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Abstract 
We present a table-driven technique for decoding of the 
convolutionally encoded data. The approach can be used in 
either the feedback or the direct mode. A data-independent 
syndrome vector is generated on the transmitted bits. If it 
is dgferent from zero it is used to address pre-computed 
tables of corrections for the encoded bits. The decoding is 
performed as a separate step. When the feedback mode is 
used the error propagation is minimized by appropriate 
choice of the codes, the table construction and the decoding 
algorithms. The approach allows hardware simplicity 
comparable to majority-logic decoding, but has error 
correcting capabilities that can be made as close to the 
optimal as desired through the adjustment of the syndrome 
vector length and the correction table size. This makes the 
method very attractive for high speed satellite and network 
applications. The performance of the method can be further 
enhanced through soft detection. 

1. Introduction 

Error control techniques are increasingly being applied to 
digital communication links to enable significant 
performance improvements. These techniques enable, for 
fixcd transmit (or receive) power levels and for allowable 
crror probabilities, the transfer of more information per 
unit time. For example, a major feature of the advanced 
satcllite communications technology is the use of dynamic 
rain fadc compensation. The current error compensation 
specifications often call for a symbol rate reduction, and 
half-rate convolutional coding which results in an overall 
reduction in the data rate. Since it is envisioned that in the 
I-uture satellite data transmission rates should be in excess 
of scveral hundred Mbps, the complexity and the speed of 
the error correcting hardware will play an important role. 
Similarly, fiber-based gigabit networks would normally be 
cxpected to operate under very low noise conditions. 
However, even very occasional errors may require 
rclatively complex protocols and re-transmission of 
considcrable amounts of data. While re-transmission 
cannot be ruled out completely it may be advantageous to 

use forward error recovery to lower the already low error 
rates even further and thus greatly simplify the 
communication protocols. 

The hardware complexity required for the currently used 
error control techniques may be a problem in high speed 
applications. In this paper we discuss a possible altemative 
to the commonly employed Viterbi and sequential 
algorithms. We describe a simple and fast table look-up 
based feedback decoder1 which allows hardware simplicity 
comparable to that of majority-logic decoding, but 
provides error correcting capabilities comparable to the 
Viterbi and sequential decoding approaches. 

Section 2 briefly reviews the related work. Section 3 
describes the table-driven approach, and section 4 provides 
a summary. 

2. Summary of Related Work 

Two more widely used encoding techniques are the block 
coding and the convolutional coding [e.g. 1 and references 
therein]. Convolutional codes are generally conceded to be 
operationally better than the block codes, particularly with 
respect to ease of implementation, equipment complexity, 
power consumption, and flexibility [e.g. 21. 

Various algorithms are available for decoding 
convolutional codes. The Viterbi algorithm has received 
considerable attention [2 - 5, 135 This algorithm is 
maximum-likelihood and optimum for the decoding of 
convolutional codes. A difficulty with the Viterbi decoding 
is the fixed amount of computation always required per 
decoder information block for a given code constraint 
length, and that this effort grows exponentially with the 
code constraint length. Under low noise conditions a more 
flexible (adaptive) algorithm may be desirable. 

Sequential decoding represents an alternative procedure 
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[e.g. 1, 6 - 81. The performance of sequential coding is 
slightly less than optimal, but the decoding effort is 
basically independent of the code constraint length, so 
large constraint lengths can be used, and very low error 
probabilities can be achieved, Usually, the code constraint 
length is 20 bits or more. The number of computations 
needed to decode a frame of data is a random variable. A 
typical load figure is 1 to 2 computations per decoded bit, 
however, noisy blocks may make sequential decoding 
impractical by requiring excessive computations to retrieve 
transmitted data. 

An algebraic approach called majority-logic or threshold 
decoding can also be applied to convolutional codes [ 1,9]. 
Majority-logic decoding differs from Viterbi and sequential 
decoding in the fact that the error detection process is 
data-independent, and that the final decision it1 an 
information block is based on only one constraint length 
of the received blocks rather than on the entire received 
sequence. Because of the latter, majority-logic decoding 
usually results in inferior performance when compared 
with Viterbi or sequential decoding where the correction 
decisions are made based on at least five constraint lengths. 
On the other hand, the implementation of a threshold 
decoder is much simpler, and it typically needs only one 
computation (cycle) per bit. 

