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Abstract. This paper introduces a tabu search heuristic for a production scheduling 

problem with sequence-dependent and time-dependent setup times on a single machine. 

The problem consists in scheduling a set of dependent jobs, where the transition between 

two jobs comprises an unrestricted setup that can be performed at any time, and a 

restricted setup that must be performed outside of given time intervals. The setup time 

between two jobs is thus a function of the completion time of the first job. The tabu search 

heuristic relies on complete relocate and swap moves, and a surrogate objective function 

is used to speed-up the neighbourhood evaluation. Computational experiments show that 

the proposed heuristic outperforms a recent branch-and-cut algorithm in terms of 

computing time. Furthermore, on instances where the branch-and-cut algorithm cannot 

find the optimal solution, the heuristic always identifies a better solution. 
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1 Introduction

This paper introduces a tabu search heuristic for a Sequence- and Time-Dependent Scheduling
Problem (STDSP) on a single machine. In this problem the setup time between two jobs
is divided into two parts: one that can be performed at any time and another one that
must be performed outside of a forbidden interval which repeats daily in the same position.
This problem arises, for example, in situations where production can be continued but not
initiated during certain parts of the day. This is often the case when workers with special
qualifications are required to perform some of the setups. This problem is in fact inspired
from the actual operation of a plastic container manufacturer where the transition between
jobs may require two setups: a mould and a color setup. Night workers can perform only
color setups, and mould setups must be performed during the day.

In our problem, the transition between two jobs thus involves two setups: an unrestricted
setup which can be performed at any time, and a restricted setup which is required to take
place outside of the forbidden interval. The processing of a job may continue during this
interval. However, if a job is completed during the interval, only the unrestricted setup of
the next job can be performed. If a job is completed before this interval and the restricted
setup cannot be performed in full, it is possible to divide it into two parts: one that is
performed before the forbidden interval and the other one after the interval. In addition, the
unrestricted setup can be performed either before or after the restricted setup, but it cannot
be performed during the forbidden interval if the restricted setup is performed only in part
before that interval. To calculate the setup time between two jobs it is thus necessary to
know the completion time of the first one, which determines whether both setups can be
performed consecutively without interruption, or if there is an idle time due to the restricted
setup. Hence, the setup time between two jobs is a function of the time at which the first of
these jobs is completed.

The production scheduling literature contains several studies addressing time-dependent
problems in which the processing time of a job depends on its starting time in the sched-
ule. The problem considered in this paper is more general as it deals with both sequence-
dependent and time-dependent setup times (time-dependent setup times are in fact equiva-
lent to time-dependent processing times because the dependent part of the setup time, in this
case the idle time, can be added either to the processing time or to the setup time). Different
types of functions defining the processing time of a job have been considered in the literature
(see Alidaee and Womer [1999] and Cheng et al. [2004] for surveys). Recent research along
these lines has focused on problems with linear or piecewise linear time-dependent processing
times. Mosheiov [1995] and Cheng and Ding [2001] have shown that the problem with a sin-
gle machine where the processing time is a step function is NP-complete. In particular Jeng
and Lin [2004] have proposed a pseudo-polynomial time dynamic programming algorithm
and a branch-and-bound algorithm for the problem with two steps. Lahlou and Dauzère-
Pérès [2006] have considered a single machine, a time horizon divided into time windows
and job processing times that depend on the time window in which a job starts. Finally,
Khammuang et al. [2007] have described an on-line scheduling problem with forbidden in-
tervals during which a job can be processed but a new one cannot start. The authors discuss
the relationship between this problem and the bin packing problem. However, none of these
studies considers sequence-dependent setup times and they deal only with time-dependent
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processing times.
Two recent articles by Barketau et al. [2005] and by Leung et al. [2006] consider (sequence

independent) setup times and time-dependent processing times. Barketau et al. [2005] have
studied the problem of scheduling n jobs on a single machine. The jobs are processed in
batches and each batch is preceded by a setup time S. The processing time of a job is a
step function that depends on the time elapsed since the start of the processing of the batch
to which the job belongs. The objective is the minimization of the makespan, Cmax. The
authors have shown that the problem is NP-hard. Leung et al. [2006] have studied a similar
problem with m parallel machines and with the sum of completion times,

∑
Ci, as objective

function. They have shown that the problem is NP-hard and they have described both exact
and approximation algorithms.

The STDSP can also be formulated as a time-dependent asymmetric traveling salesman
problem (TDTSP). The TDTSP is a TSP where the length of an arc is a function of the
departure time from the origin of the arc (see Malandraki and Daskin [1992]). Under this
representation, every node represents a job and the length of an arc is the setup time between
the two corresponding jobs. There exists another definition of the time-dependent TSP that
should not be confused with that considered here. Indeed, Picard and Queyranne [1978] and
some other authors have considered a special time-dependent TSP where the travel time
between two nodes depends on the position (or rank) of the first node in the sequence and
not on the departure time from the first node. Recently Bigras et al. [2006] have studied
scheduling problems on a single machine with sequence dependent setup times in which
the objective is to minimize the makespan and the total tardiness. They have proposed
a branch-and-bound algorithm and formulations inspired by the definition of the TDTSP
given by Picard and Queyranne [1978].

