
1

A Tabu Search Hyper-Heuristic Strategy for t-way Test Suite Generation

KAMAL Z. ZAMLI

 IBM Centre of Excellence

Faculty of Computer Systems and Software Engineering

Universiti Malaysia Pahang

Lebuhraya Tun Razak, 26300 Kuantan, Pahang Darul Makmur, Malaysia

 Email: kamalz@ump.edu.my

BASEM Y. ALKAZEMI

College of Computer and Information Systems

Umm Al-Qura University, Kingdom of Saudi Arabia

Email: bykazemi@uqu.edu.sa

GRAHAM KENDALL

School of Computer Science

University of Nottingham Malaysia Campus

Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

Email: Graham.Kendall@nottingham.edu.my

Abstract

This paper proposes a novel hybrid t-way test generation strategy (where t indicates interaction strength),
called High Level Hyper-Heuristic (HHH). HHH adopts Tabu Search as its high level meta-heuristic and
leverages on the strength of four low level meta-heuristics, comprising of Teaching Learning Based
Optimization, Global Neighborhood Algorithm, Particle Swarm Optimization, and Cuckoo Search Algorithm.
HHH is able to capitalize on the strengths and limit the deficiencies of each individual algorithm in a collective
and synergistic manner. Unlike existing hyper-heuristics, HHH relies on three defined operators, based on
improvement, intensification and diversification, to adaptively select the most suitable meta-heuristic at any
particular time. Our results are promising as HHH manages to outperform existing t-way strategies on many of
the benchmarks.

Keywords: Software Testing; t-way Testing; Hyper-Heuristic; Particle Swarm Optimization, Cuckoo Search
Algorithm, Teaching Learning based Optimization, Global Neighborhood Algorithm

1. Introduction

Interaction (t-way) testing is a methodology to generate a test suite for detecting interaction faults. The
generation of a t-way test suite is a n NP hard problem [1]. Many t-way strategies have been presented in the
scientific literature. Some early algebraic t-way strategies exploit exact mathematical properties of orthogonal
arrays. These t-way strategies are often fast and produce optimal solutions, yet they impose restrictions on the
supported configurations and interaction strength. Computational t-way strategies remove such restrictions,
allowing for the support of arbitrary configurations at the expense of producing (potentially) non-optimal
solution.

By formulating interaction testing as an optimization problem, recent efforts have focused on the adoption of
meta-heuristic algorithms as the basis for t-way strategies. Search Based Software Engineering (SBSE) [2-4], is
a relatively new field that has proposed meta-heuristic based t-way strategies (e.g. Genetic Algorithms (GA) [5],
Particle Swarm Optimization (PSO) [6, 7], Harmony Search Algorithm (HS) [8], Ant Colony Algorithm (ACO)
[5], Simulated Annealing (SA) [9, 10] and Cuckoo Search (CS) [11]). The adoption of these meta-heuristic
based strategies appears to be effective for obtaining good quality solutions, as reported in benchmarking
experiments related to t-way testing [7, 8]. Nevertheless, as suggested by the No Free Lunch theorem [12], no
single meta-heuristic can outperform all others even over different instances of the same problem. For this
reason, hybridization of meta-heuristics can be the key to further enhance the performance of t-way strategies.
Since each meta-heuristic has its own advantages, meta-heuristic hybridization is beneficial for compensating

2

the limitation of one with the strengths of another. In fact, the best results of many optimization problems are
often obtained by hybridization [13].

In this paper we explore the hybridization of meta-heuristics based on a hyper-heuristic approach. We
present a new t-way testing strategy. Specifically, our contributions can be summarized as follows:

• A novel hyper-heuristic based strategy, which we have termed High Level Hyper-Heuristic (HHH), for

general combinatorial t-way test suite generation. HHH employs Tabu Search (TS) as its high level meta-
heuristic (HLH) and leverages on the strength of four low level meta-heuristics (LLH), comprising
Teaching Learning based Optimization (TLBO) [14], Global Neighborhood Algorithm (GNA) [15],
Particle Swarm Optimization (PSO) [16], and Cuckoo Search Algorithm (CS) [17]. To the best of our
knowledge, HHH is the first hyper-heuristic based strategy that addresses the problem of t-way test suite
generation.

• A new hyper-heuristic approach for the meta-heuristic selection and acceptance mechanism based on three
operators (i.e. improvement, diversification and intensification) that are integrated into the tabu search
HLH. As the name suggests, the improvement operator checks for improvements in the objective function.
The diversification operator measures how diverse the current and the previously generated solution are
against the population of potential candidate solutions. Finally, the intensification operator evaluates how
close the current and the previously generated solution are against the population of solutions.

The rest of the paper is organized as follows. Section 2 presents an overview of hyper-heuristics and the

mathematical and theoretical foundation for t-way testing. Section 3 reviews the state-of-the-art for t-way test
case generation strategies. Section 4 presents the design and implementation of HHH. Section 5 describes the
calibration of HHH. Section 6 evaluates HHH against existing strategies and section 7 debates the usefulness of
HHH. Section 8 elaborates on threats to validity. Finally, section 9 presents our conclusion.

2. Theoretical Framework

2.1. Overview of Hyper-Heuristics

To put hyper-heuristics into perspective, consider the different possible options for utilizing and combining
meta-heuristic algorithms (see Figure 1). The first option, shown for completeness, is a standard meta-heuristic
algorithm and can be ignored from our discussion as we want to focus on hybridization methodologies. These
are shown in remaining figures, that is a hybrid meta-heuristic and a hyper-heuristic.

Hybrid meta-heuristics can be low-level or high level hybridizations [13]. Low-level hybridization combines

two or more algorithms. High-level hybridization retains the original meta-heuristic, which can run
independently (e.g. either in sequence or parallel) without any connection amongst the meta-heuristics involved
(i.e. it operates as a black box).

Hyper-heuristics could be seen as a hybrid meta-heuristic owing to the integration of more than one meta-

heuristic algorithm (refer to Figure 1). However, unlike a typical hybrid meta-heuristic, hyper-heuristics (or
(meta)-heuristic to choose (meta)-heuristics [18-20]) adopts a high level meta-heuristic (HLH) to adaptively
select from a set of low level meta-heuristics (LLHs), which are applied to the problem at hand. The LLHs
communicate with the HLH through a domain barrier to relay the feedback of the quality of the current solution.
Only the LLHs have domain knowledge, meaning that the HLH is a general algorithm that can be utilized for
different problems without any algorithmic changes. It is only required to supply a different set of LLHs. In fact,
the LLHs can also be formed from (low-level or high-level) hybrid meta-heuristics themselves.

3

Figure 1. Standard Meta-Heuristic, Hybrid Meta-Heuristic and Hyper-Heuristic

Recent developments have introduced hyper-heuristics that are able to automatically generate the LLHs,

whereby the end user does not have to implement a set of LLHs for each problem domain. Moreover, the HLH
is also able to evolve its own selection and acceptance criteria [21, 22].

2.2. The t-way Test Generation Problem

Consider a hypothetical example of a Mobile Phone Product Configuration. The product configuration has
four features (or parameters): Call Options, Message Types, Media, and Screen. Each parameter takes three
possible values (e.g. Call Options = {Voice Calls, Video Calls, Both Voice and Video Calls}, Message Types =
{Text, Video, Image}, Media = {Camera, Radio, Video Player}, and Screen = {Basic Colors, High Resolution,
Black and White}). The pairwise (2-way) test generation for the Mobile Product Configuration can be seen in
Figure 2 with nine test cases. The mapping of the corresponding tests can be achieved (row-wise) from the 2-

way representation based on the defined parameter values (column-wise) as depicted in Table 1. It should be
noted that all the 2-way interaction tuples between parameters are covered at-least once.

Call Options

Messages

Types
Media Screen

Voice Calls Text Camera

Basic
Colors

Video Calls Video Radio

High
Resolution

 Both Voice and
Video Calls

Image
Video
Player

Black and
White

Figure 2. Pairwise Test Suite for Mobile Phone Product Configuration

1 3 3 3
3 2 3 1
1 1 2 1
1 2 1 2
3 1 1 3
2 1 3 2
3 3 2 2
2 3 1 1
2 2 2 3

t = 2

2-way test
generation

Standard Meta-
Heuristic Algorithm

Potential Solutions

Single
Meta-Heuristic

Algorithm

Standard Meta-

Heuristic Algorithm

Hybrid Meta-
Heuristic Algorithm

Potential Solutions

Multiple Meta-
Heuristics Algorithm

Hybrid Meta-

Heuristic Algorithm

Multiple Meta-
Heuristics Algorithm

Multiple Meta-
Heuristic Algorithm

DOMAIN
BARRIER

Hyper-Heuristic
Algorithm

Hyper-Heuristic

Algorithm

High Level
Meta-Heuristic

Algorithm

 Low Level Meta-Heuristic

 Low Level Meta-Heuristic

 Low Level Meta-Heuristic

………………..

Potential Solutions

..
.

Meta-heuristic
selection and
acceptance
mechanismNon-domain feedback

on the quality of the
solution

4

Table 1. Mapping of the Pairwise Test Suite for Mobile Phone Product Configuration

Test

ID

Call Options Message Types Media Screen

1 Voice Calls Image Video Player Black and White
2 Both Voice and Video Calls Video Video Player Basic Colors
3 Voice Calls Text Radio Basic Colors
4 Voice Calls Video Camera High Resolution
5 Both Voice and Video Calls Text Camera Black and White
6 Video Calls Text Video Player High Resolution
7 Both Voice and Video Calls Image Radio High Resolution
8 Video Calls Image Camera Basic Colors
9 Video Calls Video Radio Black and White

Mathematically, the t-way test generation problem can be expressed by Equation 1.

 𝑓𝑓(𝑍𝑍) = |{𝐼𝐼 𝑖𝑖𝑖𝑖 𝑉𝑉𝐼𝐼𝑉𝑉: 𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼}| (1) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆 𝑆𝑆𝑐𝑐 𝑍𝑍 = 𝑍𝑍1,𝑍𝑍2, …𝑍𝑍𝑖𝑖 𝑖𝑖𝑖𝑖 𝑃𝑃1,𝑃𝑃2, … …𝑃𝑃𝑖𝑖 ; 𝑖𝑖 = 1, 2, …𝑁𝑁

where, f(Z) is an objective functions (or the fitness evaluation), Z (i.e., the test case candidate) is the set of
decision variables Zi, VIL is the set of non-covered interaction tuples (I), the vertical bars | · | represent the
cardinality of the set and the objective value is the number of non-covered interaction tuples covered by Z, Pi is
the set of possible range of values for each decision variable, that is, Pi = discrete decision variables
(Zi(1)<Zi(2)<……<Zi(K)); N is the number of decision variables (i.e. parameters); and K is the number of
possible values for the discrete variables.

2.3. The Covering Array Notation

In general, t-way testing has strong associations with the mathematical concept of Covering Arrays (CA).
For this reason, t-way testing often adopts CA notation for representing t-way tests [23]. The notation CAλ
(N;t,k,v) represents an array of size N with v values, such that every N×t sub-array contains all ordered subsets
from the v values of size t at least λ times [24, 25], and k is the number of components. To cover all t-
interactions of the components, it is normally sufficient for each component to occur once in the CA. Therefore,
with λ=1, the notation becomes CA (N;t,k,v). When the CA contains a minimum number of rows (N), it can be
considered an optimal CA according to the definition in Equation 2 [26].

CAN (t,k,v)= min{ N: Ǝ CAλ (N;t,k,v)} (2)

To improve readability, it is customary to represent the covering array as CA (N;t,k,v) or simply CA(N;t,vk).
Using our earlier example of the mobile phone product configuration in Figure 2, the test suite can be
represented as CA (9; 2, 34). In the case when the number of component values varies, this can be handled by
Mixed Covering Array (MCA) (N;t,k,(v1,v2,…vk)) [27]. Similar to covering array, the notation can also be
represented by MCA (N;t,k,vk). For example, MCA (9; 2, 32 22) represents a test suite of size nine for a system
with four components (two components having three values and two components having two values) covering
two-way interactions. Figure 3 illustrates the two aforementioned CA and MCA arrangements respectively.