In all three approaches some of the more important design 
parameters are the code constraint length which heavily 
determines the ability to detect errors, the coding rate, i.e. 
the applied information redundancy, and the number of 
receiver quantization levels which can provide further 
enhancement such as weighting of each bit change by the 
signal to noise ratio for that bit, i.e. soft detection reg. 101 

An ideal decoder would have performance approaching 
maximum-likelihood, but would have hardware complexity 
and speed comparable to a majority-logic decoder. We now 
discuss an approach which may provide such a 
combination. 

3. Table-Driven Decoding 

We will explain the table-driven decoder using examples 
based on half-rate non-systematic codes. However, the 
technique can be used with any coding rate and with both 
systematic and non-systematic codes, although the 
performance is superior when non-systematic codes are 
used. For illustration a 2/3 coding example will bc given 
without detailed explanations. 

3.1 One-to-one Mapping 

The table-driven decoding method is based on the 

existence of a one-to-one mapping of a set of encoded bits 
and a set of data bits. Even though the encoded bits in half- 
rate coding are generated at twice the information data rate, 
it is possible to find a relationship between the encoded 
bits and the data which involves the same number of bits. 

Iteration No. of Data Bits No. of Encoded bits 
0 L 2 
1 L+ 1 4 
2 L+2 6 

n L+n 2(n+l) 
". 

Figure 1. On-to-one mapping in half-rate encoding with 
constraint length L. 

Consider production of the encoded bits during half-rate 
encoding with constraint length (or code length) L (Figure 
1). The first L data bits produce two encoded bits. Each 
additional data bit produces two more encoded bits. A 
necessary condition for the one-to-one mapping is that 
the number of data bits and encoded bits be the same (i.e. 
same number of elements is needed in each set). By 
requiring the number of the data and the encoded bits in the 
nth iteration to be equal, and solving for n we have 

L+n = 2(n+l) 

n = L-2. 

Therefore, L+L-2 = 2L-2 = 2(L - 1) data and encoded bits 
are needed for uniquely resolving a message encoded with 
code of length L, and 2(L-1) bits must be taken at a time 
for it to be possible to have a one-to-one mapping. Since 
each bit can be in one of the two states, the number of 
elements in each mapping set is 22(L-1). However, a 
reduced set of 2(L-1) independent basis elements can be 
used to obtain an element of the complete mapping set by 
combining the basis elements (vectors) through the 
exclusive-OR operations. 

To illustrate the ideas we use as an example code of length 
L = 3. Let the two code words for half-rate coding be 
C1 = 01 1 and C2 = 11 1. The number of bits necessary for 
one-to-one mapping is 2k-1)  = 4. Hence, in this simple 
example there are 22(L-1) = 16 elements in the complete 
mapping table, or four elements in the reduced table. It is 
easy to determine the table relationships if one starts with 
each of the 4 bit combinations of the data and applies the 
two code words to obtain the related 4 encoded bits. The 
process is illustrated in Figure 2 where P i  and P2 denote 
the encoded bits produced by half-rate encoding. 

The rssulting full table is shown in Figure 3, and it is 
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easy to see that it can be constructed by using the 
cxclusive-OR operation to combine one, or more, of the 
four basis data vectors (0001,0010,0100, 1000) and their 
corresponding encoded bit vectors. 

arity Bits First Yair Second Yair 

Data In :  101101 .... 
C1 mask A N D 0 1 1  
XOR 3 bits 001 = 1 = P1 

101101 ... 
- 01 1 
o l l = o = P ]  

Data In :  101101 .... 101101 ... 
Cz mask 
XOR 3 bits 

Figure 2. The process of half-rate encoding 

Full Encoding Table 
Encoded Bits Data 

0 

i 

14 

4 
5 
6 
7 
8 
9 
10 

it 

0000 

ii$ 

!Pi4 

0100 
0101 
01 10 
0111 
1000 
1001 
1010 

Hi? 
~~ 

Reduced Encoding Table 
Data Encoded Bits 

1 000 1 
2 0010 
4 0100 
8 1000 

0011 
1111 
1101 
0100 

Figure 3. Full and reduced encoding tables. 

For example, the output (data = 1011 ..., encoded bits = 
1000) could have been obtained by exclusive-OR (XOR) of 
the "data" basis elements of 1000,0010 and 0001, i.e. 

