
 Open access Proceedings Article DOI:10.1109/ICSME.2017.67

A Tale of CI Build Failures: An Open Source and a Financial Organization
Perspective — Source link

Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano ...+4 more authors

Institutions: University of Zurich, University of Sannio, Delft University of Technology

Published on: 01 Sep 2017 - International Conference on Software Maintenance

Related papers:

 Oops, my tests broke the build: an explorative analysis of Travis CI with GitHub

 Programmers' build errors: a case study (at google)

 Usage, costs, and benefits of continuous integration in open-source projects

 An empirical analysis of build failures in the continuous integration workflows of Java-based open-source software

 Why Do Automated Builds Break? An Empirical Study

Share this paper:

View more about this paper here: https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-
2j53y2xurf

https://typeset.io/
https://www.doi.org/10.1109/ICSME.2017.67
https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-2j53y2xurf
https://typeset.io/authors/carmine-vassallo-1xl2p7moph
https://typeset.io/authors/gerald-schermann-1d64ttlwm2
https://typeset.io/authors/fiorella-zampetti-3hcgl4lneq
https://typeset.io/authors/daniele-romano-fltsfu0zjg
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/institutions/university-of-sannio-31npsio6
https://typeset.io/institutions/delft-university-of-technology-2b85q0ia
https://typeset.io/conferences/international-conference-on-software-maintenance-mszunhhl
https://typeset.io/papers/oops-my-tests-broke-the-build-an-explorative-analysis-of-5dwvxp30tv
https://typeset.io/papers/programmers-build-errors-a-case-study-at-google-4wxx427s78
https://typeset.io/papers/usage-costs-and-benefits-of-continuous-integration-in-open-3xc3fkx46x
https://typeset.io/papers/an-empirical-analysis-of-build-failures-in-the-continuous-5ebc5rx3uk
https://typeset.io/papers/why-do-automated-builds-break-an-empirical-study-8lrv11f6mb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-2j53y2xurf
https://twitter.com/intent/tweet?text=A%20Tale%20of%20CI%20Build%20Failures:%20An%20Open%20Source%20and%20a%20Financial%20Organization%20Perspective&url=https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-2j53y2xurf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-2j53y2xurf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-2j53y2xurf
https://typeset.io/papers/a-tale-of-ci-build-failures-an-open-source-and-a-financial-2j53y2xurf

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2017

A Tale of CI Build Failures: An Open Source and a Financial Organization

Perspective

Vassallo, Carmine ; Schermann, Gerald ; Zampetti, Fiorella ; Romano, Daniele ; Leitner, Philipp ;
Zaidman, Andy ; Di Penta, Massimiliano ; Panichella, Sebastiano

Abstract: Continuous Integration (CI) and Continuous Delivery (CD) are widespread in both industrial
and open-source software (OSS) projects. Recent research characterized build failures in CI and identified
factors potentially correlated to them. However, most observations and findings of previous work are
exclusively based on OSS projects or data from a single industrial organization. This paper provides a
first attempt to compare the CI processes and occurrences of build failures in 349 Java OSS projects and
418 projects from a financial organization, ING Nederland. Through the analysis of 34,182 failing builds
(26% of the total number of observed builds), we derived a taxonomy of failures that affect the observed
CI processes. Using cluster analysis, we observed that in some cases OSS and ING projects share similar
build failure patterns (e.g., few compilation failures as compared to frequent testing failures), while in
other cases completely different patterns emerge. In short, we explain how OSS and ING CI processes
exhibit commonalities, yet are substantially different in their design and in the failures they report.

DOI: https://doi.org/10.1109/ICSME.2017.67

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-146809
Conference or Workshop Item

Originally published at:
Vassallo, Carmine; Schermann, Gerald; Zampetti, Fiorella; Romano, Daniele; Leitner, Philipp; Zaidman,
Andy; Di Penta, Massimiliano; Panichella, Sebastiano (2017). A Tale of CI Build Failures: An Open
Source and a Financial Organization Perspective. In: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Shanghai, 17 September 2017 - 22 September 2017. IEEE, 183-193.
DOI: https://doi.org/10.1109/ICSME.2017.67

A Tale of CI Build Failures: an Open Source

and a Financial Organization Perspective

Carmine Vassallo∗, Gerald Schermann∗, Fiorella Zampetti†, Daniele Romano‡,

Philipp Leitner∗, Andy Zaidman§, Massimiliano Di Penta†, Sebastiano Panichella∗

∗University of Zurich, Switzerland, †University of Sannio, Italy
‡ING Nederland, The Netherlands, §Delft University of Technology, The Netherlands

