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A Tabu Search Heuristic for the Vehicle 

Routing Problem 

Michel Gendreau * Alain Hertz * Gilbert Laporte 
Centre de recherche sur les transports Universite' de Mon tre'al, C.P. 6128, succursale A, 

Montre'al, Que'bec, Canada H3C 3J7 

De'partement de mathermatiques, Ecole Polytechnique Fe'de'rale de Lausanne, 

Ecublens, CH-1015 Lausanne, Switzerland 

T he purpose of this paper is to describe TABUROUTE, a new tabu search heuristic for the 

vehicle routing problem with capacity and route length restrictions. The algorithm considers 

a sequence of adjacent solutions obtained by repeatedly removing a vertex from its current 

route and reinserting it into another route. This is done by means of a generalized insertion 

procedure previously developed by the authors. During the course of the algorithm, infeasible 

solutions are allowed. Numerical tests on a set of benchmark problems indicate that tabu search 

outperforms the best existing heuristics, and TABUROUTE often produces the best known 

solutions. 

(Vehicle Routing Problem; Tabu Search; Generalized Insertion ) 

1. Introduction 
The purpose of this paper is to present TABUROUTE, 

a new heuristic for the following version of the Vehicle 

Routing Problem (VRP). Let G = (V, A) be a directed 

graph where V = { vo, v1, . . . , vl } is a vertex set, and 

A = {(vi, vj): i = j]} is an arc set. Vertex v0 denotes a 

depot at which m identical vehicles are based, and the 

remaining vertices of V represent c ities. The value of 

m is either fixed at some constant, or bounded above 

by In. With every arc (vi, vj) is associated a nonnegative 

distance cij. (For the sake of simplicity, the terms "dis- 

tances," "travel times," and "travel costs" will be used 

interchangeably.) The VRP consists of designing a set 

of least cost vehicle routes in such a way that 

(a) every route starts and ends at the depot; 

(b) every city of V \ { v0 } is visited exactly once by 

exactly one vehicle, and 

(c) some side constraints are satisfied. 

We consider the following side constraints: 

(d) With every city is associated a nonnegative de- 

mand qi (q0 = 0). The total demand of any vehicle route 

may not exceed the vehicle capacity Q. 

(e) Every city vi requires a service time bi (60 = 0). 

The total length of any route (travel plus service times) 

may not exceed a preset bound L. 

In our version of the problem, vehicles bear no fixed 

cost, and their number is a decision variable. 

The VRP lies at the heart of distribution management 

and has been extensively studied over the last three 

decades or so. (See the surveys by Christofides, Min- 

gozzi, and Toth 1979, Bodin, Golden, Assad, and Ball 

1983, Christofides 1985, Laporte and Nobert 1987, 

Golden and Assad 1988, and Laporte 1992). The VRP 

is a hard combinatorial problem, and to this day only 

relatively small VRP instances can be solved to opti- 

mality. Interesting exceptions are the problems solved 

to optimality by Fisher (1989), using minimum k-trees. 

We are mostly interested here in heuristic algorithms. 

Extending the scheme proposed by Christofides (1985), 

these algorithms can be broadly classified into four 

types: (1) Constructive algorithms (see, e.g., Clarke and 

Wright 1964, Mole and Jameson 1976, Desrochers and 

Verhoog 1989, Altinkemer and Gavish 1991); (2) Two- 

phase algorithms (see, e.g., Gillett and Miller 1974, 
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Christofides, Mingozzi, and Toth 1979, Fisher and Jaik- 

umar 1981, Toth 1984); (3) Incomplete optimization al- 

gorithms (see, e.g., Christofides, Mingozzi, and Toth 

1979); (4) Improvement methods (see, e.g., Stewart and 

Golden 1984; Harche and Raghavan 1991). 

Metaheuristics such as simulated annealing and tabu 

search can be viewed as improvement methods. These 

are search schemes in which successive neighbors of a 

solution are examined, and the objective is allowed to 

deteriorate in order to avoid local minima. As a rule, 

these algorithms are designed to be open-ended and 

their running time, which can sometimes be quite large, 

is not a polynomial function of the size of the input 

data. Using an analogy with a material annealing pro- 

cess used in mechanics (Metropolis et al. 1953, Kirk- 

patrick, Gelatt, and Vecchi 1983), simulated annealing 

ensures that the probability of attaining a worse solution 

tends to zero as the number of iterations grows. Such 

a method was applied to the VRP by Osman (1991, 

1993). Tabu search was proposed by Glover (1977) (see 

Glover 1989, 1990 and Glover, Taillard, and de Werra 

1993 for recent overviews). Here, successive "neigh- 

bors" of a solution are examined and the best is selected. 

To prevent cycling, solutions that were recently ex- 

amined are forbidden and inserted in a constantly up- 

dated tabu list. We are aware of a number of VRP al- 

gorithms based on this approach. One of the first at- 

tempts to apply tabu search to the VRP is due to Willard 

(1989). Here, the problem is first transformed into a 

TSP by replication of the depot, and the search is re- 

stricted to neighbor solutions that can be reached by 

means of 2-opt or 3-opt interchanges while satisfying 

the VRP constraints. In Pureza and Franca (1991), the 

search proceeds from one solution to the next by swap- 

ping vertices between two routes. Osman (1991, 1993) 

uses a combination of 2-opt moves, vertex reassign- 

ments to different routes, and vertex interchanges be- 

tween routes. Another algorithm was developed by Se- 

met and Taillard (1993) for the solution of a real-life 

VRP containing several features, and different from the 

version considered in this paper. Here the basic tabu 

move consists of moving a city from its current route 

into an alternative route. Finally, Taillard (1992) par- 

titions the vertex set into clusters separately through 

vertex moves from one route to another. Clusters are 

updated throughout the algorithm. Note that in all these 

algorithms, a feasible solution is never allowed to be- 

come infeasible with respect to side constraints. 