Data: 1000 XOR OOlOXOR 0001 = 1011 
Encoded Bits: 0100 XOR 1111 XOR 0011 = 1000 

Converting the data bits into the encoded bits is relatively 
easy, and can be implemented in very simple ways. 
However, converting the encoded bits back into the data 
bits (with error correction) is normally a more difficult 
operation. In our case, this can be easily accomplished 
conceptually using a reduced table consisting of the basis 
clements of the encoded bits instead of the data bits2. 

Rcduccd decoding table - Encoded bits: 0001, 0010, 0100, 
1000; corresponding Data: 0111, 0110, 1000, 1011. 

The sufficient condition for unique table-based 
conversion of encoded bits to data is that the encoded bits 
matrix of the reduced encoding table for codes C1 and C2 
can be transformed3 to an identity matrix of order 2(L-1). 
When the same transformation operations are also applied 
to the data matrix of the reduced table we obtain a 
complete decoding table. If, in this process, one can obtain 
a single digit in each basis encoded bit position the 
mapping data-encoded-data is one-to-one. If it is 
impossible to get the unique reverse mapping, then there 
is no two-way one-to-one mapping, and these code words 
should not be used. 

In general, mapping for a R=p/q rate code (p uncoded bits 
results in q encoded bits, pcq) requires q(L-p)/(q-p) wide 
tables. For instance, a 2/3 encoding with 4 bit 
non-systematic codes requires 3(L-2) = 6 bit wide tables4. 

1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0  * 1 0 1 1 0 1 1 1 1 0  0 

1 i z q 4  
p q 4  

p 5 - j  4 

piq 4 

0 
1- 4 

Figure 4 Table-driven decoding of uncorrupted encoded 
bit stream. 

3.2 Error Syndrome Generation 

To illustrate the essence of the above decoding procedure 
we refer to Figure 4 which shows the table-driven 
conversion of a stream of uncorrupted encoded bits into 
data. Each set of four encoded bits gives its corresponding 
four data bits. By shifting over two encoded bits at a time 
we shift the data bits one bit at a time. In this example, 
because the encoded bits remain uncorrupted, the 
corresponding (overlapping) data bits obtained from 
different sets of encoded bits yield the same value (boxed 
sets on the righudata side of the figure). Consequently, the 
three overlapping data bits obtained each time an encoded 
bit is shifted over by two produce a difference of zero. This 
difference from successive table look-ups will always be 
zero if there are no errors in the encoded bits and, in fact, it 
can be shown that the syndrome generating process is data 
independent. 

For example, by back-substitution based on the 
exclusive-OR operations on the matrix rows. 

A 213 rate coding example - Codes: 1110, 1001, 1011; 
Data: 000001, 000010, 000100, 001000, 001000, 010000, 
100000; Encoded bits: 000011, 000101, 011100, 101111, 
100000, 1 1 1000; 
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When a single bit error occurs in the encoded stream as 
shown in Figure 5 ,  then the difference between the 
successive overlapping bits may not be zero. It can be 
shown that it will either be zero, or a constant which 
depends only on the two code words chosen. Since the 
effect of the multiple errors is to produce a differential 
sequence which is, in fact, the exclusive-OR of the 
differences obtained for the errors taken independently, the 
resulting differences for the multiple errors will also be 
zero, or the same constant. It can be also shown that the 
patterns of zero, and this constant N, become the sequence 
which is the reverse sequence of the opposite code word 
used to generate the encoded bit in error. One can represent 
these differences of zero or N as either zero or one. We call 
this sequence "error syndrome sequence". The syndrome 
sequence (s-bits or parity-check sum) can be generated 
readily by a shift register (as shown in Figure 6). Note that 
this syndrome generation process is essentially the same as 
the one that would be used for non-systematic half-rate 
code in majority-logic decoding [l]. However, there is a 
difference between the way majority-logic decoding treats 
this syndrome vector, and the way it is treated in the 
table-driven approach. 

I Correct I 
~ 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0  I 

piziq 4 
0 

Figure 5 Encoded stream with a corrupted encoded bit P2 
and the corresponding corrupted data stream. 