Abstract—Continuous Integration (CI) and Continuous Deliv-
ery (CD) are widespread in both industrial and open-source
software (OSS) projects. Recent research characterized build
failures in CI and identified factors potentially correlated to them.
However, most observations and findings of previous work are
exclusively based on OSS projects or data from a single industrial
organization. This paper provides a first attempt to compare
the CI processes and occurrences of build failures in 349 Java
OSS projects and 418 projects from a financial organization,
ING Nederland. Through the analysis of 34,182 failing builds
(26% of the total number of observed builds), we derived a
taxonomy of failures that affect the observed CI processes. Using
cluster analysis, we observed that in some cases OSS and ING
projects share similar build failure patterns (e.g., few compilation
failures as compared to frequent testing failures), while in other
cases completely different patterns emerge. In short, we explain
how OSS and ING CI processes exhibit commonalities, yet are
substantially different in their design and in the failures they
report.

Keywords-Continuous Delivery, Continuous Integration, Agile
development, Build failures.

I. INTRODUCTION

Continuous Delivery (CD) is a software engineering practice

in which development teams build and deliver new (incre-

mental) versions of a software system in a very short period

of time, e.g., a week, a few days, and in extreme cases a

few hours [1]. CD advocates claim that the practice reduces

the release cycle time (i.e., time required for conceiving a

change, implementing it, and getting feedback) and improves

overall developer and customer satisfaction [2]. An essential

part of a CD process is Continuous Integration (CI), where

an automated build process is enacted on dedicated server

machines, leading to multiple integrations and releases per

day [3]–[6]. One major purpose of CI is to help develop-

ers detect integration errors as early as possible. This can

be achieved by running testing and analysis tools, reducing

the cost and risk of delivering defective changes [4]. Other

collateral positive effects introduced by CI in industrial envi-

ronments are the improvement in developer communication [7]

and the increase of their productivity [8]. Consequently, CI has

become increasingly popular in software development of both,

industrial and OSS projects [6], [9].

At the same time, the study of CI builds has also become

a frequent research topic in academic literature. Miller [8]

studied a Web Service project in Microsoft and, by observ-

ing 69 failed builds, mainly found failures related to code

analysis tools (about 40%), but also to unit tests, server, and

compilation errors. The latter have been investigated in depth

by Seo et al. [10] in a study at Google. Recently, Rausch et

al. [11] studied the Travis CI builds of selected OSS projects,

and identified correlations between project and process metrics

and broken builds. Other works focused on test failures [5] and

on the use of static analysis tools [12]. However, no previous

research provides a broad categorization of build failures and

compared their occurrences between industry and OSS.

This paper studies build failures in 418 projects (mostly

Java-based) from a large financial organization, ING Neder-

land (referred to as ING), as well as in 349 Java-based open

source software (OSS) hosted on GitHub and using Travis

CI. The purpose of the study is to compare the outcome of

CI in OSS and in an industrial organization in the financial

domain, and to understand commonalities and differences. As

previous work by Ståhl et al. [13] suggested that the build

process in industry varies substantially, we aim to understand

the differences (also in terms of build failure distributions)

between OSS and one industrial case. In total we analyzed

3,390 failed builds from ING and 30,792 failed builds from

OSS projects. Based on this sample, we address the following

research questions:

RQ1: What types of failures affect builds of OSS and ING

projects?

This research question aims to understand the nature of

errors occurring during the build stage in ING and the analyzed

OSS projects. We use an open coding procedure to define

a comprehensive taxonomy of CI build errors. The resulting

taxonomy is made up of 20 categories, and deals not only

with the usual activities related to compilation, testing, and

static analysis, but also with failures related to packaging,

release preparation, deployment, or documentation. Overall,

the taxonomy covers the entire CI lifecycle. We then study

build failures along the taxonomy, addressing our second

research question:

RQ2: How frequent are the different types of build failures

in the observed OSS and ING projects?

Given the catalog of build failures produced as output

of RQ1, we then analyze and compare the percentages of

build failures of different types for both, ING and OSS

projects. Furthermore, based on these percentages, we cluster

projects and discuss characteristics of each cluster, observing

in particular whether different clusters contain ING projects

only, OSS projects only, or a mix. Finally, we investigate the

presence of build failure patterns shared by ING and OSS

projects in the various clusters.