For the general TDTSP, a mixed integer linear programming formulation was introduced
by Malandraki and Daskin [1992]. These authors have considered a step travel time function
of the departure time from the first node and have studied some properties of the problem.
They have also proposed a cutting plane algorithm as well as heuristics. Computational
results were reported for a travel time function with two or three intervals. Later, a re-
stricted dynamic programming heuristic as a generalization of the nearest-neighbor heuristic
was proposed by Malandraki and Dial [1996] who reported results on randomly generated
problems with two or three periods for each arc. More recently, Albiach et al. [2007] have
described an exact method to solve the asymmetric traveling salesman problem with time-
dependent costs and time windows by transforming into an asymmetric generalized TSP and
then into a graphical asymmetric TSP. They then apply an exact algorithm for the Mixed
General Routing Problem. Computational results were reported on data sets adapted from
ATSPTW instances. They have solved optimally instances with up 60 nodes. Ichoua et al.
[2003] have proposed a model based on time-dependent travel speeds for the vehicle dis-
patching problem, and a parallel tabu search heuristic. In their algorithm the authors use
a cross-exchange neighbourhood (two segments of variable lengths are taken from two dif-
ferent routes and swapped) and an approximate neighbourhood evaluation procedure to
reduce computing times. Finally, a metaheuristic based on multiple ant colony system was
recently introduced by Donati et al. [2006] to solve the time-dependent VRP, while a genetic
algorithm was presented by Haghani and Jung [2005] for the dynamic time-dependent VRP.

The STDSP considered here was recently introduced by Stecco et al. [2007]. The au-
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thors have introduced three mathematical formulations based on the TDTSP formulation
of Malandraki and Daskin [1992]. They have also described valid inequalities which have
been used within a branch-and-cut algorithm. This algorithm is able to solve some randomly
generated instances with up to 50 jobs within reasonable computing times. However, some
instances with only 20 jobs could not be solved within four hours of computing time.

The purpose of this paper is to introduce a fast tabu search heuristic capable of identifying
high quality solutions in very short CPU times. Our computational experiments show that
this heuristic is able to identify in just a few minutes solutions that are equal to or better
than those found by the branch-and-cut algorithm with much longer computing times.

The remainder of the paper is organized as follows. Section 2 describes the problem and
provides a mathematical formulation. The tabu search algorithm is presented in Section 3.
Finally, computational experiments are reported in Section 4, followed by the conclusions.

2 Problem Description and Formulation

In this section, we start by formally describing the STDSP. We then present a mathematical
formulation which was introduced by Stecco et al. [2007].

2.1 Notation

Let n be the number of jobs to be scheduled on a single machine over a given planning
horizon. For notational convenience, we also introduce two dummy jobs, denoted by 0
and n + 1. Job 0 represents the last job processed in the previous planning horizon. Let
N = {0, 1, ..., n, n + 1}, P = {0, . . . , n} and S = {1, . . . , n + 1} be the sets of jobs to
schedule, possible predecessors and possible successors, respectively. Each job j ∈ N \ {0}
has a processing time pj with pn+1 = 0. Preemption is not allowed. The total setup time
between two jobs is divided into two parts: rij is the restricted setup time between jobs i
and j, and uij is the unrestricted setup time. All jobs are ready to be processed at time
t, which represents the beginning of the planning horizon. Let also d denote the length of
a planning period (e.g., one day) and let [a, b] ⊂ [0, d] denote the forbidden interval during
which the restricted setup cannot be performed. Since the actual position of the forbidden
interval within a period is not relevant, we assume, without loss of generality, that [a, b] is of
the form [a, d], i.e., the end of the forbidden interval coincides with the end of each period.

Let tj, for j ∈ N , be a real-valued decision variable representing the completion time of
job j, and sij be the total setup time between jobs i and j. As explained, the total setup
time between i and j is a function of the time at which job i is completed, hence, sij = f(ti)
where f : R+ → R+ is defined as follows:

f(ti) :=





rij + uij if ti ∈ [0, a− rij],

rij + uij + d− a if ti ∈ (a− rij, a−min(rij, uij)],

rij + d− ti if ti ∈ (a−min(rij, uij), d− uij],

rij + uij if ti ∈ (d− uij, d].

The total setup time between i and j is equal to the sum of rij and uij plus the idle
time. If job i terminates during the first interval, [0, a − rij], it is possible to perform the
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restricted setup before the forbidden interval and the idle time is then equal to zero. If job
i ends during the second interval, (a− rij, a−min(rij, uij)], it is impossible to fully perform
the restricted setup before a. In this case, the unrestricted setup is performed before a and
the restricted setup is divided into two parts: one before and the other one after the interval
[a, d]. Then, d− a is an idle time and is added to the setup time. If job i finishes during the
third interval, (a−min(rij, uij), d− uij], one can make the unrestricted setup, wait until the
end of [a, d] and then perform the restricted setup. In this way the idle time is equal to the
waiting time from the end of the unrestricted setup, if it was performed, to the end of the
forbidden interval. Finally, if job i ends during the fourth interval, (d − uij, d], it is again
possible to perform both setups without interruptions, as in the first interval, with idle time
equal to 0.

The function of the total setup time is illustrated in Figure 1 for the interval [0, d] and
assuming rij ≥ uij and d − uij ≥ a − rij. Note that if rij < uij then the second interval
(a− rij, a−min(rij, uij)] does not exist. In addition, if d− uij < a− rij (d− a < uij − rij)
or if rij = 0 then the total setup time is constant.
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ij
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ij
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u
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Figure 1: Setup time between jobs i and j

Figure 2 shows an example of a production schedule with 3 jobs. One can observe that
between jobs 1 and 2 there is an idle time because it is not possible to perform the restricted
setup. There is also an idle time between jobs 2 and 3 because the restricted setup cannot
be completely performed before the beginning of the forbidden interval.

