 0. �

3. Results

We are in a position to formulate the crucial result for our work. It
is similar in spirit to Frostman’s lemma which says that if Hα(K) > 0,
where Hα denotes the α–Hausdorff measure and K ⊂ Rd is a closed set,
then there exists a nonzero Borel measure µ supported on K such that
µ(D) ≤ (diamD)α for all Borel sets D (see [6]). Much simpler than
Frostman’s original proof (based on the MaxFlow-MinCut Theorem) can
be found in [5]. Our approach depends on Banach limits and the Riesz
representation theorem (for futher discussion see [8]).

Proposition 3. Suppose that dimT X ≥ d, where d ∈ N ∪ {0}. Then
there exists a Borel measure µ ∈M≤1(X) such that

(2) µ(B(x, r)) ≤ rd for every x ∈ X and r > 0.

Proof. We use an induction argument with respect to d. For d = 0 condi-
tion (2) obviously holds for every measure µ ∈M≤1(X). Assume that the
statement of Proposition 3 holds for d = k. We will prove that it holds for
d = k+ 1. By the definition of topological dimension (see [2]) there exists
x0 ∈ X and λ0 > 0 such that dimT S(x0, λ) ≥ k for every λ ∈ (0, λ0].
Without any loss of generality we can assume that λ0 < 1. Fix arbitrary
λ ∈ (0, λ0] and set Xλ = S(x0, λ). By the induction hypothesis there
exists a nontrivial Borel measure µ̃λ on Xλ such that

(3) µ̃λ(Xλ) ≤ 1 and µ̃λ(Bλ(x, r)) ≤ rk

for every x ∈ Xλ and r > 0, where Bλ(x, r) stands for the closed ball in
the space Xλ with the center at x ∈ Xλ and radius r.
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For every λ ∈ (0, λ0] fix a measure µ̃λ ∈M≤1(Xλ) satisfying condition
(3) and then define the measure µλ : B(X) → [0, 1] by the formula

µλ(A) = µ̃λ(A ∩Xλ) for A ∈ B(X).

Clearly µλ ∈M≤1(X), suppµλ ⊂ S(x0, λ) and

(4) µλ(B(x, r)) ≤ 2krk for every x ∈ X and r > 0.

Now define the function ϕ : B(X) → R by the formula

ϕ(A) =
∫

(0,λ0)

µλ(A)dλ for A ∈ B(X).

Clearly ϕ(∅) = 0 and ϕ
(
X \B(x0, λ0)

)
= 0. Moreover, from the definition

of upper integrals, it follows that

ϕ
(
B(x0, λ0)

)
> 0

and

ϕ(
∞⋃

i=1

Ai) ≤
∞∑

i=1

ϕ(Ai) for Ai ⊂ X, i ∈ N.

Now consider the function µ̃ : 2X → R given by

µ̃(E) = inf
{
ϕ(A) : A ∈ B(X), A ⊃ E

}
.

It is routine to see that µ̃ is an outer measure and µ̃
(
B(x0, λ0)

)
> 0. By

Lemma 2 there exists a compact set K ⊂ B(x0, λ0) such that µ̃(K) > 0.
Obviously

(5)
∫

(0,λ0)

µλ(K)dλ > 0.

For n ∈ N and i ∈ {1, . . . , n} we define

αn,i = sup
{
µλ(K) : λ ∈

(
(i−1)λ0

n , iλ0
n

]}
.

Let

(6) νn =
λ0

n

n∑
i=1

µn,i for n ∈ N,

where µn,i = µλn,i with λn,i ∈
(

(i−1)λ0
n , iλ0

n

]
and such that

(7) µλn,i
(K) ≥ αn,i

2
.
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By (6) and (7) we have

(8) 2νn(K) =
2λ0

n

n∑
i=1

µn,i(K) ≥ λ0

n

n∑
i=1

αn,i.

Consider the function ψ : (0, λ0] → (0,∞) given by

ψ(λ) =
n∑

i=1

αn,i · 1( (i−1)λ0
n ,

iλ0
n

](λ).

Clearly ψ is Borel measurable and ψ(λ) ≥ µλ(K) for λ ∈ (0, λ0]. Thus by
(8), the definition of the upper integral and (5) we have

(9) 2νn(K) ≥ λ0

n

n∑
i=1

αn,i =
∫ λ0

0

ψ(λ)dλ ≥
∫

(0,λ0)

µλ(K)dλ > 0.