Our purpose is to describe a new tabu search pro- 

cedure for the VRP. It differs from the implementations 

just described in several fundamental aspects. Our re- 

sults show that the proposed algorithm is highly com- 

petitive on a set of benchmark problems. The remainder 

of this paper is organized as follows. The algorithm is 

presented in ?2 and the computational results in ?3. 
This is followed by the conclusion, in ?4. We also pro- 

vide, in an appendix, the best solutions obtained by our 

algorithm on the test problems. 

2. Algorithm 
This section contains a description of TABUROUTE fol- 

lowed by some comments. We use the following no- 

tation. A solution is a set S of m routes R1, ..., Rn, 

where m E [1, nii], R, = (v0, Vri, Vr2, . . . , v0), and each 

vertex vi (i ? 1) belongs to exactly one route. These 

routes may be feasible or infeasible with respect to the 

capacity and length constraints. For convenience, we 

write vi E Rr if vi is a component of Rr, and (vi, vj) E Rr 

if vi and vj are two consecutive vertices of Rr. With any 

feasible solution S, we associate the objective function 

F1(S) = E c1j. 
r (v'i,vj)ERr 

Also, with any solution S (feasible or not), we associate 

the objective 

F2(S) = F1(S) + a z [( qi - Q] 
r v'iE Rr 

+ E [( Cij + z -L]. 

r \(v'i,'j)ERr viE Rr 

where [x]+ - max (0, x) and a, 3 are two positive pa- 

rameters. If the solution is feasible, F1 (S) and F2(S) co- 

incide; otherwise, F2 (S) incorporates two penalty terms 

for excess vehicle capacity and excess route duration. 

At any step of the algorithm, F* and F* denote respec- 

tively the lowest value of F1 (S) and F2 (S) so far en- 

countered. Also, S* is the best known feasible solution 

and S*, the best known solution (feasible or not). 

We first describe procedure SEARCH (P), central to 

TABUROUTE. This procedure attempts to improve 

upon a given solution S, using tabu search. It calls GENI 
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and US, two heuristics developed by the authors for 

the TSP (Gendreau, Hertz, and Laporte 1992). The first, 

GENI, is a generalized insertion routine. It is less myopic 

but more powerful than standard insertion procedures 

in that a vertex may be inserted only into a route con- 

taining one of its closest neighbors, and every insertion 

is executed simultaneously with a local reoptimization 

of the current tour. US is a post-optimization procedure 

that successively removes and reinserts every vertex, 

using GENI. Again, US has produced highly satisfactory 

results on the TSP, better than Or-opt, for example. The 

combination of GENI and US yields a powerful two- 

phase heuristic for the TSP. SEARCH is governed by a 

vector of parameters 

P = (W, q, pl, P2, Omin, 6max g, h, nmax) 

defined as follows: 

W: a nonempty subset of V \ { vo } containing vertices 

that are allowed to be moved from their current route; 

q: number of vertices of W that are candidate for rein- 

sertion into another route; 

pl: the route in which vertex v is reinserted must con- 

tain at least one of its pi nearest neighbors; 

P2: neighborhood size used in GENI; 

Omin Omax: bounds on the number of iterations for 
which a move is declared tabu; 

g: a scaling factor used to define an artificial objective 

function value; 

h: the frequency at which updates of a and ,3 are 

considered; 

nmax: maximum number of iterations during which 

the last step of the procedure is allowed to run without 

any improvement in the objective function. 

PROCEDURE SEARCH (P) 

Step 0 (Initialization). Set the iteration count t := 1; 

no move is tabu. 

Step 1 (Vertex selection). Consider solution S and ran- 

domly select q cities from W. 

Step 2 (Evaluation of all candidate moves). Repeat the 
following procedure for all selected vertices v. 

Consider all potential moves of v from its current 

route Rr into another route R, containing no city (if m 

< mii), or at least one of the pi nearest neighbors of v. 

Repeat the following operations for all candidate moves: 

(a) Remove v from Rr and compute its insertion cost 

into R,, using the GENI algorithm with parameter P2, 

and determine the corresponding S'. 

(b) If the move is tabu, it is disregarded unless S' is 

feasible and F1(S') < F*, or S' is infeasible and F2(S') 

< F2. 

(c) Otherwise, S' is assigned a value F(S') equal to 

F2(S') if F2(S') < F2(S), or to F2(S') + Amzaxl/gfv oth- 

erwise, where ,Amax is the largest observed absolute dif- 

ference between the values of F2(S) obtained at two 

successive iterations, and fv is the number of times vertex 

v has been moved, divided by t. 

Step 3 (Identification of best move). The candidate 

move yielding the least value of F and solution S is 

identified. 

Step 4 (Next solution). The move identified in Step 3 

is not necessarily implemented. It may indeed be ad- 

vantageous to attempt to improve S by applying to each 

individual route of S the US post-optimization procedure 

described in Gendreau, Hertz, and Laporte (1992). So- 

lution S is set equal to S, unless the following three 

conditions are satisfied: (a) F2(S) > F2(S); (b) S is fea- 

sible; (c) US has not been used at iteration t - 1; in 

such a case S is obtained by applying the US post- 

optimization process. 

Step 5 (Update). If the US procedure has not been 

used in Step 4 and vertex v has been moved from route 

Rr to route R, (s =# r), reinserting v into Rr is declared 

tabu until iteration t + 6, where 0 is an integer randomly 

selected in [Omin, Omax]. Set t := t + 1, update F*, FU 
S* 5* Amax / m and fv. 

Step 6 (Penalty adjustment). If t is a multiple of h, 

adjust a and : as follows. Check whether all previous 

h solutions were feasible with respect to vehicle capacity. 