2.2 A non-linear formulation

To formulate the problem we define for each job pair (i, j), with i ∈ P and j ∈ S, a
binary variable xij equal to 1 if and only if job j is processed immediately after job i,
and 0 otherwise. The problem can be formulated as the following non-linear mixed integer
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Figure 2: Example of a production schedule

programming problem:
min tn+1 (1)

subject to
∑
i∈P

xij = 1 ∀j ∈ S (2)

∑
j∈S

xij = 1 ∀i ∈ P (3)

tj −Mxij ≥ ti + (sij + pj)xij −M ∀i ∈ P, j ∈ S (4)

sij = f(ti) ∀i ∈ P, j ∈ S (5)

ti ≥ t ∀i ∈ N (6)

xij ∈ {0, 1} ∀i ∈ P, j ∈ S. (7)

The objective function (1) minimizes the completion time of the last job, n + 1. Con-
straints (2) and (3) ensure that each job is processed exactly once while constraints (4)
ensure the consistency of the ti variables. Constraints (5) define the setup time as a function
of the time at which job i finishes. Constraints (6) ensure that all jobs start after the begin-
ning of the planning horizon, t. In this formulation, M is a large number used to linearize
constraints (4). Any valid upper bound on the value of tn+1 can be used as the value of M .

As shown by Stecco et al. [2007], the above formulation can be linearized by reformulating
the problem as a time-dependent TSP.

3 Tabu Search Algorithm

In this section we describe the tabu search procedure used to solve the STDSP. Tabu search
(see Glover and Laguna [1997] and Gendreau [2003]) is one of the most popular techniques
to find near optimal solutions to hard combinatorial optimization problems. Tabu search
starts from an initial solution and moves at each iteration from the current solution to the
best one in its neighbourhood, even if this leads to a deterioration of the objective function
value. To avoid cycling, attributes of recently visited solutions are declared tabu for a certain
number of iterations. This process is repeated until a stopping criterion is satisfied.

For some problems, evaluating the cost of each solution in the neighbourhood of the
current solution may be very time consuming. Instead, one may identify a small set of
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promising solutions through a surrogate objective function and evaluate only the cost of
these solutions. Most tabu search implementations use two types of memory: short term
and long term memory. Short term memory is used to avoid cycling and trapping in local
optima. At each iteration the move being performed is recorded and the reverse move is
declared tabu for a certain number of iterations. The number of iterations during which a
move is considered tabu is called the tabu tenure. The tabu status of a move can be revoked
through an aspiration criterion if this move leads to a new best solution. The long term
memory is used to guide the search to unexplored regions of the search space within the
diversification strategy. In the next sections, we explain how these key aspects have been
implemented in our tabu search heuristic.

3.1 Solution representation and initial solution

A schedule or solution s for the STDSP defines the processing order of jobs and it may be
represented as a permutation of integers s0, s1, s2, ..., sn, sn+1, where si denotes the job in
position i (with s0 = 0 and sn+1 = n + 1).

We use as an initial solution the permutation obtained by running a specialized nearest
neighbor algorithm. The classical nearest neighbourhood algorithm for the traveling sales-
man problem is a greedy algorithm that, starting from a given city, chooses at each iteration
the nearest city with respect to the one currently visited. In our problem, the greedy heuris-
tic aims to minimize the sum of setup and idle times. At each iteration, it thus chooses a
job j for which the sum of setup and idle times is minimum between the current job and j.
The procedure is repeated until all jobs are scheduled. The algorithm is applied n times by
choosing each time a different starting job i ∈ N \ {0, n + 1}. The best solution found is
then used as the starting solution for the tabu search algorithm.

3.2 Solution neighbourhoods

In the scheduling literature the swap and relocate moves are probably the most popular ex-
changes considered to define solution neighbourhoods. Given a solution s, the swap operator
exchanges two jobs so that each job is located in the position previously occupied by the
other one. Figure 3 illustrates a swap move involving two jobs, si and sj. The relocate
operator identifies two positions i and j in the current solution and inserts job si between
job sj and its successor.

In our implementation, we use the classical swap move defined above, but a more general
relocate operator which we call a complete relocate. The complete relocate moves not only
job si after job sj but it may also move a couple formed by jobs si−1 and si, or the three
jobs si−2, si−1 and si. In general terms, the complete relocate chooses two positions i and
j, with i < j and a number m with m ≤ i, which defines the number of jobs to move. It
then relocates jobs si−m+1, . . . , si between sj and sj+1. In our algorithm we consider all the
possible relocate moves for every couple of positions i and j and for every value m ≤ i.
Figure 4 illustrates the complete relocate move where m = 3 and three jobs are moved after
jobs sj.

The two neighbourhoods defined by the swap and complete relocate moves are evaluated
separately and the best moves from each neighbourhood are compared to choose the one to
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Figure 4: Complete relocate move between jobs si and sj with m=3

be performed. In case of equality, the complete relocate move is selected.

3.3 Tabu status and tabu tenures

In this study we have considered both a fixed tabu tenure θ and random tabu tenures
generated in the interval [µ, ν] at each iteration. When relocating a group si−m+1, . . . , si

after job sj we declare tabu moving job sj to position j as well as moving job si to position
j. A complete relocate move is then considered tabu if moving the last job in the group,
si, to position j is tabu. When a swap move is performed, moving job si to position i and
moving job sj to position j are both declared tabu. A swap move is considered tabu if one
of the two associated exchanges is tabu.

