
A Tableau Algorithm for Paraconsistent and
Nonmonotonic Reasoning in Description

Logic-Based System

Xiaowang Zhang1, Zuoquan Lin1, and Kewen Wang2

1 School of Mathematical Sciences, Peking University, China
2 School of Information and Communication Technology, Griffith University, Australia

Abstract. This paper proposes a paraconsistent and nonmonotonic extension
of description logic by planting a nonmonotonic mechanism called minimal in-
consistency in paradoxical description logics, which is a paraconsistent version
of description logics. A precedence relation between two paradoxical models
of knowledge bases is firstly introduced to obtain minimally paradoxical mod-
els by filtering those models which contain more inconsistencies than others.
A new entailment relationship between a KB and an axiom characterized by
minimal paradoxical models is applied to characterize the semantics of a para-
consistent and nonmonotonic description logic. An important advantage of our
adaptation is simultaneously overtaking proverbial shortcomings of existing two
kinds extensions of description logics: the weak inference power of paraconsis-
tent description logics and the incapacity of nonmonotonic description logics in
handling inconsistencies. Moreover, our paraconsistent and nonmonotonic exten-
sion not only preserves the syntax of description logic but also maintains the de-
cidability of basic reasoning problems in description logics. Finally, we develop
a sound and complete tableau algorithm for instance checking with the minimally
paradoxical semantics.

1 Introduction

Description logics (DLs) [1] are a family of formal knowledge representation languages
which build on classical logic and are the logic formalism for Frame-based systems and
Semantic Networks. E.g. DLs are the logical foundation of the Web Ontology Language
(OWL) in the Semantic Web [2] which is conceived as a future generation of the World
Wide Web (WWW). As is well known, ontologies or knowledge bases (KBs) in an open,
constantly changing and collaborative environment might be not prefect for a variety of
reasons, such as modeling errors, migration from other formalisms, merging ontologies,
ontology evolution and epistemic limitation etc [3,4,5,6,7]. That is, it is unrealistic to
expect that real ontologies are always logically consistent and complete. However, DLs,
like classical logics, are not good enough to represent some non-classical features of
real ontologies [4] such as paraconsistent reasoning and nonmonotonic reasoning.

In order to capture these non-classical features of ontologies or KBs, several ex-
tensions of DLs have been proposed. They can be roughly classified into two two
categories. The first (called paraconsistent approach) is extending paraconsistent se-
mantics into DLs to tolerate inconsistencies occurring in ontologies, e.g., based on

X. Du et al. (Eds.): APWeb 2011, LNCS 6612, pp. 345–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

346 X. Zhang, Z. Lin, and K. Wang

Belnap’s four-valued logic [8,9], Besnard and Hunter’s quasi-classical logic [10],
Elvang-Gøransson and Hunter’s argumentative logic [11] and Priest’s paradoxical logic
[12]. While these paraconsistent semantics can handle inconsistencies in DLs in a way,
they share the same shortcoming: their reasoning ability is too weak to infer useful in-
formation in some cases. For instance, the resolution rules do not work in four-valued
DLs [8,9] and paradoxical DLs [12]; the application of proof rules are limited in a
specific order in quasi-classical DLs [10]; and the proof systems are localized in sub-
ontologies in argumentative DLs [11]. Moreover, the reasoning in most of existing
paraconsistent DLs is monotonic and thus they are not sufficient to express evolving
ontologies coming from a realistic world.

Considering a well known example about tweety: let K be a KB whose TBox is
{Bird � Fly, Bird � Wing} and ABox is {Brid(tweety),¬Fly(tweety)}. In
short, K tells us that all birds can fly, all birds have wings and tweety is a bird and can-
not fly. It is easy to see that K is inconsistent. In our view, it might be reasonable that
tweety has wings since the fact that tweety cannot fly doesn’t mean that tweety hasn’t
wings, e.g., penguin has wings but it cannot fly. However, Wing(tweety) could not
be drawn from K in four-valued DLs [9] or in paradoxical DLs [12]. Wing(tweety)
is unknown in argumentative DLs [11]. Though Wing(tweety) might be inferred in
quasi-classical DLs [10], both Bird(tweety) and Fly(tweety) are taken as “contra-
diction” (both true and flase). In this sense, the quasi-classical inference might bring
over contradictions. In addition, assume that we get a new information ¬Bird(tweety)
about tweety. That is, we have known that tweety is not bird. Intuitively, we would not
conclude that either tweety can fly or tweety has wings. A new KB could be is obtained
by adding ¬Bird(tweety) in K. However, conclusions from the new KB are the same
as K in quasi-classical DLs. In other words, reasoning based on quasi-classical seman-
tics cannot capture nonmonotonic feature of a true world.

