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Abstract. The literature relating to the one-dimensional Burgers equation is
surveyed. About thirty-five distinct solutions of this equation are classified in tabular
form. The physically interesting cases are illustrated by means of isochronal graphs.

Introduction and survey of literature. The quasilinear parabolic equation now
known as the "one-dimensional Burgers equation,"

(du/dt) + u(du/dx) = v(d2u/dx), (1)

first appeared in a paper by Bateman [4], who derived two of the essentially steady
solutions (1.3 and 1.5 of our Table). It is a special case of some mathematical models
of turbulence introduced about thirty years ago by J. M. Burgers [10], [11].

The distinctive feature of (1) is that it is the simplest mathematical formulation
of the competition between convection and diffusion. It thus offers a relatively con-
venient means of studying not only turbulence but also the distortion caused by laminar
transport of momentum in an otherwise symmetric disturbance and the decay of dis-
sipation layers formed thereby. Moreover, the transformation

u = -(2v/6)(dd/dx) (2)

relates u{x, t) and d(x, t) so that if 6 is a solution of the linear diffusion equation

(86/dt) = v(d'20/dx2), (3)

then u is a solution of the quasilinear Burgers equation (1). Conversely, if u is a solution
of (1) then 9 from (2) is a solution of (3), apart from an arbitrary time-dependent mul-
tiplicative factor which is irrelevant in (2).

In connection with the Burgers equation, transformation (2) appears first in a
technical report by Lagerstrom, Cole, and Trilling [38, especially Appendix B], and
was published by Cole [21]. At about the same time it was discovered independently
by Hopf [30] and also—in the context of the similarity solution u = t~l/2S(z), z =
(4vt)~1/2x—by Burgers [14, p. 250]. The similarity form of the Burgers equation—the
quasilinear ordinary differential equation for S(z)—is a Riccati equation [51], and can
thus be regarded as a basis for motivating transformation (2) inasmuch as (2) is a
standard means of linearizing the Riccati equation. More general hydrodynamical
applications of this transformation have been discussed by Ames [1, chapter 2], Chu
[20], and Shvets and Meleshko [55].
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Another virtue of (1) is that although it appears to lack a pressure gradient term,
it is in fact a deductive approximation for propagation of one-dimensional disturbances
of moderate amplitude in a uniform diffusive compressible medium, if the variables
are interpreted in a particular way. In this "acoustic" analogy for an ideal gas, the
u, v and x, t of (1) are, respectively,

Kt + i)u', I [si'' + v'. + (t - lVL ^
x' — a0t', t',

where u' is the fluid velocity, v' and v[ are respectively the kinematic shear and bulk
viscosities, k' is the thermal diffusivity, 7 the specific-heat ratio (assumed constant),
x' is an axis fixed in the undisturbed medium, i! is the actual time, and a0 is the speed
of a linear sound wave. According to this analogy, t in (1) is the actual time and x is
position in a coordinate frame moving with speed a0 relative to the undisturbed medium;
thus du/dt in (1) expresses the relatively slow wave-form distortion caused by con-
vection and diffusion, rather than the comparatively fast local changes associated with
ordinary propagation. The restriction to moderate amplitude is necessary because
the analogy depends upon approximations valid only for small Mach number of the
disturbance. Moreover, the analogy is derivable only when the propagation is uni-
directional, as typically for a "simple" wave or disturbance that moves into an infinite
resting medium.

Subject to the same restriction, an alternative statement of the acoustic analogy
is to take u, v and x, t in (1) as [43],

-1(7 + IK, *[V + V. + (7 - iy], (5)

a0t' — x', x'/a0.

The first term of (1) then expresses spatial variation in the translating frame, variation
which is equivalent to the temporal changes of the first analogy and corresponds to
the same effects of convection and diffusion. Analogy (4) is convenient for initial-value
problems, since when t' = 0 we have (x, t) = (x', 0) in this analogy; whereas (5) is
convenient for boundary-value problems, since then (x, t) = (a0t', 0) when x' = 0.

