
A Tabu Search Heuristic for the

Quay Crane Scheduling Problem

Marcello Sammarra§ Jean-François Cordeau† Gilbert Laporte∗

M. Flavia Monaco§

21st December 2006

Abstract

This paper proposes a tabu search heuristic for the Quay Crane Scheduling Problem

(QCSP), the problem of scheduling a fixed number of quay cranes in order to load and

unload containers into and from a ship. The optimality criterion considered is the min-

imum completion time. Precedence and non-simultaneity constraints between tasks are

taken into account. The former originate from the different kind of operations that each

crane has to perform; the latter are needed in order to avoid interferences between the

cranes. The QCSP is decomposed into a routing problem and a scheduling problem. The

routing problem is solved by a tabu search heuristic while a local search technique is used

to generate the solution of the scheduling problem. This is done by minimising a longest

path length in a disjunctive graph. The effectiveness of our algorithm is assessed by com-

paring it to a branch-and-cut algorithm and to a Greedy Randomised Adaptive Search

Procedure (GRASP).

Keywords: container terminal, crane scheduling, disjunctive graph, tabu search

§Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, 87036 Rende (CS), Italy.

{monaco, m.sammarra}@deis.unical.it
†Canada Research Chair in Logistics and Transportation, HEC Montréal, 3000, chemin de la Côte-Sainte-

Catherine, Montréal, Canada H3T 2A7. jean-francois.cordeau@hec.ca
∗Canada Research Chair in Distribution Management, HEC Montréal, 3000, chemin de la Côte-Sainte-

Catherine, Montréal, Canada H3T 2A7. gilbert@crt.umontreal.ca

1

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 2

1 Introduction

A container transshipment port can be considered, for our purposes, as an open production

system, with a material flow consisting of containers. It is possible to represent a container

transshipment port as two subsystems:

• the quayside and the landside which represent the external interface;

• the yard, where the containers to be loaded into a ship and those unloaded from a ship

are stored, which represents the storage system.

Between these two subsystems, a third one, the cargo handling system, plays an interconnect-

ing role: a dense network of internal equipments (cranes, straddle carriers and other sorts of

specialised vehicles) is provided for container transportation inside the terminal.

It is instructive to provide a short description of container movements. Containers arriving

by truck or by rail are moved to appropriate positions in the yard, which is partitioned into

stacks. In practice it is sufficient to distinguish between areas dedicated to outgoing (export)

containers, ingoing (import) containers, empty, and special (perishable or dangerous goods)

containers. Outgoing containers are lifted by yard cranes and moved by straddle carriers to

the ship, where they will be loaded by the quay cranes [16].

It is clear that optimally managing such a system is very complicated and calls for the

solution of several planning problems. For this reason an appropriate solution methodology is

to tackle each subproblem separately and try to restrict interactions with other subproblems.

In this paper we are concerned with the planning of the quay crane movements to load or

unload ships.

The problem was first addressed by Daganzo [3] who provided a mixed integer formulation

for the crane scheduling problem. The author considered a fixed number of cranes while as-

suming that the number of ships to be handled over the planning horizon can be fixed (static

problem) or variable (dynamic problem). The problem was solved exactly for small size in-

stances; for the larger cases a heuristic was used. Daganzo and Peterkofsky [4] later provided

an exact method to speed up loading and unloading operations or to minimise delay costs. In

both problems the authors define a task as the loading or unloading of all containers lying in

a given area of the yard or the ship (ship bay). For this reason the tasks are considered to

be preemptable and no precedence relationship is considered between containers stowed in the

deck and the hold of a containership, or between loading and unloading operations. Kim and

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 3

Park [8] have presented a mixed integer linear model, an exact algorithm and a heuristic for the

quay crane scheduling problem. Contrary to the assumptions made in [3] and [4], these authors

define a task as a group of homogeneous containers to be handled. For example, these could be

containers with the same destination port. Thus in a given ship bay there may be more than

one task to be handled, which leads to the imposition of non-preemptable task constraints,

precedence relationships between tasks and non-interference constraints between cranes. Moc-

cia et al. [11] have studied the same problem as in [8]; the authors proposed modifications to

the model of Kim and Park and developed a branch-and-cut algorithm for its solution. Lim et

al. [10] have solved the task-to-crane assignment problem assuming non-interference between

cranes; their solution method is based on dynamic programming.

In this paper, we solve the version of the Quay Crane Scheduling Problem (QCSP) described

by Kim and Park and by Moccia et al. Our aim is to develop a tabu search procedure for the

problem as defined by Moccia et al. [11]. The paper is organised as follows: in Section 2 we

provide a mathematical model for the problem; Section 3 is devoted to the algorithm, followed

by computational results in Section 4, and by conclusions in Section 5.