The second (called nonmonotonic approach) is extending DLs with nonmonotonic
features, e.g., based on Reiter’s default logic [13], based on epistemic operators [14,15]
and based on McCarthy’s circumscription [16]. They provide some versions of non-
monotonic DLs. However, they are still unable to handle some inconsistent KBs
because they are based on classical models. In other words, the capability of incon-
sistency handling is limited. For instance, in the tweety example, the original KB tells
us that all birds can fly. When we find that penguin are birds which are unable to fly, we
will usually amend the concept of bird by treating penguin as an exception (of birds)
in those nonmonotonic DLs. It is impossible that we could enumerate all exceptions
from incomplete KBs. Therefore, nonmonotonic mechanisms, in our view, might not
be competent for deal with inconsistencies.

As argued above, paraconsistent DLs and nonmonotonic DLs have their advantages
and disadvantages. It would be interesting to investigate paraconsistent nonmonotonic
DLs by combining both paraconsistent and nonmonotonic approaches. While such ideas
are not new in knowledge representation, it is rarely investigated how to define a para-
consistent nonmonotonic semantics for DLs. The challenge of combining paraconsis-
tent DLs with nonmonotonic DLs is to preserve the features of classical DLs while
some non-classical features such as nonmonotonicity and paraconsistency in DLs are
incorported. Ideally, such a semantics should satisfy the following properties: (1) It is

A Tableau Algorithm for Paraconsistent and Nonmonotonic Reasoning 347

based on the original syntax of DLs (e.g. no new modal operators are introduced); (2)
It is paraconsistent, i.e., every KB has at least one model (no matter it is consistent or
inconsistent); (3) It is nonmonotonic; (4) It is still decidable. We note, however, the
current approaches to incorporating nonmonotonic mechanism in DL reasoning hardly
preserve the standard syntax of DLs, e.g., adding model operators in [14,15], open de-
fault rules in [13] and circumscription patten in [16]. In this sense, some proposals of
introducing nonmonotonic reasoning in paraconsistent semantics have been considered
in propositional logic, e.g., extending default reasoning with four-valued semantics in
[17] and with quasi-classical semantics in [18]. However, it is not straightforward to
adapt these proposals to DLs. Therefore, defining a paraconsistent and non-monotonic
semantics for DLs that is of sufficient expressivity and computationally tractable is a
non-trivial task.

In this paper, we propose a nonmonotonic paraconsistent semantics, called minimally
paradoxical semantics, for DLs. The major idea is to introduce a concept of minimal
inconsistency presented in the logic of paradox [19] in DLs so that some undesirable
models of DL KBs that are major source of inconsistency are removed. Specifically,
given a DL knowledge base, we first define a precedence relationship between paradox-
ical models of the ontology by introducing a partial order w.r.t. a principle of minimal
inconsistency, i.e., the ontology satisfying inconsistent information as little as possible.
Based on this partial order, we then select all minimally models from all paradoxical
models as candidate models to serve for characterizing our new inference. We can show
that our inference is paraconsistent and nonmonotonic. Thus nonmonotonic feature is
extended in paraconsistent reasoning of DLs without modifying the syntax of DLs. Fur-
thermore, we develop a decidable, sound and complete tableau algorithm for ABoxes
to implement answering queries. In this paper, though we mainly consider DL ALC
since it is a most basic member of the DL family, we also argue that our technique for
ALC can be generalized in the other expressive DL members. The paraconsistent logic
adopted in the paper is the paradoxical DL ALC [12] because it is closer to classical
ALC compared to other multi-valued semantics, e.g., Belnap’s four-valued semantics.

2 Description Logic ALC and Paradoxical Semantics

Description logics (DLs) is a well-known family of knowledge representation
formalisms. In this section, we briefly recall the basic notion of logics ALC and the
paradoxical semantics of ALC. For more comprehensive background reasoning, we
refer the reader to Chapter 2 of the DL Handbook [1] and paradoxical DLs [12].

Description Logic ALC. Let L be the language of ALC. Let NC and NR be pairwise
disjoint and countably infinite sets of concept names and role names respectively. Let
NI be an infinite set of individual names. We use the letters A and B for concept names,
the letter R for role names, and the letters C and D for concepts. � and ⊥ denote the
universal concept and the bottom concept respectively. Complex ALC concepts C, D
are constructed as follows:

C, D → � | ⊥ | A | ¬C | C � D | C � D | ∃R.C | ∀R.C

348 X. Zhang, Z. Lin, and K. Wang

An interpretation Ic = (ΔIc , ·Ic) consisting of a non-empty domain ΔIc and a map-
ping ·Ic which maps every concept to a subset of ΔIc and every role to a subset of ΔIc×
ΔIc , for all concepts C, D and a roleR, satisfies conditions as follows: (1) top concept:
�Ic = ΔIc ; (2) bottom concept: ⊥Ic = ∅Ic ; (3) negation: (¬C)Ic = ΔIc \ CIc ; (4)
conjunction: (C1 � C2)Ic = CIc

1 ∩ CIc
2 ; (5) disjunction: (C1 � C2)Ic = CIc

1 ∪ CIc
2 ;

(6) existential restriction: (∃R.C)Ic = {x | ∃y, (x, y) ∈ RIc and y ∈ CIc}; (7) value
restriction: (∀R.C)Ic = {x | ∀y, (x, y) ∈ RIc implies y ∈ CIc}