Our study shows that ING and OSS projects share important

commonalities. For example, both exhibit a relatively low per-

centage of compilation failures, and, instead, a high percentage

of testing failures. However, while unit testing failures are

common in OSS projects (as also discussed in [14]), ING

projects have a much higher frequency of integration test

failures. ING projects also exhibit a high percentage of build

failures related to release preparation, as well as packaging

and deployment errors. We also found that projects cluster

together based on the predominance of build failure types,

and some clusters, e.g., related to release preparation or unit

testing, only contain or are predominated by ING or OSS

projects respectively. In summary, while the behavior of CI in

OSS and closed source exhibits some commonalities, closed

source has some peculiarities related to how certain activities,

such as testing and analysis, are performed, and how software

is released and deployed.

II. STUDY DESIGN AND PLANNING

The goal of the study is to investigate the types of build

failures that occur in the analyzed OSS and ING projects, how

frequently they occur, and to understand the extent to which

these failure frequencies differ in the analyzed industrial and

OSS projects. This analysis has the purpose of understanding

the commonalities and differences in the CI process of OSS

and of an industrial environment (ING), at least from what

one can observe from build failures and from the knowledge

of the adopted CI infrastructure.

A. Study Context

The study context consists of build failure data from 418

projects (mostly Java-based, as declared by the organization)

in ING and 349 Java-based OSS projects hosted on GitHub.

In both, ING and OSS, the CI process is triggered when

a developer pushes a change to the Git repository. The code

change is detected by the CI server (Jenkins [15] in ING and

Travis CI [16] in OSS) and the build stage is started. The

outcome of the build process is either a build failure or a

build success.

In ING, if a triggered build succeeds, the generated artifacts

of the new version are deployed to a remote server that

simulates different environments (i.e., testing, production) to

perform further activities (e.g., load, security testing). Indeed

ING adopts a well-defined CD pipeline (illustrated in a survey

conducted in ING [17]) where the build is only one node of

the entire process of an application’s release. Some external

tools are usually plugged into the build process to augment the

actions performed at some steps. For example, SonarQube [18]

is used as source code quality inspector, sometimes comple-

mented by PMD [19] and Checkstyle [20].

In our study, we analyzed 12,871 builds belonging to 418

different Maven projects in ING, and mined data from 4

different build servers. Specifically, we extracted, for each

project, the Maven logs related to the failed builds that

occurred between March 21st, 2014 and October 1st, 2015.

The resulting total number of Maven build failures is 3,390

(≈26% of builds). Due to restrictive security policies in the

financial domain, the Maven logs were the only resources

we could access during the study. Hence, we did not have

access to any other resource that would be valuable in order to

investigate the nature of build failures in more depth, e.g., data

from versioning systems, testing or detailed outputs of static

analysis tools (except the data printed to build logs). Therefore,

our observations are limited to the information available in

build logs.

As for OSS, we selected 349 projects from the TravisTorrent

dataset [21], which contains build failure data from GitHub

projects using Travis CI1. We restricted our analysis to all

projects of the TravisTorrent dataset using Maven (in order

to be consistent with ING projects) and mainly written in

Java (according to the dominant repository language reported

by GitHub). In addition, we only considered projects having

at least one failing build. In total, the 349 projects under-

went 116,741 builds, of which 30,792 (≈26%) failed. It is

interesting to notice how the percentage of build failures is

approximately the same in OSS and ING.

B. Data Extraction Approach

Fig. 1 depicts the research approach we followed to answer

our research questions. Specifically, similarly to the work by

Désarmeaux et al. [22] we focused our analysis on Maven

projects and their related build logs. Differently from the work

by Désarmeaux et al., we did not analyze build scripts as they

were not provided by the involved organization and thus we

did not perform a more fine-grained analysis of the kinds of

failures.

To extract build failure data for ING, we used the Jenkins

REST APIs, which retrieved the log associated to each build

and allowed us to reconstruct the history of a job in terms

of build failures and build successes. To extract build failure

data for OSS, we started from the information contained in

the TravisTorrent database. Then, we downloaded build logs

for each job IDs related to a build ID labelled as failed, by

means of the Travis APIs.

Subsequently, we extracted the error messages contained in

each log using a regular expression, e.g., the lines that contain

the word “ERROR”, and used them to define our Build Failure

Catalog.