3.4 Surrogate and auxiliary objectives

Evaluating the impact of a move on the objective function is quite costly in terms of com-
puting time since it requires recalculating the completion time for every job following the
first position affected by this move. This procedure runs in O(n) time. To reduce the com-
putational effort, we first perform an approximate evaluation of the neighbourhood of the
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current solution s by using a surrogate objective function which is less demanding. This
first step allows the identification of a set of promising candidates which are then evaluated
exactly by using the true objective function.

Since the value of a solution is given by the sum of setup and idle times, for every solution
s′ in the neighbourhood of s one can easy calculate the value of the setup time (setup(s′))
knowing the setup time of s (setup(s)). In our implementation of swap and complete relocate
moves, position i is always before position j (i < j). In addition, the new solution s′ coincides
with s up to job si−1 for the swap and up to si−m for the complete relocate move. It is thus
computationally easy to calculate the setup time of a solution. For every solution s we also
store for every position i the value of the total idle time up to job si (idle(si)). The surrogate
objective function for the swap move (z̃(s)) is

z̃(s′) = setup(s′) + idle(si−1),

where idle(si−1) is the idle time up to job si−1. For the complete relocate move the surrogate
objective function is

z̃(s′) = setup(s′) + idle(si−m).

Calculating the setup time of a solution s′, knowing the setup time of s, is less demanding
than calculating the real objective function. We then sum a part of the idle time that is
certainly included in the new solution to better estimate the cost of the solution.

Each solution in the neighbourhood of s with value of the surrogate objective function
less than or equal to α is then evaluated with the true objective function. If during the
search, the set of promising solutions is empty because no solution has a surrogate objective
function value smaller than or equal to α, then the neighbourhood is completely evaluated
using the true objective function.

Another function, called an auxiliary objective function, is used to orient the search when
the process is in a plateau where there are multiple solutions with the same objective value.
If the best solution in the neighbourhood of s has the same value as s and there are in the
neighbourhood more that one solution with this value we chose the move according to the
following auxiliary objective function:

z′(s′) = setup(s′),

i.e., the setup time for the solution s′. From the set of solutions minimizing the true objective
function, we thus choose the one whose auxiliary objective function value is minimum. We
prefer a solution with minimum setup time instead of minimum idle time because the setup
time usually has a larger impact on the objective function value.

3.5 Diversification strategies

To diversify the search we use two strategies that operate on different levels and with a
different intensity. A light diversification is based only on frequency memory. If the search
cannot improve the current solution for β iterations, the frequency diversification is applied.
After reducing the neighbourhood using the surrogate objective function, each solution in
the set of promising solutions is valued by adding to the true objective function a small
penalty term. For every solution s′ the frequency penalty p(s′) is equal to the sum, on every
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position i, of the number of iterations during which job si has been in position i, divided by
the total the number of iterations executed. The new value for the solution s′ is then equal
to:

ẑ(s′) = z(s′) + fp(s′)z(s′)/
√

n,

where f is a parameter to calibrate the intensity of the diversification. This type of function
was first suggested by Taillard [1993] in the context of the vehicle routing problem. The
penalty is scaled by a factor z(s′)/

√
n to account for instance size and the magnitude of the

objective function value. This type of diversification is used to drive the search towards less
explored regions of the search space but, since the penalty is applied after the reduction of
the neighbourhood, the diversification has only a light impact. This diversification is also
applied if the search is in a plateau and the algorithm finds for σ consecutive iterations a
solution with the same objective function value.

A stronger diversification (called a setup diversification) is applied if the search does not
improve the best solution for γ iterations and the current solution for δ iterations. In this
case, the reduced neighbourhood is valued using a different objective function. The new
objective function minimizes the setup time of s′. We add to this value a small term that
includes the frequency penalty described above. The new value for s′ is

ẑ(s′) = setup(s′) + fp(s′)setup(s′)/
√

n.

This diversification has a stronger impact because each solution (after reducing the neigh-
borhood) is valued not with the real objective function but with only the setup time. The
aim is to create a solution with minimum setup time but more idle time. The value of this
solution is generally very far from the best solution but the search usually returns in a few
iterations to solutions with a similar cost.

3.6 Aspiration and stopping criteria

Throughout the search, we use a classical aspiration criterion which revokes the tabu status
of a move if it leads to a better solution than the best solution found so far.

The tabu search stops after a fixed number of iterations equal to 200 times the number
of jobs to schedule. In the computational experiments, we have considered instances with
between 5 and 50 jobs. The search thus performs between 1000 and 10, 000 iterations.

4 Computational Experiments

In this section we first present the characteristics of the test instances used in our compu-
tational experiments. This is followed by a discussion of parameter calibration and by the
computational results. The tabu search algorithm was implemented in C and it was run on
a 3.0 GHz Pentium 4 computer with 1 Gb of memory.

4.1 Test instances

Our tabu heuristic was tested on the instances introduced by Stecco et al. [2007]. The
instances were randomly generated according to the following parameters. In all instances,
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the length d of a period is equal to 1440, i.e., the duration of one day expressed in minutes.
The instances are divided into four sets whose characteristics are summarized in Table 1.
The second column (a) indicates the time corresponding to the beginning of the forbidden
interval in the first period of the planning horizon (this interval repeats in the same position
in every subsequent period). Values for the restricted and unrestricted setup times as well
as for the processing times were generated from a uniform distribution on the interval from
0 to the maximum values reported in the third, fourth and fifth columns, respectively.