An ALC knowledge base (KB, for short) is a finite set of axioms formed by concepts,
roles and individuals. A concept assertion is an axiom of the form C(a) that assigns
membership of an individual a to a concept C. A role assertion is an axiom of the form
R(a, b) that assigns a directed relation between two individuals a, b by the role R. An
ABox contains a finite set of concept assertions and role assertions. A concept inclusion
is an axiom of the form C1 � C2 that states the subsumption of the concept C1 by
the concept C2. A TBox contains a finite set of concept inclusions. An KB contains an
ABox and a TBox. An interpretation Ic satisfies a concept assertion C(a) if aIc ∈ CIc ,
a role assertion R(a, b) if (aIc , bIc) ∈ RIc , a concept inclusion C1 � C2if CIc

1 ⊆ CIc
2 .

An interpretation that satisfies all axioms of a KB is called a model of the KB. Given a
KB K, we use Mod(K) to denote a set of all models of K. A KB K is inconsistent iff
Mod(K) = ∅. We say a KB K entails an axiom φ iff Mod(K) ⊆ Mod({φ}), denoted
K |= φ.

Paradoxical Semantics for ALC. Compared with classical two-valued ({t, f}) seman-
tics, the paradoxical semantics is three-valued ({t, f, �̈}, �̈ expressing both true and
false) semantics where each concept C is interpreted as a pair 〈+C,−C〉 of (not neces-
sarily disjoint) subsets of a domain ΔI and the union of them covering whole domain,
i.e., +C ∪ −C = ΔI . We denote proj+(CI) = +C and proj−(CI) = −C.

Intuitively, +C is the set of elements which are known to belong to the extension
of C, while −C is the set of elements which are known to be not contained in the
extension of C. +C and −C are not necessarily disjoint but mutual complemental w.r.t.
the domain. In this case, we do not consider that incomplete information since it is not
valuable for users but a statement for insufficient information.

Formally, a paradoxical interpretation is a pair I = (ΔI , ·I) with ΔI as domain,
where ·I is a function assigning elements of ΔI to individuals, subsets of ΔI ×ΔI) to
concepts and subsets of (ΔI × ΔI)2 to roles, so that ·I satisfies conditions as follows:
(1) (�)I = 〈ΔI , ∅〉; (2) (⊥)I = 〈∅, ΔI〉; (3) (¬C)I = 〈proj−(CI), proj+(CI)〉;
(4) (C1 � C2)I = 〈proj+(CI

1) ∩ proj+(CI
2), proj−(CI

1) ∪ proj−(CI
2)〉; (5) (C1 �

C2)I = 〈proj+(CI
1) ∪ proj+(CI

2), proj−(CI
1) ∩ proj−(CI

2)〉; (6) (∃R.C)I = 〈{x |
∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)}, {x | ∀y, (x, y) ∈ proj+(RI) implies y ∈
proj−(CI)}〉; (7) (∀R.C)I = 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},
{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

The correspondence between truth values in {t, f, �̈} and concept extensions can be
easily observed: for an individual a ∈ ΔI and a concept name A, we have that

– AI(a) = t, iff aI ∈ proj+(AI) and aI �∈ proj−(AI);
– AI(a) = f , iff aI �∈ proj+(AI) and aI ∈ proj−(AI);
– CI(a) = �̈, iff aI ∈ proj+(AI) and aI ∈ proj−(AI).

A Tableau Algorithm for Paraconsistent and Nonmonotonic Reasoning 349

For instance, let Δ = {a, b} be a domain and A, B two concept names. Assume that I is
a paradoxical interpretation on Δ such that AI = 〈{a, b}, {b}〉 and BI = 〈{a}, {a, b}〉.
Then AI(a) = t, AI(b) = BI(a) = �̈ and BI(b) = f .

A paradoxical interpretation I satisfies a concept assertion C(a) if aI ∈ proj+(CI),
a role assertion R(a, b) if (aI , bI) ∈ proj+(RI), a concept inclusion C1 � C2 iff
ΔI\proj−(CI

1) ⊆ proj+(CI
2). A paradoxical interpretation that satisfies all axioms of

a KB is called a paradoxical model of the KB. Given a KB K, we use ModP (K) to
denote a set of all paradoxical models of K. For instance, in the above example, I is a
paradoxical model of an ABox {A(a), A(b), B(a)} while it is not a paradoxical model
of {A(a), A(b), B(a), B(b)}. We also find that I is also a paradoxical model of a TBox
{A � B}. A KB K paradoxically entails an axiom φ iff ModP (K) ⊆ ModP ({φ}),
denoted K |=LP φ.

We say a paradoxical interpretation I is trivial if AI = 〈ΔI , ΔI〉 for any concept
name A. Note that contradictions which have form of A�¬A(a) for some concept name
A and some individual a in ALC are only satisfied by trivial paradoxical interpretations.
In general, trivial paradoxical interpretations/models cannot provide any information
about querying since all queries are answered as “�̈”. For simplifying discussion, we
mainly consider KBs without contradictions.

