A Ta₂O₅ Solid-Electrolyte Switch with Improved Reliability

TOSHI-TSUGU SAKAMOTO

Device Platforms Res. Labs. & Nano Electronics Res. Labs., NEC Corp.

- Introduction
 - Background
 - FPGA with high performance (programmable CBIC)
 - Switching mechanism (Cu₂S-NanoBridge)
 - Issues: low switching voltage & poor reliability
- Switching voltage
 - Concept to increase switching voltage
 - Ta₂O₅-NanoBridge
 - Observation of conducting path
- **ON-state reliability**
 - Improved reliability by using Ta₂O₅
 - Formula for ON state reliability
 - Trade-off between Reliability & Switching current
- Conclusion

Background: two ASIC platforms

Breakthrough in programmable switch

- Negligible switch area & small logic cell
- Low chip cost, high performance

Solid electrolyte switch ("NanoBridge")

...based on Atomic Switch (NIMS)

- Ag atom precipitates when positive voltage is biased on Ag.
- Formation and annihilation of atomic bridge changes conductance in units of 2e²/h.

K.Terabe, et al., Nature 433, 47 (2005)

Features of solid-electrolyte switch

- Low ON resistance : metallic bridge
- Small: thin bridge (<30nm)
- Simple structure (4F²)

Features of Cu₂S solid-electrolyte switch

Meet the demand for programmable logic?

	<u> </u>	3
Parameter	Cu ₂ S	NanoBridge
ON resistance	OK	(<100 Ω)
Switch size	OK	(4F ²)
Switching speed	OK	(<10µsec)
Cycling endurance	OK	(10^3-10^5)
Turn-on voltage	NG	(~0.2V)
Retention	NG	(<3month)
Process compatible	e NG	
Switching current	NG	(>3mA)

Breakthrough in Material (Ta₂O₅)

- Introduction
 - Background
 - FPGA with high performance (programmable CBIC)
 - Switching mechanism (Cu₂S-NanoBridge)
 - Issues: low switching voltage & poor reliability
- Switching voltage
 - Concept to increase switching voltage
 - Ta₂O₅-NanoBridge
 - Observation of conducting path
- **ON-state reliability**
 - Improved reliability by using Ta₂O₅
 - Formula for ON state reliability
 - Trade-off between Reliability & Switching current
- Conclusion

What determines switching voltage?

Cu⁺ supply and chemical reaction are involved. Which determines switching voltage?

Cu-ion diffusion rate with chemical reaction vs. the rate without reaction.

1000/T [K-1]

Diffusion rate determines switching voltage.

1000/T (K⁻¹)

Concept to increase switching voltage

Cu⁺ supply _{cc} Cu⁺ concentration X diffusion rate.

- Material with very low diffusion rate is needed.
- Ta₂O₅: good compatibility with LSI process
- 0.65V or larger is expected for Ta₂O₅.

IV characteristics

Origin of current path

■ Resistive switching is attributed to formation of Cu bridge.

Temperature dependence of OFF resistance

- Before p/e, R_{OFF} exponentially increases with T (not shown).
- After p/e, R_{OFF} weakly depends on T.
- Single-electron charging effect is observed.

Current controlled by nMOSFET

- V_{IN}>0 : Current is controlled by nMOSFET.
- Switching time

Switching time distribution

■ Switching time depends on input voltage and distributes between 10 to 100µsec for V_{ON}=4, V_{OFF}=-2.5V.

Cycling endurance

■ Cycling endurance > 10⁴

- Introduction
 - Background
 - FPGA with high performance (programmable CBIC)
 - Switching mechanism (Cu₂S-NanoBridge)
 - Issues: low switching voltage & poor reliability
- Switching voltage
 - Concept to increase switching voltage
 - Ta₂O₅-NanoBridge
 - Observation of conducting path
- ON-state reliability
 - Improved reliability by using Ta₂O₅
 - Formula for ON state reliability
 - Trade-off between Reliability & Switching current
- Conclusion

ON-state reliability

- ON state reliability of NanoBridge should be comparable to Cu plug in LSI interconnection.
- ON state reliability could depend on :
 - ON conductance (thickness of Cu bridge)
 - Bias current or voltage
 - Biasing polarity
 - Ambient temperature.

Formulate ON-state duration & Check it out!

ON-state duration (ton) under DC current stress

Dependence on V₀ or G_{ON}

■ ON-state duration depends on V_0 (= I_{STRESS}/G_{ON}).