Instances a rij uij pj

A1-1/A1-10 1380 30 30 60
A2-1/A2-10 1380 30 30 120
A3-1/A3-10 1380 30 30 180
B1-1/B1-10 1320 60 60 120
B2-1/B2-10 1320 60 60 240
B3-1/B3-10 1320 60 60 360
C1-1/C1-10 1200 120 120 240
C2-1/C2-10 1200 120 120 480
C3-1/C3-10 1200 120 120 720
D1-1/D1-10 960 240 240 480
D2-1/D2-10 960 240 240 960
D3-1/D3-10 960 240 240 1440

Table 1: Characteristics of the four data sets

4.2 Parameter calibration

The behaviour of the tabu search heuristic is controlled through a set of seven parameters
which are listed in Table 2. A preliminary version of the algorithm was first tested on all
instances to identify an appropriate range of values for each parameter. We have then set
θ = (2

√
n + n)/2, f = 0.1, α = z(s) + 1%, β = n/4, γ = 9n, δ = n/8 and σ = 5. We next

performed a sensitivity analysis on each of the seven parameters while keeping the other ones
unchanged. The following order was used: θ, σ, β, δ, γ, f and α. For the sensitivity analyses,
we have used as test instances those of the fourth group (D) since they are the most difficult
to solve.

4.2.1 Parameter θ

Having fixed the value of the other parameters as explained before, we ran tests using different
values of the tabu tenure θ. The initial value θ = (2

√
n+n)/2 appeared to yield good results

for all instances, but slightly better results were obtained by setting θ = [7.5 ln n], where [x]
is the integer nearest to x. Additional experiments performed with randomly chosen tabu
tenures did not improve the results.
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θ tabu tenure
α factor used to define the set of promising solutions
β number of iterations without improving the current solution

before the frequency diversification is applied
γ number of iterations without improving the best solution

before the setup diversification is applied
δ number of iterations without improving the current solution

before the setup diversification is applied
σ number of iterations allowed with the same objective value
f factor used to adjust the intensity of the diversification

Table 2: Parameters used in the tabu search algorithm

4.2.2 Parameter σ

After fixing θ = [7.5 ln n] we ran tests to set the value of σ which controls the number of
iterations allowed with the same objective value before the frequency-based diversification
is applied. We considered values for σ in the interval [1, 10] with increments of 1. Using
a small value for σ seems to produce poor results because the diversification is applied too
often. Similarly, using a too large value makes the algorithm spend too many iterations on
a plateau before trying to escape. We have found that the best results were obtained with
σ = 5 for all instances, regardless of their size.

4.2.3 Parameter β

Parameter β limits the number of iterations without improving the current solution. If
during the search the algorithm does not improve the current solution for β iterations then
the diversification based on frequency is applied. We ran tests with values in the interval
[1, 15] with increments of 1 for every instance. This parameter is sensible to the number of
jobs to schedule and the best setting appears to be β = n/4.

4.2.4 Parameter δ

The value of δ is the number of iterations allowed without improving the current solution
before the setup diversification is applied. This parameter is of course connected with β. We
considered values in the interval [n/8, n/4] with increments of 1/n and the best results were
obtained with δ = n/8.

4.2.5 Parameter γ

Parameter γ is also used to decide when the setup diversification has to be applied. If the
algorithm cannot improve the best solution for γ iterations then the setup diversification is
applied. This parameter is connected with the number of jobs to be scheduled and we ran
tests using different values in the interval [5n, 15n] with increments of n. The algorithm is
rather unsensitive to this parameter but the best results were obtained when γ was chosen
in the interval [9n, 11n] with γ = 9n being the most appropriate.

11

A Tabu Search Heuristic for a Sequence-Dependent and Time-Dependent Scheduling Problem on a Single Machine

CIRRELT-2007-17



4.2.6 Parameter f

The intensity of the diversification is controlled through parameter f . We tested the algo-
rithm for values in the interval [0.01, 0.2] with increments of 0.01. As expected, using a too
small value for f does not produce the desired diversification and the search is restricted to
a small subset of the search space. Values in the range [0.1, 0.2] yielded good results, with
0.1 being the most appropriate value.

4.2.7 Parameter α

Lastly, we have varied the value of the parameter α which is used to reduce the neighbourhood
by considering only solutions for which the surrogate objective function value is below that
parameter. We considered values for α in the range [1.005z(s), 1.015z(s)] where z(s) is the
value of the current solution s, with increments of 0.001z(s). Our results showed that the
results are comparable for most values in the interval with a slightly better performance for
α = 1.01z(s).

4.3 Test results

In Tables 3, 4, 5 and 6 we report the results obtained by setting θ = [7.5 ln n] f = 0.1,
α = 1.01z(s), β = n/4, γ = 9n, δ = n/8 and σ = 5. The column headings are defined as
follows:

• n, number of jobs to schedule;

• FIXED, value of the fixed cost for the instance, i.e.,
∑n

j=1 pj;

• LB, optimal solution found using the branch-and-cut algorithm of Stecco et al. [2007]
or best lower bound (with 4 hours of computing time) if the instance was not solved
to optimality (the symbol ’*’ indicates that the instance was solved to optimality);

• UB, optimal solution obtained using the branch-and-cut algorithm of Stecco et al.
[2007] or best upper bound (with 4 hours of computing time) if the instance was not
solved to optimality (as above the symbol ’*’ indicates that the instance was solved to
optimality);

• z∗(s), value of the best solution found during our sensitivity analyses;

• z(s), result obtained by running the algorithm with the final parameter set;

• %LB, gap between z(s) and LB ((z(s)− LB)/LB× 100);

• %z∗(s), gap between z(s) and z∗(s) ((z(s)− z∗(s))/z∗(s)× 100);

• CPU, computing time in seconds.