3 Minimally Paradoxical Semantics for ALC
Paradoxical description logic is proposed in [12] as a paraconsistent version of descrip-
tion logics. In this section, we present a minimally paradoxical semantics for ALC by
introducing a nonmonotonic reasoning mechanism minimally inconsistency (see [20])
to extend ALC with both paraconsistent and nonmonotonic features. The basic idea of
our proposal is to introduce a preference relation on paradoxical models and to filter
those models that cause more inconsistencies. Indeed, our proposal is able to maintain
more consistent information in reasoning than previous approaches.

In a paradoxical DL, every paradoxical model can be represented as a set of concept
assertions and role assertions similar to classical models. Since the constructor of the
negation of a role ¬R is absent in ALC (see [9]), for simplicity to convey our idea, we
mainly consider concept assertions in defining the preference relation in this paper.

Next, we introduce a partial order≺ between two paradoxical interpretations to char-
acterize their difference on concept assertions.

Definition 1. Let I and I′ be two paradoxical interpretations in ALC. We say I is
more consistent than I′, denoted I ≺ I′ iff

– I and I ′ have the same domain Δ;
– if AI(a) = �̈ then AI′

(a) = �̈ for any concept name A ∈ NC and any individual
a ∈ NI ;

– there exists a concept name A ∈ Nc and an individual a ∈ Δ such that AI′
(a) = �̈

but AI(a) �= �̈.

Intuitively, the first condition states that if I1 and I2 do not share a common domain,
then they are not comparable; the second condition ensures that if I1 ≺ I2 then I2

350 X. Zhang, Z. Lin, and K. Wang

contains no less inconsistencies than I1 does; and the third condition shows that if
I1 ≺ I2 then I1 contains less inconsistencies than I2.

For instance, let Δ = {a, b} be a domain and A a concept name. Let I1 and I2 be
two paradoxical interpretations such that AI1 = 〈{a}, {b}〉 and AI2 = 〈{a, b}, {b}〉.
Then we can easily see I1 ≺ I2. If I3 is a paradoxical interpretation such that AI3 =
〈{b}, {a}〉. Then I1 �≺ I3 and I3 �≺ I1. That is, I1 and I3 are incomparable. So, in
general ≺ is a partial order.

Note that ≺ is anti-reflexive, anti-symmetric and transitive. In other words, (1) I �≺ I
for any paradoxical interpretation I; (2) if I ≺ I′ then I ′ �≺ I; and (3) if I ≺ I′ and
I ′ ≺ I ′′ then I ≺ I′′.

We denote I � I′ as either I ≺ I′ or I = I ′. So � is also a partial order.

Definition 2. Let K be a KB in ALC. A paradoxical model I of K is minimal if there
exists no other paradoxical model I ′ of K such that I ′ ≺ I. We use ModP

min(K) to
denote the set of all minimal paradoxical models of K.

Intuitively, minimal paradoxical models are paradoxical models which contain minimal
inconsistency. Since a non-empty KB always has a paradoxical model, it also has a
minimal paradoxical model. That is, no matter whether a non-empty KB K is consistent
or not, we have ModP

min(K) �= ∅ while Mod(K) = ∅ for any inconsistent KB K.

Example 1. Let K = ({A � B}, {A(b), ∀R.¬B(a), R(a, b)}) be a KB and Δ =
{a, b} be a domain. We assume I is a paradoxical interpretation such that AI =
〈{b}, ∅〉, BI = 〈{b}, {b}〉, and RI = 〈{(a, b)}, ∅〉. It can be verified that I is the
only minimally paradoxical model of K. Thus ModP

min(K) = {I}.

For a consistent KB, we can show that the set of its classical models corresponds to the
set of its minimally paradoxical models. To this end, we first show how to transform
each classical interpretation Ic into a paradoxical interpretation I as follows: for a
concept name A ∈ NC , a role name R ∈ NR and an individual name a ∈ NI , define

⎧
⎪⎪⎨

⎪⎪⎩

aI = aIc , for any individual a ∈ NI ;
aI ∈ +A, if aIc ∈ AIc ;
aI ∈ −A, if aIc �∈ AIc ;

(aI , bI) ∈ +R and − R = ∅, if (aIc , bIc) ∈ RIc .

(1)

For instance, let Δ = {a, b} and Ic be a classical interpretation such that AIc = {a}
and BIc = {a, b}. We transform Ic into a paradoxical interpretation I where AI =
〈{a}, {b}〉 and BI = 〈{a, b}, ∅〉.

If K is consistent, we use ModT (K) to denote the collection of all paradoxical mod-
els of K transformed as above. It is interesting that each classical model corresponds to
exactly one minimally paradoxical model for a consistent KB.

Proposition 1. For any consistent ALC KB K, ModP
min(K) = ModT (K).

To see the validity of this result, we note that every paradoxical model in ModT (K) is
minimal because paradoxical models of a consistent KB are incomparable.