2 Notation and mathematical model

The model we use for the QCSP is based on that developed in [8], including the modi-

fications reported in [11]. We are given a set of tasks Ω = {1, . . . , n} and a set of cranes

Q = {1, . . . , q}. For convenience we introduce two dummy tasks 0 and T to represent, re-

spectively, the first and last tasks performed by each crane; thus the complete set of tasks

is Ω̄ = Ω ∪ {0, T}. We define pi as the relative processing time of task i ∈ Ω̄; clearly

p0 = pT = 0. Furthermore, li ∈ Z
+ represents the location of task i ∈ Ω and is expressed

as a ship bay number. Precedence relationships between pairs of tasks are expressed by the

set Φ = {(i, j)|i, j ∈ Ω, i must be completed before j starts}, while Ψ is the set of task pairs

that cannot be performed at the same time. This means that if (i, j) ∈ Ψ, then either i has to

precede j or j has to be completed before j starts; so, clearly, Φ ⊆ Ψ.

Regarding the cranes, rk is the earliest available time of the crane k, and l0k, l
T
k ∈ Z

+ are its

starting and its final position, respectively, which are expressed by a ship bay number. Denoting

by t̂ the time needed by a crane to move between two adjacent bays, the travelling time of a

crane between two generic bays can be expressed as tij = t̂|li − lj |; likewise tk0j = t̂|l0k − lj | and

tkiT = t̂|li − lTk | are the travelling times taken by crane k to move from its starting position

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 4

to bay j and from bay i to its final position, respectively. Finally we recall that the cranes,

allocated to handle a given ship, can move along the quay either on rail or on tyres. In both

cases they can only translate and therefore they can be ordered, with respect to their starting

position for example, from the leftmost, corresponding to the crane located in the lowest ship

bay to the rightmost, that is the crane in the highest ship bay.

We also introduce the following variables:

• xk
ij (i, j ∈ Ω̄, k ∈ Q) is equal to 1 if and only if tasks i and j are performed consecutively

by crane k;

• zij (i, j ∈ Ω) is equal to 1 if and only if task j starts after the completion time of task i;

• ci (i ∈ Ω) is the completion time of task i;

• yk (k ∈ Q) is the completion time of crane k;

• w is the makespan.

The model proposed in [11] is the following:

minimise α1w + α2

∑

k∈Q

yk (1)

yk ≤ w (k ∈ Q) (2)
∑

j∈Ω

xk
0j = 1 (k ∈ Q) (3)

∑

j∈Ω

xk
jT = 1 (k ∈ Q) (4)

∑

k∈Q

∑

j∈Ω

xk
ij = 1 (i ∈ Ω̄) (5)

∑

j∈Ω∪{T}

xk
ij −

∑

j∈Ω∪{0}

xk
ji = 0 (i ∈ Ω, k ∈ Q) (6)

ci + tij + pj − cj ≤ M(1 − xk
ij) (i, j ∈ Ω̄, k ∈ Q) (7)

ci + pj ≤ cj ((i, j) ∈ Φ) (8)

ci + pj − cj ≤ M(1 − zij) (i, j ∈ Ω) (9)

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 5

ci + pj − cj +
∑

k∈Q

∑

u∈Ω∪{0},lu 6=li

t̂xk
uj ≤ M(1 − zij) (i, j ∈ Ω, li = lj) (10)

cj − pj − ci ≤ Mzij (i, j ∈ Ω) (11)

cj − pj − ci −
∑

k∈Q

∑

u∈Ω∪{0},lu 6=li

t̂xk
uj ≤ Mzij (i, j ∈ Ω, li = lj) (12)

zij + zji = 1 ((i, j) ∈ Ψ) (13)

k
∑

v=1

∑

u∈Ω∪{0}

xv
uj −

k
∑

v=1

∑

u∈Ω∪{T}

xv
ui ≤ M(zij + zji) (i, j ∈ Ω, li < lj, k ∈ Q) (14)

cj + tkjT − yk ≤ M(1 − xk
jT) (j ∈ Ω, k ∈ Q) (15)

rk − cj + tk0j + pj ≤ M(1 − xk
0j) (j ∈ Ω, k ∈ Q) (16)

xk
ij ∈ {0, 1} (i, j ∈ Ω̄,∈ Q) (17)

zij ∈ {0, 1} (i, j ∈ Ω) (18)

yk, ci ≥ 0 (i ∈ Ω̄, k ∈ Q). (19)

In this model the objective function (1) is a linear combination of the makespan (see con-

straints (2)) and the sum of the crane completion times. As observed in [8, 11], minimising

the makespan is the same as minimising the ship completion time, while minimising the com-

pletion time of the cranes maximises their productivity (i.e. the number of containers handled

per hour), since they are kept idle as little as possible. Therefore by a linear combination of

the two objectives it is possible to distinguish, among all schedules yielding the same minimum

makespan, those corresponding to a higher productivity. Note that the problem under con-

sideration is intrinsically a multiobjective optimisation problem and the reduction to a single

objective problem through a linear combination of the objectives is quite common. In [8, 11] it

is assumed that α1 >> α2, since minimising the makespan is considered a primary objective;

therefore we can set α2 = 0. Constraints (3), (4), (6) are the classical routing constraints.