The last row in each table indicates the average for each column. From the results,
one can see that for the instances of group A (Table 3) the tabu search can find for all
the instances the optimal solution when the optimal solution is known, and for the three
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instances for which the branch-and-cut did not find the optimal value, the solution found by
the tabu search is very close to the lower bound. Also the CPU time is on average about 5
seconds. Regarding group B (Table 4), all the instances that were solved to optimality by
the branch-and-cut can be solved to optimality by the tabu search. For the other instances
one can observe that the gap with the lower bound is small. Also the instances of group C
(Table 5) and D (Table 6) are solved to optimality if they are solved to optimality by the
branch-and-cut. The other instances have a gap with the lower bound that increases with
respect to the gap of group B especially for the instances in C1. Nevertheless if we compare
the result of the algorithm with the best solutions found during the sensitivity analyses the
gap is less than 1%. As one can expect the gap between the solutions found by the algorithm
and the lower bound increases, especially for the D1 instances. However, if we compare the
results with the best solutions obtained the gap remains at most around 1%.

One can also note that the CPU time on average increases from group A to group D,
since the instances become more difficult and the number of solutions solved to optimality
decreases. These computing times remain very small when compared with those of the
branch-and-cut algorithm which was given a maximum of four hours for each instance.

Furthermore, a comparison with the upper bounds produced by the branch-and-cut al-
gorithm shows that on all instances for which the branch-and-cut algorithm could not find
an optimal solution within the time limit, the heuristic has identified a better solution. It
thus seems fair to conclude that when both algorithms can solve an instance to optimality,
the tabu search heuristic is faster, while for instances that cannot be solved optimally by
the branch-and-cut, the heuristic produces a better solution in less than three minutes of
computing time (compared to four hours for the former algorithm).

5 Conclusion

We have introduced a tabu search heuristic for a sequence-dependent and time-dependent
scheduling problem on a single machine. This heuristic uses a new neighbourhood, the
complete relocate move, and an appropriate surrogate objective function to identify a set
of promising solutions. Two diversification mechanisms are applied with different intensity.
Comparing the computational results of the heuristic with those of a branch-and-cut algo-
rithm indicates that the heuristic can find high quality solutions in very short computing
times.
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Inst n FIXED LB UB z∗(s) z(s) %LB %z∗(s) CPU
A1-1 5 206.00 *1390.00 *1390.00 1390.00 1390.00 0.000 0.000 0.000
A1-2 10 313.00 *930.00 *930.00 930.00 930.00 0.000 0.000 0.050
A1-3 15 407.00 *1482.00 *1482.00 1482.00 1482.00 0.000 0.000 0.220
A1-4 20 665.00 *1571.00 *1571.00 1571.00 1571.00 0.000 0.000 0.480
A1-5 25 793.00 *1240.00 *1240.00 1240.00 1240.00 0.000 0.000 0.810
A1-6 30 761.00 *1533.00 *1533.00 1533.00 1533.00 0.000 0.000 1.920
A1-7 35 1005.00 *2395.00 *2395.00 2395.00 2395.00 0.000 0.000 4.050
A1-8 40 1273.00 *2010.00 *2010.00 2010.00 2010.00 0.000 0.000 6.340
A1-9 45 1374.00 *2690.00 *2690.00 2690.00 2690.00 0.000 0.000 13.460
A1-10 50 1622.00 2534.05 2553.00 2538.00 2538.00 0.156 0.000 17.130
A2-1 5 140.00 *1186.00 *1186.00 1186.00 1186.00 0.000 0.000 0.000
A2-2 10 661.00 *2171.00 *2171.00 2171.00 2171.00 0.000 0.000 0.060
A2-3 15 910.00 *2044.00 *2044.00 2044.00 2044.00 0.000 0.000 0.200
A2-4 20 1300.00 *2777.00 *2777.00 2777.00 2777.00 0.000 0.000 0.600
A2-5 25 1575.00 *3052.00 *3052.00 3052.00 3052.00 0.000 0.000 1.870
A2-6 30 2077.00 *2741.00 *2741.00 2741.00 2741.00 0.000 0.000 2.620
A2-7 35 2453.00 *3220.00 *3220.00 3220.00 3220.00 0.000 0.000 5.530
A2-8 40 2134.00 *2532.00 *2532.00 2532.00 2532.00 0.000 0.000 7.210
A2-9 45 2947.00 4393.18 4416.00 4397.00 4397.00 0.087 0.000 32.280
A2-10 50 2880.00 *3878.00 *3878.00 3878.00 3878.00 0.000 0.000 33.620
A3-1 5 592.00 *824.00 *824.00 824.00 824.00 0.000 0.000 0.000
A3-2 10 1158.00 *2007.00 *2007.00 2007.00 2007.00 0.000 0.000 0.050
A3-3 15 1441.00 *1869.00 *1869.00 1869.00 1869.00 0.000 0.000 0.160
A3-4 20 1699.00 *2150.00 *2150.00 2150.00 2150.00 0.000 0.000 0.490
A3-5 25 2583.00 *3715.00 *3715.00 3715.00 3715.00 0.000 0.000 1.780
A3-6 30 2783.00 *3551.00 *3551.00 3551.00 3551.00 0.000 0.000 4.290
A3-7 35 3234.00 *3897.00 *3897.00 3897.00 3897.00 0.000 0.000 9.940
A3-8 40 3879.00 *5555.00 *5555.00 5555.00 5555.00 0.000 0.000 38.700
A3-9 45 3744.00 *4975.00 *4975.00 4975.00 4975.00 0.000 0.000 44.400
A3-10 50 5091.00 6418.24 6449.00 6422.00 6423.00 0.074 0.016 145.260
Avg. 1723.33 2691.02 2693.43 2691.40 2691.43 0.011 0.001 4.842