C1 = O I l n ,  C2 = 111, g-mask: 1 a0 1 11 1 Il 
2 x code length 

s - b i t s  t o  4- Stream 

g-mask b 

\ 
.............. ........ .:.:.:...:.:.. ...... 
........ ........... ...... .:.: - ......  . . . . .  . . . . . .  Encoded Bit 

Add Register 

masked (0) active (I) 

Figure 6. Syndrome bit generation 

To understand the difference consider the production of the 
syndrome bits for half-rate encoding with constraint length 
L (Figure 7). The first 2L encoded bits produce one 
syndrome bit. Each additional pair of encoded bits produces 
one more syndrome bit. From Figure 5 and Table 3 we see 
that a two-bit block with an encoded bit in error can 

account for at most three (in general, L for half-rate codes) 
differences (s-bits) before it moves out of the width of the 
mapping tables. Therefore, setting the number of 
syndrome bits in the nth iteration equal to L and solving 
for n yields 

n = L-1 

Thus, 2L+2(L-1) = 4L-2 encoded bits are needed for the 
complete generation of a syndrome vector of length L. 
This means that for the correct decoding and error 
correction based on the syndrome vector, we must consider 
4L-2 encoded bits because they all influence a syndrome 
vector of length L. The classical majority-logic decoding 
theory [e.g. 11, although it generates the syndrome vector 
correctly, tends to truncate the extra 2G-1) bits. This can 
degrade performance of a typical majority-logic decoder5. 

Iteration No. of Encoded Bits No. of Svndrome bits 
0 2L 1 
1 2L+2 2 
2 2L+4 3 

n 2L+2n n+ 1 
I. 

Figure 7. Syndrome bit generation for half-rate coding 
with constraint length L. 

In addition to being used for error correction, the syndrome 
vector is most of the time even a better tool for error 
detection. However, it can be shown that there are special 
error patterns which can masquerade as correct uncorrupted 
encoded representing data and produce a syndrome of zero. 
This is a basic property of any convolutionally encoded 
data stream and applies to all decoding approaches. For 
half-rate coding the basic "zero" is the reverse of the 
g-mask (see Figure 6). Other "zero" patterns can be formed 
by appropriately shifting this basic pattern, and by 
combining it with itself through exclusive-OR operations. 
The longer the constraint length L, the less likely it is that 
such a "zero" vector will go undetected. 

In general ,  p/q rate encoding results in 
ws=[(L-p)/(q-p) + 11 s-bits over the mapping table width, 
g-mask is qws long, and [q[2(L-p)/(q-p) + 11) encoded bits are 
required to generate these s-bits. For 2/3 coding there are 
3(L-2)/3 + 1 = L-1 differences over the table width of 3(L-2) 
bits, and therefore 6L-9 encoded bits are responsible for the 
L-1 s-bits. In our 2/3 rate coding example L=4, 3(L-2) is 6, 
L-1 is 3, and the g-mask is 3(L-1) = 9 bits long and equal to 
01 1001 11 1. The corresponding reduced decoding table - 
Encoded bits: 000001. 000010, 000100, 001000, 010000, 
100000; decoded Data: 110110, 110111, 110100, 101101. 
011101. 010000. 
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3.3 Correction of Encoded Bits Through Table 
LO 0 k - U p 

5 000001 

7 0001 
1 6  

The process of correcting the encoded bit errors employs 
table look-up. This table is generated by producing the 
syndrome pattern that will result from a combination of 
crrors over a range of at least (4L-2) encoded bits. The 
cncoded bit range is usually centered around the encoded 
stream window (encoded bit locations) to which single bit 
corrections will be applied. Since the syndrome bits are 
data independent, in our combination patterns we only need 
include bits which are in error. The syndrome bit patterns 
are gcnerated starting with the most likely combination of 
crrors. At low error rates this is usually single bit errors 
(Figure 8), followed by two bit errors, etc. At higher error 
rates the sequence may start with some other error 
combination. We then use the syndrome bit sequence as an 
address (s-address) into a table. At an s-address the content 
of the table is a zero if the pattern does not have an error in 
thc bit location for which the table is constructed, and a 
one i f  it does (PA and PB in the vertical transparent box in 
the encoded stream of Figure 8). There are many more 
zeros in such a table than ones. If there were no limits on 
thc size of the table, i.e. the number of syndrome bits used 
could bc as long as one wished, then the error correction 
could be made more and more perfect. 