5

CA (9; 2, 34) MCA (9; 2, 32 22)

k1 k2 k3 k4 k1 k2 k3 k4

1 3 3 3 2 1 1 2

3 2 3 1 2 2 2 1
1 1 2 1 3 3 2 2

1 2 1 2 1 3 1 1
3 1 1 3 1 1 2 1

2 1 3 2 1 2 1 2
3 3 2 2 3 2 1 1

2 3 1 1 3 1 1 1
2 2 2 3 2 3 1 2

Figure 3. Illustration of CA (9; 2, 34) and MCA (9; 2, 32 22)

Having described the theoretical framework, the following section surveys the existing studies on t-way
strategies in order to reflect the current progress and achievements in the scientific literature.

3. Existing Literature on t-way Strategies

Generally, t-way strategies can be classified as algebraic or computational approaches [28, 29]. Algebraic
approaches are often based on the extensions of the mathematical methods for constructing Orthogonal Arrays
(OAs) [30, 31]. Examples of strategies that originate from the extension of OA include Combinatorial Test
Services and TConfig. The main limitation of the OA solutions is the fact that not all solutions can be found for
t>2, thus, limiting its applicability for small scale system configuration. Empirical evidence [32] suggest the
need to support up to at least t=6 in order to sufficiently cater for interaction faults.

3.1. General Computational-based Strategies

Much existing work has placed emphasis on the computational-based approaches that provide support for
very large configurations. Specifically, there are two competing approaches for constructing t-way test suites.
That is, the one-test-at-a-time (OTAT) approach and the one-parameter-at-a-time (OPAT) approach. In the first
case, the strategy iteratively traverses the required interaction and generates a complete test case per iteration.
During each iteration, the strategy greedily checks whether or not the generated test case is the best fit value (i.e.
covering the most uncovered interactions) to be selected in the final test suite. In the second case, the strategy
constructs the test case incrementally by horizontal extension until completion. This is followed by vertical
extension, if necessary, to cover the remaining uncovered interactions.

One-test-at-a-time based strategies were pioneered by AETG [33]. AETG first constructs all the required
interactions then generates one final test case for every cycle, for each iteration. For each cycle, AETG
generates a number of test case candidates, and from these candidates, one is greedily selected as the final test
case (i.e., covering the most uncovered interactions). Over the years, a number of variations of AETG have
emerged including mAETG [27] and mAETG_SAT [34]. Similar to AETG, GTWay [35, 36] also adopts the
one-test-at-a-time approach to generate the final test suite. Unlike AETG, GTWay permits the use of actual
parameter values as a symbolic string and supports automated execution of test cases.

Claiming to be an AETG variant, the test vector generator (TVG) [37] generates test suites based on three
algorithms: T-reduced, Plus-one, and Random sets. Due to limited literature, the details’ concerning the
implementation for each algorithm remains unclear. However, based on our experience with TVG
implementation, T-reduced often produces the greater number of optimal results compared with other
algorithms.

Jenny [38] adopts the one-test-at-a-time approach by first generating a test suite that covers the 1-way
interaction. Later, the test suite was extended to cover 2-way interactions and the process was repeated until all
t-way interactions (where t is specified by the user) are covered. At around the same time, Hartman developed
the Intelligent Test Case Handler (ITCH) [39] as an Eclipse Java plug-in tool. ITCH relies on exhaustive search

6

to construct the test suites for t-way testing. Owing to its exhaustive search algorithm, ITCH’s execution time
typically takes a long time and results are often not optimal.

PICT [40, 41] generates all specified interactions, and randomly selects their corresponding interaction
combinations to form the test cases as part of the complete test suite. Due to its random behavior, PICT tends to
give poor test sizes as compared to other strategies.

Classification-Tree Editor eXtended Logics (CTE-XL) [42, 43] is a t-way strategy based on the
Classification-Tree Method (CTM). The idea is that CTM abstracts and separates the test object’s input domain
into different subsets according to features that the test engineer considers relevant to the test. Then, test cases
are produced by combining subsets from different classifications as one-test-at-a-time.

Complementing the one-test-at-a-time approach, the in-parameter-order (IPO) strategy [44] is a strategy that
adopts the one-parameter-at-a-time approach. IPO generates a pairwise test set for the first two parameters, and
then extends the test set by generating the pair for the first three parameters and so on, until all the system
parameters are covered. This is followed by a vertical extension to cover the uncovered interactions, if
necessary. The IPO strategy was later generalized into a number of variants; IPOG [45], IPOG-D [46] and IPOF
[47]. Owing to its simplicity, IPO has been adopted by other researchers, notably in the development of MIPOG
[48-50]. Unlike IPO and its family, MIPOG removes inherent dependencies between horizontal and vertical
extensions in order to permit parallel t-way test suite generation on multiple-core machines.

3.2. Meta-heuristic-based Strategies

Recently, efforts have been focused on the use of meta-heuristic algorithms as part of the computational
approach for t-way test generation. Strategies adopting meta-heuristic algorithms as the basis of t-way strategies
appear to be superior to other computational approaches. Its popularity has increased due to the interest in
Search based Software Engineering [4].

Generally, meta-heuristic algorithms start with a random set of solutions. These solutions undergo a series
of transformations in an attempt to improve them. One best candidate is selected at each iteration until all the
required interactions are covered. Concerning t-way test generation, a number of meta-heuristic algorithms have
been explored as the basis for t-way strategies including Genetic Algorithms (GA), Ant Colony Optimization
(ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS).

GA, ACO, and SA represent early attempts to utilize meta-heuristic algorithms for constructing t-way
strategies. A GA [5] mimics the natural selection processes. It begins with randomly created test cases, referred
to as chromosomes. These chromosomes undergo crossover and mutation until a termination criteria is met. In
each cycle, the best chromosomes are (probabilistically) selected and added to the final test suite. Unlike GAs,
ACO [5] mimic the behavior of ants in their search for food. SA [51] relies on a large random search space and
probability-based transformation equations for generating a t-way test suite.

Although useful for addressing small values of uniform interaction strength t (i.e., t ≤ 3), strategies based on
GA, ACO, and SA are not without their limitations. GA and ACO have been criticized for their complex
algorithm structure as well as potentially requiring large computational resources. SA, being a single solution
meta-heuristic, can be sensitive to its initial starting point in the search space, hence, prone to suffer from early
convergence. For these reasons, these algorithms have been limited to small interaction strengths (i.e., t ≤ 3).
Addressing earlier limitations of SA, an improved variant of SA, called CASA [52], has been developed to
address the t-way test generation for software product lines testing.

PSTG [53-56] is a meta-heuristic t-way strategy based on Particle Swarm Optimization, which mimics the
swarm behavior of birds. Internally, PSTG iteratively performs local and global searches to find the candidate
solution to be added to the final suite until all the interaction tuples are covered. Unlike other AI-based
strategies, that address small values of t (i.e., 2 ≤ t ≤ 3), the most notable feature of PSTG is the fact that it can
support up to t = 6.

7

Complementary to PSTG, HSS [8] is a meta-heuristic strategy based on the Harmony Search Algorithm
(HSS). HSS mimics musicians trying to compose good music from improvisations to create the best tune from
their memory or from random sampling. In doing so, HSS iteratively exploits the Harmony memory to store the
best found solution through a number of defined improvisations within its local and global search process. In
each improvisation, one test case will be selected to be the final test suite until all the required interactions are
covered. Unlike PSTG, HSS addresses the support for forbidden combinations (or constraints).

Cuckoo Search (CS) [11] is a recent strategy for t-way test generation. At the start, the algorithm generates
random initial nests. Each egg in a nest represents a vector solution (i.e. a test case). At each generation, two
operations are performed. Firstly, a new nest is generated (typically through Levy Flight path) and evaluated
against the existing nests. The new nest will replace the current nest, if it has a better objective function.
Secondly, CS has probabilistic elitism in order to maintain elite solutions for the next generation.

Existing meta-heuristic based strategies have been successful as the basis of t-way strategies. Extending and
complementing existing works, this paper proposes combining more than one meta-heuristic as part of a t-way
strategy. Instead of taking one meta-heuristic algorithm, our approach takes four algorithms to form the basis of
our strategy, called High Level Hyper-Heuristic (HHH). We utilize four recently developed meta-heuristic
algorithms, these being Teaching Learning based Optimization (TLBO), Global Neighborhood Algorithm
(GNA), Particle Swarm Optimization (PSO) and Cuckoo Search Algorithm (CS).

4. The Proposed HHH Strategy

The proposed HHH strategy utilizes Tabu Search as the high level meta-heuristic (HLH), incorporating a
selection and acceptance mechanism based on three defined operators (i.e. improvement, diversification and
intensification operator). The HHH strategy is illustrated in Figure 4. The algorithmic details are provided in the
next sections.

Figure 4. The HHH Strategy

4.1. The Tabu Search HLH

The pseudo code for the Tabu Search HLH is shown in Figure 5.

DOMAIN

BARRIER

Tabu Search
Algorithm

 Teaching Learning based Optimization

 Global Neighborhood Algorithm

 Cuckoo Search Algorithm

Potential Solutions

(Adaptive)
Meta-heuristic
selection and
acceptance
mechanism

N
on

-d
om

ai
n

fe
ed

ba
ck

 o
n

th
e

qu
al

it
y

of
 th

e
so

lu
ti

on

 Particle Swarm Optimization

HLH- High Level Meta-Heuristic LLH -Low Level Meta-Heuristic

8

Figure 5. The Tabu Search HLH

Line 1 initializes the population of the t-way interaction tuples, I = {I1, I2… IM}. The value of M depends on

the given input interaction strength (t), parameter (k) and its corresponding value (v). Specifically, M captures
the number of required interactions that needs to be covered in the final test suite. M can be obtained as the sum
of products of each individual’s t-way interaction. For example, for CA (9; 2, 34), M takes the value of
3x3+3x3+3x3+3x3+3x3+3x3 = 54. If MCA (9; 2, 32 22) is considered, then M takes the value of 3x3+
3x2+3x2+3x2+3x2+2x2= 37. Line 2 defines the maximum iteration ϴmax and population size, N. Line 3
randomly initializes the initial population of solutions Z = {Z1, Z2… ZN}. Line 4 selects the initial LLH from the
four available meta-heuristics. The selected hyper-heuristic algorithm (LLH), Hi will then be performed
repeatedly until all the interactions in I has been covered and the maximum fitness function limit, Fmax, has been
reached, as shown in lines 5-22. The selected LLH Hi will update the population Z for ϴmax iterations, as shown
in line 7. In line 8, Zbest (the individual with the best quality) is added to the final test suite (TS). To decide
whether to select a new LLH or not, the three operators, comprising the improvement, diversification and
intensification operator (lines 9-11) will be used. More precisely, the three operators work as follows.

The Improvement Operator

The improvement operator compares the current Zbest against the previous Zbest from the final test suite TS.
F1 evaluates to true only if Zbest >= previous Zbest.

The Diversification Operator

The diversification operator exploits the hamming distance measure to evaluate the diversification of each
Zbest solution (i.e. in terms of how far Zbest is from the population of candidate solutions). The hamming distance
measure between two rows of Z, d(Zi,Zj) is defined as the number of values in which they differ. Referring to
Figure 6 and assuming Zbest = Z3, the hamming distance between Z1 and Zbest is d(Z1,Zbest) = 4 (since all the
values differ) and the hamming distance between Z2 and Z3 is d(Z2,Zbest) = 3 (with three values being different).
In this case, the diversification value dv can be defined as the cumulative sum of the hamming distance measure
of each individual Z population with Zbest. Here, the value of dv =7 (i.e. as the sum of d(Z1,Zbest) and d(Z2,Zbest)).

