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Abstract

The gradient noise (GN) in the stochastic gra-

dient descent (SGD) algorithm is often consid-

ered to be Gaussian in the large data regime by

assuming that the classical central limit theo-

rem (CLT) kicks in. This assumption is often

made for mathematical convenience, since it en-

ables SGD to be analyzed as a stochastic differ-

ential equation (SDE) driven by a Brownian mo-

tion. We argue that the Gaussianity assumption

might fail to hold in deep learning settings and

hence render the Brownian motion-based analy-

ses inappropriate. Inspired by non-Gaussian nat-

ural phenomena, we consider the GN in a more

general context and invoke the generalized CLT

(GCLT), which suggests that the GN converges

to a heavy-tailed α-stable random variable. Ac-

cordingly, we propose to analyze SGD as an SDE

driven by a Lévy motion. Such SDEs can in-

cur ‘jumps’, which force the SDE transition from

narrow minima to wider minima, as proven by

existing metastability theory. To validate the α-

stable assumption, we conduct experiments on

common deep learning scenarios and show that

in all settings, the GN is highly non-Gaussian and

admits heavy-tails. We investigate the tail behav-

ior in varying network architectures and sizes,

loss functions, and datasets. Our results open up

a different perspective and shed more light on the

belief that SGD prefers wide minima.

1. Introduction

Context and motivation: Deep neural networks have rev-

olutionized machine learning and have ubiquitous use in
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many application domains (LeCun et al., 2015; Krizhevsky

et al., 2012; Hinton et al., 2012). In full generality, many

key tasks in deep learning reduces to solving the following

optimization problem:

w
⋆ = argmin

w∈Rp

{
f(w) ,

1

n

∑n

i=1
f (i)(w)

}
(1)

where w ∈ R
p denotes the weights of the neural net-

work, f : Rp → R denotes the loss function that is typ-

ically non-convex in w, each f (i) denotes the (instanta-

neous) loss function that is contributed by the data point

i ∈ {1, . . . , n}, and n denotes the total number of data

points. Stochastic gradient descent (SGD) is one the most

popular approaches for attacking this problem in practice

and is based on the following iterative updates:

wk+1 = wk − η∇f̃k(wk) (2)

where k ∈ {1, . . . ,K} denotes the iteration number, η is

the step-size, and ∇f̃k denotes the stochastic gradient at

iteration k, that is defined as follows:

∇f̃k(w) , ∇f̃Ωk
(w) ,

1

b

∑
i∈Ωk

∇f (i)(w). (3)

Here, Ωk ⊂ {1, . . . , n} is a random subset that is drawn

with or without replacement at iteration k, and b = |Ωk|
denotes the number of elements in Ωk.

SGD is widely used in deep learning with a great success

in its computational efficiency (Bottou, 2010; Bottou &

Bousquet, 2008; Daneshmand et al., 2018). Beyond effi-

ciency, understanding how SGD performs better than its

full batch counterpart in terms of test accuracy remains a

major challenge. Even though SGD seems to find zero

loss solutions on the training landscape (at least in certain

regimes (Zhang et al., 2017a; Sagun et al., 2015; Keskar

et al., 2016; Geiger et al., 2018)), it appears that the al-

gorithm finds solutions with different properties depending

on how it is tuned (Sutskever et al., 2013; Keskar et al.,

2016; Jastrzebski et al., 2017; Hoffer et al., 2017; Masters

& Luschi, 2018; Smith et al., 2017). Despite the fact that

the impact of SGD on generalization has been studied (Ad-

vani & Saxe, 2017; Wu et al., 2018; Neyshabur et al., 2017),

a satisfactory theory that can explain its success in a way

that encompasses such peculiar empirical properties is still

lacking.
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A popular approach for investigating the behavior SGD

is based on considering SGD as a discretization of a

continuous-time process (Mandt et al., 2016; Jastrzebski

et al., 2017; Li et al., 2017a; Hu et al., 2017; Zhu et al.,

2018; Chaudhari & Soatto, 2018). This approach mainly

requires the following assumption1 on the stochastic gradi-

ent noise Uk(w) , ∇f̃k(w)−∇f(w):

Uk(w) ∼ N (0, σ2
I), (4)

where N denotes the multivariate (Gaussian) normal distri-

bution and I denotes the identity matrix of appropriate size.