With varying degrees of rigor the derivation of the one-dimensional Burgers equation
from the fundamental gas-dynamic equations under the restrictions inherent in the
acoustic analogy has been accomplished for viscous, non-conducting ideal gases by
Lagerstrom, Cole, and Trilling [38, Appendix B], and by Su and Gardner [59]; for viscous,
nonconducting fluids with quadratic dependence of pressure on rate of expansion by
Mendousse [43]; for viscous conducting ideal gases by Lighthill [40] and by Soluyan
and Khokhlov [58]; and for viscous, conducting fluids of general equation of state by
Hayes [29]. The equation also describes finite-amplitude transverse hydromagnetic
waves [27], longitudinal elastic waves in an isotropic solid [48], and disturbances on
glaciers [39]. An equation related very simply to the Burgers equation arises in a problem
of number theory [62],

In a remarkable series of papers extending over many years, Burgers (see references)
studied statistical and spectral aspects of the equation (and related systems of equations)
when initial conditions are given stochastically. Various aspects of the energy spectrum
have also been investigated by Reid [49], Ogura [45] and Tatsumi [60]. More recently,
the new deductive theories of turbulence have been "tested" on the Burgers model
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(see [23], [32], [33], [36], [41], [42], [46], [56], [57]) and various numerical experiments
have been made on the Burgers equation (for example, see [5], [26], [31]). Saffman [54]
has questioned the basis of the Kolmogorov law by using results derived from the Burgers
model.

The Burgers equation gives an analytic framework for a second-order theory of
finite-amplitude dissipative sound propagation [8], [9], [34], [35], [43], [58], It has been
used in discussions of shock structure in a Navier-Stokes fluid principally by Lagerstrom,
Cole, and Trilling [38], by Lighthill [40] and by Hayes [29], In the notable work of
Lighthill, the conflict between the steepening effect of nonlinear convection and the
broadening trend of dissipation is made especially clear; this dual process is the essence
of the Burgers equation.

One of the most interesting solutions of the Burgers equation, the only known exact
time-dependent spectral solution (2.6 in the Table and Figure 9), appears first in a
paper by Fay [24] where it was derived in the acoustic framework but without the aid
of the Burgers equation and with the role of space and time inverted as in (5) (as pointed
out by Rudnick [53], there is a minor error in Fay's Eq. (14): the correct numerical
factor is 2, not 8). The Fay series was re-discovered by Cole [21] as an approximate
solution of the Burgers equation for a sinusoidal initial condition, and by Benton [6],
[7] as an exact solution. The relation of Fay's solution to the corresponding in viscid
spectral solution of (1),

u(x, t) = —2 ^ (nt)~lJn(nt) sin nx,
71= 1

is thoroughly discussed by Blackstock [9] in connection with the sound field generated
by sinusoidal motion of a one-dimensional piston (see also [2], [34], [52], [65]). This
inviscid solution is known as the Fubini solution in the acoustics literature because of
the work of Fubini-Ghiron [25]. It has been rediscovered by workers in several different
fields (see [22], [28], [37], [44], [47], [66]).

Description of table. The correspondence between (1) and (3) through (2) makes
it easy to construct exact solutions of (1) by starting from solutions of (3). Although
the general solution of (3) is known for arbitrary initial conditions, and the transforma-
tion (2) is trivial to perform, not all special solutions are physically "interesting." It
seems worthwhile, therefore, to call attention to those that are. The purpose of the
following Table is to present a list of such solutions, arranged in a somewhat systematic
way, as a possible aid in further investigations of the Burgers equation. Some new
solutions are included, but we have primarily aimed at collecting and organizing
numerous results scattered through a somewhat diffuse literature.