If so, set a : = a / 2; if they were all infeasible, set 

a := 2a. Similarly, if all previous h solutions were fea- 

sible with respect to route length, set A := A/2; if they 

were all infeasible, set i8 := 23. 

Step 7 (Termination check). If F* and F* have not 

decreased for the last nmax iterations, stop. Otherwise, 

go to step 1. D 

The main algorithm can now be described. At first, 

several tentative initial solutions are generated, 

SEARCH is applied to each of them for a limited number 

of iterations, and the most promising solution is selected 

as a starting point for TABUROUTE. Procedure 

SEARCH is then called twice with different values P1 

1278 MANAGEMENT SCIENCE/Vol. 40, No. 10, October 1994 



GENDREAU, HERTZ, AND LAPORTE 

Tabu Search Heuristic 

and P2 of the parameters. The first call usually brings 

the most significant improvement to the initial solution, 

while the second call intensifies the search locally by 

concentrating on specific subsets of cities of the best 

known feasible solution if any, or of the best known 

infeasible solution otherwise. 

ALGORITHM TABUROUTE 

Step 0 (Initialization). Set a 1 and F*1 := oo. 

If vertices are described by two-dimensional coordi- 

nates, relabel them according to the angle they make 

with the depot and a horizontal line. 

Step 1 (First solution). Repeat the following operations 

X times, where X is an input parameter. 

(a) Randomly select a city vi. 

(b) Using the vertex sequence 

(Vo, Vi, Vi+1, * . * , Vn,x Vi, ** Vi-01 

construct a tour on all vertices by means of the GENIUS 

heuristic for the TSP (Gendreau, Hertz, and Laporte 

1992). 

(c) Starting with v0, create at most mi vehicle routes 

by following the tour: the first vehicle contains all cities 

starting from the first city on the tour and up to, but 

excluding, the first city vi whose inclusion in the route 

would cause a violation of the capacity or maximal 

length constraint; this process is then repeated, starting 

from vi, and until all cities have been included into 

routes (the solution is then feasible), or until mi - 1 

vehicles have been used, in which case all remaining 

cities are assigned to vehicle mh (the solution may then 

be infeasible). Let S be the solution (feasible or 

not) obtained through this process. Update F*, F*, S* 

and 

(d) Call SEARCH (PI). 
(e) If F* < oo, set S := S*; otherwise, set S 

Step 2 (Solution improvement). Call SEARCH (P2). If 

F* < oo, set S := S*; otherwise, set S := S*. 

Step 3 (Intensification). Call SEARCH (P3) . If F < oo, 

S* is the best known feasible solution; otherwise, no 

feasible solution has been found. 

Stop. D 

We now comment on the choice of parameters used 

in SEARCH and TABUROUTE, and on a number of 

algorithmic aspects. As far as parameters are concerned, 

we have selected them independently of the test prob- 

lems, relying as much as possible on theoretical consid- 

erations and on the experience developed by other re- 

searchers in the field of tabu search. In a limited number 

of cases where no firm basis existed for choosing the 

parameters, we have selected reasonable a priori values, 

and sensitivity analyses were then conducted on all test 

problems. 

Step 2c of SEARCH contains a diversification strategy. 

Following Glover (1989), vertices that have been moved 

frequently are penalized by adding to the objective 

function of the candidate solution a term proportional 

to the absolute frequency of movement of the vertex v 

currently being moved. Taillard (1992) suggests using 

a constant equal to the product of three factors: (a) 

ZXmax, a factor equal to the absolute difference value be- 

tween two successive values of the objective function, 

(b) the square root of the neighborhood size (shown 

later to be proportional to the number mn of routes), (c) 

a scaling factor g equal to 0.01 in our implementation. 

As a rule, using too large a value of g lessens the like- 

lihood of obtaining a good solution. Too low a value 

does not produce the desired diversification effect be- 

cause the algorithm does not move away from the cur- 

rent solution. Post-optimality tests show that the al- 

gorithm is quite insensitive to g as long as it remains in 

the interval [0.005, 0.02]. 

The variable tabu list length (0) used in Step 5 of 

SEARCH was also inspired from Taillard's work (1991). 

After extensive experiments on the application of tabu 

search to the quadratic assignment problem, this author 

concludes that the probability of obtaining a global op- 

timum is increased in the case of a variable list length. 

Our implementation of random duration tabus differs 

from that proposed by Taillard since no tabu list is ac- 

tually used. Instead, each move individually receives a 

random duration tabu tag denoted 0: this limits the 

amount of bookkeeping required and, as a result, the 

speed of the algorithm is increased. In the current im- 

plementation, we use Omin = 5 and Omax = 10, as sug- 

gested by Glover and Laguna (1993) for "simple dy- 

namic tabu term rules." 

The idea used in Step 6 of SEARCH of updating ae 

and : during the course of the algorithm could also be 

applied to other contexts where penalty terms are added 

to the objective function. All too often, choosing an 

appropriate coefficient value is difficult, and a wrong 

choice can have an adverse impact on the performance 
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of the algorithm. Here penalty coefficients are doubled 

if the h = 10 previous solutions were infeasible and 

halved if the h = 10 previous solutions were feasible. 

With this rule, we quickly arrive at values of ae and : 

that produce a mix of feasible and infeasible solutions. 

We found the algorithm is not very sensitive to the value 

of h. Thus, solutions produced with h = 5 or 20 are at 

most 1% worse than those obtained with h = 10. In this 

type of algorithm, obtaining infeasible solutions is im- 

portant since this helps moving out of local optima. 

Hertz (1992) uses this idea in the context of a course 

scheduling algorithm. 