Based on the notion of minimally paradoxical models, we can define the following
entailment relation.

A Tableau Algorithm for Paraconsistent and Nonmonotonic Reasoning 351

Definition 3. Let K be a KB and φ an axiom in ALC. We say K minimally paradoxi-
cally entails φ iff ModP

min(K) ⊆ ModP
min({φ}), denoted by K |=m

LP φ.

Intuitively, the minimally paradoxical entailment (|=m
LP) characterizes an inference re-

lation from a KB to an axiom by their minimally paradoxical models. Because the infer-
ence focuses on those paradoxical models in which inconsistency is minimized, |=m

LP

can give consideration to both the classical entailment |= and the paradoxical entailment
|=LP . When a KB is consistent, |=m

LP is equivalent to |= since no model does contain
an inconsistency. When a KB is inconsistent, |=m

LP inherits |=LP since every minimally
paradoxical model contains at least an inconsistency. In this sense, |=m

LP is more reason-
able than |= and |=LP . For instance, in the example about tweety (presented in Section
1). We have K |=m

LP Wing(tweety) and K∪{¬Bird(tweety)} �|=m
LP Wing(tweety).

Note that the minimally paradoxical entailment is determined by restricting para-
doxical entailment to the subclass of minimal paradoxical models. Thus the entailment
relation is nonmonotonic.

For instance, given an ABox A = {A(a),¬A � B(a)} where A, B are concept
names and Δ = {a} a domain. Let I be a paradoxical interpretation s.t. AI = 〈{a}, ∅〉
and BI = 〈{a}, ∅〉. It easily check I is only one minimally paradoxical model of A.
Then {A(a),¬A�B(a)} |=m

LP B(a). However, if we assume that A′ = A∪{¬A(a)}
then there exist three minimally paradoxical models of A′ Ii(i = 1, 2) where AIi =
〈{a}, {a}〉 and BI1 = 〈{a}, ∅〉 and BI2 = 〈∅, {a}〉. Thus A′ �|=m

LP B(a).
In addition, |=m

LP is paraconsistent because each consistent KB has at least one min-
imally paradoxical model.

Theorem 1. |=m
LP is paraconsistent and nonmonotonic.

The next result shows that, if a KB is consistent, then the entailment |=m
LP coincides

with the classical entailment.

Proposition 2. Let K be a consistent KB and φ an axiom in ALC. Then

K |=m
LP φ iff K |= φ.

This proposition directly follows from Proposition 1. Note that for an inconsistent KB,
|=m

LP differs from |=. Thus, our new entailment relation naturally extends the classical
entailment to all KBs in ALC while the classical reasoning in consistent KBs is still
preserved.

Under classical entailment, anything can be inferred from an inconsistent KB. Thus,
it is straightforward to see the following corollary.

Corollary 1. Let K be a KB and φ an axiom in ALC. If K |=m
LP φ then K |= φ.

However, the converse of Corollary 1 is not true in general when K is inconsistent. For
instance, we have {A(a),¬A(a),¬A � B(a),¬B(a)} |= B(a)
while {A(a),¬A(a),¬A � B(a),¬B(a)} �|=m

LP B(a).
The resolution rule is important for automated reasoning in DLs. It is well-know that

the inference rules modus ponens, modus tollens and disjunctive syllogism special cases
of the resolution rule.

352 X. Zhang, Z. Lin, and K. Wang

The resolution rule is not valid for |=m
LP in the following sense, while it is invalid in

paradoxical DLs. In other words, the inference power of paradoxical DLs is strength-
ened by the concept of minimally paradoxical models.

Proposition 3. Let C, D, E be concepts and a an individual in ALC.

{C � D(a),¬C � E(a)} |=m
LP D � E(a).

However, the resolution rule is not valid in general under minimally paradoxical seman-
tics. For instance, {A(a),¬A(a), A � B(a)} �|=m

LP B(a).
We remark that minimally paradoxical semantics does not only preserve the reason-

ing ability of classical semantics for consistent knowledge but also tolerate inconsisten-
cies (possibly) occurring KBs.

The results shown in this section demonstrate that the entailment relation |=m
LP is

much better than the paradoxical entailment defined in [12].

4 Minimal Signed Tableau Algorithm

The minimally paradoxical semantics introduced in last section is based on minimal
paradoxical models. A naive algorithm for reasoning under the new paraconsistent se-
mantics could be developed by finding all minimal models from (possibly infinite) para-
doxical models of a KB. However, such an algorithm would be very inefficient if it is
not impossible. Instead, in this section, we develop a tableau algorithm for the new
semantics. Tableau algorithms are widely used for checking satisfiability in DLs. Espe-
cially, signed tableau algorithm) has been developed in [12] for paradoxical ALC. Our
new tableau algorithm for minimally paradoxical semantics is obtained by embedding
the minimality condition into the signed tableau algorithm. The challenge of doing so
is how to find redundant clashes (i.e., a clash is caused by an inconsistency) and remove
them from the signed tableau.