Define the positive linear functional Λ : C(K) → R by the formula

Λ(f) = L
((∫

K

fdνn

))
for f ∈ C(K),

where L is a Banach limit (see [4]) and C(K) stands for the space of
continuous functions f : K → R. By the Riesz representation theorem
there exists the unique measure µ∗ such that

Λ(f) =
∫

K

fdµ∗ for f ∈ C(K).

From inequality (9) it follows that Λ 6= 0 and consequently µ∗ 6= 0. To
finish the proof it sufficies to verify that the measure µ = µ∗/2k+1 satisfies
condition (2) with d = k + 1. To this end, fix an arbitrary x ∈ X and
r > 0 and consider the ball B(x, r). For n ∈ N define

i(n) = min Jn and i(n) = max Jn,

where
Jn =

{
1 ≤ i ≤ n : B(x, r) ∩ S(x0, λn,i) 6= ∅

}
.

If Jn = ∅ we admit i(n) = i(n) = 0.
It can be verify that

(10)
λ0

n

(
i(n)− i(n)

)
≤ 2r +

λ0

n
.

Further, by (6) and the construction of measure µn,i we have

νn(B(x, r) =
λ0

n

n∑
i=1

µn,i(B(x, r)) =
λ0

n

i(n)∑
i=i(n)

µn,i(B(x, r))
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and now, using (4) and (10) we obtain

(11) νn(B(x, r)) ≤ λ0

n
2krk

(
i(n)− i(n) + 1

)
≤ 2k+1rk+1 +

λ0

n
2k+1rk.

Fix η ∈ (0, r) and let f ∈ C(K), |f | ≤ 1, be such that f(y) = 1 for
y ∈ B(x, r − η) ∩K and f(y) = 0 for y /∈ B(x, r) ∩K. Then

µ∗(B(x, r − η)) ≤ Λ(f) = L
((∫

K

fdνn

))
≤ lim sup

n→∞
νn(B(x, r))

Consequently, by (11) we have

µ∗(B(x, r − η)) ≤ lim sup
n→∞

(
2k+1rk+1 +

λ0

n
2k+1rk

)
= 2k+1rk+1,

and since η ∈ (0, r) and r > 0 were arbitrary, we have

µ∗(B(x, r)) ≤ 2k+1rk+1 for all r > 0.

Keeping in mind the definition of µ we obtain

µ(B(x, r)) ≤ rk+1.

Since x ∈ X was arbitrary, the proof is complete. �

Proposition 4. Let X be a Polish space with dimT X < ∞. Then there
exists a measure µ∗ ∈M1(X) such that

dimLµ∗ ≥ dimT X.

Proof. We can assume that X 6= ∅. Set d = dimT X. By Proposition 3
there exists a measure µ ∈ M≤1(X) such that µ(B(x, r)) ≤ rd for every
x ∈ X and r > 0. Define µ∗ = µ/µ(X). Clearly µ∗ ∈M1(X) and

µ∗(B(x, r)) ≤ (µ(X))−1rd for every x ∈ X and r > 0.

Hence
Qµ∗(r) ≤ (µ(X))−1rd for r > 0

and consequently

dimLµ∗ = lim inf
r→0

lnQµ∗(r)
ln r

≥ lim inf
r→0

d ln r − lnµ(X)
ln r

= d. �
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Corollary 5. Let X be a Polish space. Then

dimLX ≥ dimT X.

Proof. In the case dimT X < ∞ the assertion follows immediately from
Proposition 4. If dimT X = ∞, then from Proposition 3 it follows that
for every n ∈ N there exists µn ∈ M1(X) such that µn(B(x, r)) ≤ rn for
arbitrary x ∈ X and r > 0. Hence µ̃n = µn/µn(X) satisfies

dimLµ̃n ≥ n

and consequently
dimLX = ∞. �

Corollary 6. (Szpilrajn, [16]). Let X be a Polish space. Then

dimH X ≥ dimT X.

Proof. From inequality dimH X ≥ dimH µ, µ ∈ M1(X), Proposition 3
and the definition of the concentration dimension of X it follows that
dimH X ≥ dimLX. From this and Corollary 5 the statement follows. �

Proposition 7. If dimT X = ∞, then there exists µ ∈ M1(X) such that
dimH µ = ∞.