Input: interaction strength (t), parameter (k) and its corresponding value (v)

Output: final suite, TS

1: Initialize the population of the required t-way interaction tuples, I = {I1, I2… IM}

2: Initialize Tabumax, Fmax fitness evaluation limit , ϴmax iteration, and population size S

3: Initialize the population of solutions, Z = {Z1, Z2… ZS}

4: Select a meta-heuristic algorithm Hi from the pool of meta-heuristics

5: While all interaction tuples (I) are not covered and Fmax fitness evaluation limit is not reached

6: {

7: Update the population of solutions Z by the selected heuristic algorithm Hi with ϴmax iteration

8: Obtain Zbest from the population Z and add to the final suite TS

9: F1 = Improvement_Operator(Z)

10: F2 = Diversify_Operator(Z)

11: F3 = Intensify_Operator(Z)

12: If the meta-heuristic selection and acceptance mechanism evaluation, ѱ(Hi,F1 ,F2 ,F3), improves

13: Keep Hi

14: Else

15: {

16: Add Hi to Tabu List

17: If (Tabu List is Full) // Tabumax

18: Randomly select a new meta-heuristic algorithm Hi* where i*≠i from Tabu List
19: Else

20: Select a new meta-heuristic algorithm Hi from the pool of meta-heuristics

21: }

22: }

9

Figure 6. Diversification value and Hamming Distance

As far as the diversification operator is concerned, the current value of dv will be compared to the previous

value of dv (i.e. from the previous iteration). F2 evaluates to true only if the current dv >= the previous dv.

The Intensification Operator

Like the diversify operator, the intensification operator also exploits the hamming distance to evaluate the
intensification of each Zbest solution. Unlike the diversification operator, the intensification operator measures
the intensification value, Iv, of Zbest against the final test suite TS population (i.e. how close is Zbest to the final
test suite). To be more specific, the intensification value can be defined as the cumulative sum of the hamming
distance of each individual TS population with Zbest. Here, the current value of Iv will be compared to the
previous value of Iv (i.e. from the previous iteration). F3 evaluates to true only if the current Iv <= the previous

Iv.

In line 12 (Figure 5), the meta-heuristic selection and acceptance mechanism, ѱ(Hi,F1 ,F2 ,F3) evaluates to

true, if and only if, F1=true and F2 = true and F3=true. If ѱ(H,F1 ,F2 ,F3) evaluates to false, the new Hi will be
selected (and the current Hi will be put in the Tabu List). Visually, the internal working of the meta-heuristic
selection and acceptance mechanism, ѱ, is shown in Figure 7.

Figure 7. Acceptance and Selection Rules

Referring to lines 17-20, the current Hi is penalized and will miss at least one turn from being selected in the

next iteration. Apart from one’s own performance in terms of objective value improvement, diversification, and
intensification, a particular LLH can be chosen more frequently than others owing to the random selection of
meta-heuristics within the Tabu search (line 18).

Finally, it is worth mentioning here that the adopted LLHs are designed for continuous problems. As such,

to deal with discrete parameters and values, each individual Zj needs to capture the parameters as a valid range
of integer numbers (i.e. based on the user inputs). When the HHH iterates, each Zj will be updated accordingly
depending on the chosen LLH (i.e. based on the specific LLH transformation equation). Here, the LLH update
may result into the need to do rounding off floating point values. Apart from rounding off floating point values,
there is also the need to deal with out-of-range values. Within HHH, we establish the boundary condition (i.e.
as clamping rule) to restrict parameter values to both lower and higher bounds. In this way, when Zj moves out-

Z1 = {2 1 0 1}

Z2 = {1 2 0 1}

Zbest => Z3 = {0 2 1 1}

d (Z1, Zbest) = 4

d (Z2, Zbest) = 3

The dv value for Zbest = d (Z1, Zbest) + d (Z2, Zbest)

= 7

Z population Hamming Distance

Non-domain feedback on
the quality of the solution

 Particle
Swarm
Optimizati
on

 LLH1

 LLH2

 LLHn

Potential Solutions

Meta-heuristic
acceptance and

selection mechanism

LLH -Low Level

Meta-Heuristic

…………...

Acceptance and

Selection Rules for ѱ
Given

LLHi = Current Running Meta-heuristic

 F1 = Improvement_Operator(Z)

 F2 = Diversify_Operator(Z)

 F3 = Intensify_Operator(Z)

If ѱ(Hi,F1 ,F2 ,F3) improves

 HLH accepts and keeps LLHi

Else

 HLH selects a new LLHi

10

of-range, the boundary condition brings it back to the search space. We configure our boundary condition in
such a way that when the Zj value reaches a certain dimensional bound, we reset its position to the other
endpoint. For example, if we have a parameter with a range of values from 1 to 3, when the position is greater
than 3, the position is reset to 1.

4.2. Teaching Learning based Optimization LLH

The Teaching Learning Based Optimization (TLBO) [14] is a population based meta-heuristic that draws on
the analogy of the teaching and learning process between teachers and students. In TLBO, teachers attempt to
impart knowledge in a way that will enhance the knowledge of their students. With knowledge gained from a
particular teacher, the knowledge of the students would be enhanced. As teachers have different competency
levels, there could be potential improvements if students learn from other teachers. Students can also learn from
other students, yielding similar improvements.

The TLBO algorithm is shown in Figure 8.

Figure 8. The Teaching Learning based Optimization LLH

During the teacher phase (lines 7-10), each student learns from the best teacher Zbest teacher, that is, the best

individual in the population. The student will move toward the Zbest teacher teacher by taking into account the
current mean value of the learners, Zmean, that represents the qualities of all the students in the population (line
8). The movement of the learner is also affected by the teaching factor, Ti

F (line 7).

For the learner phase (lines 11-18), each student attempts to improve its knowledge through interaction with

its peers. Specifically, the student Zi will select a peer learner Zj (where i≠j). If Zi has better fitness than Zj, the
latter is moved toward the former (line 15) and vice versa (line 16).

Concerning its implementation, unlike most meta-heuristic algorithms, TLBO has twice more fitness

function evaluations due to the two phases (teacher and learner). For this reason, direct comparative experiments
with TLBO and other meta-heuristic algorithms can be misleading. Additionally, despite its parameter free
claims, TLBO still requires tuning of its population size and iteration. Recently, the original author for TLBO
[14] has been criticized for not reporting the duplicate elimination step in the implementation resulting into

Input: the population Z = {Z1, Z2… ZS}

Output: the updated population Z’ = {Z1’, Z2’… ZS’}

1: Obtain Zmean from the population Z = {Z1, Z2… ZS}

2: Choose global Zbest teacher from the population Z = {Z1, Z2… ZS}

3: For i=1 to S

4: {

 /******Teacher Phase******/

5: Obtain teaching factor Ti
F = round (1+ rand(0,1){2-1})

6: Update the current population according to Zi
(t+1) = Zi

(t) + rand(0,1)(Zbest teacher - (Ti
F · Zmean)

 subjected to clamping rule

7: If Zi
(t+1) is better than Zi

(t), i.e. f(Zi
(t+1))>f(Zi

(t))

8: Zi
(t) = Zi

(t+1)
 /******Learner Phase******/

9: Randomly select Zj such that j≠ i
10: If Zi

(t) is better than Zj , i.e. f(Zi
(t))>f(Zj)

11: Zi
(t+1) = Zi

(t) + rand(0,1)(Zi
(t) - Zj)

12: Else

13: Zi
(t+1) = Zi

(t) + rand(0,1)(Zj
(t) – Zi)

14: If Zi
(t+1) is better than Zi

(t) , i.e. f(Zi
(t+1))>f(Zi

(t))

15: Zi
(t) = Zi

(t+1)

16: }

17: return Z

11

inaccurate and unfair comparative results [57]. For our implementation, we consider the TLBO implementation
without the duplicate elimination step (similar to that of Yarpiz [58]).

4.3. Global Neighborhood Algorithm LLH

Like TLBO, the Global Neighborhood Algorithm (GNA) [15], is a population based meta-heuristic. GNA
has only two control parameters; population size and the maximum number of iterations. The GNA algorithm is
shown in Figure 9.

Figure 9. The Global Neighborhood Algorithm LLH

In GNA, the population is divided into two phases. In the first phase, GNA performs a local search through

perturbation of Zi (line 5). If the pertubated Zi has a better fitness value, then the incumbent is replaced (lines 4-
5).

In the second phase, GNA performs a random search. If Zrandom has better fitness value than the current Zi, Zi

will be replaced with Zrandom (lines 10-11).

4.4. Particle Swarm Optimization LLH

Particle Swarm Optimization (PSO) [16] is a population based meta-heuristic that simulates the swarm
behavior of flocks of birds or schools of fish. PSO comprises a group of particles with negligible mass and
volume and which move through hyperspace. Each particle attempts to find a better position (solution) by
recording and updating essential information about its movement. This information is related to the ith particle of
interest, which includes the current position (Zi), the velocity (Vi), local best (Zlbest) and global best (Zgbest). The
PSO algorithm is shown in Figure 10.

Input: the population Z = {Z1, Z2… ZS}

Output: the updated population Z’ = {Z1’, Z2’… ZS’}

1: For i=1 to S

2: {

 /******Local Search******/

3: If i < (N/2)

4: {

5: Generate a new solution according to Zi
(t+1) = pertubate one value from Zi

(t)

6: If Zi
(t+1) is better than Zi

(t), i.e. f(Zi
(t+1))>f(Zi

(t))

7: Zi
(t) = Zi

(t+1)

8: }

 /******Global Search******/

9: Else

10: {

11: Generate a random solution Zrandom

12: If f(Zrandom) is better than Zi
(t), i.e. f(Zrandom)>f(Zi

(t))

13: Zi
(t) = Zrandom

14: }

15: }

16: return Z

12

Figure 10. The Particle Swarm Optimization LLH

During the search, each Zith

 particle of the population stochastically adapts its trajectory through velocity its
local best (Zlbest) and global best value (Zglobal best) through velocity (Vi) as indicated in lines 7-8. In turn, the
velocity (Vi) exploits three coefficients c1, c2, and ω respectively. Here, c1 and c2 are the acceleration coefficients
that control the personal and global best to the updated velocity; and ω is the inertia weight that is used to
balance the global/local searches of the particle. In lines 9-10, if the updated Zi has better fitness than current Zi,
the incumbent is updated. Finally, Zbest will be assigned to Zi if the latter has better fitness (lines 11-12).

4.5. The Cuckoo Search Algorithm LLH

The Cuckoo Search algorithm (CS) [17] is a population based meta-heuristic algorithm that is based on the
parasitic behavior and aggressive reproduction strategy of Cuckoos. The female Cuckoos lay their eggs
(potential solutions in the algorithm) in the nest of other birds and have the ability to imitate the colors and
pattern of the host eggs. Cuckoos also have the ability to remove existing (the host birds, or other cuckoos) from
the nest. In the algorithm, this is akin to replacing a poorer solution with a better one. The CS algorithm is
shown in Figure 11.

.

Input: the population Z = {Z1, Z2… ZS}

Output: the updated population Z’ = {Z1’, Z2’… ZS’}

1: Initialize the inertial weight ω, and the learning factors c1, c2
2: Initialize the population velocity V = {V1, V2… VS}

3: Choose global Zgbest from the population Z = {Z1, Z2… ZS}

4: Set local best Zlbest = Zgbest

5: For i=1 to S

6: {

7: Update the current velocity according to Vi
(t+1) = ω Vi

(t) + c1 rand(0,1)(Zlbest
(t)-Xi

(t)) +

 c2 rand(0,1)(Zgbest-Xi
(t))

8: Update the current population according to Zi
(t+1) = Zi

(t) + Vi
(t+1)

 subjected to clamping rule

9: If Zi
(t+1) is better than Zi

(t), i.e. f(Zi
(t+1))>f(Zi

(t))

10: Zi
(t) = Zi

(t+1)

 /******Update Global Best******/

11: If Zi
(t) is better than Zgbest , i.e. f(Zi

(t))>f(Zgbest)

12: Zgbest = Zi
(t)

13: }

14: return Z

13

Figure 11. The Cuckoo Search LLH

The CS algorithm provides two search capabilities: global search, which allows the algorithm to jump out

of local optimum, and local search by intensifying search around the current best solution, via Lévy Flight

motion. The Lévy Flight motion is a random walk that takes a sequence of jumps, which are selected from a
heavy tailed probability function. For our Lévy Flight implementation, we adopt the well-known Mantegna’s
algorithm [17]. Within this algorithm, a step length can be defined as:

 𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆 =
𝑆𝑆

[𝑐𝑐]
1𝛽𝛽 (3)

where 𝑆𝑆 and 𝑐𝑐 are approximated from the normal Gausian distribution in which:
 𝑆𝑆 ≈ 𝑁𝑁(0,𝜎𝜎𝑢𝑢2) ∙ 𝜎𝜎𝑢𝑢 𝑐𝑐 ≈ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) ∙ 𝜎𝜎𝑣𝑣 (4)

For 𝑐𝑐 value estimation, we use 𝜎𝜎𝑣𝑣 = 1. For 𝑆𝑆 value estimation, we evaluate the Gamma function(ᴦ) with the
value of 𝛽𝛽 = 1.5 [59], and obtain 𝜎𝜎𝑢𝑢 using:

𝜎𝜎𝑢𝑢 = � ᴦ(1 + 𝛽𝛽) ∙ sin (
𝜋𝜋𝛽𝛽
2

)ᴦ(
1 + 𝛽𝛽)

2
) ∙ 𝛽𝛽 ∙ 2

(𝛽𝛽−1)2 �1𝛽𝛽 (5)

In our case, the Gamma function(ᴦ) implementation is adopted from William et al [60].