Eqs. (1, 2, 3) are invariant to a shift of origin

x — x0 —> x, t — t0 —> t; u —> u, d —» d, (6)

where x0 and t0 are arbitrary, independent constants. They are also invariant under
a change of scale:

x/a —> x, t/a—*t; alt —> u, /3d —» 0, (7)

where a and (i are arbitrary, independent scale factors. Special cases of (7) that are
useful in constructing the Table are

— x—> x, t —> t; —u —> u (7a)
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which reverses the direction of the z-axis, and

ix —> x, — t —> t; —iu —» u (7b)

which rotates the z-axis 90 degrees in the complex z-plane. The third important in-
variance transformation,

x — Ut •—> x, t —> t) u — U ■—> Uj d exp (U(x — Ut)/2v) —> 6, (8)

represents translation of the reference frame at the constant speed U (Galilean in-
variance). In the Table we use nondimensional variables obtained by making the sub-
stitutions

x/L —> x, vt/L2 —» t) uL/v —> u. (9)

The insertion of v here formally has the effect v —> 1 in (1, 2, 3), whereas the length scale
enters as in (7) and thus does not alter the equations. It should be noted that in many
cases L is not an external parameter (for example, see Note 1.3).

If two solutions are related through one or more invariance transformations, we
say they are "equivalent" (for example, see Note 1.0 in the Table). If all the transforma-
tions in question are real, they do not alter the shape of the function on which they
operate; we therefore say that such solutions are "isomorphic" (for example, Note
1.0). In the Table we list only real solutions (some of which are equivalent through
complex transformations such as (7b)), and in the Notes we call attention to specific
isomorphisms. In the diagrams, only non-isomorphic solutions are illustrated.

The presence of 6 in the denominator of (2) calls for comment about the effect of
a zero in 9; in general, a zero of any order produces a simple pole in u. The simplest
example is 6 = x which by (2) corresponds to the steady solution u — —2/xoi the
Burgers equation, in nondimensional notation. The "energy" equation associated with
(1) shows that this solution is steady only because the (infinitely large) dissipation in
x > 0 and x < 0 is balanced by (infinite) flux of energy into the region from a maintained
source at x = 0, a situation without much physical interest. On the other hand, if — 2/x
is regarded as an initial condition u(x, 0), we can solve the Burgers equation by cal-
culating the corresponding initial 6(x, 0) from (2) and then integrating (3). In this
process we meet the fact that (2) does not determine the sign of d. Indeed, if the inversion
of (2) is written

6(x, t) = 6(a, t) exp ^ «(£, t) d^j , (10)

then the result of taking the principal value of the integral when u(x, 0) = — 2/x is
q(x, 0) = 6(a, 0) • \x/a\, and since the factor 6(a, 0)/|a| is irrelevant in (2), this is equiv-
alent to 6(x, 0) = \x\ for the purpose of solving the Burgers equation. The function
6(x, t) that comes from this initial condition is of course unsteady; the corresponding
u(x, t) has no energy source and decays to zero (solution (4.5)).

If all zeros of the general initial 8 are treated in the same way, the result is a "positive"
solution of (2), and the corresponding u of (1) will be free of singularities for t > 0
(except possibly at |xj = <*>). This process can be formalized by starting from the source
representation of the solution of (2) with j(x) as initial condition:

d(x, t) = f j(£)<f>(x ~ £, t) <% (11)
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where 4>{x, t) = (4%t)~1/2 exp (—x2/4<). If f(x) has one or more zeros, this solution is
not positive for all t > 0 (unless all the zeros are of even order), although it may become
so for t > T > 0. However, the related solution

f umix - $, t) di (12)
J — CO

is strictly positive for t > 0. A typical example of (12) is solution (4.5) of the Table,
for which 6{x, t) = x (solution (1.7)). On the other hand, if f(x) is bounded, a linear
transformation can always be found so that a + fij{x) > 0, in which case

6'(x, t) = f [a + Pj(£)]4>(x — £, t) = a + 06(x, t) (13)
J-co

is positive for t > 0. The corresponding u'(x, t) is therefore free of singularities; in the
Table it is referred to as "allied" to u(x, t). A typical example of (13) is solution (1.5' (—))
in the Table.