The rationale behind this assumption is that, if the size of

the minibatch b is large enough, then we can invoke the

Central Limit Theorem (CLT) and assume that the distri-

bution of Uk is approximately Gaussian. Then, under this

assumption, (2) can be written as follows:

wk+1 = wk − η∇f(wk) +
√
η
√
ησ2Zk, (5)

where Zk denotes a standard normal random variable in

R
p. If we further assume that η is small enough, then the

continuous-time analogue of the discrete-time process (5)

is the following stochastic differential equation (SDE):2

dwt = −∇f(wt)dt+
√
ησ2dBt, (6)

where Bt denotes the standard Brownian motion. This

SDE is a variant of the well-known Langevin diffusion

and under mild regularity assumptions on f , one can

show that the Markov process (wt)t≥0 is ergodic with its

unique invariant measure, whose density is proportional to

exp(−f(x)/(ησ2)) for any η > 0. (Roberts & Stramer,

2002). From this perspective, the SGD recursion in (5) can

be seen as a first-order Euler-Maruyama discretization of

the Langevin dynamics (see also (Li et al., 2017a; Jastrzeb-

ski et al., 2017; Hu et al., 2017)), which is often referred

to as the Unadjusted Langevin Algorithm (ULA) (Roberts

& Stramer, 2002; Lamberton & Pages, 2003; Durmus &

Moulines, 2015; Durmus et al., 2016).

Based on this observation, Jastrzebski et al. (2017) focused

on the relation between this invariant measure and the al-

gorithm parameters, namely the step-size η and mini-batch

size, as a function of σ2. They concluded that the ratio of

learning rate divided by the batch size is the control pa-

rameter that determines the width of the minima found by

1We note that more sophisticated assumptions than (4) have
been made in terms of the covariance matrix of the Gaussian dis-
tribution (e.g. state dependent, anisotropic). However, in all these
cases, the resulting distribution is still a Gaussian, therefore the
same criticism holds.

2 In a recent work with a similar critic taken on the recent the-
ories on the SGD dynamics, some theoretical concerns have been
also raised about the SDE approximation of SGD (Yaida, 2019).
We believe that the SDE representation is sufficiently accurate for
small step-sizes and a good, if not the best, proxy for understand-
ing the behavior of SGD.
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Figure 1. (a)The histogram of the norm of the gradient noises

computed with AlexNet on Cifar10. (b) and (c) the histograms of

the norms of (scaled) Guassian and α-stable random variables.

SGD. Furthermore, they revisit the famous wide minima

folklore (Hochreiter & Schmidhuber, 1997): Among the

minima found by SGD, the wider it is, the better it performs

on the test set. However, there are several fundamental is-

sues with this approach, which we will explain below.

We first illustrate a typical mismatch between the Gaus-

sianity assumption and the empirical behavior of the

stochastic gradient noise. In Figure 1, we plot the his-

togram of the norms of the stochastic gradient noise that

is computed using a convolutional neural network in a real

classification problem and compare it to the histogram of

the norms of Gaussian random variables. It can be clearly

observed that the shape of the real histogram is very differ-

ent than the Gaussian and shows a heavy-tailed behavior.

In addition to the empirical observations, the Gaussianity

assumption also yields some theoretical issues. The first

issue with this assumption is that the current SDE analy-

ses of SGD are based on the invariant measure of the SDE,

which implicitly assumes that sufficiently many iterations

have been taken to converge to that measure. Recent re-

sults on ULA (Raginsky et al., 2017; Xu et al., 2018) have

shown that, the required number of iterations to achieve

the invariant measure often grows exponentially with the

dimension p. This result contradicts with the current prac-

tice: considering the large size of the neural networks and

limited computational budget, only a limited number of it-

erations – which is much smaller than exp(O(p)) – can be

taken. This conflict becomes clearer in the light of the re-

cent works that studied the local behavior of ULA (Tzen

et al., 2018; Zhang et al., 2017b). These studies showed

that ULA will get close to the nearest local optimum in

polynomial time; however, the required amount of time for

escaping from that local optimum increases exponentially

with the dimension. Therefore, the phenomenon that SGD

prefers wide minima within a considerably small number

of iterations cannot be explained using the asymptotic dis-

tribution of the SDE given in (6).

The second issue is related to the local behavior of the pro-

cess and becomes clear when we consider the metastability

analysis of Brownian motion-driven SDEs. These studies

(Freidlin & Wentzell, 1998; Bovier et al., 2004; Imkeller
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et al., 2010b) consider the case where w0 is initialized in a

quadratic basin and then analyze the minimum time t such

that wt is outside that basin. They show that this so-called

first exit time depends exponentially on the height of the

basin; however, this dependency is only polynomial with

the width of the basin. These theoretical results directly

contradict with the wide minima phenomenon: even if the

height of a basin is slightly larger, the exit-time from this

basin will be dominated by its height, which implies that

the process would stay longer in (or in other words, ‘pre-

fer’) deeper minima as opposed to wider minima. The rea-

son why the exit-time is dominated by the height is due to

the continuity of the Brownian motion, which is in fact a

direct consequence of the Gaussian noise assumption.