Input: the population Z = {Z1, Z2… ZS}

Output: the updated population Z’ = {Z1’, Z2’… ZS’}

0: Set α and elitism factor pa

1: For i=1 to S

2: {

3: Generate new eggs according to Zi
(t+1) = Zi

(t) + α⊕ Lévy Flight

 subjected to clamping rule

4: If Zi
(t+1) is better than Zi

(t), i.e. f(Zi
(t+1))>f(Zi

(t))

5: Zi
(t) = Zi

(t+1)

6: }

 /******Maintain Elitism******/

7: For j=1 to (pa·S)

8: {

9: Generate random Zrandom

10: Get the worst Zworst
(t)

11: If f(Zrandom)is better than Zworst
(t), i.e. f(Zrandom)>f(Zworst

(t))

12: Zworst
(t) = Zrandom

13: }

14: return Z

14

During the search, Zi will be continuously updated from its previous value with the appropriate step size (α),

entry-wise multiplication (⊕) and Lévy Flight motion as indicated in line 3. If the updated Zi has better fitness
than the current Zi, the former is updated (lines 4-5). CS also maintains an elite population of solutions (lines 7-
13). CS will replace a fraction pa·S of the poorly generated Zworst solutions (where pa is the elitism factor ranging
from 0.0<pa<1.0) with a random solution Zrandom, iteratively if the corresponding fitness improves.

It is worth mentioning here that the number of fitness function evaluation for CS cannot be determined

statistically owing to the probability pa. However, a counter can be put during run-time to determine the exact
number of fitness evaluation (so as to have the same fitness evaluation as other LLHs).

5. HHH Parameter Calibration

As far as calibration is concerned, there are generally two types of parameters of concern; specific
algorithm parameters and common algorithm parameters. The former relates to the algorithm settings of the four
LLHs, whilst the latter accounts for the common parameters between LLHs and HLH.

Table 2 summarizes the parameters that are to be calibrated.

Table 2. Specific and Common Algorithm Parameters

 Specific Algorithm Parameters Common Parameters

Tabu Search HLH Tabumax =4

Max iteration, ϴmax =20

Population size, S= 40

Maximum Fitness Evaluation, Fmax =400,000

Teaching Learning based
Optimization LLH

-

Global Neighborhood
Algorithm LLH

-

Particle Swarm LLH c1=1.375, c2=1.375, ω=0.3

Cuckoo Search LLH pa=0.25

In the design of HHH, the specific algorithm parameters are the Tabumax of the Tabu lists for TS HLH, c1,c2

(i.e. acceleration coefficients) and ω (inertial weight) for PSO LLH as well as pa (elitism factor) for CS LLH.
As for TLBO LLH and GNA LLH, their parameters are ϴmax and S (which are also shared by PSO LLH,
Cuckoo LLH and Tabu HLH as well). As far as the calibration of specific algorithm parameters is concerned,
the value of Tabumax = 4 can be easily deduced as the number of adopted meta-heuristics as LLH. Any
particular meta-heuristic can either be available for selection or penalized in the Tabu list depending on its prior
performance. Meanwhile, the value of c1= 1.375, c2= 1.375, ω = 0.3 and pa = 0.25 are adopted from existing
work reported in the context of adopting PSO [7] and CS [11] as t-way `test generation strategy respectively.

Unlike the specific parameters, the calibration of common parameters ϴmax iteration and population size, S,

can be subtle owing to the way each individual LLH operates. As highlighted earlier, TLBO requires twice as
much fitness function evaluation as GNA and PSO. Furthermore, Cuckoo also has non-deterministic number of
fitness evaluation owing to the elitism probability pa. This large diversification makes it hard to select the
appropriate value for both ϴmax and S to ensure fair comparison with other meta-heuristic based strategies
particularly when it comes to the fitness function evaluation. For this reason, we decide to establish the limit on
the maximum fitness function evaluation, called Fmax, as seen in Table 2. Specifically, we define Fmax = 400,000
as it was empirically verified to be large enough to allow HHH’s solution to converge even for the largest
configurations. Internally, we have implemented a global static counter (as part of fitness function evaluation)
that ensures the Fmax limit is adhered to.

Having established the Fmax = 400,000 as the stopping criterion, the selection of ϴmax and S follow

accordingly. In this case, any values of ϴmax and S can be selected as long as the value of Fmax is observed. For
example, if the selected values of ϴmax =20 and S=40, the minimum fitness evaluation per iteration is at least
20*40=800 and the maximum possible iteration for convergence is 400,000/800 = 500. In similar manner, if the
selected values of ϴmax =20 and S=100, the minimum fitness evaluation per iteration is at least 20*100=2000

15

and the maximum possible iteration for convergence is 400,000/2000 = 200. For our case, considering the
recommendation from the scientific papers in [61, 62], we opt to adopt the former case with ϴmax =20 and S=40.

6. Evaluation

Our evaluation focuses on two related goals. Firstly, we compare the performance of HHH against existing
strategies. Then, we verify our findings using statistical analysis. In our evaluation, we note that the comparative
performances with the same number of objective function evaluations are not possible for meta-heuristic-based
strategies (i.e. most implementations are not publically available; hence, the settings of each of the algorithm
parameters are beyond our controls).

6.1. Benchmarking with Existing Strategies on Test Sizes

We compare HHH against existing strategies based on the benchmark experiments in terms of test sizes as

defined in [9, 11, 56, 63-68]. Considering that the test sizes are absolute and not affected by the computational
platform, our comparison spans many t-way strategies from meta-heuristic-based to general computation ones.
Concerning the comparison between meta-heuristic-based strategies, much criticism can be highlighted in terms
of the way the results are presented in the scientific literature. In particular, important information related to
individual strategy execution involving the average results as well as the maximum number of fitness
evaluations (Fmax) are often missing, thus, hindering a fair comparison between them.

To put our work into perspectives, we highlight all the algorithm parameters for the meta-heuristic-based

strategies of interests obtained from their respective publications (as depicted in Table 3).

Table 3. Algorithm Parameters for Existing Meta-heuristic-based Strategies of Interests
Strategies Parameters Values
HSS [8] Max Improvisation/Iteration 1000

Harmony Memory Size 100

Harmony Memory Considering

Rate

0.7

Pitch Adjustment Rate 0.2

PSTG [6, 7] Max Iteration 100

Population Size 80

Acceleration Coefficients 1.375

Inertia Weight 0.3

CS [17] Max Iteration 100

Population Size 100

Probability pa 0.25

SA [51] Max Iteration 100

Starting Temperature 20

Cooling Schedule 0.9998

GA [5] Max Iteration 1000

Population Size 25

Best Cloned 1

Tournament Selection 0.8

Random Crossover 0.75

Gene Mutation 0.03

Max Stale Period 3

Escape Mutation 0.25

ACO [5] Iteration 1000

Number of Ants 20

Pheromone Control 1.6

Pheromone Persistence 0.5

Pheromone Amount 0.01

Initial Pheromone 0.4

Heuristic Control 0.2

16

Elite Ants 2

Max Stale Period 5

We do not compare the performance in terms of execution times as most implementations are not available

to be executed on the computer we used (a desktop PC with Windows 8, 2.5 GHz i5 CPU, 8 GB of RAM).
Furthermore, in the case of meta-heuristic-based strategies, the time execution comparison can also be unfair
[69-72] as the number of fitness evaluation varies significantly for each strategies.

Owing to its non-deterministic nature, HHH is executed 30 times for each experiment. The parameter

settings are based on the values obtained earlier (with Tabumax =4, c1=1.375, c2=1.375, ω=0.3, pa=0.25, S=20,
ϴmax =40 and Fmax = 400,000). Both the best and average test sizes for each experiment are reported side-by-
side. To facilitate discussion, whenever possible, we have grouped the experiments into meta-heuristic-based
and general computation-based strategies respectively. Bold cell entries indicate the best performance size
whilst cell entries marked NA (Not Available) indicate that the results are unavailable in the scientific literature.
The complete results are summarized in Tables 4 through 11.

Table 4. Benchmarking CA and MCA Configurations

System Configuration
Meta-heuristic-based Strategies General Computational-based Strategies

HHH
HSS PSTG CS SA GA ACO mAETG AETG IPOG Jenny TVG

Best Ave
CA(N; 2, 34) 9 9 9 9 9 9 9 9 9 9 9 10 11
CA(N; 2, 313) 17 18.55 18 17 20 16 17 17 17 15 20 20 19
CA(N; 2, 510) 42 43.9 43 45 NA NA NA NA NA NA 50 45 51
CA(N; 3, 36) 33 38.25 39 42 43 33 33 33 38 47 53 51 49
CA(N; 3, 46) 64 69.35 70 102 105 64 64 64 77 105 64 112 123
CA(N; 3, 66) 325 329.35 336 338 350 300 331 330 330 343 382 373 407
CA(N; 3, 57) 217 220.35 236 229 253 201 218 218 218 229 274 236 271
MCA(N; 2, 51 38 22) 20 21.35 21 21 21 15 15 16 20 19 19 23 22
MCA(N; 2, 71 61 51 46 38 23) 48 51.00 50 48 51 42 42 42 44 45 43 50 51
MCA(N; 2, 61 51 46 38 23) 36 39.25 38 39 43 30 33 32 35 34 35 40 43
MCA(N; 3, 52 42 32) 100 108.35 120 125 NA 100 108 106 114

NA

111 131 136
MCA(N; 3, 101 62 43 31) 382 390.60 378 385 393 360 360 361 377 383 399 414
MCA(N; 4, 3445) 427 434.20 436 447

NA NA NA NA NA

463 457 487
MCA(N; 4, 51 38 22) 283 286.80 286 292 324 303 313
MCA(N; 4, 82 72 62 52) 4305 4323.05 4395 4506 4776 4580 5124
MCA(N; 4, 65 54 32) 2436 2446.50 2520 3154 3273 3033 2881
MCA(N; 4, 101 91 81 71 61 51 41 31 21) 5873 5912.75 5915 5906 5492 6138 6698

Table 5. CA (N; t, 210) with t varied from 2 to 6

t

Meta-Heuristic-based Strategies General Computational-based Strategies
HHH

HSS PSTG CS IPOG ITCH Jenny TConfig TVG
Best Ave

2 8 8.25 7 8 8 10 6 10 9 10
3 16 16.2 16 17 16 19 18 18 20 17
4 36 39.45 37 37 36 49 58 39 45 41
5 79 80.6 81 82 79 128 NA 87 95 84
6 153 156.15 158 158 157 352 NA 169 183 168