Table 3: Comparison with the first set of instances
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Inst n FIXED LB UB z∗(s) z(s) %LB %z∗(s) CPU
B1-1 5 182.00 *1234.00 *1234.00 1234.00 1234.00 0.000 0.000 0.000
B1-2 10 689.00 *1785.00 *1785.00 1785.00 1785.00 0.000 0.000 0.060
B1-3 15 918.00 *2154.00 *2154.00 2154.00 2154.00 0.000 0.000 0.170
B1-4 20 976.00 *1924.00 *1924.00 1924.00 1924.00 0.000 0.000 0.460
B1-5 25 1347.00 *2130.00 *2130.00 2130.00 2130.00 0.000 0.000 0.970
B1-6 30 1867.00 3346.00 3390.00 3365.00 3365.00 0.568 0.000 2.460
B1-7 35 2550.00 3160.32 3211.00 3170.00 3170.00 0.306 0.000 4.050
B1-8 40 2625.00 3971.42 4051.00 3981.00 3981.00 0.241 0.000 6.580
B1-9 45 3124.00 4688.09 4801.00 4713.00 4729.00 0.873 0.339 16.270
B1-10 50 3121.00 4619.00 4771.00 4659.00 4685.00 1.429 0.558 25.820
B2-1 5 445.00 *848.00 *848.00 848.00 848.00 0.000 0.000 0.000
B2-2 10 1373.00 *2071.00 *2071.00 2071.00 2071.00 0.000 0.000 0.060
B2-3 15 1384.00 *2186.00 *2186.00 2186.00 2186.00 0.000 0.000 0.160
B2-4 20 2251.00 *2904.00 *2904.00 2904.00 2904.00 0.000 0.000 0.480
B2-5 25 3134.00 *4681.00 *4681.00 4681.00 4681.00 0.000 0.000 1.530
B2-6 30 3042.00 *4460.00 *4460.00 4460.00 4460.00 0.000 0.000 2.700
B2-7 35 4021.00 5476.18 5505.00 5489.00 5494.00 0.325 0.091 5.860
B2-8 40 4725.00 6145.02 6224.00 6158.00 6169.00 0.390 0.179 12.660
B2-9 45 4909.00 6469.03 6530.00 6472.00 6480.00 0.170 0.124 19.650
B2-10 50 5701.00 7002.00 7114.00 7008.00 7028.00 0.371 0.285 35.180
B3-1 5 1003.00 *1659.00 *1659.00 1659.00 1659.00 0.000 0.000 0.000
B3-2 10 2273.00 *2792.00 *2792.00 2792.00 2792.00 0.000 0.000 0.050
B3-3 15 3110.00 *3693.00 *3693.00 3693.00 3693.00 0.000 0.000 0.170
B3-4 20 4330.00 *5512.00 *5512.00 5512.00 5512.00 0.000 0.000 0.710
B3-5 25 4579.00 *5762.00 *5762.00 5762.00 5762.00 0.000 0.000 1.810
B3-6 30 4958.00 *6558.00 *6558.00 6558.00 6558.00 0.000 0.000 4.860
B3-7 35 5537.00 7173.10 7192.00 7176.00 7176.00 0.040 0.000 10.100
B3-8 40 7368.00 8786.98 8842.00 8806.00 8813.00 0.296 0.079 23.360
B3-9 45 8356.00 9401.15 9462.00 9413.00 9416.00 0.158 0.032 44.410
B3-10 50 8342.00 9679.00 9813.00 9689.00 9692.00 0.134 0.031 77.310
Avg. 3274.67 4409.01 4441.97 4415.07 4418.37 0.177 0.057 9.930