Constraints (5) ensure that each task is performed by one and only one crane. Constraints

(7) and (8) calculate the task completion times and simultaneously eliminate subtours. The

correct completion times for the last and the first task on each crane are computed through

constraints (15) and (16). Constraints (9), (10), (11) and (12) define the zij variables and

prevent crane interference. This occurs whenever the completion time of a task i is equal to

the starting handling time of another task j, the tasks lie in the same bay, and are performed

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 6

by different cranes. In this case the crane must perform task i safely, which can be enforced

by starting task j no sooner than ci + t̂. As noted by Moccia et al. [11], the model developed

by Kim and Park does not take into account constraints (10), (11) and (12). This model may

therefore yield solutions where interference occurs between cranes. Constraints (13) state that

tasks i and j cannot be handled at the same time if (i, j) ∈ Ψ. Finally, constraints (14) avoid

both interferences due to the crossing of the cranes’ jibs and the overtaking between cranes.

Supposing that tasks i and j (li < lj) are performed at the same time by the cranes k2 and k1

(k1 < k2), respectively, then the left-hand side of (14) is equal to one, while the right-hand side

is zero. The constant M in the model is a large number.

3 Algorithm

The QCSP can be formally defined as a scheduling problem on parallel uniform machines

with precedence constraints, denoted in the classic three fields notation as Pm|prec|Cmax. The

QCSP also possesses non-standard characteristics: ready times on machines and explicit non-

simultaneity constraints. It is well known [13] that Pm|prec|Cmax is strongly NP-hard unless

the precedence constraints graph is an outtree or an intree; other polynomially solvable cases

of the above problem arise when the number of machines is one or greater than the number of

jobs. Thus the QCSP is at least as difficult as Pm|prec|Cmax since it reduces to this problem

when rk = 0, ∀k ∈ K, and Ψ = Φ. The QCSP can also be viewed as a vehicle routing and

scheduling problem consisting of two subproblems:

• a routing problem, which determines the sequence of tasks on each machine;

• a scheduling problem, which determines, for each sequence, the starting handling time (or

equivalently the completion time) of the tasks belonging to that route.

In [8] a branch-and-bound algorithm and a Greedy Randomised Adaptive Search Procedure

(GRASP) are used to solve the QCSP, while in [11] the authors present an exact branch-and-

cut algorithm. The branch-and-bound method of Kim et al., as well as the GRASP, work

very well on instances with two cranes and up to ten to 15 tasks, while they fail on instances

with three cranes and 20 to 25 tasks. In contrast the branch-and-cut algorithm of Moccia et

al. has a higher overall efficiency, and outperforms the branch-and-bound algorithm, both in

terms of solution quality and of computation time. Clearly the fast growth of the solution time

with the size of the instances remains the major drawback of the branch-and-cut algorithm,

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 7

although it is faster than the branch-and-bound algorithm. The heuristic algorithm presented

in this paper offers, in contrast, a reasonable compromise in terms of computational burden

and solution quality. It results from tackling the QCSP as a vehicle routing problem and it is

based on tabu search.

In what follows, we refer to the task sequence handled by a crane k as a route σk and we

denote a schedule by σ = (σ1, . . . , σq). Moreover given a route σk we denote by σk−1 and σk+1,

respectively, the left adjacent and the right adjacent route of σk ∀k ∈ Q \ {1, q}. The first

route has no left adjacent route and the last route has no right adjacent route. The generic task

performed by crane k (a vertex in the route σk) is denoted by σk
i ; a path from 0 to T is denoted

by π = (π0, . . . , πT). The scheduling and routing subproblems are addressed in Sections 3.1

and 3.2, respectively.

3.1 A local search algorithm for the scheduling subproblem

When feasible values of the x variables are given, i.e., when a given task sequence is known,

what remains to be done is to calculate the completion times of the tasks. The latter subproblem

can be modeled on a graph G = (Ω̄, E), where E = A ∪ EΨ, and A =
⋃

k∈Q

Ak ∪ AΦ, with

Ak =
{

(i, j) : xk
ij = 1, i, j ∈ Ω̄

}

∀k ∈ Q, AΦ = Φ \
⋃

k∈Q

Ak, EΨ = Ψ \
⋃

k∈Q

Ak.

For example, consider the following instance:

Φ = {(5, 6), (7, 8), (9, 10)}

Ψ = {(2, 3), (3, 4), (4, 5), (4, 6), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8), (7, 8), (7, 9), (7, 10), (8, 9), (8, 10), (9, 10)}

The graph G corresponding to

x1
01 = x2

12 = x1
24 = x1

45 = x1
57 = x1

79 = x1
9T = x2

03 = x2
36 = x2

68 = x2
8 10 = x2

10 T = 1

is depicted in Figure 1. In this graph:

A1 = {(0, 1), (1, 2), (2, 4), (4, 5), (5, 7), (7, 9), (9, T)}, A2 = {(0, 3), (3, 6), (6, 8), (8, 10), (10, T)},

AΦ = Φ and EΨ = {(2, 3), (3, 4), (4, 6), (5, 8), (6, 7), (7, 10), (8, 9)}.

Graph G consists of |Q| chains connected to each other by arcs and edges (undirected arcs).

Such a graph is known as a disjunctive graph.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 8

2 4 5 7 9

10863

1

0 T

Figure 1: The disjunctive graph obtained from the values of the x variables.