Table 6. CA (N; t, 510) with t varied from 2 to 6

t

Meta-Heuristic-based Strategies General Computational-based Strategies

HHH
HSS PSTG CS IPOG

ITC

H

Jenn

y
PICT TConfig TVG GTWay MIPOG

CTE-

XL Best Ave

2 43 44.2 43 45 45 50 45 45 47 48 50 46 45 50

3 280 282.95 276 287 297 313 225 290 310 312 342 293 281 347

4 1638 1642.21 1624 1716 1731 1965 1750 1719 1812 1878 1971 1714 1643 NA

5 8704 8704.01 8866 9425 9616 11009 NA 9437 9706 NA NA 9487 8169 NA

6 47800 48300.32 47550 50350 50489 57290 NA NA 47978 NA NA 44884 45168 NA

17

Table 7. CA (N; 4, 5k) with k varied from 5 to 12

k

Meta-Heuristic-based Strategies General Computational-based Strategies

HHH
HSS PSTG CS IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG

Best Ave

5 746 754.45 751 779 776 908 625 837 810 773 849 731 625

6 967 976.30 990 1001 991 1239 625 1074 1072 1092 1128 1027 625

7 1151 1159.25 1186 1209 1200 1349 1750 1248 1279 1320 1384 1216 1125

8 1320 1327.00 1358 1417 1415 1792 1750 1424 1468 1532 1595 1443 1384

9 1483 1488.85 1530 1570 1562 1793 1750 1578 1643 1724 1795 1579 1543

10 1635 1642.05 1624 1716 1731 1965 1750 1719 1812 1878 1917 1714 1643

11 1784 1786.15 1860 1902 2062 2091 1750 1839 1957 2038 2122 1852 1722

12 1915 1925.1 2022 2015 2223 2285 1750 1964 2103 NA 2268 2022 1837

Table 8. CA (N; 4, v10) with v varied from 2 to 7

v

Meta-Heuristic-based Strategies General Computational-based Strategies

HHH
HSS PSTG CS IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG

Best Ave

2 36 39.45 37 34 28 49 58 39 43 45 40 46 43

3 207 209.51 211 213 211 241 336 221 231 235 228 224 217

4 668 670.52 691 685 698 707 704 703 742 718 782 621 637

5 1635 1642.05 1624 1716 1731 1965 1750 1719 1812 1878 1917 1714 1643

6 3405 3410.42 3475 3880 3894 3935 NA 3519 3735 NA 4159 3514 3657

7 6412 6505.34 6398 NA NA 7061 NA 6462 NA NA 7854 6459 5927

18

Table 9. CA (N; t, v7) with variable values 2 ≤ v ≤ 5, with t varied up to 6

t V

Meta-Heuristic-based Strategies General Computational-based Strategies

HHH
HSS PSTG CS Jenny TConfig ITCH PICT TVG CTE-XL IPOG

Best Ave

2

2 7 7.00 7 6 6 8 7 6 7 7 8 8

3 14 15.20 14 15 15 16 15 15 16 15 16 17

4 23 24.9 25 26 25 28 28 28 27 27 30 28

5 35 36.35 35 37 37 37 40 45 40 42 42 42

3

2 15 15.0 12 13 12 14 16 13 15 15 15 19

3 49 50.3 50 50 49 51 55 45 51 55 54 57

4 112 115.4 121 116 117 124 112 112 124 134 135 208

5 216 219.7 223 225 223 236 239 225 241 260 265 275

4

2 31 32.35 29 29 27 31 36 40 32 31

NA

48

3 148 153.25 155 155 155 169 166 216 168 167 185

4 482 484.85 500 487 487 517 568 704 529 559 509

5 1153 1160.40 1174 1176 1171 1248 1320 1750 1279 1385 1349

5

2 58 58.40 53 53 53 57 56

NA

57 59

NA

128

3 435 439.35 437 441 439 458 477 452 464 608

4 1805 1815.40 1831 1826 1845 1938 1792 1933 2010 2560

5 5413 5431.25 5468 5474 5479 5895 NA 5814 6257 8091

6

2 64 64.0 64 64 66 87 64

NA

72 78

NA

64

3 853 922.55 916 977 973 1087 921 1015 1016 1281

4 5478 5497.15 4096 5599 5610 6127 NA 5847 5978 4096

5 21107 21159.95 21748 21595 21597 23492 NA 22502 23218 28513

19

Table 10. CA (N; t, 3k) with variable number of parameters 3≤ k ≤12, with t varied up to 6

t K

Meta-Heuristic-based Strategies General Computational-based Strategies
HHH

HSS PSTG CS Jenny TConfig ITCH PICT TVG CTE-XL IPOG
Best Ave

2

3 9 9.80 9 9 9 9 10 9 10 10 10 11
4 9 9.00 9 9 9 13 10 9 13 12 14 12
5 11 11.35 12 12 11 14 14 15 13 13 14 14
6 13 14.20 13 13 13 15 15 15 14 15 14 15
7 14 15.00 15 15 14 16 15 15 16 15 16 17
8 15 15.60 15 15 15 17 17 15 16 15 17 17
9 15 16.30 17 17 16 18 17 15 17 15 18 17

10 16 16.90 17 17 17 19 17 15 18 16 18 20
11 17 17.75 17 17 18 17 20 15 18 16 20 20
12 16 17.95 18 18 18 19 20 15 19 16 20 20

3

4 27 29.45 30 30 28 34 32 27 34 34 34 39
5 39 41.25 39 39 38 40 40 45 43 41 43 43
6 33 39.00 45 45 43 51 48 45 48 49 52 53
7 49 50.80 50 50 48 51 55 45 51 55 54 57
8 52 53.65 54 54 53 58 58 45 59 60 63 63
9 57 57.85 59 58 58 62 64 75 63 64 66 65

10 60 61.25 62 62 62 65 68 75 65 68 71 68
11 63 64.45 66 64 66 65 72 75 70 69 76 76
12 66 67.45 67 67 70 68 77 75 72 70 79 76

4

5 81 86.5 94 96 94 109 97 153 100 105

NA

115
6 131 133.5 132 133 132 140 141 153 142 139 181
7 150 153.3 154 155 154 169 166 216 168 172 185
8 173 175.15 174 175 173 187 190 216 189 192 203
9 167 188.65 195 195 195 206 213 306 211 215 238

10 207 209.45 212 210 211 221 235 336 231 233 241
11 222 225.05 223 222 229 236 258 348 249 250 272
12 238 240.35 244 244 253 252 272 372 269 268 275

5

6 267 287.55 310 312 304 348 305

NA

310 321

NA

393
7 432 437.25 436 441 434 458 477 452 462 608
8 514 518.05 515 515 515 548 583 555 562 634
9 585 590.75 597 598 590 633 684 637 660 771

10 656 663.31 670 667 682 714 773 735 750 784
11 728 733.55 753 747 778 791 858 822 833 980
12 798 802.01 809 809 880 850 938 900 824 980

6

7 900 927.65 977 977 963 1087 921

NA

1015 1024

NA

1281
8 1392 1399.43 1402 1402 1401 1466 1515 1455 1484 2098
9 1679 1688.35 1684 1684 1689 1840 1931 1818 1849 2160

10 1960 1967.75 1991 1980 2027 2160
NA

2165 2192 2726
11 2230 2240.05 2255 2255 2298 2459 2496 2533 2739
12 2503 2503.02 2528 2528 2638 2757 2815 2597 3649

20

Table 11. Four CA derived from Real Software System Configurations, t is varied up to 6

System
Configuration

Meta-Heuristic-based Strategies General Computational-based Strategies

HHH
HSS PSTG CS Jenny TConfig ITCH PICT TVG CTE-XL IPOG-D IPOG

Best Ave

BBS

CA(2,34) 9 9.00 9 9 9 13 10 9 13 12 10 15 12

CA(3,34) 27 29.70 27 27 27 34 32 27 34 32 37 27 39

TCAS

CA(2,27 32 41 102) 100 110.45 106 100 100 106 109 120 100 100 100 130 100

CA(3,27 32 41 102) 400 411.05 412 400 400 413 472 2388 400 434 426 480 400

CA(4,27 32 41 102) 1509 1524.75 1531 1520 1537 1536 1548 1484 1369 1599 NA NA 1377

CA(5,27 32 41 102) 4492 4492.01 4569 4566 4566 4621 NA NA 4250 4773 NA 13458 4283

CA(6,27 32 41 102) 11735 11742.80 11740 11743 11431 11625 NA NA 11342 NA NA 41280 11939

Mobile Phone

CA(2,22 33) 9 11.02 9 9 9 12 12 15 10 10 9 15 11

CA(3,22 33) 27 33.25 27 27 27 29 30 45 29 30 32 34 27

CA(4,22 33) 54 54.15 54 54 54 59 56 138 59 55 NA NA 54

Spin Simulator

CA(2,213 45) 24 26.11 25 24 NA 26 29 28 23 27 26 28 20

CA(3,213 45) 102 104.81 106 101 NA 111 113 196 96 111 113 112 78

CA(4,213 45) 387 397.05 390 380 NA 412 427 1296 353 288 NA NA 341

CA(5,213 45) 1260 1270.43 1265 1270 NA 1304 NA NA 1185 842 NA 5054 1243

CA(6,213 45) 3636 3645.41 3641 3648 NA 3538 NA NA 3420 NA NA 30214 3516

6.2. Statistical Analysis

We conduct our statistical analysis for all the obtained results in Tables 4 through 11 based on multiple

pairwise comparisons with 95% confidence level (i.e. α=0.05). To be specific, we adopt the Friedman tests
subjecting HHH as the control strategy (i.e. 1xN pair comparison). In all the cases, the table entries with NA are
ignored as their contributions are incomplete (i.e. Friedman tests must be based on complete samples). Under
the null hypothesis, Friedman test states that all the strategies are the equivalent, so a rejection of this hypothesis
implies the existence of differences among the performance of all the strategies studied. It must be stressed here
that the differences of performances may not be necessarily involved the pairing of HHH alone (i.e. the
Friedman test analysis can also signify the differences in performances for other pairing). The null hypothesis
(H0) is only rejected if the Friedman statistic (χ2) is greater than the critical value. After this, a post-hoc test
based on the Wilcoxon Rank-Sum could be used to find whether the control strategy presents statistical
difference with regards to the remaining strategies in the comparison. The null hypothesis (H0) is that there is
no significant difference as far as the test size is concerned for HHH and each individual strategy (i.e. the two
populations have the same medians). Our alternative hypothesis (H1) is that test size for HHH is less than that of
each individual strategy (i.e. HHH has a lower population median). To control the Type I - family wise error
rate (FWER) due to multiple comparisons, we have adopted the Bonferroni-Holm correction for α values. In this
case, the p-values are first sorted in ascending order such that p1< p2<p3...<pi…<pk. Then, α is adjusted based
on:

 𝛼𝛼𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =
𝛼𝛼𝑘𝑘 − 𝑖𝑖 + 1

 (6)

If p1 < αHolm, the corresponding hypothesis is rejected and we are allowed to make similar comparison for p2. If
the second hypothesis is rejected, the test proceeds with the third and so on. As soon as a certain null hypothesis
cannot be rejected, all the remaining hypotheses are retained as well. The complete statistical analyses are
shown in Tables 12 through 27.