To preserve the organization of the Table, some solutions are included that have
infinite energy sources (non-positive 6) and thus are not physically interesting, but
these solutions are not displayed graphically, and little or no comment about them is
made in the Notes. Verbal description of many of the figures is awkward and largely
superfluous, so we have avoided it and let the diagrams speak for themselves. Where
descriptions are given, for historical or other reasons, we have chosen the acoustic
analogy of the Burgers equation, rather than the turbulence analogy used originally
by Burgers. In the acoustic analogy the "condensation" (density excess) is proportional
to u, so there is compression or expansion according to whether u is positive or negative.

Finally, we emphasize that the Table includes explicitly only solutions of the initial-
value problem for (1) and (3) on the infinite interval — < x < «>. Some solutions,
such as (2.6) and (5.2), are spatially periodic and keep u = 0 at x = =tir. These may
be thought of as solutions of the combined initial- and boundary-value problem in
which initial values of u (or 6) are assigned on — x < x < ir and boundary values u = 0
(or dd/dx = 0) at x = ±u\ The general problem with arbitrary, time-dependent bound-
ary values of u is more difficult (see [2], [35], [50], [52], and [63] where further references
are given).
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A Table of Solutions of the One-Dimensional Burgers Equation
(Each group of solutions is followed by explanatory notes.)

1. Solutions in which 3u/3t = 0

8(x,t) u(x,t) = -2 31n8/3x

1.1

1.2

1. 3

1.4

1.5

1.6

1.7

t+x

e1" cosh x

e1" sinh x

-te cos x

-te sin x

-2 tanh x

-2 coth x

2 tan x

-2 cot x

-2/x

(1.0). Isomorphisms-. (1.2) and (1.1), (1.6) and (1.5). When du/dt = 0 then d2 In d/dtdx
= 0 so 6 = A(t) -B(x). The only such solutions of the diffusion equation are those given
above. Apart from (1.1) and (1.2), which are trivial, there are four and only four distinct
(non-isomorphic) steady solutions of the Burgers equation, namely (1.3), (1.4), (1.5)
or (1.6) and (1.7). Of these, only (1.3) is free of singularities. (The steady solutions are
"equivalent," since each can be obtained from (1.3) by a scale transformation and shift
of origin: starting from —2a tanh a(x — x0) we have (1.4) with a = 1, x0 — \i-w, (1.5)
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with a — i, x0 = 0; (1.6) with a = i, x0 = (1.7) with a —> 0, ax0 —> Ijiir.) References
(apart from (1.3)): Rodin [50], Benton [7].

(1.1) and (1.2). Although trivial, these solutions correspond to regions of uniform
convection of energy, as in the steady shock (1.3).

(1.3). Figure 1: the steady shock. If 2(7 is the dimensional value of |w| at x = ±°°,
then in view of (9) the length scale is the intrinsic shock thickness v/U. References-.
Taylor [61], Bateman [4], Burgers [10].

(1.7.) Behavior of u at d = 0 (compare with (4.5)).

1'. Solutions allied to those of Group 1

B'(x,t) = a + 0(x,t) u'Cx,t) = -2 31n0'/3x

1.1'(±)

1.2'(±)

1.3'(±)

1.4'(±)

1.5'(±)

1.61(±)

1.7'

4.1 ■ t+X±1 + e

. t-x±1 + e

±1 + cosh x

±1 + e* sinh x

±1 + e "** cos x

±1 + e * sin x

n a. -t-x1 ± e

. -t+xlie

2 sinh x

cosh x ± e *

2 cosh x

sinh x ± e ^

2 sin x

2 cos x

sin x ± e^"

(1.0'). Isomorphisms: (1.1' (+)) and (1.3), (1.1' (—)) and (1.4), (1.2' (±)) and
(1.1' (±)), (1.4' (-)) and (1.4' (+)), (1.5' (-)) and (1.5' (+)), (1.6' (±)) and (1.5' (±)),
(1.7') and (1.7). Persistent singularities: (1.1' ( —)), (1.2' ( —)), (1.4' (±), (1.7'). Except
in (1.7') the function 0' has been divided by |a[ and the factor |a| absorbed in 6 by
shifting the origin of t. Owing to isomorphisms, only four of the solutions in Group 1'
are distinct and differ from those of Group 1, namely (1.3' (±)), (1.4' (+) or ( —)),
and (1.5' (+) or ( —)).