3.1.1 Disjunctive graph representation

The concept of disjunctive graph was introduced by Roy and Soussmann [15] for the job

shop scheduling problem Jm||Cmax. In this context two represention schemes are available. In

both representations the vertices represent operations of a single task. The difference between

the two representations lies in the meaning of a chain. In the first representation a chain is

a task. Therefore, vertices belonging to the same chain are connected by arcs, while those

belonging to different chains are connected by edges. In the second representation a chain

is the set of operations performed by a machine. Therefore, vertices belonging to the same

chain are connected by edges while vertices lying on different chains are connected by arcs,

as the correct sequence of operations for each task must be kept. In both representations

every feasible schedule for the job shop problem corresponds to an edge orientation yielding an

acyclic directed graph; conversely any orientation yielding an acyclic direct graph corresponds

to a feasible schedule [14]. Moreover the makespan of a feasible schedule corresponding to an

acyclic orientation of the edges is determined by a longest path from a dummy source vertex 0

to a dummy sink vertex T . Thus, the minimisation of the makespan in a job shop environment

reduces to finding a feasible orientation minimising the longest path length [13].

The same idea can be applied to the QCSP, although the structure of the underlying dis-

junctive graph is quite different from that of the job shop problem. Actually, while the chains

of the job shop graph are only connected by edges or by arcs, in our case both edges and

arcs can exist between chains. This is not a drawback since this structure can be profitably

exploited to reduce the number of edges. To illustrate, consider vertices 4 and 6 connected by

an edge; because there exists a direct path between the nodes 4 and 6, any feasible orientation

will include arc (4, 6) but not arc (6, 4), for otherwise a cycle between nodes 4, 5 and 6 would

result; the same reasoning can be applied to edges (5, 8) and (7, 10). The resulting graph is de-

picted in Figure 2. When a feasible orientation can be determined for the edges, as just shown,

computing the makespan reduces to determining a longest path from 0 to T on a weighted

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 9

2 4 5 7 9

10863

1

0 T

Figure 2: The reduced disjunctive graph.

directed graph, were the arc weights are given by:

τ0j = rk
0 + tk0 j + pj ∀k ∈ Q, xk

0 j = 1,

τiT = tki T ∀k ∈ Q, xk
i T = 1,

τij = tij + pj ∀k ∈ Q, (i, j) ∈ Ak,

τij = pj ∀(i, j) ∈ AΦ ∪ ĒΨ.

The longest path can be computed through a label setting algorithm derived from the

general Bellman-Ford algorithm [1].

3.1.2 Local search heuristic

When it is not possible to direct all the edges, as in the example just provided, we use the

following simple local search heuristic. Let U = {u1, . . . , uλ} be the set of undirected edges,

F = {f1, . . . , fλ} a random orientation of U , and F i (i = 1, . . . , λ) the orientation obtained

from F by reversing the orientation of the arc fi.

1. Initialisation

a) best = ∞

b) compute a longest path in the graph G = (Ω̄, A, F); let cost be the solution value

c) if cost < best then best = cost .

2. Local Search

a) for i = 1, . . . , λ

– compute a longest path in the graph G = (Ω̄, A, F i)

– if cost < best then best = cost

b) return best and the corresponding orientation.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 10

The local search starts from F and explores its immediate neighbourhood. It is possible

that either F or some of the orientations F i give a cyclic graph. In this case we simply discard

these orientations, since they represent infeasible solutions. The approximation introduced by

the local search procedure, which solves only |U | + 1 longest path problems instead of 2|U |, is

very drastic. Motivations for this approach arise from the following considerations: first, it is

suitable to overestimate the optimal value rather than using a lower bound on the makespan;

second, the computation of a good upper bound must be carried out quickly. The ideas of the

solution approach presented in this section are integrated within a tabu search heuristic to be

described in Section 3.2.

3.2 A tabu search algorithm for the routing subproblem

We now propose a tabu search algorithm for the routing subproblem. Tabu search [6, 7, 5]

is basically a local search heuristic. Therefore, at each iteration h, it moves from the current

solution x(h) to the best solution x(h+1) in a subset N(x(h)) of the neighbourhood of x(h). In order

to avoid being trapped in a local optimum, tabu search may perform moves that deteriorate the

current solution, with the hope of eventually identifying a better one. Moreover, to prevent the

search from revisiting previously visited solutions and thus to return to the same local optimum,

the tabu search keeps in memory the most recent moves, declaring those as forbidden, or tabu,

for a given number of iterations. However the tabu status of a move may be revoked if this

move yields a new incumbent (best known solution). By performing a wider exploration of

the solution space, tabu search allows the identification of much better solutions than classical

local search algorithms do.

The basic ingredient of a tabu search heuristic is the neighbourhood function ∆ which

enables moves between different feasible solutions. Our neighbourhood function transforms a

feasible schedule σ into the set of schedules ∆(σ) obtained by performing one of the following

moves:

• swapping adjacent tasks;

• inserting a task, currently assigned to route k, into an adjacent route.

Obviously the running time of any tabu search algorithm depends on the size of the neigh-

bourhood, since the objective function must be evaluated for each neighbour. In our case the

evaluation of the objective function is not immediate because it requires the solution of an

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 11

NP-hard problem. We have to consider a small, but at the same time good, neighbourhood

structure.