A final remark on the issues of this approach is the ob-

servation that landscape is flat at the bottom regardless of

the batch size used in SGD (Sagun et al., 2017). In par-

ticular, the spectrum of the Hessian at a near critical point

with close to zero loss value has many near zero eigenval-

ues. Therefore, local curvature measures that are used as a

proxy for measuring the width of a basin correlates with the

magnitudes of large eigenvalues of the Hessian which are

few. Besides, during the dynamics of SGD it has been ob-

served that the algorithm does not cross barriers except per-

haps at the very initial phase (Xing et al., 2018; Baity-Jesi

et al., 2018). Such dependence of width on an essentially-

flat landscape combined with the lack of explicit barrier

crossing during the SGD descent forces us to rethink the

analysis of basin hopping under a noisy dynamics.

Proposed framework: In this study, we aim at addressing

these contradictions and come up with an arguably better-

suited hypothesis for the stochastic gradient noise that has

more pertinent theoretical implications for the phenomena

associated with SGD. In particular, we go back to (3) and

(4) and reconsider the application of CLT. This classical

CLT assumes that Uk is a sum of many independent and

identically distributed (i.i.d.) random variables, whose vari-

ance is finite, and then it states that the law of Uk converges

to a Gaussian distribution, which then paves the way for

(5). Even though the finite-variance assumption seems nat-

ural and intuitive at the first sight, it turns out that in many

domains, such as turbulent motions (Weeks et al., 1995),

oceanic fluid flows (Woyczyński, 2001), finance (Mandel-

brot, 2013), biological evolution (Jourdain et al., 2012), au-

dio signals (Liutkus & Badeau, 2015; Şimşekli et al., 2015;

Leglaive et al., 2017; Şimşekli et al., 2018), brain signals

(Jas et al., 2017), the assumption might fail to hold (see

(Duan, 2015) for more examples). In such cases, the clas-

sical CLT along with the Gaussian approximation will no

longer hold. While this might seem daunting, fortunately,

one can prove an extended CLT and show that the law of

the sum of these i.i.d. variables with infinite variance still

converges to a family of heavy-tailed distributions that is

called the α-stable distribution (Lévy, 1937). As we will

detail in Section 2, these distributions are parametrized by

their tail-index α ∈ (0, 2] and they coincide with the Gaus-

sian distribution when α = 2.

In this study, we relax the finite-variance assumption on

the stochastic gradient noise and by invoking the extended

CLT, we assume that Uk follows an α-stable distribution,

as hinted in Figure 1(c). By following a similar ratio-

nale to (5) and (6), we reformulate SGD with this new as-

sumption and consider its continuous-time limit for small

step-sizes. Since the noise might not be Gaussian anymore

(i.e. when α 6= 2), the use of the Brownian motion would

not be appropriate in this case and we need to replace it

with the α-stable Lévy motion, whose increments have an

α-stable distribution (Yanovsky et al., 2000). Due to the

heavy-tailed nature of α-stable distribution, the Lévy mo-

tion might incur large discontinuous jumps and therefore

exhibits a fundamentally different behavior than the Brow-

nian motion, whose paths are on the contrary almost surely

continuous. As we will describe in detail in Section 2,

the discontinuities also reflect in the metastability proper-

ties of Lévy-driven SDEs, which indicate that, as soon as

α < 2, the first exit time from a basin does not depend on

its height; on the contrary, it directly depends on its width

and the tail-index α. Informally, this implies that the pro-

cess will escape from narrow minima – no matter how deep

they are – and stay longer in wide minima. Besides, as α
get smaller, the probability for the dynamics to jump in a

wide basin will increase. Therefore, if the α-stable assump-

tion on the stochastic gradient noise holds, then the existing

metastability results automatically provide strong theoreti-

cal insights for illuminating the behavior of SGD.

Contributions: The main contributions of this paper are

twofold: (i) we perform an extensive empirical analysis of

the tail-index of the stochastic gradient noise in deep neural

networks and (ii) based on these empirical results, we bring

an alternative perspective to the existing approaches for an-

alyzing SGD and shed more light on the folklore that SGD

prefers wide minima by establishing a bridge between SGD

and the related theoretical results from statistical physics

and stochastic analysis.

We conduct experiments on the most common deep learn-

ing architectures. In particular, we investigate the tail be-

havior under fully-connected and convolutional models us-

ing negative log likelihood and linear hinge loss functions

on MNIST, CIFAR10, and CIFAR100 datasets. For each

configuration, we scale the size of the network and batch

size used in SGD and monitor the effect of each of these

settings on the tail index α.