21

Table 12. Friedman Test for Table 4
Friedman Test Conclusion

Degree of freedom = 5, α = 0.05,
Critical value = 11.0705
Friedman statistic (χ2) = 49.099

49.099 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of CS, SA,

GA, ACO, mAETG and AETG are ignored

Table 13. Post-hoc Wilcoxon Rank-Sum Tests for Table 4
Pair Comparison p-value in

ascending order
Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs Jenny 0.0001451 0.01 p-value < α Holm ,

Reject Ho

HHH vs TVG 0.0001454 0.0125 p-value < α Holm ,

Reject Ho

HHH vs PSTG 0.0007959 0.0166 p-value < α Holm ,

Reject Ho

HHH vs HSS 0.0007959 0.0166 p-value < α Holm ,

Reject Ho

HHH vs IPOG 0.01537 0.05 p-value < α Holm ,

Reject Ho

Table 14. Friedman Test for Table 5
Friedman Test Conclusion

Degree of freedom = 7, α = 0.05,
Critical value = 14.0671
Friedman statistic (χ2) = 31.2134

31.2134 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contribution of ITCH is

ignored

Table 15. Post-hoc Wilcoxon Rank-Sum Tests for Table 5

Pair Comparison p-value in
ascending order

Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs Jenny 0.02108 0.007142 p-value > α Holm ,

Cannot reject Ho
HHH vs TVG 0.02108 Cannot reject Ho
HHH vs TConfig 0.02156 Cannot reject Ho
HHH vs IPOG 0.02156 Cannot reject Ho
HHH vs PSTG 0.0328 Cannot reject Ho
HHH vs HSS 0.09873 Cannot reject Ho
HHH vs CS 0.1587 Cannot reject Ho

Table 16. Friedman Test for Table 6

Friedman Test Conclusion
Degree of freedom = 7, α = 0.05,
Critical value = 14.0671
Friedman statistic (χ2) = 28.388

28.388 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of ITCH,

Jenny, TConfig, TVG and CTE-XL are ignored

Table 17. Post-hoc Wilcoxon Rank-Sum Tests for Table 6

Pair Comparison p-value in
ascending order

Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs HSS 0.02156 0.007142 p-value > α Holm ,

Cannot reject Ho
HHH vs PSTG 0.02156 Cannot reject Ho
HHH vs CS 0.02156 Cannot reject Ho
HHH vs IPOG 0.02156 Cannot reject Ho
HSS vs PICT 0.02156 Cannot reject Ho
HSS vs GTWay 0.2501 Cannot reject Ho
HSS vs MIPOG 0.6571 Cannot reject Ho

22

Table 18. Friedman Test for Table 7
Friedman Test Conclusion

Degree of freedom = 10, α = 0.05,
Critical value = 18.3070
Friedman statistic (χ2) = 56.022

56.022 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contribution of TConfig

is ignored

Table 19. Post-hoc Wilcoxon Rank-Sum Tests for Table 7
Pair Comparison p-value in

ascending order
Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs HSS 0.005859 0.005 p-value (3 d.p) ≈ α Holm ,

Reject Ho if confident level is
set at 90%

HHH vs PSTG 0.005859 0.005 p-value (3 d.p) ≈ α Holm ,

Reject Ho if confident level is
set at 90%

HHH vs CS 0.005859 0.005 p-value (3 d.p) ≈ α Holm ,

Reject Ho if confident level is
set at 90%

HHH vs IPOG 0.005859 0.005 p-value (3 d.p) ≈ α Holm ,

Reject Ho if confident level is
set at 90%

HSS vs Jenny 0.005859 0.005 p-value (3 d.p) ≈ α Holm ,

Reject Ho if confident level is
set at 90%

HSS vs PICT 0.005859 0.005 p-value (3 d.p) ≈ α Holm ,

Reject Ho if confident level is
set at 90%

HSS vs TVG 0.008645 0.0125 p-value < α Holm ,

Reject Ho if confident level is
set at 90%

HHH vs HSS 0.01253 0.0166 p-value < α Holm ,

Reject Ho if confident level is
set at 90%

HHH vs ITCH 0.2877 0.025 p-value > α Holm ,

Cannot reject Ho
HHH vs MIPOG 0.8962 Cannot reject Ho

Table 20. Friedman Test for Table 8

Friedman Test Conclusion
Degree of freedom = 6, α = 0.05,
Critical value = 12.5916
Friedman statistic (χ2) = 25.500

25.500 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG,
CS, ITCH, PICT, and TConfig are ignored

Table 21. Post-hoc Wilcoxon Rank-Sum Tests for Table 8

Pair Comparison p-value in
ascending order

Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs IPOG 0.01385 0.008333 p-value > α Holm ,

Cannot reject Ho
HHH vs Jenny 0.01385 Cannot reject Ho
HHH vs TVG 0.01385 Cannot reject Ho
HHH vs GTWay 0.07056 Cannot reject Ho
HHH vs HSS 0.2315 Cannot reject Ho
HHH vs MIPOG 0.4583 Cannot reject Ho

Table 22. Friedman Test for Table 9

Friedman Test Conclusion
Degree of freedom = 7, α = 0.05,
Critical value = 14.0671
Friedman statistic (χ2) = 96.883

96.883 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of TConfig,

23

ITCH, CTE-XL are ignored

Table 23. Post-hoc Wilcoxon Rank-Sum Tests for Table 9
Pair Comparison p-value in

ascending order
Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs Jenny 0.0001235 0.007142 p-value < α Holm ,

Reject Ho

HHH vs PICT 0.0001266 0.008333 p-value < α Holm ,

Reject Ho

HHH vs TVG 0.0001462 0.01 p-value < α Holm ,

Reject Ho

HHH vs IPOG 0.0008479 0.0125 p-value < α Holm ,

Reject Ho

HHH vs PSTG 0.001536 0.01666 p-value < α Holm ,

Reject Ho

HHH vs HSS 0.0024 0.025 p-value < α Holm ,

Reject Ho

HHH vs CS 0.02462 0.05 p-value < α Holm ,

Reject Ho

\
Table 24. Friedman Test for Table 10

Friedman Test Conclusion
Degree of freedom = 7, α = 0.05,
Critical value = 14.0671
Friedman statistic (χ2) = 216.963

216.963 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of TConfig,
ITCH, and CTE-XL are ignored

Table 25. Post-hoc Wilcoxon Rank-Sum Tests for Table 10

Pair Comparison p-value in
ascending order

Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs PICT 1.762e-08 0.007142 p-value < α Holm ,

Reject Ho

HHH vs IPOG 1.766e-08 0.008333 p-value < α Holm ,

Reject Ho

HHH vs Jenny 3.786e-08 0.01 p-value < α Holm ,

Reject Ho

HHH vs TVG 9.877e-08 0.0125 p-value < α Holm ,

Reject Ho

HHH vs HSS 1.698e-07 0.01666 p-value < α Holm ,

Reject Ho

HHH vs PSTG 2.527e-07 0.025 p-value < α Holm ,

Reject Ho

HHH vs CS 6.752e-07 0.05 p-value < α Holm ,

Reject Ho

Table 26. Friedman Test for Table 11

Friedman Test Conclusion
Degree of freedom = 5, α = 0.05,
Critical value = 11.0705
Friedman statistic (χ2) = 23.779

23.779 > critical value, reject Ho and
proceed to post-hoc test

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of CS,
TConfig, ITCH, TVG, CTE-XL and IPOG-D are ignored

Table 27. Post-hoc Wilcoxon Rank-Sum Tests for Table 11
Pair Comparison p-value in

ascending order
Bonferroni-Holm

Correction: α Holm

Conclusion

HHH vs HSS 0.002474 0.01 p-value > α Holm ,

Cannot reject Ho

HHH vs Jenny 0.03042 Cannot reject Ho

HHH vs PSTG 0.03149 Cannot reject Ho

HHH vs PICT 0.090750 Cannot reject Ho

HHH vs IPOG 0.9226 Cannot reject Ho

24

7. Discussion

A number of observations can be summarized based on the obtained results from Table 4 through 11 as well
as their corresponding statistical analyses from Tables 12 through 27.

Referring to Table 4, SA appears to outperform most other strategies for low interaction (i.e. t<3).

Specifically, SA gives the best overall results for CA(N; 3, 66), CA(N; 3, 57), and MCA(N; 2, 61 51 46 38 23).
However, no results for SA are available for t>3. HHH generates the best overall results for MCA (N; 4, 3445),
MCA (N; 4, 51 38 22), MCA (N; 4, 82 72 62 52), MCA (N; 4, 65 54 32) and MCA (N; 4, 101 91 81 71 61 51 41 31 21).
Putting SA and HHH aside, GA and ACO obtain similar performance. PSTG appears to perform the poorest as
far as the meta-heuristic strategies are concerned. Overall, the meta-heuristic based strategies outperform the
general computational based counterparts. Concerning the statistical analysis of Table 4 (as highlighted by the
Friedman test analysis in Tables 12 and the post-hoc test in 13), we observe that HHH performance is
statistically superior to all other strategies (ignoring the results of CS, SA, GA, ACO, mAETG and AETG
owing to incomplete samples). It must be stressed that SA could have been the best strategy if the samples are
complete.

In Table 5, HHH outperforms all other strategies in terms of test size with CS being the runner up. HHH

obtains the best overall results for CA (N; 6, 210). ITCH gives the best overall result for CA (N; 2, 210). Despite
the ITCH result, meta-heuristic strategies outperform the general computational counterparts (similar to the
previous results). The Friedman test analysis of Table 5 (as summarized in Table 14) indicates that there are
significant differences among the pairwise performance of all the strategies. However, post-hoc analysis of
Table 5 (as seen in Table 15) demonstrates that the performance of HHH is not significantly better as compared
to the given strategies (ignoring the contribution of ITCH).

Concerning Table 6, there are little differences as far as comparative performances between strategies are

concerned. HHH generates only one best overall result for CA (N; 4, 510). In similar manner, ITCH, MIPOG and
GTWay obtain the best overall result for CA(N; 3, 510), CA(N; 5, 510), and CA(N; 6, 510) respectively. As
expected, although the Friedman test analysis indicates that there are differences among the pairwise
performance of all the strategies (as depicted in Table 16), the post-hoc analysis of Table 6 (as seen in Table 17)
demonstrates that there is no significant difference in the performance of HHH with other strategies (ignoring
the contributions of ITCH, Jenny, TConfig, TVG and CTE-XL).

As for Table 7, MIPOG dominates the overall best results. In fact, MIPOG establishes the best overall

results for CA(N; 4, 57) and CA(N; 4, 511). ITCH is the runner up giving the best overall result for CA(N; 4, 512).
HHH generates the best overall results for two configurations involving CA (N; 4, 58) and CA (N; 4, 59). HSS
manages to generate the best overall result for CA(N; 4, 510). The null hypothesis for the Friedman test analysis
for Table 7 (as seen in Table 18) is rejected indicating that there are significant differences in term of the
comparative performances of between each individual strategy. The post-hoc analysis, however, is not in favor
of the alternate hypothesis with 95% confidence level. Nevertheless, if the confidence level is reduced to 90%,
the null hypothesis can now be revisited (refer to Table 19). Here, the HHH performance is statistically superior
as compared to all other strategies with the exception of MIPOG and ITCH (ignoring the contribution of
TConfig).

As far as Table 8 is concerned, HHH gives the best overall performance with two best overall results for

configurations involving CA (N; 4, 310), and CA (N; 4, 610) respectively. Unlike HHH, most other strategies
manage to obtain the best result only for one configuration. Specifically, HSS offers the best overall results for
CA(N; 4, 510) with MIPOG for CA(N; 4, 710). GTWay gives the best overall result for CA (N; 4, 410). Statistical
analysis (involving the Friedman test analysis in Table 20) and post-hoc analysis in Table 21) confirm our
observation. HHH performance is statistically superior to all other strategies (not considering the contribution of
PSTG, CS, ITCH, PICT, and TConfig).

25

Concerning Table 9, HHH outperforms most other given strategies. HHH offers the best overall results for
CA (N; 2, 47), CA (N; 3, 57), CA (N; 4, 37), CA (N; 4, 47), CA (N; 4, 57), CA (N; 5, 37), CA (N; 5, 57), CA (N; 6,
37), and CA (N; 6, 57). Not considering HHH, the best overall results for other configurations are partially shared
by many strategies. CS offers the best overall result for CA(N; 4, 27). TConfig gives the best overall result for
CA(N; 5, 47). ITCH offers the best overall results for CA(N; 3, 37). Based on our statistical analysis (involving
the Friedman test analysis in Table 22) and post-hoc analysis (in Table 23), HHH performance is statistically
superior as compared to other strategies (not considering the contributions of TConfig, ITCH, CTE-XL).