We now comment on algorithm TABUROUTE. The 

value currently used for X, the number of tentative initial 

solutions, is equal to [ Vn / 2]. Post-optimality tests in- 

dicate that it pays to use a value of 'X greater than 1 and 

as large as [V r/2], because the algorithm is then less 

likely to start on the wrong track. Values of X larger 

than [V4/ 2] were also tested, but as a rule the extra 

computational effort required is not justified by the 

quality of the results. 

The idea of using a tour construction heuristic, as in 

Step lc of TABUROUTE, has already been used by a 

number of researchers (see, e.g., Beasley 1983 and Hai- 

movich and Rinnooy Kan 1985). Our implementation 

is different in that we resort to the more powerful 

GENIUS algorithm to obtain an initial tour. When the 

number of available vehicles is unbounded (i.e., m- =n), 

the initial solution is always feasible. However, for 

smaller values of mh, feasibility at this stage is not guar- 

anteed, because the problem of finding a feasible so- 

lution to the capacity constrained VRP is a bin packing 

problem and is therefore NP-complete (Garey and 

Johnson 1979). Comparisons were made with a sim- 

plified version of the algorithm using random starting 

solutions. More precisely, for each solution 50 routes 

were initialized with a randomly selected seed, and the 

remaining vertices were then arbitrarily inserted into 

the existing routes. Results show that the final solution 

values obtained using the procedure described in Step 

1 of TABUROUTE are approximately 1% better than 

those obtained from randomly generated routes. 

We now discuss the choice of parameters W, q, Pi, 

P2, and nmax in the various calls to SEARCH (P). Pa- 

rameter W defines the subset of cities that can be moved 

into different routes in procedure SEARCH. This pa- 

rameter is always equal to V \ { vo }, except in the in- 

tensification step of TABUROUTE (Step 3), where W 

is defined as the L [ V I / 2 ] vertices v with the largest f"; 
these vertices have often been moved and are therefore 

likely to yield a solution improvement if moved. In Step 

3, the value of q is equal to I W l In other words, all 

vertices that are allowed to move are candidates for 

reinsertion. In P1 and P2, however, it would be prohib- 

itive to consider so many reinsertions. Here, q is chosen 

to ensure a sufficiently high probability of selecting at 

least one vertex from each route. This probability is 

P(q, m) = S(q, m)m!/mq (assuming the number of cities 

in each route is sufficiently large), where S(q, m) is a 

Stirling number of the second kind (Riordan 1958). The 

most appropriate value of q depends on m; as long as 

m ? 30, taking q = 5m ensures that P(q, m) ? 0.9. 

Parameter P2 corresponds to the neighborhood size in 

GENI. Extensive tests performed by Gendreau, Hertz, 

and Laporte (1992) indicate that taking P2 = 5 ensures 

that a near-optimal TSP solution will be found relatively 

quickly; this is the value used in Pl, P2, and P3. The 

algorithm is quite sensitive to the value of this param- 

eter. Using P2 C 4 tends to produce low quality solutions; 

in contrast, when P2 2 6, running times become exces- 

sive. 

Parameter pi is equal to max (k, P2), where k is the 

number of cities in the route containing the vertex v 

currently being moved. This value of pi ensures that at 

least one potential move will relocate v into a different 

route. Finally, the value of nmax is equal to n in Pl, P3, 

and to 50n in P2, as the most important part of the 

search is executed in Step 2. The running time of the 

algorithm is linearly related to the value of this param- 

eter in P2. If nmax is too low, some good solutions will 

be missed. If it is too high, there is a risk that the al- 

gorithm will run a long time without improvement. 

Sensitivity analyses performed on all test problems 

suggest 50n is a good compromise. 

3. Computational Results 
TABUROUTE was tested on the fourteen test problems 

described in Christofides, Mingozzi, and Toth (1979). 

These problems contain between 50 and 199 cities in 
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addition to the depot. Problems 1-5 and 11-12 have 

capacity restrictions only. Problems 6-10 are the same 

as 1-5, except that they have a route length constraint 

as well; problems 13-14 are also the same as 11-12, 

with a route length constraint. In problems 1-10, cities 

are randomly generated in the plane, while in problems 

11-14, they appear in clusters. All computations were 

executed with distances rounded up or down after four 

decimals. The final solutions were evaluated with real 

distances, and the objective value was then rounded up 

or down after two decimals. 

Comparisons were made between TABUROUTE and 

other heuristic algorithms for which computational re- 

sults have already been published for the same prob- 

lems: 

CW: the Clarke and Wright (1964) savings al- 

gorithm; 

MJ: the Mole and Jameson (1976) generalized 

savings algorithm; 

AG: the Altinkemer and Gavish (1991) PSA-T 

algorithm; 

DV: the Desrochers and Verhoog (1989) MBSA 

algorithm; 

GM: the Gillett and Miller (1974) SWEEP algo- 

rithm; 

CMT1: the Christofides, Mingozzi, and Toth (1979) 

two-phase algorithm; 

FJ: the Fisher and Jaikumar (1981) two-phase 

algorithm; 

CMT2: the Christofides, Mingozzi, and Toth (1979) 

incomplete tree search algorithm; 

OSA: Osman's (1993) simulated annealing algo- 

rithm; 

PF: the Pureza and Franca (1991) tabu search 

algorithm; 

OTS: Osman's (1993) tabu search algorithm; 

T: Taillard's (1992) tabu search algorithm. 

Solution values for these algorithms are reported in 

Table 1. These values are extracted from the respective 

references except for CW, MJ, and GM, which are taken 

from Christofides, Mingozzi, and Toth (1979). 

We report two sets of figures for TABUROUTE. The 

"standard" column contains results for a siingle pass of 

TABUROUTE, using the parameters described in ?2. 
However, in the course of performing the various sen- 

sitivity analyses, we did on occasions produce better 

solutions; the corresponding local optima are reported 

in column "best." Asterisks correspond to the best ver- 

ifiable solutions obtained with real cijs. The full solutions 

for the "best" column are reported in the appendix. 