- 
0000 fofllll 7 c , / E  O O O O - L a D ~ ~ O  fbfll 10 

000000  i O & l l  3 

c 1  = 011, c 2  = 111 ,B 
0000000000  
0000000001 

2 00000000  10 1 1  00 0 
\- 

U .- - 4 00 oo(oo(1o 00 fQIj lO0  4 L 

8 00 l O l O O l 0 0  00 [O*ll  3 

10 

d s-address R 

n onnoo 0 0 

- 
-~~~~ 

1 00001 
2 00010 
3 00011 
4 00100 
5 00101 
6 00110 
7 00111 
8 01000 
9 01001 
10 01010 

0 0 

0 0 
0 0 

0 

X X 

X X 
1/0 '1) 

Figure 8. Encoded stream with single bit errors, and the 
corresponding correction table based on the 3 bit 
s-patterns. 

The top part of Figure 8 shows the encoded stream (4L-2 = 
10 bits wide) with the corresponding s-bits generated on 
the basis of these 10 bits, and the resulting 3-bit correction 
tablc address, d (unshaded bits). Note the right-to-left 

bottom-to-top travel of the s-bit patterns across the 
s-stream in synchronization with the diagonal left-to-right 
bottom-to-top encoded bit error movement. The lower part 
of the figure shows the correction table based on the 
content of the two central bits in the encoded stream. 
Some of the entries in this table will be empty (x) because 
one bit errors do not generate these addresses. Those that 
have zero in the sampling window will have a 0 in the 
table, and those that have a one will have 1 in the table. In 
one case (table address 6) we have a double entry 1/0 for 
Pg indicating a conflict. We discuss this below. 

In practice, only a finite number of syndrome bits can be 
used. Consequently, different sets or different combinations 
of errors can produce the same combination of the 
syndrome bits over a finite range and thus lead to an 
ambiguous determination of the correctness of the received 
bit stream. We consider the example table for one-bit 
errors. The addresses are three bits wide, and there is 
address degeneracy. For example, if two different error 
patterns produce the same syndrome address, but the bit in 
question in the error pattern is the same, then no error is 
created by the table (e.g., thc encoded stream entries #I  and 
#4 in Figure 8 both produce the same table address, 4, but 
neither requires a change in the encoded bit). However, if 
the two bits are different at that location in the error 
pattern, there is a contradiction (e.g., the PB entries for 
encoded streams #3 and #6 in Figure 8 are different but 
produce the same correction table address, 6) .  This may 
lead to an erroneous correction, or result in no correction 
of a encoded bit error. If this problem is not resolved in 
some way the entry in the table should be set to zero to 
reduce the probability of miscorrection. 

Once the correction tables have been built, correction of 
the encoded bits occurs by forming the syndrome bit based 
address, accessing the table, and determining if the 
particular encoded bit in the correction window position 
should be changed. The correction may be applied 
immediately, or with a delay pending confirmation of the 
change in one of the future correction cycle. When 
feedback is employed, then once the correction has been 
applied, the s-vectors are re-computed (or adjusted) to take 
the correction into account. 

3.4 Decoding With Disambiguation 

There are several options in the situation where a conflict 
occurs in the correction tables because of the overlap of the 
s-addresses from two different encoded bit error patterns. 
One option is to extend the syndrome address, which is 
normally based on 4L-2 encoded bits, to encompass 
encoded bits further out. Consider Figure 8. If the encoded 
bits range on which s-addresses are generated is extended by 
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4 bits on the right side of the original 10 bits, or 
alternatively symmetrically by 2 bits on each side of the 
original 4L-2 range, then the generated s-addresses will 
have two bits more. These additional two s-bits are shown 
in the shaded vertical strip in Figure 8 assuming the 4 
bits, the one-sided extension in the encoded stream covers, 
are zeros. We see that by using the 5 bit s-addresses instead 
of the 3 bit addresses we resolve the conflict between the 
#3 and the #6 encoded stream entries since in the correction 
table the addresses for these two error patterns would now 
become decimal 14 and 6, respectively, instead of 6 and 6. 
This table now guarantees correction of all single encoded 
bit error patterns within an effective constraint length of 
14 encoded bits (4L-2+extension = 14). In general, by 
s-address extension we can guarantee complete 
disambiguation for any number of error patterns. For 
example, using half-rate coding and 8-bit non-symmetric 
codes with one-sided 24-bit extension, i.e. a 20-bit address 
(1 Mbit by two bit) correction table , we can guarantee 
complete disambiguation of all addresses for one, two, 
three and four bit errors in the encoded stream. The 
problem is that the correction table size grows 
exponentially with the size of the s-vector, so direct 
s-vector extension may very quickly become too expensive 
and other methods have to be used. 