3.2.1 The swapping move

Consider a schedule σ = (σ1, . . . , σq). If we perform all possible swaps on σ, we obtain a

neighbourhood whose size is bounded from above by the number of tasks. However some swaps

lead to infeasible solutions because the resulting schedule may violate a precedence constraint;

other swaps may yield makespans that are worse than the current value. We now explain the

swapping move. The value of the makespan equals the value of a longest path π in G; a longest

path determines a set of critical tasks, i.e., tasks whose starting time cannot be postponed

without increasing the makespan. Tasks lying on the critical path can be grouped into blocks

defined as the maximum number of tasks lying on the critical path and handled by the same

crane. For the example reported in the Section 3.1.1, suppose that, for a given orientation,

the longest path is π = (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , T) (see Figure 3). There are five blocks:

2 4 5 7 9

10863

1

0 T

Figure 3: Graph showing blocks and the critical path identified by dashed arcs.

P 1 = [1, 2], P 2 = [3], P 3 = [4, 5], P 4 = [6], P 5 = [7, 9]. If tasks 8 and 10 are swapped on σ2,

the path π still remains in the graph resulting after the swap. This amounts to saying that

swapping tasks not belonging to the longest path does not immediately improve the makespan.

This is why Van Laahroven et al. [9] have proposed swapping only those tasks belonging to the

critical path while Nowicki et al. [12] suggested swapping only the first and the last two tasks

of each block, leading to an important neighbourhood reduction. Our swapping rule is quite

different: for each block P h = πh1
, . . . , πhu

, u ≥ 2, and for each pair of consecutive tasks in P h,

if Φ(πhi
, πhi+1

) = 0 then swap tasks πhi
and πhi+1

. We do not allow the swapping of the last

task of block P h with the first one of block P h+1 because this swap corresponds to an insertion

move.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 12

3.2.2 The insertion move

While it is easy to evaluate swapping moves that do not improve the makespan, the same

cannot be said of insertion moves. However, we found that the best insertions are those that

limit overcrossings between cranes. Thus we allow the movement of tasks from their currently

assigned crane to an adjacent one. More precisely we evaluate the following insertion moves:

1. insertion of a task i from route σk as the first one in route σk+1, k = 1, . . . , q − 1;

2. insertion of a task i from route σk as the last one in route σk+1, k = 1, . . . , q − 1;

3. insertion of a task i from route σk as the first one in route σk−1, k = 2, . . . , q;

4. insertion of a task i from route σk as the last one in route σk−1, k = 2, . . . , q.

If the insertion of task i in the first position of an adjacent route is infeasible, meaning that

in the route there is at least a task j such that (j, i) ∈ Φ, we then insert task i immediately

after the last task j such that (j, i) ∈ Φ ; also if the insertion move on the last position of

an adiacent route is infeasible, we then insert i immediately before the first task j for which

(i, j) ∈ Φ.

3.2.3 The search process

To describe how our tabu search algorithm works, it is necessary to introduce additional

notation. A schedule σ is represented by a set of attributes

B(σ) = {(i, j, k)|i and j are consecutive tasks handled by crane k} .

As in [2] the transition from a schedule σ to another schedule σ̄ can be carried out by modifying

B(σ) according to the neighbourhood function described in Section 3.2.3. If an attribute (i, j, k)

is removed from B(σ), then (i, j, k) is declared tabu and cannot be inserted in B(σ) before θ

iterations. This means that a move is considered tabu if at least one of the attributes describing

the schedule obtained by that move is tabu. Nevertheless a tabu move will be performed if

at least one attribute satisfies the aspiration criterion, i.e., the move yields a new incumbent.

The aspiration level of an attribute (i, j, k) is denoted by αk
ij. The number of iterations for

which an attribute remains forbidden is denoted by βk
ij, while the number of times (frequency)

an attribute has been added to a solution is denoted by δk
ij . Therefore these define the memory

mechanism of the tabu search algorithm. More precisely the β ′s represent the short term

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 13

memory which prevent the search from visiting solutions just visited; the δ′s represent the long

term memory, and are used to lead the search into unexplored region of the solution space

(diversification). In order to reach this objective, non-improving moves are penalised by a term

equal to the sum of the frequencies of all the attributes added to the current solution, multiplied

by a constant factor γ.

In what follows the neighbourhood of a schedule σ will be denoted by N(σ), while the set of

schedules obtained by performing non-tabu moves will be denoted by M(σ). Finally we recall

that w is the makespan of a schedule σ, while w∗ and σ∗ represent, respectively, the incumbent

optimal value of the makespan and the schedule for which the value is reached, λ is an iteration

counter and λmax is the maximum number of iterations performed by our algorithm.

3.2.4 Overall description of the tabu search heuristic

Our tabu search algorithm for the QCSP can now be described:

1. Compute a starting solution σ; let w be the value of the makespan.

2. σ∗ = σ , w∗ = w.

3. ∀(i, j, k) δk
ij = 0 , βk

ij = 0 , αk
ij = ∞.

4. ∀(i, j, k) ∈ B(σ) αk
ij = w∗.