We first briefly recall the signed tableau algorithm for instance checking in ABoxes
(the details can be found in [12]). The signed tableau algorithm is based on the notion of
signed concepts. Note that roles are not signed because they represent edges connecting
two nodes in tableaux. A sign concept is either TC or FC where the concept C is in
NNF (i.e., negation (¬) only occurs in front of concept names). Each signed concept
can be transformed into its NNF by applying De Morgan’s law, distributive law, the law
of double negation and the following rewriting rules:

T(C � D) = TC � TD, T(C � D) = TC � TD, T∀R.C = ∀R.TC, T∃R.C = ∃R.TC
F(C � D) = FC � FD, F(C � D) = FC � FD, F∀R.C = ∃R.FC, F∃R.C = ∀R.FC

We use TA to denote a signed ABox whose concept names are marked with T, i.e.,
TA = {TC | C ∈ A}. A signed tableau is a forest whose trees are actually composed
of nodes L(x) containing signed concepts and edges L(x, y) containing role names.
Given an ABox A and an axiom C(a), the signed tableau algorithm starts with FA as
the initial forest of TA ∪ {FC(a)}. The algorithm then applies the signed expansion
rules, which are reformulated in Table 1. The algorithm terminates if it encounters a
clash: {TA,FA} ⊆ L(x) or {FA,F¬A} ⊆ L(x) where A is a concept name. Finally,

A Tableau Algorithm for Paraconsistent and Nonmonotonic Reasoning 353

Table 1. Expansion Rules in Signed Tableau

�T-rule If: T(C1 � C2) ∈ L, but not both TC1 ∈ L(x) and TC2 ∈ L(x).
Then: L(x) := L(x) ∪ {TC1, TC2}.

�T-rule If: T(C1 � C2) ∈ L(x), but neither TCi ∈ L(x) for i = 1, 2.
Then: L(x) := L(x) ∪ {TCi} (i = 1 or 2).

∃T-rule If: T∃R.C ∈ L(x), but there is no node L(z) s.t. TC ∈ L(z) and R ∈ L(x, z).
Then: create a new node L(y) := {TC} and L(x, y) := {R}.

∀T-rule If: T∀R.C ∈ L(x) and R ∈ L(x, y), but TC �∈ L(y).
Then: L(y) := L(y) ∪ {TC}.

�F-rule If: F(C1 � C2) ∈ L(x), but neither FCi ∈ L(x) for i = 1, 2.
Then: L(x) := L(x) ∪ {FCi} (i = 1 or 2).

�F-rule If: F(C1 � C2) ∈ L, but not both FC1 ∈ L(x) and FC2 ∈ L(x).
Then: L(x) := L(x) ∪ {FC1, FC2}.

∃F-rule If: F∃R.C ∈ L(x) and R ∈ L(x, y), but FC �∈ L(y).
Then: L(y) := L(y) ∪ {FC}.

∀F-rule If: F∀R.C ∈ L(x), but there is no node L(z) s.t. FC ∈ L(z) and R ∈ L(x, z).
Then: create a new node L(y) := {FC} and L(x, y) := {R}.

we obtain a completion forest The problem whether A paradoxically entails C(a) is
decided by checking whether the completion forest is closed, i.e., checking whether
every tree of the completion forest contains at least one clash. The algorithm preserves
a so-called forest model property, i.e., the paradoxical model has the form of a set of
(potentially infinite) trees, the root nodes of which can be arbitrarily interconnected.

In the following, we develop a preference relation on trees of the completion forest
to eliminating the trees with redundant inconsistencies.

Let F be a completion forest and t a tree of F . We denote IC(t) = {TA |
{TA,T¬A} ⊆ L(x) for some node L(x) ∈ t}. Intuitively, IC(t) is the collection
of contradictions in t.

Definition 4. Let t1 and t2 be two trees of a identical completion forest. We denote
t1 ≺IC t2 if IC(t1) ⊂ IC(t2) and t1 �IC t2 if IC(t1) ⊆ IC(t2). If t1 ≺IC t2 then
we say t2 is redundant w.r.t. t1.

Intuitively, if t2 is redundant w.r.t. t1 then t2 contains more inconsistencies than t1

does.
A tree t of F is a minimally redundant tree of F if t �IC t′ for each tree t′ in F

and there is not any other tree t′′ in F s.t. t′′ ≺IC t. A minimally redundant tree is a
tree we want to keep. A minimal completion forest of F , denoted by Fm, is composed
of all minimal trees of F . It can be easily verfied that Fm always exists. Given an
ABox A and an axiom C(a), the process of computing the minimal completion forest
of TA ∪ {FC(a)} is called the minimal signed tableau algorithm.

A paradoxical interpretation I satisfies a tree t iff for any node L(x) and any edge
L(x, y) in t, we have
(1) xI ∈ proj+(AI) if TA ∈ L(x) and xI ∈ proj−(AI) if T¬A ∈ L(x);
(2) xI ∈ ΔI − proj+(AI) if FA ∈ L(x) and xI ∈ ΔI − proj−(AI) if F¬A ∈ L(x);
(3) (xI , yI) ∈ proj+(RI) if R ∈ L(x, y).