Referring to Table 10, HHH obtains the best overall results for almost half of the table including CA (N; 3,

36), CA (N; 3, 39), CA (N; 3, 310), CA (N; 3, 311), CA (N; 3, 312), CA (N; 4, 35), CA (N; 4, 36), CA (N; 4, 37), CA
(N; 4, 38), CA (N; 4, 39), CA (N; 4, 310), CA (N; 4, 311), CA (N; 4, 312), CA (N; 5, 36), CA (N; 5, 37), CA (N; 5,
38), CA (N; 5, 39), CA (N; 5, 310), CA (N; 5, 311), CA (N; 5, 312), CA (N; 6, 37), CA (N; 6, 38), CA (N; 6, 39), CA
(N; 6, 310), CA (N; 6, 311), and CA (N; 6, 312) respectively. ITCH is the runner up offering the best overall results
in five configurations involving CA(N; 2, 310), CA(N; 2, 311), CA(N; 2, 312), CA(N; 3, 37), and CA(N; 3, 38).
Meanwhile, CS offers the best overall results for CA(N; 3, 36). The Friedman test analysis of Table 10 (in Table
24) is in favor of the alternate hypothesis. The post-hoc analysis (in Table 25) is also in favor of the alternate
hypothesis. We conclude that HHH performance is statistically superior as compared all other strategies (not
considering the contributions of TConfig, ITCH, CTE-XL).

Finally, the best overall results for Table 11 are evenly distributed across many strategies. IPOG gives the

best performance with three new best overall results for CA(4,27 32 41 102), CA(2,213 45), CA(3,213 45). PICT
establishes the best overall results for CA(5,27 32 41 102), CA(6,27 32 41 102), and CA(6,213 45). TVG offers the
best overall results for CA(4,213 45) and CA(5,213 45). Although does not generate any new best overall results,
HHH performance is sufficiently competitive. HHH manages to match seven existing best results involving
CA(2,34), CA(3,34), CA(2,27 32 41 102), CA(3,27 32 41 102), CA(2,22 33), CA(3,22 33) and CA(4,22 33). Based on
the statistical analysis (involving the Friedman test analysis in Table 26) and post-hoc analysis (in Table 27), we
conclude that there is no significant difference as far as the HHH test size is concerned with each individual
strategy (ignoring the contribution of CS, TConfig, ITCH, TVG, CTE-XL and IPOG-D).

8. Threats to Validity

Empirical and experimental studies often encounter many threats to validity. Substantial efforts have been
undertaken to minimize such threats. In the context of our study, several threats could be leveled. Firstly, the
fairness of our benchmark experiments involving meta-heuristic-based strategies can be an issue. Owing to
unavailability of source codes, much comparison with the related work is solely based on the published results.
Revisiting Table 3, given the population size and iteration value, the most minimum number of fitness function
evaluation per iteration is the only value that can be ascertained (population size ∙ max iteration). As the t-way
test suite generation is not a single solution problem, there is a need for the outer loop to ensure convergence
(i.e. producing a population of solution as the complete test suite covering all the required interactions). For this
reason, the maximum number of fitness function evaluation (Fmax = number of iteration for convergence ∙
 population size ∙ max iteration) cannot be exactly determined as it depends on each algorithm’s convergence
process (i.e. until all interactions are covered). As such, there is no guarantee that the maximum number of
fitness function evaluation (Fmax) is the same for all strategies (even with the same number of fitness function
evaluation per iteration). Only when Fmax is empirically fixed (as the stopping criterion large enough to allow
convergence for the largest configurations) for all strategies can the fair comparison be made.

Secondly, as far as the calibration of the specific parameters for each LLH is concerned, we relied on the

reported best tuned values for our LLH (i.e. for PSO and Cuckoo) from the similar problems in the scientific
literature. As meta-heuristics algorithm such as PSO is highly sensitive to parameter changes, the adopted best
tuned values may not be applicable to our case. Thus, in order to ensure optimum performance, re-tuning of the
related HHH parameters may be beneficial.

Thirdly, our statistical analysis has been based on the best reported values and not the mean values for all the

configurations (as the mean values are not highlighted in most published results). The main issue here is that

26

some of the best results may be obtained by chance (especially in the case of meta-heuristic-based strategies),
hence, affecting our conclusion.

Finally, our last threat to validity also relates to statistical analysis. As highlighted in earlier sections, our

statistical analysis (based on the Friedman test and post-hoc Wilcoxon-Rank Sum analysis) requires the
complete samples for all the strategies. In the case of strategies with missing values (i.e. cells with NA entries),
their contributions are completely ignored. For this reason, the complete statistical analysis involving all the
strategies cannot be feasibly performed.

9. Concluding Remark

In this paper, we have described a novel approach of applying hyper-heuristic, called HHH, as a strategy for
t-way test generation. Comparatively, the performances of HHH with other strategies have been promising. In
the case of meta-heuristic-based strategies, we are unable to ensure the same number of objective function
evaluations for all the experiments. To be specific, the common Fmax cannot be introduced as most
implementation source codes are not publically available for modification.

 To the best of our knowledge, HHH is the first hyper-heuristic heuristic based strategy that addresses the

problem of t-way test suite generation. The main feature of HHH is that it enhances the diversification and
intensification of the searching process by adaptively selecting the LLHs based on their previous performances.
Each LLH works in synergy with the HLH whereby highly performing LLH has more chance of being selected
during the search process.

Within HHH, the three defined operators (i.e. improvement, intensification and diversification operators)

serve as the virtual “switch” for HHH. Achieving balance diversification and intensification through diversity
learning [73] within the Reinforced Learning Framework [18], the three HHH operators can be comparable to
Choice Function (CF) accept all moves operator [74]. Similar to HHH, CF accepts the current move but the
current LLH can only continue to the next iteration if the quality of the current solution improves. Specifically,
CF maintains the performance score of the LLHs based on three criteria: previous performance, pair-
independence between LLHs, and time performance. As the name suggests, the previous performance
consideration is the same for both CF and HHH but not the pair-independence and time performance. Although
pair-independence and individual time performance criteria are useful for adaptive meta-heuristic switching,
their contribution within the context of (domain specific) t-way test generation might not be significant as
compared to intensification and diversification measure provided by the HHH operators. Recall that the HHH
diversification operator measures how diverse the current and the previously generated test case are, whilst the
intensification HHH operator evaluates how close the current and the previously generated test case are against
the final test suite list.

As our findings have been encouraging, we are planning to improve our work further. Comparative analysis

can also be made between HHH operators with the potentially different heuristic selection and acceptance
operators (e.g. the Exponential Monte Carlo with counter [75]) using the same LLHs as reference within the
context of t-way test suite generation. In this manner, the performance of different selection and acceptance
operators can be objectively evaluated. Perhaps, the scope of the test generation can also be broadened to
address variable strength interaction as well as constraints support to cater for the testing of software product
lines.

Additionally, instead of relying on a full-blown algorithm as the LLH candidate, HHH can also support

singling out the operator from the meta-heuristic of interest. For instance, the Teacher Phase search in TLBO
can independently serve as LLH whilst the Student Phase search can be used as another LLH. As a result, tuning
of each individual (full-blown) LLH would not be issues that have to be addressed.

To recap, as demonstrated by the implementation of HHH, a hyper-heuristic is able to generate good

enough, soon enough and cheap enough solutions [76] so as to improve generality, raise domain independence,
as well as enhance the level of flexibility [18].

27

Acknowledgement

The work reported in this paper is partially funded by the Science Fund Grant from the Ministry of Science,
Technology, and Innovation (MOSTI), Malaysia and the the Long-Term National Plan for Science, Technology
and Innovation (LT-NPSTI) Grant, the King Abdul-Aziz City for Science and Technology (KACST), Kingdom
of Saudi Arabia.

References

[1] Y. Lei and K. C. Tai, "In-Parameter-Order: A Test Generation Strategy for Pairwise Testing," in Proceedings of

the 3rd IEEE International High-Assurance Systems Engineering Symposium (HASE '98), Washington, DC, USA,
1998, pp. 254–261.

[2] M. Harman, Y. Jia, J. Krinke, B. Langdon, J. Petke, and Y. Zhang, "Search based Software Engineering for
Software Product Line Engineering: A Survey and Directions for Future Work," in Proceeding of the 18th

International Software Product Line Conference 2014, pp. 5-18.
[3] M. Harman, A. Mansouri, and Y. Zhang, "Search Based Software Engineering: Trends, Techniques and

Applications " ACM Computing Surveys. , vol. 45, p. 11, 2012.
[4] M. Harman and B. F. Jones, "Search-Based Software Engineering," Information and Software Technology, vol. 43,

pp. 833-839, 2001.
[5] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using Artificial Life Techniques to Generate Test Cases for Combinatorial

Testing," in Proceedings of the 28th Annual International Computer Software and Applications Conference

(COMPSAC’04), Hong Kong, 2004, pp. 72-77.
[6] B. S. Ahmed and K. Z. Zamli, "A Variable-Strength Interaction Test Suites Generation Strategy Using Particle

Swarm Optimization," Journal of Systems and Software, vol. 84, pp. 2171-2185, 2011.
[7] B.S. Ahmed, K.Z. Zamli, and C. P. Lim, "Application of Particle Swarm Optimization to Uniform and Variable

Strength Covering Array Construction," Applied Soft Computing, vol. 12, pp. 1330-1347, 2012.
[8] A. R. A. Alsewari and K. Z. Zamli, "Design and Implementation of a Harmony-Search-based Variable-Strength t-

way Testing Strategy with Constraints Support," Information and Software Technology, vol. 54, pp. 553-568,
2012.

[9] J. Stardom, "Metheuristic and the Search for Covering and Packing Array," MSc, Department of Mathematics,
Simon Fraser University, 2001.

[10] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, "Constructing Strength Three Covering Arrays with Augmented
Annealing," Discrete Mathematics, vol. 308, pp. 2709-2722, 2008.

[11] B. S. Ahmed, T. Sh. Abdulsamad, and M. Y. Potrus, "Achievement of Minimized Combinatorial Test Suite for
Configuration-Aware Software Functional Testing Using the Cuckoo Search Algorithm," Information and

Software Technology, vol. 66, pp. 13-29, 2015.
[12] D. H. Wolpert and W. G. Macready, "No Free Lunch Theorems for Optimization," IEEE Transactions on

Evolutionary Computation, vol. 1, pp. 67-82, 1997.
[13] E.-G. Talbi, "A Unified Taxonomy of Hybrid Metaheuristics with Mathematical Programming, Constraint

Programming and Machine Learning," in Studies in Computational Intelligence. vol. 434, E.-G. Talbi, Ed., ed:
Springer, 2013, pp. 3-76.

[14] R. V. Rao, V. J. Savsani, and D. P. Vakharia, "Teaching-Learning-based Optimization: A Novel Method for
Constrained Mechanical Design Optimization Problems," Computer Aided Design, vol. 43, pp. 303-313, 2011.

[15] A. Alazzam and H. W. Lewis III, "A New Optimization Algorithm For Combinatorial Problems," International

Journal of Advanced Research in Artificial Intelligence, vol. 2, pp. 63-68, 2013.
[16] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in Proceedings of the IEEE International Conference

Neural Networks, 1995, pp. 1942-1948.
[17] X.-S. Yang and S. Deb, "Cuckoo Search via Levy Flight," in Proceedings of World Congress on Nature and

Biologically Inspired Computing, 2009, pp. 210-214.
[18] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, et al., "Hyper Heuristics: A Survey of the

State of the Art," Journal of the Operational Research Society, vol. 64, pp. 1695–1724 2013.
[19] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. W. . "A Classification of Hyper-heuristic

Approaches," in In Handbook of Meta-Heuristics, M. Gendreau and J.-Y. Potvin, Eds., ed: Kluwer, 2010, pp. 449-
468.

28

[20] E. K. Burke, G. Kendall, and E. Soubeiga, "A Tabu-Search Hyperheuristic for Timetabling and Rostering,"
Journal of Heuristics, vol. 9, pp. 451-470, 2003.

[21] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, "A Dynamic Multiarmed Bandit-Gene Expression Programming
Hyper-Heuristic for Combinatorial Optimization Problems," IEEE Transactions on Cybernetics, vol. 45, pp. 217-
228, 2015.