5. For λ = 1, . . . , λmax

a) M(σ) = ∅.

b) ∀σ̄ ∈ N(σ), ∀(i, j, k) ∈ B(σ̄) \ B(σ) such that βk
ij < λ or w̄ < αk

ij , M(σ) = M(σ) ∪

{σ̄}.

c) ∀σ̄ ∈ M(σ), if w̄ ≥ w, then g(σ̄) = w̄ + γw
∑

(i,j,k)∈B(σ̄)\B(σ)

δk
ij/λ, else g(σ̄) = w̄.

d) Solve min
σ̄∈M(σ)

g(σ̄), and let σ̂ be the optimal value.

e) ∀(i, j, k) ∈ B(σ) \ B(σ̂) set βk
ij = λ + θ.

f) ∀(i, j, k) ∈ B(σ̂) \ B(σ) set δk
ij = δk

ij + 1.

g) If ŵ < w∗, then σ∗ = σ̂ w∗ = ŵ.

h) ∀(i, j, k) ∈ B(σ̂) set αk
ij = min

{

αk
ij, ŵ

}

.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 14

i) Set σ = σ̂ and w = ŵ.

We now provide a brief description of the main loop (5).

• Steps (5.a) and (5.b) calculate the set M(σ) of all schedules in the neighbourhood of

current solution σ, whose added attribute are either non-tabu or satisfy the aspiration

criterion;

• Step (5.c) implements the diversification process;

• Step (5.d) returns the best feasible schedule σ̂ ∈ M(σ);

• Steps (5.e) and (5.f) update the short term memory and the long term memory, respec-

tively: each attribute removed from those describing the current solution σ is declared

tabu for the next θ iterations; the frequency of each attribute added to describe σ̂ is

increased by one unit;

• Step (5.g) keeps track of the best solution found through the search;

• Step (5.h) updates the aspiration level of the attributes describing the new identified

solution;

• Step (5.i) makes the search proceed to a new solution.

4 Computational results

The tabu search algorithm described in Section 3.2 was coded in C++ and run on a PC

equipped with a P4 2.66GHz processor and 256Mb of RAM. It uses three parameters: the

maximum number of iterations allowed λmax, the length of the tabu list θ, and the coefficient γ

of the diversification process in Step 5.c. The fine tuning of the parameters was carried out by

running the algorithm with various values of λmax, θ and γ. Regarding γ, one observes that this

parameter should depend on problem size. After some experimentation we set γ = γ̂
√

|Ω||Q|,

with γ̂ equal to 0.15, and then λmax = 5000. With these values, we let θ vary in the interval

[5, 15].

While small values of θ, around 7, are suitable for small and medium size instances, for

the larger instances this setting is unsuitable. We observed that for large size instances, the

number of iterations required to find the best solution decreases with θ, while for small size

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 15

instances the number of iterations is not affected by θ. Thus we fixed θ = 12. Finally we

recall that the performance of tabu search, like the performance of any local search heuristic,

is affected by the starting solution, although in tabu search this influence is limited by the

diversification mechanism. We have run the algorithm with two different starting solutions.

A first one, S-TASKS, is constructed by assigning to each crane the same number of tasks.

The second starting solution, S-LOAD, is obtained by assigning tasks to cranes so that each

crane has the same load in terms of total processing time. We found that the best results were

reached by starting the search from the S-LOAD solution, and by setting θ = 12 and γ̂ = 0.02.

The algorithm was tested on the instances used by [8] and [11]. The sizes of the instances

are the following:

• instances from k13 to k22 have 10 tasks and 2 cranes (set A);

• instances from k23 to k32 have 15 tasks and 2 cranes (set B);

• instances from k33 to k42 have 20 tasks and 3 cranes (set C);

• instances from k43 to k49 have 25 tasks and 3 cranes (set D).

Finally, we recall that Moccia et al. [11] have used a 2.5 GHz P4 machine equipped with

512 Mb of RAM for their numerical experiments, while the GRASP described in [8] was run

on a 466MHz PII machine equipped with 64Mb of RAM. The comparison results between our

algorithm, the branch-and-cut algorithm and the GRASP are shown in what follows.

4.1 Tabu search vs branch-and-cut

Here we compare the results provided by our tabu search algorithm with those reported

in [11]. As noted by Moccia et al., the instances of sets A and B can been solved exactly

by CPLEX, while on instances of sets C and D CPLEX does not always return the optimal

solution within the time limit, which has been fixed by the authors to two hours. We therefore

compare tabu search with CPLEX on instances of sets A and B (Table 1), and with the branch-

and-cut algorithm on instances belonging to the sets C and D (Table 2). In both cases we

report the best solution value reached by the algorithms (“Best”), the total computation time

(“Time”) taken by the algorithms, and the time (“TS”) taken by the tabu search algorithm to

find the best solution. All times are expressed in minutes. For instances of sets C and D we

report also the best lower bound (“LB”) returned by the the branch-and-cut algorithm.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 16