Table 4: Comparison with the second set of instances
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Inst n FIXED LB UB z∗(s) z(s) %LB %z∗(s) CPU
C1-1 5 635.00 *1677.00 *1677.00 1677.00 1677.00 0.000 0.000 0.000
C1-2 10 1690.00 *3113.00 *3113.00 3113.00 3113.00 0.000 0.000 0.070
C1-3 15 2190.00 *4434.00 *4434.00 4434.00 4434.00 0.000 0.000 0.340
C1-4 20 1924.00 *3430.00 *3430.00 3430.00 3430.00 0.000 0.000 0.570
C1-5 25 3276.00 5346.55 5433.00 5414.00 5414.00 1.262 0.000 1.740
C1-6 30 4001.00 5284.00 5397.00 5310.00 5316.00 0.606 0.113 2.530
C1-7 35 4294.00 5711.46 6103.00 5879.00 5915.00 3.564 0.612 11.100
C1-8 40 4940.00 6374.00 6774.00 6445.00 6506.00 2.071 0.946 12.220
C1-9 45 5112.00 6408.00 6857.00 6535.00 6554.00 2.278 0.291 18.370
C1-10 50 5982.00 8709.86 9401.00 8871.00 8910.00 2.298 0.440 54.040
C2-1 5 960.00 *2000.00 *2000.00 2000.00 2000.00 0.000 0.000 0.000
C2-2 10 2143.00 *4075.00 *4075.00 4075.00 4075.00 0.000 0.000 0.060
C2-3 15 3447.00 *5018.00 *5018.00 5018.00 5018.00 0.000 0.000 0.220
C2-4 20 5011.00 *5867.00 *5867.00 5867.00 5867.00 0.000 0.000 0.610
C2-5 25 5835.00 *8129.00 *8129.00 8129.00 8129.00 0.000 0.000 1.690
C2-6 30 7383.00 8689.33 8795.00 8732.00 8732.00 0.491 0.000 3.530
C2-7 35 9243.00 10326.00 10518.00 10388.00 10388.00 0.600 0.000 7.820
C2-8 40 9229.00 10911.50 11144.00 10937.00 10988.00 0.701 0.466 14.970
C2-9 45 9426.00 10795.00 11155.00 10858.00 10879.00 0.778 0.193 21.020
C2-10 50 12350.00 14479.20 14956.00 14567.00 14633.00 1.062 0.453 67.260
C3-1 5 1834.00 *2768.00 *2768.00 2768.00 2768.00 0.000 0.000 0.000
C3-2 10 3380.00 *4044.00 *4044.00 4044.00 4044.00 0.000 0.000 0.070
C3-3 15 5665.00 *7183.00 *7183.00 7183.00 7183.00 0.000 0.000 0.210
C3-4 20 7062.00 *8697.00 *8697.00 8697.00 8697.00 0.000 0.000 0.720
C3-5 25 10198.00 12480.70 12539.00 12506.00 12506.00 0.203 0.000 3.680
C3-6 30 11043.00 13428.10 13506.00 13463.00 13468.00 0.297 0.037 7.530
C3-7 35 10859.00 12223.60 12365.00 12267.00 12274.00 0.412 0.057 8.790
C3-8 40 13736.00 15201.00 15427.00 15226.00 15285.00 0.553 0.387 24.360
C3-9 45 14420.00 16042.50 16437.00 16147.00 16183.00 0.876 0.223 47.840
C3-10 50 18903.00 20963.10 21284.00 21027.00 21076.00 0.539 0.233 123.280
Avg. 6539.03 8126.96 8284.20 8166.90 8182.07 0.620 0.148 14.488

Table 5: Comparison with the third set of instances
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Inst n FIXED LB UB z∗(s) z(s) %LB %z∗(s) CPU
D1-1 5 4180.00 *5515.00 *5515.00 5515.00 5515.00 0.000 0.000 0.000
D1-2 10 9571.00 *10848.00 *10848.00 10848.00 10848.00 0.000 0.000 0.080
D1-3 15 10650.00 *13632.00 *13632.00 13632.00 13632.00 0.000 0.000 0.470
D1-4 20 4358.00 6112.32 6346.00 6346.00 6346.00 3.823 0.000 1.290
D1-5 25 5897.00 8024.35 8526.00 8363.00 8386.00 4.507 0.275 4.670
D1-6 30 7932.00 10130.30 11003.00 10643.00 10741.00 6.028 0.921 12.610
D1-7 35 9364.00 12122.70 13220.00 12609.00 12663.00 4.457 0.428 27.360
D1-8 40 11538.00 13842.00 15725.00 14833.00 14996.00 8.337 1.099 73.120
D1-9 45 10609.00 14441.00 16282.00 15022.00 15195.00 5.221 1.152 99.810
D1-10 50 10964.00 15043.70 17335.00 15933.00 16074.00 6.849 0.885 172.730
D2-1 5 2838.00 *5080.00 *5080.00 5080.00 5080.00 0.000 0.000 0.000
D2-2 10 3807.00 *6467.00 *6467.00 6467.00 6467.00 0.000 0.000 0.080
D2-3 15 7833.00 *9797.00 *9797.00 9797.00 9797.00 0.000 0.000 0.330
D2-4 20 8373.00 11035.80 11242.00 11117.00 11117.00 0.736 0.000 0.900
D2-5 25 12470.00 14357.90 14694.00 14577.00 14577.00 1.526 0.000 2.710
D2-6 30 14867.00 17408.00 17906.00 17619.00 17619.00 1.212 0.000 6.280
D2-7 35 19894.00 22625.40 23310.00 22884.00 22895.00 1.192 0.048 13.560
D2-8 40 17392.00 21013.00 22213.00 21294.00 21370.00 1.699 0.357 35.950
D2-9 45 20220.00 24297.70 25653.00 24679.00 24780.00 1.985 0.409 68.120
D2-10 50 23943.00 26918.30 28537.00 27228.00 27228.00 1.151 0.000 106.610
D3-1 5 3777.00 *5888.00 *5888.00 5888.00 5888.00 0.000 0.000 0.000
D3-2 10 6797.00 *8616.00 *8616.00 8616.00 8616.00 0.000 0.000 0.080
D3-3 15 11451.00 *13661.00 *13661.00 13661.00 13661.00 0.000 0.000 0.320
D3-4 20 13670.00 16830.80 16988.00 16988.00 16988.00 0.934 0.000 1.670
D3-5 25 18689.00 21631.10 21867.00 21795.00 21847.00 0.998 0.239 3.330
D3-6 30 22062.00 25332.00 25835.00 25562.00 25637.00 1.204 0.293 11.440
D3-7 35 26502.00 29336.50 30064.00 29687.00 29744.00 1.389 0.192 22.930
D3-8 40 33723.00 36806.20 37759.00 37030.00 37050.00 0.662 0.054 46.480
D3-9 45 31865.00 34645.20 35978.00 35085.00 35239.00 1.714 0.439 99.580
D3-10 50 35868.00 39878.90 41000.00 40203.00 40377.00 1.249 0.433 168.680
Avg. 14036.80 16711.24 17366.23 16966.70 17012.43 1.896 0.241 32.706

Table 6: Comparison with the fourth set of instances
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