These results show that all "classical" algorithms (CW 

to CMT2 in Table 1) are clearly dominated by simulated 

annealing and tabu search, as far as solution values are 

concerned. TABUROUTE is highly competitive and 

generally produces the best known solutions. However, 

when analyzing results, care must be taken to make 

equitable comparisons. Thus, "TABUROUTE standard" 

executes a single pass with a priori parameters, while 

for other columns (e.g., AG, OSA, OTS, T, and "TABU- 

ROUTE best") the algorithm was run for several vari- 

ants, and the best solution was selected. Similarly, pa- 

rameters in some algorithms are undefined in the orig- 

inal article, and the rule for selecting seed points in FJ 

is not well specified. Another problem arises from the 

type of distances that were used. It must first be said 

that we did not generally possess the full solutions pro- 

duced by the other algorithms, but only their value. 

This poses a number of difficulties. It is obvious that 

rounding or truncating must have occurred in the final 

solution value, on the individual route costs, or on the 

distances themselves since the reported optima are often 

integer while the original distances are real. As a result, 

the integer values reported in Table 1 may underesti- 

mate the true value to some extent. To our knowledge, 

only the columns OSA, OTS, T, and TABUROUTE cor- 

respond to verifiable solutions obtained with real cijs. 

The effect of rounding and truncating is best illustrated 

on problem 1. When this problem is solved with real 

cijs, a feasible solution of cost 524.61 is obtained. Re- 

cently, Hadjiconstantinou and Christofides (1993) have 

proved this result is optimal. Using rounded costs, 

TABUROUTE produces a solution of value 521, again 

a proven optimum (Cornuejols and Harche 1993). The 

same value is given by Fisher (1989) without specifi- 

cation of the rounding convention employed, and by 

other authors who worked with rounded distances 

(Harche and Raghavan 1991, Noon, Mittenthal, and 

Pillai 1991). Using truncated costs, we obtain an ob- 

jective value of 508 with TABUROUTE. Another diffi- 

culty arises in problems with very tight route length 

MANAGEMENT SCIENCE/VOL 40, No. 10, October 1994 1281 



GENDREAU, HERTZ, AND LAPORTE 

Tabu Search Heuristic 

aL) -:* Lo C. I m Lo c\j -: C\j m Lo C. 
LU m M C\ CY' C\ CY' -r LO C) C. C. C) "-I s -I 

LO 00 00 C) Cy LO 0) 00 C) 00 LO M 

cc 

,- 

m 

LOS-- m- AC0 C\l LO CD Lo _ co CY. m CY. co 
CIO C\J Cy C\J Cy C\J LO -r- CO r- -r- r- r- 

-:* Loc m C) oo m Lo -: CY. CY. o) C co 

LOCO CO C) Cy) Lo ) Co C CO Lo CO 

LO LO CY' Lo LO CY m o o_so 

C/ C CY LI ":* r-- cc -7 U? 

l LO co oo C 
I 

LO CY) co C\ CI co C0 cos 

O\ co CY' c o LO \ LO co 
C/ coco CYoo co LO CY o l coco LO Co 

C) C\ CY' C\ Lo rl LO C) Co Co r C\ :oo 

rl_ CY, Co C Co Lo C co coo 

c. LO co co C LoCYco \ LO co Ico 

'7 LO coco C) LO CY CY C\ LOC o co co 
uz 

L 
snno m oso 

CL CD LO co co o CY' LO CY co C\ LO C\j CY rl CY) 

CL 0 
X tnntcMmo O MC 

_ 

> oo oo oo n cM m s m s s ~~~~~~~~~~~~~~~~~~~~~~~~C/ o . 
< ooo=tsm Mso oso 

> o~~~~~~~~~~~ 
3~~~~~~~~~~~C LOo ) r-0)MC l 

CD LO LO C. oo LO rl M -r -r C. "-I M LO r_ 
. 3 < LO M M o) M LO M M C\J " O) M LO 0 o 

~~~~~~~~~~~~O C) C\ ) LO ) 0) ) oo C) o) M C oo. 

Ir: 
rl -r 00 

Loo c 
I M Co M 00 C) rl 

= ooso 

u~~~~~~~~~~~0 C 0 ) --r- t \ )r- M M o 

.cn~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 

E Co LO o o m o) U- o) o m o) o) o o o~~~~~~~~~~~- c- C) U o m U- rl CD U- m c\ CD c\ CD o 

~~~~~~~~~~~~C\J U)C. l 
CD C\ 0~~~~~~~~~~~ 

constraints, where some routes can be infeasible for 

TABUROUTE, but feasible when rounding or truncating 

occurs. We are aware of such cases where TABUROUTE 

would have achieved a much better value had we con- 

sidered legal some routes with a length exceeding L by 

less than one unit. This type of problem has already 

been reported by Mole (1983) in relation with a vehicle 

scheduling algorithm by Cheshire, Malleson, and Nac- 

cache (1982). We also compared TABUROUTE with 

algorithms known to have been tested with truncated 

distances (Toth 1984) or with rounded distances 

(Harche and Raghavan 1991, Noon, Mittenthal, and 

Pillai 1991) by using the same type of distance. In each 

case, TABUROUTE produced better or identical results 

on all 14 problems. 