Our experiments reveal several remarkable results:

• In all our configurations, the stochastic gradient noise
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Figure 2. Left: SαS densities, right: Lα

t for p = 1. For α < 2,

SαS becomes heavier-tailed and L
α

t incurs jumps.

turns out to be highly non-Gaussian and possesses a

heavy-tailed behavior.

• Increasing the size of the minibatch has a very little im-

pact on the tail-index, and as opposed to the common

belief that larger minibatches result in Gaussian gradient

noise, the noise is still far from being Gaussian.

• There is a strong interaction between the network archi-

tecture, network size, dataset, and the tail-index, which

ultimately determine the dynamics of SGD on the train-

ing surface. This observation supports the view that, the

geometry of the problem and the dynamics induced by

the algorithm cannot be separated from each other.

• In almost all configurations, we observe two distinct

phases of SGD throughout iterations. During the first

phase, the tail-index rapidly decreases and SGD pos-

sesses a clear jump when the tail-index is at its lowest

value and causes a sudden jump in the accuracy. This

behavior strengthens the view that SGD crosses barriers

at the very initial phase.

Our methodology also opens up several interesting future

directions and open questions, as we discuss in Section 5.

2. Stable distributions and SGD as a

Lévy-Driven SDE

The CLT states that the sum of i.i.d. random variables with

a finite second moment converges to a normal distribution

if the number of summands grow. However, if the variables

have heavy-tail, the second moment may not exist. For in-

stance, if their density p(x) has a power-law tail decreasing

as 1/|x|α+1 where 0 < α < 2; only α-th moment exist

with α < 2. In this case, generalized central limit theorem

(GCLT) says that the sum of such variables will converge

to a distribution called the α-stable distribution instead as

the number of summands grows (see e.g. (Fischer, 2010).

In this work, we focus on the centered symmetric α-stable

(SαS) distribution, which is a special case of α-stable dis-

tributions that are symmetric around the origin.

We can view the SαS distribution as a heavy-tailed gener-

alization of a centered Gaussian distribution. The SαS dis-

tributions are defined through their characteristic function

via X ∼ SαS(σ) ⇐⇒ E[exp(iωX)] = exp(−|σω|α).
Even though their probability density function does not

admit a closed-form formula in general except in spe-

cial cases, their density decays with a power law tail like

1/|x|α+1 where α ∈ (0, 2] is called the tail-index which de-

termines the behavior of the distribution: as α gets smaller;

the distribution has a heavier tail. In fact, the parameter α
also determines the moments: when α < 2, E[|X|r] < ∞
if and only if r < α; implying X has infinite variance when

α 6= 2. The parameter σ ∈ R+ is the scale parameter and

controls the spread of X around 0. We recover the Gaus-

sian distribution N (0, 2σ2) as a special case when α = 2.

In this study, we make the following assumption on the

stochastic gradient noise:

[Uk(w)]i ∼ SαS(σ(w)), ∀i = 1, . . . , n (7)

where [v]i denotes the i’th component of a vector v. In-

formally, we assume that each coordinate of Uk is SαS
distributed with the same α and the scale parameter σ de-

pends on the state w. Here, this dependency is not crucial

since we are mainly interested in the tail-index α, which

can be estimated independently from the scale parameter.

Therefore, we will simply denote σ(w) as σ for clarity.

By using the assumption (7), we can rewrite the SGD re-

cursion as follows (Şimşekli, 2017; Nguyen et al., 2019):

wk+1 = wk − η∇f(wk) + η1/α
(
η

α−1

α σ
)
Sk, (8)

where Sk ∈ R
p is a random vector such that [Sk]i ∼

SαS(1). If the step-size η is small enough, then we can

consider the continuous-time limit of this discrete-time

process, which is expressed in the following SDE driven

by an α-stable Lévy process:

dwt = −∇f(wt)dt+ η(α−1)/ασ dLα
t , (9)

where Lα
t denotes the p-dimensional α-stable Lévy motion

with independent components. In other words, each com-

ponent of Lα
t is an independent α-stable Lévy motion in R.

For the scalar case it is defined as follows for α ∈ (0, 2]
(Duan, 2015):

(i) Lα
0 = 0 almost surely.

(ii) For t0 < t1 < · · · < tN , the increments (Lα
ti−Lα

ti−1
)

are independent (i = 1, . . . , N ).

(iii) The difference (Lα
t − Lα

s ) and Lα
t−s have the same

distribution: SαS((t− s)1/α) for s < t.

(iv) Lα
t is continuous in probability (i.e. it has stochas-

tically continuous sample paths): for all δ > 0 and

s ≥ 0, p(|Lα
t − Lα

s | > δ) → 0 as t → s.