354 X. Zhang, Z. Lin, and K. Wang

Based on the above definition, it follows that if I is a paradoxical interpretation
satisfying t then AI(a) = �̈ iff {TA(a),T¬A(a)} ⊆ t for any concept name A ∈ NC

and any individual a ∈ NI . As a result, there exists a close relation between ≺ (defined
over paradoxical models) and ≺IC (defined over trees).

Theorem 2. Let t and t′ be two trees of a completion forest F . If I and I ′ be two
paradoxical interpretations satisfying t and t′ respectively, then I ≺ I′ iff t ≺IC t′.

Proof.(Sketch) Note that the ABox contains only concept assertions. We show only
that the theorem is true for atomic concept A. It is straightforward to prove that the
conclusion is also true for a complex concept by induction.

(⇐) If t ≺IC t′, then IC(t) ⊂ IC(t′). We want to show that I ≺ I′. Assume
that {TA(a),T¬A(a)} ⊆ t then {TA(a),T¬A(a)} ⊆ t′. Thus AI(a) = �̈ implies
AI′

(a) = �̈. There is a concept assertion B(b), where B is a concept name and b an
individual name, such that {TB(b),TB(b)} ⊆ t′ but {TB(b),TB(b)} �⊆ t. Thus
BI′

(b) = �̈ implies BI(a) �= �̈. Therefore, I ≺ I′ by Definition 1.
(⇒) If I ≺ I′, we need to show that t ≺IC t′, i.e., IC(t) ⊂ IC(t′). For any con-

cept assertion A(a), if AI(a) = �̈ then AI′
(a) = �̈. Thus {TA(a),T¬A(a)} ⊆ t

then {TA(a),T¬A(a)} ⊆ t′. There is a concept assertion B(b), where B is a con-
cept name and b an individual name, such that BI′

(b) = �̈ but BI(a) �= �̈. Thus
{TB(b),TB(b)} ⊆ t′ but {TB(b),TB(b)} �⊆ t. Therefore, t ≺IC t′ since IC(t) ⊂
IC(t′).

Now we are ready to define the concept of minimally closed completion forests. A
completion forest F is minimally closed iff every tree of Fm is closed.

If the completion forest of TA ∪ {FC(a)} by applying the minimal signed tableau
algorithm is minimally closed, then we write A �m

LP C(a).
We show that our minimal signed tableau algorithm is sound and complete.

Theorem 3. Let A be an ABox and C(a) an axiom in ALC. We have

A �m
LP C(a) iff A |=m

LP C(a).

Proof.(Sketch) We consider only atomic concept A here. Let F be a completion forest
for TA ∪ {FA(a)} by applying the minimal signed tableau algorithm. We need to
prove that F is minimally closed, i.e., every tree of the minimal forest Fm is closed, iff
A |=LPm A(a).

(⇒) Assume that F is minimally closed. On the contrary, supposed that A �|=m
LP

A(a), that is, there exists a minimally paradoxical model I of A and I �|=m
LP A(a),

then I �|=LP A(a) since every minimal paradoxical model is always a paradoxical
model. There exists a tree t which is satisfied by I in F and t is not closed by the proof
of Theorem 7 which states that the signed tableau algorithm is sound and complete w.r.t.
paradoxical semantics for ALC (see [12]). We assert that t is not redundant. Otherwise,
there might be another tree t′ ≺IC t. We define a paradoxical interpretation I ′ satisfing
t′. It is easy to see that I ′ and I have the same domain by induction on the structure
of complete F . By Theorem 2, we have I ′ ≺ I, which contradicts the minimality of
I. Thus the completion forest F for TA ∪ {FA(a)} contains at least a tree t that is
neither closed nor redundant, which contadicts with the assumption that F is minimally
closed. Thus A |=m

LP A(a).

A Tableau Algorithm for Paraconsistent and Nonmonotonic Reasoning 355

(⇐) Let A |=m
LP A(a). On the contrary, supposed that F is not minimally closed.

Then there exists a tree t of complete F such that t is neither closed nor redundant.
Since t is not closed, by the proof of Theorem 7 (see [12]), we can construct a paradox-
ical interpretation I such that I is a paradoxical model of A. However, I �|=LP A(a),
a contradiction. Supposed that I is not minimal, there exists a paradoxical model I′ of
A such that I′ ≺ I in the same domain. Thus there exists a tree t′ that is satisfied by
I ′ with t′ ≺IC t by Theorem 2, which contradicts to the assumption that t is not re-
dundant. Then I �|=LP A(a), i.e., I �∈ ModP ({A(a)}). Because {A(a)} is consistent
and A is a concept name, ModP ({A(a)}) = ModP

min({A(a)}). Thus I is a minimally
paradoxical model of A but I �|=m

LP A(a). Therefore, F is minimally closed.