(1.3' (+)). Figure 2: coalescence of two equal shocks. The inflection points of the
coalescing shocks disappear at t = —In 2. The configuration at t = is the steady
shock of (1.3). References: Lighthill [40]; attributed to Howard by Hayes [29]. These
authors give the general solution for two unequal shocks.

(1.3' (—)). Figure 3. Singular for t < 0. The configuration at t = <*> ia,-the steady
shock of (1.3).

(1.5' ( —)). Figure 4. Singular for t < 0.
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2. Discrete distributions of instantaneous point sources in 8

0(x,t) u(x,t) = -2 31n0/3x

2.1

2.1'(+)

2.2

2.3

2.4

2.5

2.6

2.7

,, .-1/2 -x2/4t _ ^(4rt) e = 4>(x,t)

±1 + t"1/2 e"x2/4t

<J>(x+2,t) + <t>(x-2,t) =

= (,t)"1/2 e-<x2+4)/4t cosh(x/t)

<j)(x-2 ,t) - <}>(x+2 ,t) =

( x-i/2 -(x2+4)/4t . , . v= (iTt) e sinh(x/t)

(j>(x-2i,t) + <J>(x+2i,t) =

, \-l/2 ~(x2-4)/4t , ...= (nt) e cos(x/t)

<f>(x-2ist) - <j)(x+2i ,t) =

. , .-1/2 -(x2-4 )/4t . , ...= i(irt) e sin(x/t)

\ <}) (x+2nir,t) = i|^(x,t)

I (-)" <Kx+2mr,t)

x/t

x/t

1 ± t1/2 ex2/4t

x 2 x- - - tanh -

x 2 , x
t - t COth t

x 2 x
t + t tan t

x 2 . x— - — cot —t t t

"2 I (-)n sin nx
. sinh ntn=l

tan y x - 2 I (-). sinh ntn=l

(2.0). Isomorphisms: (2.5) and (2.4). Persistent singularities: (2.2), (2.3), (2.4)
(equivalent to (2.2) by (7b)), (2.5) (equivalent to (2.3) by (7b)), (2.7).

(2.1). Figure 5 (after Burgers). This solution satisfies the in viscid equation du/dt +
udu/dx = 0 exactly, and gives the "saw-tooth" limit which approximates solutions
of the Burgers equation for large Reynolds number in regions between dissipation
layers. In Figure 5 we have joined segments of (x + 2)/(t — 2), x/t, (a: — 3)/(f — 1),
and x/(t + 2) to form the sawtooth. References: Burgers [11], [14],

(2.1' (+)). Figure 6: decay of a solitary pair of equal compression and expansion
pulses. Refere?ice: Lighthill [40].

(2.1' ( —)). Figure 7. Singular for t < 1.
(2.2) and (2.4). References: Cole [21], Benton [6].
(2.6). Figure 8: decay of a spatially periodic wave initially in a saw-tooth configura-

tion with infinite intensity. The spatially periodic function \p(x, t) represents an infinite
row of sources in 6 and has the Fourier series

{2k)-1 X/ exp (—n2i) cos nx = (2t)~1^3(^x, e~')
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where #3 is a theta function in the notation of Whittaker and Watson. The expression
given for u follows from standard formulas for the logarithmic derivative of theta
functions. It is the only known spatially periodic solution of the Burgers equation
whose Fourier coefficients can be stated explicitly as functions of t. References: Cole
[21], Lighthill [40], Benton [6]; see also Fay [24],

(2.7). The Fourier series for 0 is

(2tt)_1 X) exp [ — (n + |)2t\ cos (n + §)z = e"')
n» — co

Reference: Benton [6].