It is easy to check that the noise term in (8) is obtained

by integrating Lα
t from kη to (k + 1)η. When α = 2, Lα

t

coincides with a scaled version of Brownian motion,
√
2Bt.

SαS and Lα
t are illustrated in Figure 2.
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The SDE in (9) exhibits a fundamentally different behavior

than the one in (6) does. This is mostly due to the stochas-

tic continuity property of Lα
t , which enables Lα

t to have a

countable number of discontinuities, which are sometimes

called ‘jumps’. In the rest of this section, we will recall im-

portant theoretical results about this SDE and discuss their

implications on SGD.

For clarity of the presentation and notational simplicity

we focus on the scalar case and consider the SDE (9) in

R (i.e. p = 1). Multidimensional generalizations of the

metastability results presented in this paper can be found in

(Imkeller et al., 2010a). We rewrite (9) as follows:

dwε
t = −∇f(wε

t )dt+ εdLα
t (10)

for t ≥ 0, started from the initial point w0 ∈ R, where Lα
t

is the α-stable Lévy process, ε ≥ 0 is a parameter and f is

a non-convex objective with r ≥ 2 local minima.

When ε = 0, we recover the gradient descent dynamics

in continuous time: dw0
t = −∇f(w0

t )dt, where the lo-

cal minima are the stable points of this differential equa-

tion. However, as soon as ε > 0, these states become

‘metastable’, meaning that there is a positive probability

for wε
t to transition from one basin to another. However, the

time required for transitioning to another basin strongly de-

pends on the characteristics of the injected noise. The two

most important cases are α = 2 and α < 2. When α = 2,

(i.e. the Gaussianity assumption) the process (wε
t )t≥0 is

continuous, which requires it to ‘climb’ the basin all the

way up, in order to be able to transition to another basin.

This fact makes the transition-time depend on the height of

the basin. On the contrary, when α < 2, the process can

incur discontinuities and do not need to cross the bound-

aries of the basin in order to transition to another one since

it can directly jump. This property is called the ‘transition

phenomenon’ (Duan, 2015) and makes the transition-time

mostly depend on the width of the basin. In the rest of the

section, we will formalize these explanations.

Gradient-like flows driven by Brownian motion and weak

error for their discretization is well studied from a theoret-

ical standpoint (see e.g. (Li et al., 2017b; Mertikopoulos &

Staudigl, 2018)), however their Lévy driven analogue (10)

and the discrete-time versions (Burghoff & Pavlyukevich,

2015) are relatively less studied. Under some assumptions

on the objective f , it is known that the process (10) admits a

stationary density (Samorodnitsky & Grigoriu, 2003). For

a general f , an explicit formula for the equilibrium distribu-

tion is not known, however when the noise level ε is small

enough, finer characterizations of the structure of the equi-

librium density in dimension one is known. We next sum-

marize known results in this area, which show that Lévy-

driven dynamics spends more time in ‘wide valleys’ in the

sense of (Chaudhari et al., 2017) when ε goes to zero.

Assume that f is smooth with r local minima {mi}ri=1 sep-

arated by r − 1 local maxima {si}r−1
i=1 , i.e.

−∞ := s0 < m1 < s1 < · · · < sr−1 < mr < sr := ∞.

Furthermore, assume that the local minima and maxima

are not degenerate, i.e. f ′′(mi) > 0 and f ′′(si) < 0
for every i. We also assume the objective gradient has

a growth condition f ′(w) > |w|1+c for some constant

c > 0 and when |w| is large enough. Each local minima

mi lies in the (interval) valley Si = (si−1, si) of (width)

length Li = |si − si−1|. Consider also a δ-neighborhood

Bi := {|x − mi| ≤ δ} around the local minimum with

δ > 0 small enough so that the neighborhood is contained

in the valley Si for every i. We are interested in the first

exit time from Bi starting from a point w0 ∈ Bi and the

transition time T i
w0

(ε) := inf{t ≥ 0 : wε
t ∈ ∪j 6=iBj} to

a neighborhood of another local minimum, we will remove

the dependency to w0 of the transition time in our discus-

sions as it is clear from the context. The following result

shows that the transition times are asymptotically exponen-

tially distributed in the limit of small noise and scales like

1/εα with ε.