[22] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, "The Automatic Design of Hyper-Heuristic Framework with Gene
Expression Programming for Combinatorial Optimization Problems," IEEE Transactions on Evolutionary

Computation, vol. 309-325, p. 3, 2015.
[23] B. Stevens and E. Mendelsohn, "Efficient Software Testing Protocols," in Proceedings of the 8th IBM Centre for

Advanced Studies Conference (CASCON ’98), Toronto, Ontario, Canada, 1998, pp. 279-293.
[24] C. Yilmaz, M. B. Cohen, and A. Porter, "Covering arrays for efficient fault characterization in complex

configuration spaces," ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 45-54, 2004.
[25] C. J. Colbourn, "Strength two covering arrays: existence tables and projection," Discrete Mathematics, vol. 308,

pp. 772-786, 2008.
[26] M. Chateauneuf and D. L. Kreher, "On the state of strength-three covering arrays," Journal of Combinatorial

Designs, vol. 10, pp. 217-238, 2002.
[27] M. B. Cohen, "Designing Test Suites for Software Interaction Testing," Doctor of Philosophy PhD Thesis,

Department of Computer Science, University of Auckland, New Zealand, 2004.
[28] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge, "Constructing Test Suites for Interaction

Testing," in Proceedings of the 25th IEEE International Conference on Software Engineering, Portland, Oregon,
2003, pp. 38-48.

[29] A. Hartman and L. Raskin, "Problems and Algorithms for Covering Arrays," Discrete Mathematics, vol. 284, pp.
149-156, 2004.

[30] K. A. Bush, "Orthogonal Arrays of Index Unity," Annals of Mathematical Statistics, vol. 23, pp. 426-434, 1952.
[31] R. Mandl, "Orthogonal Latin Squares: An Application of Experiment Design to Compiler Testing,"

Communications of the ACM, vol. 28, pp. 1054-1058, 1985.
[32] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, "Software Fault Interactions and Implications for Software Testing,"

IEEE Transactions on Software Engineering, vol. 30, pp. 418-421, 2004.
[33] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The AETG System: An Approach to Testing Based

on Combinatorial Design," IEEE Transactions on Software Engineering, vol. 23, pp. 437-444, July 1997.
[34] M. B. Cohen, M. B. Dwyer, and J. Shi, "Interaction Testing of Highly-Configurable Systems in the Presence of

Constraints," in Proceeding of International Symposium on Software Testing and Analysis, London, UK, 2007, pp.
129 -139

[35] M. Klaib, K. Zamli, N. Isa, M. Younis, and R. Abdullah, "G2Way A Backtracking Strategy for Pairwise Test Data
Generation," in Proceeding of the 15th Asia-Pacific Software Engineering Conference APSEC '08' 2008, pp. 463-
470.

[36] K. Z. Zamli, M. F. J. Klaib, M. I. Younis, N. A. M. Isa, and R. Abdullah, "Design and Implementation of A T-Way
Test Data Generation Strategy with Automated Execution Tool Support," Information Sciences, vol. 181, pp.
1741-1758, 2011.

[37] J. Arshem. (2009, 20 July). TVG. Available: http://sourceforge.net/projects/tvg
[38] B. Jenkins. Jenny Test Tool, available from http://www.burtleburtle.net./bob/math/jenny.html, last accessed on

April, 2010.
[39] A. Hartman, IBM Intelligent Test Case Handler: http://www.alphaworks.ibm.com/tech/whitch, 2010.
[40] Keith and H. Doug. (2006, 16 June). PICT. Available: http://testmuse.wordpress.com/2006/04/05/pict-tool-

available/2006
[41] J. Czerwonka, "Pairwise Testing in the Real World: Practical Extensions to Test-Case Scenarios," in Proceedings

of the 24th Pacific Northwest Software Quality Conference, 2006, pp. 419-430.
[42] E. Lehmann and J. Wegener, "Test Case Design by Means of the CTE XL," in Proceeding of the 8th European

International Conference on Software Testing, Analysis & Review, 2000, pp. 1-10.
[43] Y. T. Yu, S. P. Ng, and E. Y. K. Chan, "Generating, Selecting and Prioritizing Test Cases From Specifications

with Tool Support," in Proceedings of the 3rd International Conference on Quality Software, 2003, pp. 83-90.
[44] Y. Lei and K. C. Tai, "In-Parameter-Order: A Test Generation Strategy for Pairwise Testing," in Proceedings of

the 3rd IEEE International Symposium on High-Assurance Systems Engineering, Washington, DC, USA, 1998,
pp. 254 - 261.

[45] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG: A General Strategy for T-Way Software
Testing," in Proceedings of the 14th Annual IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems, Tucson, AZ U.S.A, 2007, pp. 549-556.
[46] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG/IPOG-D: Efficient Test Generation for Multi-

way Combinatorial Testing," Software Testing Verification and Reliability, vol. 18, pp. 125-148, 2008.

http://sourceforge.net/projects/tvg
http://www.burtleburtle.net./bob/math/jenny.html
http://www.alphaworks.ibm.com/tech/whitch
http://testmuse.wordpress.com/2006/04/05/pict-tool-available/2006
http://testmuse.wordpress.com/2006/04/05/pict-tool-available/2006

29

[47] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, "Refining the In-Parameter-Order Strategy for
Constructing Covering Arrays," Journal of Research of the National Institute of Standards and Technology, vol.
113, pp. 287-297., October 2008 2008.

[48] M. I. Younis and K. Z. Zamli, "MC-MIPOG: A Parallel T-Way Test Generation Strategy for Multicore Systems,"
ETRI Journal, vol. 32, pp. 73-83, 2010.

[49] M. I. Younis and K. Z. Zamli, "MIPOG-An Efficient T-Way Minimization Strategy for Combinatorial Testing,"
International Journal of Computer Theory and Engineering, vol. 3, pp. 388-397, 2011.

[50] M. I. Younis, K. Z. Zamli, and N. A. M. Isa, "MIPOG-Modification of the IPOG Strategy for T-Way Software
Testing," in Proceeding of the Distributed Frameworks and Applications, 2008, pp. 1-6.

[51] M. B. Cohen, C. J. Colbourn, and A.C.H.Ling, "Augmenting Simulated Annealing to build Interaction Test Suite,"
in Proceedings of the14th International Symposium on Software Reliability Engineering, 2003, pp. 394-405.

[52] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, "Evaluating Improvements to a Meta-Heuristic Search for
Constrained Interaction Testing," Empirical Software Engineering, pp. 61-102, 2011.

[53] B. S. Ahmed and K. Z. Zamli, "PSTG: A T-Way Strategy Adopting Particle Swarm Optimization," in Proceedings

of the 4th Asia International Conference on Mathematical /Analytical Modelling and Computer Simulation, 2010,
pp. 1-5.

[54] B. S. Ahmed and K. Z. Zamli, "T-Way Test Data Generation Strategy Based on Particle Swarm Optimization," in
Proceedings of the 2nd International Conference on Computer Research and Development, 2010, pp. 93-97.

[55] B. S. Ahmed and K. Z. Zamli, "The Development of a Particle Swarm Based Optimization Strategy for Pairwise
Testing," Journal of Artificial Intelligence, vol. 4, pp. 156-165, 2011.

[56] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, "Constructing a T-Way Interaction Test Suite Using the Particle Swarm
Optimization Approach," International Journal of Innovative Computing, Information and Control, vol. 8, pp.
431-452, 2012.

[57] M. Črepinšek, S.-H. Liu, and L. Mernik, "A Note on Teaching-Learning-Based Optimization Algorithm,"
Information Sciences, vol. 212, pp. 79-93, 2012.

[58] TLBO Implementation -Yarpiz.com, available from http://yarpiz.com/83/ypea111-teaching-learning-based-

optimization ,last accessed on January, 2016.
[59] X.-S. Yang, Nature-Inspired Metaheursitic Algorithm: Luniver Press, 2010.
[60] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C- The Art of Scientific

Computing: Cambridge University Press, 1992.
[61] X.-S. Yang, Nature-Inspired Metaheuristic Algorithm: Luniver Press, 2010.
[62] B. Xing and W.-J. Gao, Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms:

Springer, 2014.
[63] M. B. Cohen, "Designing Test Suites for Software Interaction Testing," PhD Thesis, Department of Computer

Science, University of Auckland, 2005.
[64] B. Garvin, M. Coehn, and M. Dwyer, "Evaluating Improvements to a Meta-Heuristic Search for Constrained

Interaction Testing," Empirical Software Engineering, vol. 16, pp. 61-102, 2011.
[65] C. B. Renee and C. J. Colbourn, "One-test-at-a-time Heuristic Search for Interaction Test Suites," in Proceedings

of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM, 2007, pp. 1082-1089.
[66] A. R. A. Alsewari, "Design and Implementation of a Harmony Search based t-way Testing Strategy with

Constraints Support," PhD Thesis, School of Electrical and Electronics Engineering, Universiti Sains Malaysia,
2012.

[67] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, "Application of Particle Swarm Optimization to Uniform and Variable
Strength Covering Array Construction," Applied Soft Computing, vol. 12, pp. pp. 1330-1347, 2012.

[68] B. S. Ahmed, "Adopting a Particle Swarm based Test Generator Strategy for Variable Strength and t-way
Testing," PhD Thesis, School of Electrical and Electronics Engineering, Universiti Sains Malaysia, 2012.

[69] M. Črepinšek, S.-H. Liu, L. Mernik, and M. Mernik, "Is a Comparison of Results Meaningful from the Inexact
Replications of Computational Experiments?," Soft Computing, vol. 20, pp. 223-235, 2015.

[70] M. Črepinšek, S.-H. Liu, and M. Mernik, "Replication and Comparison of Computational Experiments in Applied
Evolutionary Computing: Common Pitfals and Guidelines to avoid them," Applied Soft Computing, vol. 19, pp.
161-170, 2014.

[71] M. Mernik, S.-H. Liu, D. Karaboga, and M. Črepinšek, "On Clarifying Misconceptions when Comparing Variants
of the Artificial Bee Colony Algorithm by Offering a New Implementation," Information Sciences, vol. 291, pp.
115-127, 2015.

[72] A. Draa, "On the Performances of the Flower Pollination Algorithm- Qualitative and Quantitative Analyses,"
Applied Soft Computing, vol. 34, pp. 349-371, 2015.

[73] M. Črepinšek, S.-H. Liu, and M. Mernik, "Exploration and Exploitation in Evolutionary Algorithms: A Survey,"

ACM Computing Surveys, vol. 45, 2013.
[74] P. Cowling and G. Kendall, "A Hyper Heuristic Approach to Scheduling a Sales Summit," in Proceedings of 3rd

International Conference on Practice and Theory of Automated Time Tabling, 2001, pp. 176-190.

http://yarpiz.com/83/ypea111-teaching-learning-based-optimization
http://yarpiz.com/83/ypea111-teaching-learning-based-optimization

30

[75] M. Ayob and G. Kendall, " A Monte Carlo Hyper-Heuristic to Optimise Component Placement Sequencing For
Multi Head Placement Machine," in Proceedings of the International Conference on Intelligent Technologies,
2003, pp. 132-141.

[76] E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg, "Hyper-Heuristics: An Emerging
Direction in Modern Search Technology," in Handbook of Meta-Heuristics -International Series in Operations

Research and Management Science. vol. 57, F. Glover and G. Kochenberger, Eds., ed: Kluwer, 2003, pp. 457-474.

	1. Introduction
	2. Theoretical Framework
	2.1. Overview of Hyper-Heuristics
	2.2. The t-way Test Generation Problem
	2.3. The Covering Array Notation

	3. Existing Literature on t-way Strategies
	3.1. General Computational-based Strategies
	3.2. Meta-heuristic-based Strategies

	4. The Proposed HHH Strategy
	4.1. The Tabu Search HLH
	4.2. Teaching Learning based Optimization LLH
	4.3. Global Neighborhood Algorithm LLH
	4.4. Particle Swarm Optimization LLH
	4.5. The Cuckoo Search Algorithm LLH

	5. HHH Parameter Calibration
	6. Evaluation
	6.1. Benchmarking with Existing Strategies on Test Sizes
	6.2. Statistical Analysis

	7. Discussion
	8. Threats to Validity
	9. Concluding Remark
	Acknowledgement
	References