The methodological problems just raised make direct 

computation time comparisons difficult, particularly 

when an unspecified number of passes of the same al- 

gorithm were executed with different parameters, or 

when inordinate computing times were allowed. In ad- 

dition, at least one algorithm (T) uses parallel comput- 

ing. By and large, metastrategies such as simulated an- 

nealing and tabu search require higher computation 

times than classical heuristics, but given the vast im- 

provements in solution quality, we feel the extra com- 

putational effort is well justified. We report in Table 2 

the computation times in minutes on a Silicon Graphics 

workstation, 36 MHz, 5.7Mflops, for the standard ver- 

sion of TABUROUTE. More specifically, we show the 

times required to compute the X initial solutions, to reach 

the best encountered solution, and to terminate the al- 

gorithm. These results show that the relationship be- 

tween problem size and computation time is not mo- 

notonous, and the moment at which the best solution 

is identified is quite unpredictable. Thus, in problems 4 

and 5, it is encountered toward the end of the search 

process, while in problem 12, it is discovered at an early 

stage, during the initial trials. 

4. Conclusion 
We have described in this paper a new tabu search al- 

gorithm for the VRP. Results obtained on a series of 

benchmark problems indicate clearly that tabu search 

outperforms the best existing heuristics, and TABU- 

ROUTE often produces the best known solutions. By 

nature, tabu search is a metaheuristic that must be tai- 
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Table 2 Computation Times for the Standard Version 

of TABUROUTE 

Computation Times in Minutes 

For the A To Obtain the 

Problem Size Initial Trials Best Solution Total 

1 50 0.6 1.4 6.0 

2 75 2.6 39,2 53.8 

3 100 3.1 6.8 18.4 

4 150 7.4 54.5 58.8 

5 199 15.9 83.8 90.9 

6 50 1.1 7.8 13.5 

7 75 3.2 31.8 54.6 

8 100 3.9 5.9 25.6 

9 150 11.9 21.3 71.0 

10 199 21.4 44.1 99.8 

1 1 120 3.0 11.9 22.2 

12 100 3.5 1.7 16.0 

13 120 10.3 34.8 59.2 

14 100 8.2 29.7 65.7 

lored to the shape of the particular problem at hand. 

We attribute a large part of the success of TABUROUTE 

to at least two main implementation devices. One is the 

fact that we allow infeasible solutions through penalty 

terms in the objective function, thus reducing the like- 

lihood of local minima. A second important ingredient 

of our method is the use of GENI to execute the inser- 

tions. Not only does this help produce better tours, but 

as a result, the solution is periodically perturbed and 

thus the risk of being trapped in a local optimum is 

again reduced. Finally, one major advantage of the pro- 

posed algorithm lies in its flexibility. It can be executed 

from any starting solution (feasible or not); it can also 

be adapted to contexts where the number of vehicles is 

fixed or bounded, where vehicles have different char- 

acteristics, etc. Also, additional features can easily be 

handled, such as assigning particular cities to specific 

vehicles, using several depots, allowing for primary and 

secondary routes, and so on.' 

l This work was partially supported by the Canadian Natural Sciences 

and Engineering Research Council under grants OGP0038816, 

OGP0039682, and OGP0105384. The second author also benefitted 

from an NSERC International Fellowship. Thanks are also due to the 

referees for their valuable comments. 

Appendix. Best Solutions Obtained with Taburoute (real distances) 
The "Time" column shows travel times only. To obtain total route durations, service times must be added, where applicable. 