Theorem 1 ((Pavlyukevich, 2007)). For an initial point

w0 ∈ Bi, in the limit ε → 0, the following statements hold

regarding the transition time:

Pw0
(T i(ε) ∈ Bj) → qijq

−1
i if i 6= j,

Pw0
(εαT i(ε) ≥ u) ≤ e−qiu for any u ≥ 0.

where

qij =
1

α

∣∣∣∣
1

|sj−1 −mi|α
− 1

|sj −mi|α
∣∣∣∣ , (11)

qi =
∑

j 6=i

qij . (12)

If the SDE (10) would be driven by the Brownian motion

instead, then an analogous theorem to Theorem 1 holds

saying that the transition times are still exponentially dis-

tributed but the scaling εα needs to be replaced by e2H/ε2

where H is the maximal depth of the basins to be traversed

between the two local minima (Day, 1983; Bovier et al.,

2005). This means that in the small noise limit, Brownian-

motion driven gradient descent dynamics need exponential

time to transit to another minimum whereas Levy-driven

gradient descent dynamics need only polynomial time. We

also note from Theorem 1 that the mean transition time be-

tween valleys for Lévy SDE does not depend on the depth

H of the valleys they reside in which is an advantage over

Brownian motion driven SDE in the existence of deep val-

leys. Informally, this difference is due to the fact that Brow-

nian motion driven SDE has to typically climb up a valley

to exit it, whereas Lévy-driven SDE could jump out.

The following theorem says that as ε → 0, up to a nor-

malization in time, the process wε
t behaves like a finite
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state-space Markov process that has support over the set

of local minima {mi}ri=1 admitting a stationary density

π = (πi)
r
i=1 with an infinitesimal generator Q. The pro-

cess jumps between the valleys Si, spending time propor-

tional to probability pi amount of time in each valley in the

equilibrium where the probabilities π = (πi)
r
i=1 are given

by the solution to the linear system Qπ = 0.

Theorem 2 ((Pavlyukevich, 2007)). Let w0 ∈ Si, for some

1 ≤ i ≤ r. For t ≥ 0, wε
tε−α → Ym(t), as ε → 0, in

the sense of finite-dimensional distributions, where Y =
(Ym(t))t≥0 is a continuous-time Markov chain on a state

space {m1,m2, . . . ,mr} with the infinitesimal generator

Q = (qij)
r
i,j=1 with

qij =
1

α

∣∣∣∣
1

|sj−1 −mi|α
− 1

|sj −mi|α
∣∣∣∣ , (13)

qii = −
∑

j 6=i
qij . (14)

This process admits a density π satisfying QTπ = 0.

A consequence of this theorem is that equilibrium proba-

bilities pi are typically larger for “wide valleys”. To see

this consider the special case illustrated in Figure 3(a) with

r = 2 local minima m1 < s1 = 0 < m2 separated by a

local maximum at s1 = 0. For this example, m2 > |m1|,
and the second local minimum lies in a wider valley. A

simple computation reveals π1 = |m1|α/(|m1|α + mα
2 ),

π2 = |m2|α/(|m1|α + |m2|α).
We see that π2 > π1, that is in the equilibrium the process

spends more time on the wider valley. In particular, the

ratio π2

π1

=
(

m2

|m1|

)α

grows with an exponent α when the

ratio m2

|m1|
of the width of the valleys grows. Consequently,

if the gradient noise is indeed α-stable distributed, these

results directly provide theoretical evidence for the wide-

minima behavior of SGD.

3. Experimental Setup and Methodology

Experimental setup: We investigate the tail behavior

of the stochastic gradient noise in a variety of scenarios.

We first consider a fully-connected network (FCN) on the

MNIST and CIFAR10 datasets. For this model, we vary the

depth (i.e. the number of layers) in the set {2, 3, . . . , 10},

the width (i.e. the number of neurons per layer) in the set

{2, 4, 8, . . . , 1024}, and the minibatch size ranging from 1
to full batch. We then consider a convolutional neural net-

work (CNN) architecture (AlexNet) on the CIFAR10 and

CIFAR100 datasets. We scale the number of filters in each

convolutional layer in range {2, 4, . . . , 512}. We randomly

split the MNIST dataset into train and test parts of sizes

60K and 10K, and CIFAR10 and CIFAR100 datasets into

train and test parts of sizes 50K and 10K, respectively. The

(a) (b)

Figure 3. (a) An objective with two local minima m1,m2 seper-

ated by a local maxima at s1 = 0. (b) Illustration of the tail-index

estimator α̂.

order of the total number of parameters p range from sev-

eral thousands to tens of millions.

For both fully connected and convolutional settings, we run

each configuration with the negative-log-likelihood (i.e.

cross entropy) and with the linear hinge loss, and we re-

peat each experiment with three different random seeds.

The training algorithm is SGD with no explicit modifi-

cation such as momentum or weight decay. The train-

ing runs until 100% training accuracy is achieved or un-

til maximum number of iterations limit is reached (the

latter limit is effective in the under-parametrized mod-

els). At every 100th iteration, we log the full train-

ing and test accuracies, and the tail estimate of the gra-

dients that are sampled using the corresponding mini-

batch size. The codebase is implemented in python us-

ing pytorch and provided in https://github.com/

umutsimsekli/sgd_tail_index. Total runtime is

∼3 weeks on 8 relatively modern GPUs.