3. Similarity solutions

6(x,t) u(x,t) = -2 81n0/3x

3.1

3.2

3.3

3.4

3.5

t) d£ = erfc z.

2(j a?)2 <j>(s,t) =
X

= 2/t J erfc £ d?

2(j d5)n+1 <f>(5,t) =

= (M-t)1^2 in erfc z

/>r (- 1 <t>(x,t) =

= (4t)"n/2 e"z2 H _(z>
11-1

1 "I ~ Z— t z e

-z22 e Z

/rrt~ erfc z

1 erfc z

/F i^" erfc

t .n-1 _1 i erfc z

/t in erfc z

(n = 0,1,2,...)

1 Hn(z>

* Hn-l(z)

(n = 1,2,3,...)

— (2z - i) = _ 1
/t z t X

(3.0). Notation: <j> is defined in (2.1) and z = x/2\/1. The notation for erfc z and
the nth integral i" erfc z is standard, and Hn(z) is the Hermite polynomial. Persistent
singularities: all solutions in this group.

(3.3). For n = 0 see (3.1); for n = 1 see (3.2).
(3.4). For n = 1 see (2.1); for n = 2 see (3.5).
(3.5). This solution is the sum of two others: (2.1) and (1.7). Superposition is possible

because the product is a function only of t [7].
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3'. Solutions allied to those of Group 3

e'(x,t) = a + e(x,t) u'(x,t) = -2 31n6'/3x

3.1'

3.2'(±)

3.3'(+)

3.4'(±)

3.5' (±)

a + erfc z

±1 + /t i erfc

,1 ^ ,n/2 .n _±1 + t i erfc z

(n = 1,2,3,...)

±1 + t n/2 e 7,2 H (z)
n-1

(n = 1,2,3,...)

-1 -7Z
±1 + t e • 2z

/jrtT a + erfc z

erfc z

±1 + /t" i"*" erfc

(n-l)/2 .n-1 _t l erfc z
, . J ,n/2 .n .±1 + t i erfc z

, H (z)1 n 

/t H (z) ± tn/2 e2"
n-1

21 4z - 2

/t 2z ± t z2e

(3.0')- Notation: see Note 3.0. Isomorphisms: for n even, (3.4' ( —)) and (3.4' (+));
(3.5' ( —)) and (3.5' (+)). Persistent singularities: (3.2' ( — )). Except in (3.1') we take
|a| = 1, because two different values of a (^0) with the same sign correspond to iso-
morphic solutions.

(3.1'). Figures 9, 10 and 11: a solitary compression pulse. This is the only similarity
solution in Group 3'. Since 0 < erfc z < 2, the solutions for —2 < a < 0 are singular,
and since erfc (—z) = 2 — erfc z, the solutions corresponding to a and — (a + 2) are
isomorphic. Hence it suffices to consider a > 0. The intensity of the pulse, R = u' dx
= 2 In (1 + 2a-1) is independent of t and may be regarded as a Reynolds number.
The spatial shape of the pulse is prescribed by e~z'/(a + erfc z). This is Gaussian on the
far left (z <5C — 1 so erfc z ~ 2) and on the far right (z » 1 so erfc z ~ 0) for any a > 0.
Its peak is located at z0 determined by a = — erfc z„ + (exp ( — zl))/z0 vV- For small
R (specifically R < 0. 2 so a > 20) we have a » erfc z (all z) so the pulse is dominated
by diffusion and its shape is Gaussian throughout (Figure 9). (Note that erfc z in the
shape function arises directly from the convection term of the Burgers equation.) For
large R (specifically R > 20 so a < 10~") we have z0 > 2 at the peak of the pulse, so
to the left of the peak there is a range where a « erfc z ^ exp ( — z)/z Vj, which gives
a convective "sawtooth" regime u' ~ x/t (Figure 10. This case is equivalent to that
plotted by Burgers [14] in his Figure 1, page 251.) To the right of the peak there is an
abrupt transition (shock) to the Gaussian forerunner. The shape of the pulse for several
values of R is shown in Figure 11. References: Burgers [14], Lighthill [40].