Problem 1 

Number Q= 160 

of Cities Route Load Time 

10 0 38 9 30 34 50 16 21 29 2 11 0 159 99.33 

11 0 32 1 22 20 35 36 3 28 31 26 8 0 149 118.52 

9 0 27 48 23 7 43 24 25 14 6 0 152 98.45 

9 0 18 13 41 40 19 42 17 4 47 0 157 109.06 

11 0 12 37 44 15 45 33 39 10 49 5 46 0 160 99.25 

n = 50 524.61 
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Problem 2 

Number Q = 140 

of Cities Route Load Time 

10 0 51 3 44 50 18 55 25 31 72 12 0 138 119.32 

5 0 17 40 32 9 39 0 126 57.01 

6 0 7 53 11 10 58 26 0 139 71.90 

6 0 38 65 66 59 14 35 0 135 93.03 

9 0 34 46 8 19 54 13 57 15 29 0 140 82.69 

9 0 5 37 20 70 60 71 36 47 48 0 135 94.14 

7 0 30 74 21 69 61 28 2 0 138 88.71 

9 0 73 1 43 41 42 64 22 62 68 0 136 94.63 

8 0 6 33 63 23 56 24 49 16 0 140 92.69 

6 0 67 52 27 45 4 75 0 137 41.22 

n = 75 835.32 

Problem 3 

Number Route Q = 200 

of Cities Load Time 

5 0 94 95 97 87 13 0 108 40.91 

12 0 21 72 75 56 39 67 23 41 22 74 73 40 0 194 106.06 

16 0 92 98 37 100 91 16 86 38 44 14 42 43 15 57 2 58 0 198 126.66 

14 0 50 33 81 51 9 71 65 35 34 78 79 3 77 76 0 199 118.79 

14 0 52 7 82 48 19 11 64 49 36 47 46 8 83 18 0 199 138.79 

12 0 28 12 80 68 29 24 54 55 25 4 26 53 0 165 98.25 

14 0 31 88 62 10 63 90 32 66 20 30 70 1 69 27 0 199 113.93 

13 0 89 60 5 84 45 17 61 85 93 59 99 96 6 0 196 82.73 

n = 100 826.14 

Problem 4 

Number Q = 200 

of Cities Route Load Time 

13 0 138 48 112 7 61 114 99 43 86 97 69 23 57 0 196 120.33 

15 0 32 1 120 80 28 31 82 140 113 26 8 60 81 27 46 0 199 88.22 

11 0 11 100 2 83 131 20 59 3 101 51 77 0 195 74.55 

16 0 119 22 70 116 121 115 36 85 35 84 128 29 129 53 127 126 0 200 120.62 

13 0 78 16 118 130 50 21 79 74 34 104 9 62 38 0 192 75.74 

13 0 90 10 54 106 73 117 89 39 75 105 30 49 76 0 200 110.25 

18 0 137 44 107 65 93 92 42 64 88 40 94 19 141 150 148 142 147 17 0 197 119.46 

14 0 63 37 52 15 45 91 72 33 125 124 122 123 71 5 0 197 72.73 

10 0 144 145 109 87 135 143 4 149 146 47 0 200 51.96 

11 0 110 18 55 134 67 13 136 41 66 111 56 0 199 83.96 

13 0 139 68 133 14 58 25 95 96 24 98 132 6 102 0 199 90.86 

3 0 103 108 12 0 61 22.38 

n = 150 1031.07 
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Problem 5 

Number Q= 200 

of Cities Route Load Time 

13 0 158 184 190 41 90 143 89 137 142 114 156 93 86 0 200 103.02 

14 0 175 176 8 102 178 78 19 70 128 123 13 83 153 111 0 195 81.39 

15 0 66 196 191 1 136 197 199 43 42 68 113 91 141 22 186 0 184 76.61 

13 0 57 189 131 80 10 77 165 38 119 129 169 50 168 0 197 97.41 

11 0 95 97 161 9 110 25 56 118 72 147 181 0 200 81.82 

11 0 26 100 150 108 69 180 132 7 51 149 60 0 196 68.90 

13 0 157 2 101 28 64 94 140 121 82 173 21 172 139 0 200 65.43 

7 0 112 194 193 33 96 61 6 0 170 35.67 

12 0 16 67 159 182 49 74 144 145 24 107 63 117 0 193 79.65 

13 0 81 71 52 11 170 164 85 134 84 14 133 177 35 0 197 112.60 

11 0 54 30 48 47 155 36 122 174 171 120 152 0 197 73.46 

11 0 125 98 45 58 27 179 99 167 65 46 34 0 197 53.48 

3 0 127 87 4 0 61 20.80 

13 0 29 79 15 154 124 20 166 138 37 88 103 5 59 0 199 96.16 

14 0 106 73 18 146 135 92 148 163 31 162 75 39 109 12 0 200 127.50 

14 0 188 104 183 23 116 62 185 115 160 192 198 53 195 105 0 200 83.89 

11 0 126 17 76 40 130 187 32 44 55 3 151 0 200 53.57 

n = 199 1311.35 

Problem 6 

L = 200 

Number Q= 160 6= 10 

of Cities Route Load Time 

10 0 32 11 16 29 21 50 34 30 9 38 0 141 95.33 

10 0 12 37 44 15 45 33 39 10 49 5 0 155 99.12 

8 0 14 25 13 41 40 19 42 17 0 131 109.94 

9 0 6 23 24 43 7 26 8 48 27 0 133 100.64 

9 0 2 20 35 36 3 28 31 22 1 0 137 108.08 

4 0 18 4 47 46 0 80 42.33 

n = 50 555.43 
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Problem 7 

L= 160 

Number Q= 140 6= 10 

of Cities Route Load Time 

7 0 17 40 44 3 24 49 16 0 132 76.84 

7 0 51 63 23 56 41 43 33 0 115 85.24 

7 0 62 22 64 42 1 73 6 0 112 89.92 

7 0 7 35 14 59 19 8 46 0 138 81.36 

5 0 53 11 66 65 38 0 129 77.16 

6 0 32 50 18 55 25 9 0 113 92.97 

8 0 67 34 52 54 13 57 15 27 0 135 77.54 

8 0 45 29 5 37 36 47 48 75 0 140 73.82 

6 0 4 20 70 60 71 69 0 87 98.76 

7 0 30 74 21 61 28 2 68 0 140 74.38 

7 0 26 58 10 31 39 72 12 0 123 81.69 

n = 75 909.68 

Problem 8 

L = 230 

Number Q= 200 6 10 

of Cities Route Load Time 

13 0 53 40 21 73 72 74 75 22 41 15 57 2 58 0 157 83.10 

9 0 54 55 25 39 67 23 56 4 26 0 153 107.08 

11 0 99 61 16 86 38 44 14 43 42 87 13 0 191 111.40 

12 0 94 95 97 92 98 37 100 91 85 93 59 96 0 199 59.35 

11 0 18 82 48 47 36 49 64 11 19 7 52 0 178 117.55 

11 0 27 69 70 30 32 90 63 10 62 88 31 0 155 90.12 

10 0 89 60 83 8 46 45 17 84 5 6 0 93 89.16 

11 0 50 33 81 9 35 71 65 66 20 51 1 0 163 117.93 

12 0 12 80 68 24 29 34 78 79 3 77 76 28 0 169 90.26 

n= 100 865.94 
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Problem 9 

L = 200 
Number Q = 200 6 = 10 

of Cities Route Load Time 

11 0 138 12 109 134 24 25 55 130 54 149 26 0 154 82.39 

10 0 5 84 17 113 86 140 38 14 100 95 0 173 99.74 

9 0 51 103 71 136 65 66 20 122 1 0 119 108.57 
13 0 28 80 150 68 121 29 129 79 3 77 116 76 111 0 188 69.64 