Method for tail-index estimation: Estimating the tail-

index of an extreme-value distribution is a long-standing

topic. Some of the well-known estimators for this task are

(Hill, 1975; Pickands, 1975; Dekkers et al., 1989; De Haan

& Peng, 1998). Despite their popularity, these methods are

not specifically developed for α-stable distributions and it

has been shown that they might fail for estimating the tail-

index for α-stable distributions (Mittnik & Rachev, 1996;

Paulauskas & Vaičiulis, 2011).

In this study, we use a relatively recent estimator proposed

in (Mohammadi et al., 2015) for α-stable distributions. It

is given in the following theorem.

Theorem 3 (Mohammadi et al. (2015)). Let {Xi}Ki=1 be

a collection of random variables with Xi ∼ SαS(σ) and

K = K1 × K2. Define Yi ,
∑K1

j=1 Xj+(i−1)K1
for i ∈

J1,K2K. Then, the estimator

1̂

α
,

1

logK1

( 1

K2

K2∑

i=1

log |Yi| −
1

K

K∑

i=1

log |Xi|
)
. (15)

converges to 1/α almost surely, as K2 → ∞.

https://github.com/umutsimsekli/sgd_tail_index
https://github.com/umutsimsekli/sgd_tail_index
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As shown in Theorem 2.3 of (Mohammadi et al., 2015),

this estimator admits a faster convergence rate and smaller

asymptotic variance than all the aforementioned methods.

In order to verify the accuracy of this estimator, we conduct

a preliminary experiment, where we first generate K =
K1 ×K2 many SαS(1) distributed random variables with

K1 = 100, K2 = 1000 for 100 different values of α. Then,

we estimate α by using α̂ , ( 1̂
α )−1. We repeat this

experiment 100 times for each α. As shown in Figure 3(b),

the estimator is very accurate for a large range of α. Due to

its favorable theoretical properties such as independence of

the scale parameter σ, combined with its empirical stability,

we choose this estimator in our experiments.

In order to estimate the tail-index α at iteration k, we first

partition the set of data points D , {1, . . . , n} into many

disjoint sets Ωi
k ⊂ D of size b, such that the union of

these subsets give all the data points. Formally, for all

i, j = 1, . . . , n/b, |Ωi
k| = b, ∪iΩ

i
k = D, and Ωi

k ∩ Ωj
k = ∅

for i 6= j. This approach is similar to sampling without

replacement. We then compute the full gradient ∇f(wk)
and the stochastic gradients ∇f̃Ωi

k
(wk) for each minibatch

Ωi
k. We finally compute the stochastic gradient noises

U i
k(wk) = ∇f̃Ωi

k
(wk)−∇f(wk), vectorize each U i

k(wk)
and concatenate them to obtain a single vector, and com-

pute the reciprocal of (15). In this case, we have K = pn/b
and we set K1 to the divisor of K that is the closest to

√
K.

4. Results

In this section we present the most important and represen-

tative results. We have observed that, in all configurations,

the choice of the two loss functions and the three different

initializations yield no significant difference. Therefore,

throughout this section, we will focus on the negative-log-

likelihood loss. Unless stated otherwise, we set the mini-

batch size b = 500 and the step-size η = 0.1.

Effect of varying network size: In our first set of experi-

ments, we measure the tail-index for varying the widths and

depths for the FCN, and varying widths (i.e. the number of

filters) for the CNN. For very small sizes, the networks per-

form poorly, therefore, we only illustrate sufficiently large

network sizes, which yield similar accuracies. For these ex-

periments, we compute the average of the tail-index mea-

surements for the last 10K iterations (i.e. when α̂ becomes

stationary) to focus on the late stage dynamics.

Figure 4 shows the results for the FCN. The first striking

observation is that in all the cases, the estimated tail-index

is far from 2 with a very high confidence (the variance of

the estimates were around 0.001), meaning that the distri-

bution of the gradient noise is highly non-Gaussian. For the

MNIST dataset, we observe that α systematically decreases

(a) MNIST

(b) CIFAR10

Figure 4. Estimation of α for varying widths and depths in FCN.

The curves in the left figures correspond to different depths, and

the ones on the right figures correspond to widths.

(a) CIFAR10

(b) CIFAR100

Figure 5. The accuracy and α̂ of the CNN for varying widths.

for increasing network size, where this behavior becomes

more prominent with the depth. This result shows that, for

MNIST, increasing the dimension of the network results in

a gradient noise with heavier tails and therefore increases

the probability to end up in a wider basin.