3.2' (+). Figure 12: decay of a sharp compression front. Initially v! = 2/(1 — x)
for x < 0 and u' = 0 for x > 0.

3.5' ( —). Figure 13. Singular for t < (2/e)1/2 0.86.
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4. Direct assignment of aperiodic initial conditions

0(x,t) u(x,t) = -2 91n0/9x

4.1

4.2

4.3

4.4

4.5

4.5'

| e(s, 0) (j>(x-£,t) d? =

2
mx-n t na e an

an^J 0(5,O)e-in? d5
— 00

F(x,t) + F(-x,t)

F(x,t) = ~ X erfc x 2t
2 2/t

6(x,0) = e|X|

G(x,t) + G(-x,t)

G(x,t) = ^ et X erfc X
2 2/t

6(x,0) = e~'x'

I~ + I + I+

T± -1 ^ 1 x
I = — e erfc  

2 2/t

| 8(5,
0) ~ 4>(x-5,t) d?

|Je<£,0) <f>(x-£,t) d£

inx-nzt ,
na e dn

1 . dn

o. F(x,t) - F(-x,t)
F(x,t) + F(-x,t)

u(x,0) = -2 sgn x

. G(x,t) - G(-x,t)
G(x,t) + G(-x,t)

u(x,0) = 2 sgn x

R •
i + i + i+

1 - ^R(x - |ftt) x-i-Rt x + y-Rt
I = — e (erfc —   erfc  )

2/t 2/t

8(x,0) = <

- |Rx
e in | x | £ 2"

+ ^R
e in | x | >_ 2*

x + 2/t i"*" erfc

6(x,0) = |x|

1 + x + 2/t i"1" erfc

e(x,0) = 1 + | x |

u(x,0) =
R in |x|> j

0 in [x|> j

2 erf z

x + 2/t i"*" erfc

u(x,0) = -2/x

2 erf z

1 i x t 2/t i^ erfc

«<«.»> = -
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(4.1). The source representation and Fourier-integral representation of 6(x, t) in
terms of initial conditions arbitrary on the infinite interval. See (2.1) for the definition
of <j>.

(4.2). Figure 14: an initial compression step diffuses to the steady shock of (1.3).
References: Cole [21], Lighthill [40].

(4.3.) Figure 15: an initial expansion step decays to zero.
(4.4). An initially square compression pulse decays to zero, with constant intensity

R = u dx. For small R the pulse retains its symmetry (as in Figure 9). For large R
it is convectively distorted (as in Figure 10). This solution and (3.1') (in which the
initial u is a delta function) are isomorphic in the sense that (3.1') is obtained in the
limit e —> 0, if in (4.4) the variables are shifted to x/e, t/t, eu. Reference: Jeng et al.
[32], where the more general solution is given for a set of square waves of equal width
and arbitrary amplitude in a finite interval.

(4.5). Figure 16: This similarity solution has an initial condition for u identical to
the steady solution (1.7). It corresponds to decay in the absence of energy sources,
whereas (1.7) must be maintained by an infinite source (see Introduction). See (3.0)
for notation.

(4.5')- Figure 17. (Compare with Figure 12.) See (3.0) for notation.

5. Direct assignment of periodic initial conditions

0(x,t) u(x,t) = -2 3ln0/9x

5.1

5.2

7T

| 0(5,0) <Kx-S,t) dg =

V 1= } a eu n
n=-°°

hr\e(5>can = ^7 I 8(5,0) e_in? d?

. 0 v -n^tan + 2 /a e cos nx0 , nn=l

anE (-)n yiR)

- TpR COS X

3(x,0) = e

5(5,0) <|<(x-5,t) d5

\\ 6(5'° ) ijj(x-5,t) d5

V 1/ n a eu n
n=-°o

1. v inx-n^t
ttI. > . a e2 **• n

n V ~n 11 •4 / n a e sin nx-i nn=l 

o V -n2ta. + 2 / a e cos nx0 inn=l

u(x,0) = - R sin x

(5.1). The source representation and Fourier-series representation of d(x, t) in
terms of periodic initial conditions arbitrary in — ir < x < x. See (2.6) for the definition
of \f/.