Dependence on V₀ or G_{ON} (summary)

Dose ton change with varying Gon or V₀?

G_{ON} V_0	Varied	fixed
fixed	YES	NO
Varied	YES	NO

■ ON-state duration depends on V_0 (= I_{STRESS}/G_{ON}).

V₀ for 10 years duration

Median of ON-state duration (t_{50}) vs. V_0 for different G_{ON}

■ ON state persists for 10 years when V_0 <50 mV.

Dependence on Temperature

Temperature dependence of median of duration

■ Activation energy (E_a) is about 0.48 eV.

Formula of ON-state duration

ON-state duration's formula derived from t_{on}(V₀) & t_{on}(T)

$$t_{ON} \propto V_0^{-n} \& \exp(E_a/kT)$$

$$t_{ON} = A \cdot V_0^{-n} \cdot exp(E_a/kT)$$

= $A \cdot (I_{STRESS}/G_{ON})^{-n} \cdot exp(E_a/kT)$
$$\begin{cases} A : Constant \\ n = 12 \text{ (voltage exponent)} \\ E_a = 0.48eV \end{cases}$$

Comparison with formula for Cu interconnection in LSI

TTF (Time to Failure) =
$$B \cdot I_{STRESS}^{-n} \cdot exp(E_a/kT)$$

(Black's law)

Consider the requirements of reliability of Cu plug in LSI;

ON state duration :
$$t_{ON} > 10$$
years

Temperature : $T = 105$ °C

Maximum current : $I_{STRESS} > 0.2$ mA.

■ Substitute values for A, N, and E_a of t_{ON} (99.9% of devices)

$$t_{ON} = 2.8 \times 10^{-21} \cdot (I_{STRESS}/G_{ON})^{-12} \cdot exp(0.48/kT).$$

$$t_{ON} = 7.0 \times 10^{-15} \cdot (l_{STRESS}/G_{ON})^{-12} > 10 \text{ years}$$

 $l_{STRESS} = 1.4 \times 10^{-2} \cdot G_{ON} > 0.2 \text{ mA}$
 $G_{ON} > 14 \text{ mS} (R_{ON} < 71.4 \Omega)$

Trade-off between reliability and switching current 28

ON state reliability improves with G_{ON}.

.. But, switching current increases.

Thin Cu bridge (Low G_{ON})

Thick Cu bridge (High G_{ON})

- Poorly reliable
- Low switching current

- Highly reliable
- Large switching current

Turn-off current versus ON conductance

 $I_{OFF} = 0.2 \text{ x G}_{ON} < 5\text{mA}$ (Minimum current for antifuse) $G_{ON} < 28\text{mS} (R_{ON} > 41.7\Omega)$

Suitable G_{ON} for FPGA

$$\begin{cases} I_{OFF} = 0.2 \text{ x } G_{ON} < 5\text{mA} \\ I_{max} = 1.4 \times 10^{-2} \cdot G_{ON} > 0.2 \text{mA} \end{cases}$$

 G_{ON} : 14 – 28mS R_{ON}: 41.7 - 71.4Ω

Summary of properties

Parameter Name	Cu ₂ S switch ¹⁾	Ta ₂ O ₅ switch
ON resistance	OK (<100)	OK (<100)
Switch size	OK (4F ²)	OK (4-8F ²)
Switching speed	OK (<10µsec)	OK (<100µsec)
Cycling endurance	$OK (10^3-10^5)$	OK (10 ⁴)
Switching voltage	NG (~0.2V)	OK (>1V)
ON-state duration	NG (<3month)	OK (>10years)
Turn-off current	NG (>3mA)	Allowable (~5mA
Process Compatibility	NG	OK

Conclusions

- We propose a compact and low resistive switch which utilizes ionic conduction.
- Enhancement in switching voltage can be achieved by ionic conductor with low diffusion rate.
- On-state reliability has been improved and its formula is obtained.

Novel switch improves performances of reconfigurable LSI without scaling down.

Acknowledgement

- National institute of materials science, NIMS Tsuyoshi Hasegawa, Kazuya Terabe, Masakazu Aono
- Dep. of Materials Eng., Tokyo Univ.Prof. Shu Yamaguchi, Prof. Satoshi Watanabe

■ Device Platforms Res. Labs., NEC Naoki Banno, Hiromitsu Hada, Naoki Kasai

■ Nano Electronics Res. Labs., NEC Noriyuki Iguchi, Shinji Fujieda

A part of this work was supported by JST via "Nanoscale quantum conductor array project".