CPLEX [11] Tabu Search

Instance Set Best Time Best TS Time

k13 A 453 7.75 453 0.00 1.58

k14 A 546 0.01 546 0.00 1.65

k15 A 513 0.02 513 0.00 1.47

k16 A 312 0.09 312 0.00 1.46

k17 A 453 0.04 453 0.02 1.46

k18 A 375 0.01 375 0.01 1.50

k19 A 543 1.96 543 0.56 1.54

k20 A 399 0.04 399 0.00 1.54

k21 A 465 0.01 465 0.00 1.49

k22 A 537 0.18 537 0.08 1.48

k23 B 576 0.06 582 1.17 5.88

k24 B 666 0.96 669 0.00 5.83

k25 B 738 0.59 741 0.16 5.80

k26 B 639 0.14 639 2.67 5.79

k27 B 657 0.05 660 0.85 5.72

k28 B 531 0.21 531 0.44 5.93

k29 B 807 0.15 810 0.01 5.74

k30 B 891 0.22 891 3.60 5.88

k31 B 570 85.56 570 0.04 5.94

k32 B 591 1.12 591 0.59 6.10

Average values 563.10 4.96 564.00 0.51 3.69

Table 1: Comparison between tabu search and CPLEX.

The analysis of Tables 1 and 2 shows that our algorithm works very well on data sets A and

D, i.e., for the smallest and the largest instances tested. Indeed tabu search solves all instances

of set A, and four out of seven instances of set D. For the medium size instances (data sets B and

C) our method solves seven out of 20 problems and its performance deteriorates on instances

of the set C. However, when an optimal solution is not reached, the cost of the solution found

by tabu search is very close to the cost of the solution reported in [11]. Actually the largest

gap is approximately 2.8% (instance k48).

We have also analysed the behaviour of our algorithm on the unsolved instances, i.e., those

instances for which the branch-and-cut algorithm has not been able to find an optimal solution

within the fixed time limit. To this aim we have let the tabu search to run for two hours. The

results are presented in Table 3. We note that on five out of nine instances (k42, k44, k45, k48,

k49), an improvement of the solution quality has been obtained with respect to the previous

tabu search runs. The improvement is particularly significant on instances k42, k48, and k49,

where the cost of the solution reached by the tabu search algorithm is also smaller than or

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 17

equal to the cost returned by the branch-and-cut. Regarding the remaining four instances, for

which the tabu search has not been able to improve the previously determined solution, we

note that on instance k38 both algorithms returned the same solution. Since the corresponding

gap returned by the branch-and-cut is 0.7% [11], this solution is near-optimal. For the instance

k43 the solution returned by the tabu search is already much better than that identified by the

branch-and-cut and it is probable that no further improvement can be achieved.

Regarding computation times it is clear that our heuristic is disadvantaged with respect

to the branch-and-cut algorithm because it uses a stopping criterion that is not based on the

proof of the optimality of the solution found. Even so, the performance of our algorithm is

comparable to that of the exact algorithms; in fact for medium and large instances, data sets C

and D, respectively, in only four cases (problems k33, k34, k37, k47) is branch-and-cut faster

than tabu search.

Branch-and-Cut [11] Tabu Search

Instance Set LB Best Time Best TS Time

k33 C 603.00 603 10.60 603 3.38 20.88

k34 C 717.00 717 14.86 735 17.71 22.28

k35 C 684.00 684 42.04 690 14.90 22.26

k36 C 678.00 678 86.06 681 0.01 21.58

k37 C 510.00 510 21.20 519 19.03 22.31

k38 C 613.67 618 120.00 618 0.88 21.53

k39 C 508.38 513 120.00 519 1.62 21.45

k40 C 564.00 564 67.10 567 0.02 22.24

k41 C 585.06 588 120.00 594 7.27 21.59

k42 C 560.31 570 120.00 576 0.79 21.39

k43 D 859.32 897 120.00 879 47.49 49.42

k44 D 820.35 822 120.00 834 0.23 49.08

k45 D 824.88 840 120.00 852 4.11 49.62

k46 D 690.00 690 90.40 690 24.57 48.27

k47 D 792.00 792 27.00 792 0.01 46.48

k48 D 628.87 645 120.00 663 39.87 49.84

k49 D 879.22 927 120.00 912 1.90 48.06

Average values 685.76 84.66 689.65 10.81 32.84

Table 2: Comparison between tabu search and branch-and-cut.

4.2 Tabu search vs GRASP

Table 4 summarises the comparison between our tabu search algorithm and the GRASP

developed by Kim and Park in [8]. In order to provide a fair comparison of the algorithms, we