Example 2. Let A = {C � D(a),¬C � E(a)} be an ABox and D � E(a) an axiom.
There are four trees of the completion forest F of {TA ∪ {F(D � E)(a)} where
t1 = {TC(a),T¬C(a),FD(a),FE(a)}; t2 = {TC(a),TE(a),FD(a),FE(a)};
t3 = {TD(a),T¬C(a),FD(a),FE(a)}; t4 = {TD(a),TE(a),FD(a),FE(a)}.
Since the minimal completion forest F = {t2, t3, t4} are closed, F is minimally closed.
Thus {C�D(a),¬C �E(a)} �m

LP D�E(a). Therefore, {C�D(a),¬C �E(a)} �m
LP

D � E(a) by Theorem 3.

5 Conclusion and Future Work

In this paper, we have presented a nonmonotonic and paraconsistent semantics, called
minimally paradoxical semantics, for ALC, which can be seen a naturally extension of
the classical semantics. The suitability of our semantics is justified by several important
properties. In particular, the new semantics overcomes some shortcomings of existing
paraconsistent DLs and nonmonotonic DLs. Based on the signed tableau, we have de-
veloped a sound and complete algorithm, named minimal signed tableau, to implement
paraconsistent and nonmonotonic reasoning with DL ABoxes. This is achieved by intro-
ducing a preference relation on trees of completion forests in signed tableau. This new
approach can be used in developing new tableau algorithms for other nonmonotonic
DLs. There are several issues for future work: First, we plan to implement the minimal
signed tableau for DLs. Before this is done, we will first develop some heuristics for ef-
ficient implementation; Second, we will explore applications of the new paraconsistent
semantics in ontology repair, revision and merging.

Acknowledgments

The authors appreciate the referees for their helpful and constructive comments. This
work was supported by NSFC under 60973003, 60496322 and ARC under DP1093652.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, Cambridge (2003)

356 X. Zhang, Z. Lin, and K. Wang

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
3. Bertossi, L.E., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol. 3300.

Springer, Heidelberg (2005)
4. Schaffert, S., Bry, F., Besnard, P., Decker, H., Decker, S., Enguix, C.F., Herzig, A.: Paracon-

sistent reasoning for the semantic web. In: Proc. of ISWC-URSW 2005, Ireland, pp. 104–105
(2005)

5. Huang, Z., van Harmelen, F., ter Teije, A.: Reasoning with inconsistent ontologies. In: Proc.
of IJCAI 2005, UK, pp. 454–459. Professional Book Center (2005)

6. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for han-
dling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)

7. Qi, G., Du, J.: Model-based revision operators for terminologies in description logics.
In: Proc. of IJCAI 2009, USA, pp. 891–897 (2009)

8. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In: Proc. of IJCAI 2003, Mexico, pp. 355–362. Morgan Kaufmann,
San Francisco (2003)

9. Ma, Y., Hitzler, P., Lin, Z.: Algorithms for paraconsistent reasoning with OWL. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 399–413. Springer,
Heidelberg (2007)

10. Zhang, X., Xiao, G., Lin, Z.: A tableau algorithm for handling inconsistency in OWL. In:
Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi,
R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 399–413.
Springer, Heidelberg (2009)

11. Zhang, X., Zhang, Z., Xu, D., Lin, Z.: Argumentation-based reasoning with inconsistent
knowledge bases. In: Farzindar, A., Kešelj, V. (eds.) Canadian AI 2010. LNCS, vol. 6085,
pp. 87–99. Springer, Heidelberg (2010)

12. Zhang, X., Lin, Z., Wang, K.: Towards a paradoxical description logic for the Semantic
Web. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 306–325. Springer,
Heidelberg (2010)

13. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation
formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

14. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for
description logics. Artif. Intell. 100(1-2), 225–274 (1998)

15. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

16. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of KR
2006, UK, pp. 400–410. AAAI Press, Menlo Park (2006)

17. Yue, A., Ma, Y., Lin, Z.: Four-valued semantics for default logic. In: Lamontagne, L., Marc-
hand, M. (eds.) Canadian AI 2006. LNCS (LNAI), vol. 4013, pp. 195–205. Springer, Heidel-
berg (2006)

18. Lin, Z., Ma, Y., Lin, Z.: A fault-tolerant default logic. In: Fisher, M., van der Hoek, W.,
Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 253–265. Springer,
Heidelberg (2006)

19. Priest, G.: Minimally inconsistent LP. Studia Logica: An Inter. J. for Symbolic Log. 50(2),
321–331 (1991)

20. Ginsberg, M.L. (ed.): Readings in nonmonotonic reasoning. Morgan Kaufmann Publishers
Inc., San Francisco (1987)

	A Tableau Algorithm for Paraconsistent and Nonmonotonic Reasoning in Description Logic-Based System
	Introduction
	Description Logic ALC and Paradoxical Semantics
	Minimally Paradoxical Semantics for ALC
	Minimal Signed Tableau Algorithm
	Conclusion and Future Work
	References