Another option (usually combined with the first one) is to 
resolve the ambiguity through a second or third look-up in 
the same table. For example, the additional look-ups may 
involve computation of another syndrome address now 
positioned around a specific, and possibly uncorrected, 
encoded bit that normally would have been associated with 
one of the error patterns that resulted in the address 
overlap. For instance, when the 3-bit s-address for the 
encoded stream entry #3 is re-computed at the position of 
the two encoded bits on the right of the transparent strip it 
is 7. For this address the correction table indicates that the 
encoded bit PA is wrong (one). On the other hand, the 
second look-up generated around the same bits for the 
stream image #6 gives address 3 in the correction table 
which indicates that there is no error in PA (zero). This 
differentiates between the #3 and the #6 patterns. In many 
cases it is sufficient to use only one additional look-up to 
resolve the overlap problem and guarantee correct decision. 
However, since the position of the disambiguation pair can 
be different for every conflict, a problem with this 
technique is the extra storage needed in the correction 
tables to indicate which of the bit pairs should be used. 

There are other options such as the use of several different 
tables. This allows, for example, tuning of the correction 
process to specific noise profiles (e.g. burst errors). In this 
paper we will not discuss these options, but it is 
important to note that the use of the shifted s-vectors, or 

different sets of s-bits and different tables, in effect 
increases the s-vector length without exponentially 
increasing the table size. 

3.5 Decoding and Soft Detection 

If all encoded bits are corrected in the above process, 
conversion of the encoded bits to the data bits could 
proceed in a very simple way as illustrated by one of the 
relationships in Figure 9. However, even when some 
encoded bits are questionable, it is possible to remove 
several of them from the decoding scheme and still recover 
the original data. 

To illustrate this we refer to the reduced decoding table in 
Figure 9. Remembering that shifting two encoded bits 
shifts over one data bit at the time, we can see that any 
given data bit can be derived from 2(L-1) sets of encoded 
bits. Given a set of encoded bits one can go to the table 
and obtain a set of p-bits to use in the translation which 
have not been marked as potentially problematic. The 
marking of these bits can either be obtained from the 
knowledge of the uncertainty in the table look-up (e.g. 
encoded stream entries #3 and #6 in Figure S), and/or from 
the signal to noise detection (soft detection) for any given 
bit. 

For example, assume that to start with the encoded bits are 
P i  through P4 as given in the first row below the reduced 
table in Figure 9. These four encoded bits can be combined 
by exclusive-OR (XOR) operations to produce D1 through 
D4 data bits. In particular, from the rightmost column of 
the Data side of the reduced table we see that data bit D4 
will be influenced only by the state of P i  and P4 bits, i.e. 
P i  XOR P4. Shifting in two new encoded bits, P5 and 
P6, and one data bit D5 provides D4 mappings given in 
the second row of the M a p p i n g  column, etc. 
Relationships for other data bits can be obtained in a 
similar way. 

Reduced Decoding Table 

Encoded Bits Data I Mapping 

1 0 0 0  1 0 1 1  
0 1 0 0  
0 0 1 0  
0 0 0 1  

Figure 9. Redundancy available for decoding of 
individual data bits. 

During the analysis of the encoded bits we may suspect the 
quality of say Pi due to a confict in the correction table, 
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or bccause of the signal-to-noise ratio. Then the decoding 
of D4 based on P i  would also be suspect. However, if bits 
P3, P5 and P6 are not problematic, then one can derive D4 
from this second (or some other) relationship without 
miscorrection. This process has been successfully used to 
limit the error propagation from the corrupted or the 
miscorrected encoded bits to the decoded data bits. A 
detailed analysis of the process is in progress. 