(5.2). Figures 18 and 19: An initially simple-harmonic wave form decays to zero.
In this solution, obtained by using the Fourier series for \p (see (2.6)), /„ is the expo-
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nentially increasing Bessel function of the second kind. The Reynolds number R specifies
the initial intensity of the wave. If R is small, diffusion dominates and the decay proceeds
with little harmonic distortion of the wave form (Figure 18). This is expressed formally
by the approximation an « { — \R)n/n\ for R « 1, which makes the series converge rapid-
ly. For large Reynolds number, convective distortion dominates initially and produces a
typical sawtooth wave (Figure 19). This is expressed by a„ ~ (—)" exp (%R)/(ttR)1/2
for R » n2, which makes the series converge slowly if t is small. More precisely, the
sawtooth phase dominates in the interval R'1 « t « 1. Then 6(x, t) \p(x + t);
that is, solution (5.2) is approximately equal to solution (2.6), apart from a phase shift
of ir in x. When t ~ BT1 or less, there has not been sufficient time for the effect of con-
vection to appear; when t ~ 1 or greater, the wave has been restored to its initial form
(rapid convergence of the series) and is in the final period of decay. References: Cole
[21], Lighthill [40],

Fig. 1. Solution 1.3 (steady "shock"). Fig. 2. Solution 1.3' (+): I = —6, —4, —2,
0,2.

4r

Fig. 3. Solution 1.3' (—): t = 0 (broken), 0.2, Fig. 4. Solution 1.5' (—): t = 0 (broken), 0.2,
0.5, 1, 2. 0.5, 1, 2.



0

_L-4
-4 0 4 -4 0 4

Fig. 5. Solution 2.1 (after Burgers [14]: t = 0, Fig. 6. Solution 2.1' (+): < = 0 (broken), 0.1,
3; 3>

4r

-4 0 4-4 0 4
Fig. 7. Solution 2.1' (—): t = 1.0 (broken), Fig. 8. Solution 2.6 (abscissa: x — r): I = 0

1.2, 1.5, 2, 3. (broken), 0.5, 1.0, 1.5, 2.0.
4|- 1 |  40r I

ol-2 0 2 -20 0 20
Fig. 9. Solution 3.1', R = 3.6 (a = 0.40): Fig. 10. Solution 3.1', It = 64 (a = 3.0 X
( = 0 (broken), 0.1, 0.2, 0.5, 1, 2 (dotted curve: 10~14): 1 = 0 (broken), 0.1, 0.2, 0.5, 1, 2 (dotted

locus of maxima). curve: locus of maxima).



0

2 4 10 -2 0 2
Fig. 11. Solution 3.1': t = 1 for R = 2, 5, 10, Fig. 12. Solution 3.2' (+): t = 0 (broken),

20, 50 (after Light hill [40]). 0.01, 0.1, 1, 10 (Compare with Fig. 19.)

4, . n i-r 

0 4-4 O
Fig. 13. Solution 3.5' (—): t = (2/e)1/2 = 0.86 Fig. 14. Solution 4.2: t = 0 (broken), 0.01,

(broken), 1, 1.5, 2, 3. 0.1, 1, 10.

4
Fig. 15. Solution 4.3: t = 0 (broken), 0.01, Fig. 16. Solution 4.5: t = 0 (broken;, 0.1,

0.1, 1, 10. 0.2, 0.5, 1.
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Fig. 17. Solution 4.5': t = 0 (broken), 0.01, Fig. 18. Solution 5.2, R =» 1: t = 0 (broken),
0.1, 1, 10. 0.2, 0.5, 1, 2.

-4 0
Fig. 19. Solution 5.2, R = 100: f = 0 (broken),

0.01, 0.02, 0.05, 0.1.