Proof. Let (µn)n≥1, µn ∈ M1(X), be such that dimLµn ≥ n. Such mea-
sures exist by virtue of Proposition 3. Define

µ =
∞∑

n=1

µn/2n

and observe that

dimH µ ≥ dimH µn for n ∈ N.

Indeed, fix A ∈ B(X) such that µ(A) = 1. Clearly µn(A) = 1 for arbitrary
n ∈ N. Thus

dimH A ≥ dimH µn ≥ dimLµn for n ∈ N

and consequently dimH A ≥ n. Since A ∈ B(X) with µ(A) = 1 was
arbitrary, hence dimH µ ≥ n. In turn, since n ∈ N was arbitrary, it follows
that dimH µ = ∞. �
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Theorem 8. Let X be a Polish space. Then

dimT X = inf{dimLX
′ : X ′ is homeomorphic to X}.

Proof. Set d = dimT X. We can assume that d < ∞. By Proposition 4
for every X ′ homeomorphic to X, we have

(12) dimLX
′ ≥ d.

On the other hand, it follows from [9, Theorem VII.5] that if we let X ′

range over all the spaces homeomorphic to a given space X, then

(13) inf{dimH X ′} = d.

The assertion of Theorem 8 follows immediately from Proposition 1 and
relations (12) and (13). �

Finally we will show that the assumption dimT X < ∞ in Proposition
4 can not be dropped. Indeed, we have the following counterexample.

Counterexample. Let
(
(X̂n, ρ̂n)

)
n≥1

be a sequence of compact metric

spaces such that dimT X̂n = n. From Theorem 8 it follows that for every
n ∈ N there exists a space (Xn, ρn) homeomorphic to (X̂n, ρ̂n) such that

(14) dimLXn ≤ n+ 1.

Without loss of generality we can assume that ρn(x, y) < 1
2 for x, y ∈ Xn.

Set

X =
∞⋃

n=1

Xn

and define ρ : X ×X → [0, 1] by the formula

ρ(x, y) =
{
ρn(x, y) if x, y ∈ Xn for some n ∈ N,
1 otherwise.

It is easy to check that ρ is a metric on X, dimT X = ∞ and {Xn : n ∈ N}
is a family of closed disjoint subsets of (X, ρ).

We claim that dimLµ < ∞ for arbitrary µ ∈ M1(X). Suppose, for a
contradiction, that dimLµ = ∞ for some µ ∈M1(X). Since

1 = µ(X) = µ
( ∞⋃

n=1

Xn

)
=

∞∑
n=1

µ(Xn),

there exists n0 ∈ N such that µ(Xn0) > 0. Set X0 = Xn0 and consider the
measure µ̂ ∈M1(X0) given by

µ̂(A) = µ(A)/µ(X0) for A ∈ B(X0).
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For x0 ∈ X0 and r ∈ (0, 1) let BX0(x0, r) and BX(x0, r) stand for the balls
in X0 and X, respectively. Clearly

µ̂
(
BX0(x0, r)

)
=
µ
(
BX(x0, r) ∩X0

)
µ(X0)

≤
µ
(
BX(x0, r)

)
µ(X0)

≤ Qµ(2r)
µ(X0)

.

It follows that dimLµ̂ ≥ dimLµ = ∞ and consequently dimLXn0 = ∞,
which contradicts (14). �
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tions á la théorie des fonctions, Maddel. Lunds Univ. Mat. Sem. 3 (1935), 1–118.

[7] W. Hengartner and R. Theodorescu, Concentration Functions, Academic Press, New
York - London, 1973.

[8] J.D. Howroyd, On dimension and on the existence of sets of finite positive Hausdorff

measure, Proc. London Math. Soc. 70 (1995), 581–604.
[9] W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941.

[10] H. Joyce, A relationship between packing and topological dimensions, Mathematika

45 (1998), 43–53.
[11] A. Lasota and J. Myjak, On a dimension of measures, Bull. Polish Acad. Math.

50 (2002), 221–235.

[12] J. Myjak and T. Szarek, Szpilrajn type theorem for concentration dimension, Fund.
Math. 172 (2002), 19–25.

[13] J. Myjak and T. Szarek, Some generic properties of concentration dimension of

measure, Boll. Un. Mat. Ital. (8), 6-B (2003), 211-219.
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