For illustration consider the conflict situation shown in 
the Figure 8 correction table. Suppose that to start with 
PI corresponds to PA and P2 to Pg in the encoded stream 
cntry #6. The correction table shows that there is no 
change for P i  and therefore it is marked as being correct. 
Howcver, there is an s-address conflict for bit P2. 
Therefore we mark P2 as problematic. To be on the safe 
sidc the correction is not applied, and the (potential) error 
in the encoded stream is allowed to remain. Next, we shift 
in two more encoded bits, P3 and P4. Now the encoded 
stream image is that given by the #4 entry. For both bits 
thc correction table address 4 indicates no change (as it 
should) and both bits are marked as correct. The next two 
bits that are scrutinized are P5 and P6. The appropriate 
cncoded stream image is that of the #2 entry which reduces 
to the s-address of 0. Again no change is indicated by the 
correction table, and both bits are marked as correct. We 
now have a sufficient number of correct encoded bits to 
correctly decode bit D4 using the second decoding 
relationship. The encoded bit error that went uncorrected 
bccause of the table conflict was corrected by the 
translation process of the encoded bits to data, and the 
cncoded bit error did not propagate into the decoded data 
strcam. 

In some situations (e.g. burst errors, high error rates) it is 
possible that all relationships for a decoding of a data bit 
contain at least one problematic encoded bit. In that case 
an option which gives reasonable results is a table-based 
minimization of the number of changes that need to be 
applied to (problematic) encoded bits in order to make all 
relationships for that data bit agree. 

3.6 Performance 

For thc errors for which a table entry is unambiguous we 
can guarantee correction. For the other errors, its is 
possible to compute and measure the probability that the 
Correction table entry fails to indicate the appropriate 
course of action. This suggests the following approximate 
model for the performance of a simple single look-up 
table-driven feedback decoder on a binary symmetric 
channel given a convolutional code with coding ratio 
R=p/q, and constraint length of L. The bit error probability 
after correction of the first block of q encoded bits, PPI@) 

is 
ne 

Ppl(E) cLc 4 Bi (n,> pi (1-p)"d 
i=t+l 

where t is the number of encoded bits in error that are 
guaranteed correction through the table look-up, 
ne=q[2(1-p)/(q-p)+l]+(extension bits) is the effective 
constraint length, Bi is the probability that table fails for 
an i-bit error within ne, and p is the channel transition 
probability. When feedback is applied each correction 
subtracts the error from the encoded stream and also adjusts 
the syndrome vector. If the there is no error propagation 
then the bit error probability for any block, P p Q ,  is equal 
to Ppl(E). This is the "Process Model 2" in Figure 10. In 
practice, however, error propagation will occur, so the 
performance of the basic error correction mechanism will 
be degraded. The error propagation in the encoded stream 
may be limited by choosing the codes with good 
resynchronization properties, or by some other mechanism 
such as temporary reduction of the feedback once an error 
burst is detected. The error propagation into the decoded 
information blocks may be limited through selective use 
of correct encoded bits (see section 3.5). 

100 - cI lo.l . Half-rate Encoding 
m 10.2 . 8 bit code 

$ 10-4 . 
S 10.5 . 
5 1 0 6  - imulation 

- two sided 12-bit extension 

Process Model 1 

m 1 0 . ~  - 

000001 00001 0001 001 01 1 1 

Input Error Rate per Encoded Bit 

Figure 10. Illustration of the performance of the 
table-driven error correction approach for half-rate encoding 
based on a simulation and two probabilistic models. 

We have built simulators for the outlined approach. The 
preliminary results are very encouraging. Example of a 
half-rate coding simulation is shown in Figure 10. The 
obtained output error rate per encoded bit is plotted against 
the channel error rate per encoded bit. Also shown are two 
process models. The Process Model 1 is a pessimistic 
model based on an unstructured (random) table, while the 
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Process Model 2 was described in the preceding paragraph. 
We used 8 bit codes with two-sided 12 bit extension (20 
bit s-addresses). Results show that a simple look-up can 
guarantee correction of all 1, 2, and 3 bit errors (t=3) 
within an effective constraint length window of ne=54 
encoded bits. The corresponding probability of not 
correcting 4 bit errors within the same window is about 
0.000003 (Bq), for the codes and the variants of the 
technique we have examined so far. The probability of not 
correcting 5 and 6 bit errors is about 0.0007 (B5=B6), and 
the probability of not correcting 7,8,9 and 10 bit errors is 
0.33. One-sided extensions provides far better performance 
but requires more sophisticated error propagation control. 

4. Summary 

We have described a novel data-independent error correction 
and decoding approach for convolutionally encoded bit 
streams. The codes have to satisfy certain criteria for the 
approach to work. One criterion is that they must provide 
an orthogonal set of transformation vectors which allows a 
two-way one-to-one mapping between the uncoded data and 
the encoded stream. The error correction and decoding 
process can be reduced to a set look-ups in pre-computed 
tables. 