For the CIFAR10 dataset, we still observe that α is far from

2; however, in this case, increasing the network size does

not have a clear effect on α: in all cases, we observe that α
is in the range 1.1–1.2.

Figure 5 shows the results for the CNN. In this figure, we

also depict the train and test accuracy, as well as the tail-

index that is estimated on the test set. These results show
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(a) Depth = 2 (b) Depth = 4

Figure 6. Estimation of α for varying minibatch size.

that, for both CIFAR10 and CIFAR100, the tail-index is

extremely low for the under-parametrized regime (e.g. the

case when the width is 2, 4, or 8 for CIFAR10). As we

increase the size of the network the value of α increases

until the network performs reasonably well and stabilizes in

the range 1.0–1.1. We also observe that α behaves similarly

for both train and test sets3.

These results show that there is strong interplay between

the network architecture, dataset, and the algorithm dynam-

ics: (i) we see that the size of the network can strongly in-

fluence α, (ii) for the exact same network architecture, the

choice of the dataset has a significant impact on not only

the landscape of the problem, but also the noise character-

istics, hence on the algorithm dynamics.

Effect of the minibatch size: In our second set of ex-

periments, we investigate the effect of the size of the mini-

batch on α. We focus on the FCN and monitor the behav-

ior of α for different network and minibatch sizes b. Fig-

ure 6 illustrates the results. These rather remarkable results

show that, as opposed to the common belief that the gra-

dient noise behaves similar to a Gaussian for large b, the

tail-index does not increase at all with the increasing b. We

observe that α stays almost the same when the depth is 2
and it moves in a small interval when the depth is set to

4. We note that we obtained the same the train and test

accuracies for different minibatch sizes.

Tail behavior throughout iterations: So far, we have

focused on the last iterations of SGD, where α is in a sta-

tionary regime. In our last set of experiments, we shift our

focus on the first iterations and report an interesting behav-

ior that we observed in almost all our experiments. As a

representative, in Figure 7, we show the temporal evolution

of SGD for the FCN with 9 layers and 512 neurons/layer.

The results clearly show that there are two distinct phases

of SGD (in this configuration before and after iteration

1000). In the first phase, the loss decreases very slowly,

the accuracy slightly increases, and more interestingly α
rapidly decreases. When α reaches its lowest level, the pro-

3We observed a similar behavior in under-parametrized FCN;
however, did not plot those results to avoid clutter.

(a) MNIST

(b) CIFAR10

Figure 7. The iteration-wise behavior of of α for the FCN.

cess possesses a jump, which causes a sudden decrease in

the accuracy. After this point the process recovers again

and we see a stationary behavior in α and an increasing

behavior in the accuracy.

The fact that the process has a jump when α is at its small-

est value provides a strong support to our assumptions and

the metastability theory that we discussed in the previous

section. Furthermore, these results further strengthen the

view that SGD crosses barriers at the very initial phase. On

the other hand, our current analysis is not able to determine

whether the process jumps in a different basin or a ‘better’

part of the same basin and we leave it as a future work.

5. Conclusion and Open Problems

We investigated the tail behavior of the gradient noise in

deep neural networks and empirically showed that the gra-

dient noise is highly non-Gaussian. This outcome enabled

us to analyze SGD as an SDE driven by a Lévy motion and

establish a bridge between SGD and existing theoretical re-

sults, which provides more illumination on the behavior of

SGD, especially in terms of choosing wide minima.

This study also brings up interesting open questions: (i)

While the current metastability theory applies for the

continuous-time processes, the behavior of the discretized

process and its dependence on the algorithm parameters

such as η and b are not clear and yet to be investigated.

(ii) We observe that the tail-index might depend on the cur-

rent state wk, which suggests analyzing SGD as a stable-

like process (Bass, 1988) where the tail-index can depend

on time. However, the metastability behavior of these pro-

cesses are not clear at the moment and its theory is still in

an early phase (Kuhwald & Pavlyukevich, 2016). (iii) An

extension of the current metastability theory that includes

minima with zero modes is also missing and appears to be

challenging yet important direction of future research.
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A. V. Lévy anomalous diffusion and fractional Fokker–

Planck equation. Physica A: Statistical Mechanics and

its Applications, 282(1):13–34, 2000.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,

O. Understanding deep learning requires rethinking gen-

eralization. International Conference on Learning Rep-

resentations, 2017a.

Zhang, Y., Liang, P., and Charikar, M. A hitting time anal-

ysis of stochastic gradient langevin dynamics. In Pro-

ceedings of the 2017 Conference on Learning Theory,

volume 65, pp. 1980–2022, 2017b.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. The anisotropic

noise in stochastic gradient descent: Its behavior of es-

caping from minima and regularization effects. arXiv

preprint arXiv:1803.00195, 2018.