12 0 52 106 7 123 19 107 11 62 148 88 127 27 0 169 74.60 

11 0 18 82 124 46 45 125 8 114 83 60 118 0 168 88.80 

10 0 50 102 33 81 120 9 135 35 34 78 0 166 91.04 

12 0 53 40 21 73 74 133 22 41 145 115 2 58 0 142 64.60 

10 0 105 110 4 139 39 67 23 56 75 72 0 193 96.13 

12 0 31 10 108 90 32 131 128 30 70 101 69 132 0 168 79.99 

11 0 13 117 97 42 142 43 15 57 144 87 137 0 129 78.33 

9 0 146 89 147 6 96 104 99 94 112 0 133 42.01 

8 0 48 47 36 143 49 64 63 126 0 135 112.65 

12 0 92 37 98 91 119 44 141 16 61 85 93 59 0 198 74.40 

n = 150 1162.89 

Problem 10 

L = 200 

Number Q = 200 6 = 10 

of Cities Route Load Time 

11 0 60 26 100 71 119 38 165 77 10 129 50 0 181 86.75 

9 0 150 52 11 170 164 85 134 84 108 0 145 104.63 

11 0 149 51 7 132 180 69 14 133 177 35 175 0 194 77.80 

12 0 98 29 103 5 88 37 124 154 15 79 153 45 0 173 75.56 

12 0 83 13 123 128 70 19 78 178 102 8 176 46 0 172 77.52 

11 0 127 34 65 167 99 179 27 58 111 87 4 0 194 48.67 

12 0 33 193 194 186 22 141 91 142 114 156 93 86 0 177 79.98 

12 0 120 172 21 173 174 82 121 140 94 64 28 101 0 17 70.15 

10 0 171 47 155 36 122 166 20 138 59 48 0 194 99.43 

11 0 158 43 190 41 143 89 137 113 68 42 199 0 160 89.71 

14 0 61 105 195 53 198 192 184 197 136 1 191 196 66 112 0 200 51.64 

11 0 96 104 23 160 115 90 185 62 116 183 188 0 198 85.47 

12 0 117 63 107 24 145 144 74 49 182 159 67 16 0 193 79.65 

10 0 72 118 148 92 135 146 18 73 147 181 0 181 99.44 

13 0 95 151 3 55 44 106 32 187 130 12 168 81 126 0 176 57.41 

10 0 17 40 9 110 163 25 56 161 97 76 0 187 96.71 

10 0 169 80 131 31 162 75 189 57 109 39 0 139 90.07 

8 0 152 54 125 30 139 2 157 6 0 146 35.17 

n = 199 1404.75 
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Problem 11 

Number Q = 200 

of Cities Route Load Time 

16 0 100 53 55 58 56 60 63 66 64 62 61 65 59 57 54 52 0 199 213.63 

21 0 109 21 20 23 26 28 32 35 29 36 34 31 30 33 27 24 22 25 

19 16 17 0 197 207.94 

16 0 40 43 45 48 51 50 49 47 46 44 41 42 39 38 37 95 0 200 199.63 

16 0 106 73 76 68 77 79 80 78 72 75 74 71 70 69 67 107 0 199 144.43 

17 0 120 105 102 101 99 104 103 116 98 110 115 97 94 96 93 92 87 0 193 74.56 

16 0 88 2 1 3 4 5 6 7 9 10 11 15 14 13 12 8 0 199 134.96 

18 0 82 111 86 85 89 91 90 114 18 118 108 83 113 117 84 112 81 119 

0 188 66.96 

n= 120 1042.11 

Problem 12 

Number Q = 200 

of Cities Route Load Time 

10 0 91 89 88 85 84 82 83 86 87 90 0 170 76.07 

14 0 81 78 76 71 70 73 77 79 80 72 61 64 68 69 0 200 137.02 

6 0 67 65 63 74 62 66 0 150 43.59 

8 0 57 55 54 53 56 58 60 59 0 200 101.88 

11 0 75 1 2 4 6 9 11 8 7 3 5 0 170 56.17 

9 0 10 12 14 16 15 19 18 17 13 0 200 96.04 

11 0 21 22 23 26 28 30 29 27 25 24 20 0 170 50.80 

9 0 34 36 39 38 37 35 31 33 32 0 200 97.23 

9 0 99 100 97 93 92 94 95 96 98 0 190 95.94 

13 0 43 42 41 40 44 45 46 48 51 50 52 49 47 0 160 64.81 

n = 100 819.56 

Problem 13 

L 720 

Number Q = 200 6 50 

of Cities Route Load Time 

12 0 113 83 2 1 3 4 5 6 109 114 90 91 0 138 113.85 

12 0 18 118 108 8 12 13 14 15 11 10 9 7 0 153 117.70 

10 0 21 20 26 23 25 24 22 19 16 17 0 123 170.53 

10 0 29 32 35 36 34 33 30 27 31 28 0 61 195.35 

10 0 38 39 42 47 50 49 46 44 41 37 0 115 183.65 

10 0 40 43 45 48 51 65 61 57 54 52 0 143 218.37 

10 0 53 55 58 56 60 63 66 64 62 59 0 125 207.08 

11 0 73 71 74 72 75 78 80 79 77 76 68 0 141 136.49 

12 0 120 70 69 67 98 110 115 97 94 93 96 95 0 144 118.66 

13 0 88 82 111 86 87 92 89 85 112 84 117 81 119 0 146 45.80 

10 0 102 101 99 100 116 103 104 107 106 105 0 86 38.45 

n= 120 1545.93 
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Problem 14 

L = 1040 

Number Q = 200 6=90 

of Cities Route Load Time 

8 0 57 59 60 58 56 53 54 55 0 200 101.88 

9 0 32 33 31 35 37 38 39 36 34 0 200 97.23 

10 0 21 22 24 25 27 29 30 28 26 23 0 160 49.41 

9 0 10 12 14 16 15 19 18 17 13 0 200 96.04 

10 0 5 3 7 8 11 9 6 4 2 75 0 160 56.17 

10 0 98 96 95 94 92 93 97 100 99 1 0 200 96.70 

10 0 90 87 86 83 82 84 85 88 89 91 0 170 76.07 

10 0 63 80 79 77 73 70 71 76 78 81 0 200 128.04 

9 0 20 49 52 50 51 48 45 46 47 0 110 61.56 

5 0 41 40 44 42 43 0 60 45.47 

10 0 67 65 62 74 72 61 64 68 66 69 0 150 57.79 

n = 100 866.37 
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