A systematic mapping of single-bit, two-bit, three-bit, 
ctc., encoded stream errors into error syndrome bit patterns 
gives correction tables which can then be used at run-time 
to map observed syndrome patterns into the information 
on which of the encoded bits is likely to be corrupted. To 
take full advantage of the error correcting capabilities of 
the syndrome vectors, decoding has to be augmented with 
disambiguation indicator bits and error propagation 
limiting process. The tables have to be built for the most 
likely error patterns. The table size depends on the number 
of bits in error that we wish to correct at run-time. 
Theoretical models and simulations show that the method 
is fast, and can provide decoding that competes with the 
commonly employed Viterbi decoding. The speed is the 
result of the intrinsically low complexity of the table 
look-up process, and of the fact that the existence of an 
error can be very quickly determined from the syndrome 
bits while the actual look-up and error correction needs to 
be done only on the average. The performance stems from 
the fact that the table-driven approach bases correction 
decisions on at least three to five code constraint lengths. 
Soft-detection enhancements are possible. 

A number of research issues related to the tablc-driven 
approach remain open. For example, improvement of the 
correction and the decoding table efficiency and reduction of 
its size. We plan on building prototype decoding units to 
demonstrate the approach. Two routes will be taken. In 

one we will use standard ECL logic chips to provide XOR 
operations and look-ups. In the other approach we will 
attempt to utilize the BLITZEN6 chip [12] to exploit 
parallelism inherent in the proposed decoding method. 

Acknowledgments 

We are grateful to Mr. Christopher Alix (U. of Illinois, 
Urbana-Champaign) for his invaluable help and many 
contributions in the first stages of the project. Our thanks 
also go to Mr. Wang LiFeng and Ms. Elena Gonzalez of 
NCSU for their continued involvement in the project. 

Bibliography 

S .  Lin and D.J. Costello, Jr., Error Control Coding 
- Fundamentals and Applications, Prentice-Hall, 
Englewood Cliffs, N.J. 07632, 1983. 
G.D. Forney, Jr., R, G, Gallager, G.R. Lang, F.M. 
Longstaff, and S.U. Qureshi, "Efficient Modulation 
for Band-Limited Channels," IEEE J. on Selected 
Areas in Communications, Vol. SAC-2, No. 5, pp. 
632-647, September 1984. 
A.J. Viterbi, "Error Bounds for Convolutional Codes 
and an Asymptotically Optimum Decoding 
Algorithm," IEEE Trans. Inf. Theory, IT-13, pp 260- 
269, April 1967. 
G.D. Forney, Jr., "Maximum Likelihood Sequence 
Estimation of Digital Sequences in the Presence of 
Intersymbol Interference," IEEE Trans. Inf. Theory, 
IT-18, pp 363-378, May 1972. 
G.D. Forney, Jr., "The Viterbi Algorithms," Proc 

J.M. Wozencraft and B. Reiffen, Sequential  
Decoding, MIT Press, Cambridge, Mass., 1961. 
R.M. Fano, "A Heuristic Discussion of Probabilistic 
Decoding," IEEE Trans. Inf. Theory, IT-9, pp. 64- 
74, April 1963. 
F. Jelinek, "A Fast Sequential Decoding Algorithm 
Using a Stack,: IBM J. Res. and Dev., 13, pp. 675- 
685, November 1969. 
J.L. Massey, Threshold Decoding, MIT Press, 
Cambridge, Mass., 1963. 
G. Ungerboeck, "Trellis-Coded Modulation with 
Redundant Signal Sets Parts I & 11:" IEEE 
Communications Magazine, Vol. 25, No. 2, pp. 5- 
21, February 1987. 
D.W. Blevins, E.W. Davis, R.A. Heaton, and J.H. 
Reif, "BLITZEN: A Highly Integrated Massively 
Parallel Machine," J. of Parallel and Distributed 
Computing, 8 ,  pp. 150-160, 1990. 
G.D. Forney, Jr., "Convolutional Codes 11: 
Maximum Likelihood Decoding," Inf. Control, 25, 

IEEE, 61, pp. 268-278, March 1973. 

pp. 222-266, July 1974. 

The BLITZEN project was in part sponsored by NASA 
GSFC. Production of BLITZEN chips for use in spaceborn 
equipment is under consideration. 

392 

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore.  Restrictions apply.