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 18

Branch-and-Cut [11] Tabu Search

Instance Set Best Best TS

k38 C 618 618 0.88

k39 C 513 519 1.62

k41 C 588 594 7.26

k42 C 570 570 80.79

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 19

GRASP [8] Tabu Search

Instance Set Best TC Best TS It

k13 A 453 0.0093 453 0.0000 0

k14 A 546 0.0057 546 0.0007 2

k15 A 516 0.0037 513 0.0000 0

k16 A 321 0.0050 312 0.0002 1

k17 A 456 0.0077 456 0.0002 1

k18 A 375 0.0103 375 0.0101 42

k19 A 552 0.0073 552 0.0000 0

k20 A 480 0.0073 399 0.0036 12

k21 A 465 0.0053 465 0.0005 2

k22 A 720 0.0087 555 0.0070 23

k23 B 591 0.0217 585 0.0007 1

k24 B 675 0.0313 669 0.0046 4

k25 B 741 0.0293 753 0.0252 29

k26 B 651 0.0420 651 0.0010 1

k27 B 687 0.0173 669 0.0020 2

k28 B 549 0.0277 537 0.0033 3

k29 B 819 0.0313 810 0.0104 9

k30 B 906 0.0323 921 0.0057 5

k31 B 570 0.0190 609 0.0178 16

k32 B 597 0.0403 594 0.0231 19

k33 C 666 0.0367 666 0.0293 11

k34 C 762 0.0393 741 0.0218 5

k35 C 699 0.0423 825 0.0354 18

k36 C 708 0.0793 681 0.0078 2

k37 C 540 0.0930 540 0.0849 22

k38 C 660 0.0533 624 0.0501 14

k39 C 579 0.0780 522 0.0213 5

k40 C 597 0.0493 567 0.0174 4

k41 C 642 0.0897 600 0.0724 17

k42 C 666 0.0713 606 0.0036 1

k43 D 942 0.0970 921 0.0481 5

k44 D 858 0.2063 858 0.0768 8

k45 D 873 0.1330 876 0.0283 3

k46 D 735 0.2223 702 0.1156 12

k47 D 807 0.1457 792 0.0088 1

k48 D 669 0.1023 666 0.0093 1

k49 D 972 0.1523 939 0.1135 12

Average values 649.86 0.0555 636.49 0.0233 8.46

Table 4: Comparison between tabu search and GRASP.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 20

iterations. Therefore, with only a slight increase in computation time, tabu search yields very

good quality solutions.

Cost

Iterations

Figure 4: Solution cost vs. number of iterations on three instances.

5 Conclusions

We have described a model and an algorithm for the Quay Crane Scheduling Problem.

We have proved that the QCSP can be viewed as a vehicle routing problem which can be

decomposed into a routing problem and a scheduling problem. The scheduling problem is NP-

hard because it reduces to a longest path problem in a disjunctive graph. We have developed

a tabu search algorithm for the routing problem and we have embedded into it a local search

technique for the scheduling problem. Our results have been compared with those provided by

a GRASP and by a branch-and-cut algorithm. We have seen that our algorithm outperforms

the GRASP. Compared with the branch-and-cut, our algorithm provides a good compromise

between solution quality and computation time. Our tabu search is capable of identifying the

optimal solution on several instances. When an optimum is not found, the solution obtained is

almost optimal.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 21

Acknowledgements

This work was partially done when the first author was visiting the Center for Research on

Transportation, Université de Montréal. We are grateful to Luigi Moccia for his helpful and

accurate comments. Thanks are also due to the Canadian Natural Sciences and Engineering

Research Council (grants 227827-04 and 39682-05) and to MIUR (grant 11584-2002 297/1999)

for their financial support. We thank the referees for their valuable comments.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows - Theory, Algorithms and

Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] J.-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic and

multi-depot vehicle routing problems. Networks, 30:105–119, 1997.

[3] C. F. Daganzo. The crane scheduling problem. Transportation Research - B, 23:159–175,

1989.

[4] C. F. Daganzo and R. I. Peterkofsky. A branch and bound solution method for the crane

scheduling problem. Transportation Research - B, 24:159–172, 1990.

[5] M. Gendreau and J.-Y. Potvin. Tabu search. In E. K. Burke and G. Kendall, editors, Search

Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques.

Springer-Verlag, 2005.

[6] F. Glover and M. Laguna. Tabu search. In C.R. Reeves, editor, Modern Heuristics Tech-

niques for Combinatorial Problems. Blackwell, Oxford, 1993.

[7] F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, 1998.

[8] K.H. Kim and Y.M. Park. A crane scheduling method for port container terminals. Euro-

pean Journal of Operational Research, 156:752–768, 2004.

[9] P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by

simulated annealing. Operations Research, 40:113–125, 1992.

M. Sammarra, J.-F. Cordeau, G. Laporte, M.F. Monaco 22

[10] A. Lim, B. Rodrigues, F. Xiao, and Y. Zhu. Crane scheduling with spatial constraints.

Naval Research Logistics, 51:386–406, 2004.

[11] L. Moccia, J.-F. Cordeau, M. Gaudioso, and G. Laporte. A branch-and-cut algorithm for

the quay crane scheduling problem in a container terminal. Naval Research Logistics, 53:

45–59, 2006.

[12] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem.

Management Science, 42:797–813, 1996.

[13] M. Pinedo. Scheduling - Theory, Algorithms and Systems. Prentice Hall, Englewood Cliffs,

NJ, 1995.

[14] M. Pinedo and M. Singer. A shifting bottelneck heuristic for minimizing the total weighted

tardiness in a job shop. Naval Research Logistics, 46:1–17, 1999.

[15] B. Roy and B. Soussmann. Les problèmes d’ordonnancement avec constraintes disjonctives.

Note D.S. 9 bis, SEMA, Paris, 1964.

[16] D. Steenken, S. Voss, and R. Stahlbock. Container terminal operation and operations

research - a classification and literature review. Operations Research Spectrum, 26:3–49,

2004.