C. Definition of the Build Failure Catalog

Our process for defining the Build Failure Catalog consists

of five steps:

Keyword identification. In this step, two authors mined

the most relevant keywords associated with an error section. In

1Data accessed on 27/10/2016

Data Selection

418 ING Maven

Projects

Data

Preprocessing

Build Logs’

Collection

Extraction of

Build Failures’

Messages

Build Failures

Logs

Taxonomy Definition

Identify Error-related

Keywords

Group keywords into

categories

2

1

 Classify the

Build Logs

3

Validate the automated

classification

4

Update categories
5

Build Failure Catalog

349 OSS Maven

Projects

Travis CI Jenkins

Fig. 1. Data extraction process

Maven, each build fails because of the failure of a specific step

(i.e., a goal). As outcome of this failure, an error section is gen-

erated in the build log. From each error section, we extracted

as keywords only the phrase related to the failed goals (gen-

erated by Maven), as well as sentences generated by Maven

plugins, making sure of their stability (i.e., no changes in the

structure of error messages) during the period of observation.

For example, if an error during the execution of the “compi-

lation” goal (e.g.,“org.apache.maven.plugins:maven-compiler-

plugin:compile”) causes a build failure, the goal name is

assumed as keyword. In other cases, when there is no evidence

of failed goals in the build logs, we mined other sentences

(e.g.,“Could not resolve dependencies” in case of missing

Maven artifacts).

Keyword grouping. Two of the authors (hereby referred to

as A and B) produced a first grouping of keywords into cate-

gories. For this step, we used the Maven documentation [23]

and the documentation of the respective plugins in order to

understand the keywords. Then, two other authors (C and D)

reviewed the first categorization and made change suggestions.

This process will be explained in more detail in Section III-A1.

Finally, A and B checked the resulting catalog again, which

led to convergence.

Build log classification. The build logs were automatically

classified according to the previously defined catalog. Based

on the matched keywords, each build log was assigned to zero,

one, or more categories.

Result validation. After the automatic classification, a sec-

ond, manual classification of a statistically significant sample

has been performed to determine the error margin introduced

by the automatic classification. Each sample has been validated

by two authors and the reliability of the validation was com-

puted using the Cohen k inter-rater agreement statistic [24].

After that, we discussed cases in which the raters disagreed in

the classification and in which there was a mismatching with

the automatic classification.

Catalog refinement. If, as a result of the manual valida-

tion, it turned out that the first automatic classification was

erroneous, the manual validation helped to further refine the

categories. When categories were refined, a new validation

(limited to these categories only) was performed, if necessary.

This five-step procedure was first applied to ING build

failures and subsequently to the OSS data set. This means

that the two inspectors, starting from the taxonomy derived

from the analysis of ING build failures, extended, if necessary,

the taxonomy with categories specific to OSS. Regarding the

validation of the automatic classification, for ING data we

randomly extracted for each identified category a sample size

of 764 build failures considering a confidence level of 95%

and a confidence interval of ±10%. For OSS projects we did

not perform a new stratified sampling. Instead, we conducted a

complementary validation. We extracted a sample of 377 build

failures (which is significant with 95% confidence level and

±5% of confidence interval), making sure the sample contains

a number of failures, for each category, proportional to the

distribution of failures across categories.

D. Analysis of Build Failure Proportions

In order to investigate the extent to which proportions of

build failures of different types vary among ING and OSS, we

perform two types of analyses. First, we statistically compared

and discussed the frequency of build failures for different types

among ING and OSS projects. Then, we used the relative

frequencies of different types of failures to cluster projects

exhibiting similar distributions of build failures. We used k-

means clustering [25] (the kmeans function available in the R

[26] stats package). The k-means function requires to upfront

specify the number of clusters k in which items (in our case

projects) should be grouped. To determine a suitable value of

k, we plotted the silhouette statistics [27] for different values

of k. Given a document di belonging to a cluster C and, a(di)
the maximum distance of di from the cluster’s centroid, and

b(di) from the centroids of other clusters, the silhouette for di
is given by

S(di) =
b(di)− a(di)

max(a(di), b(di))

and the overall silhouette of a clustering is given by the

mean silhouette across all documents (all projects in our case).

Typically, the optimal number of clusters corresponds to the

maximum value of the silhouette.

After this clustering step, we analyzed the clusters’ content,

looking in particular at the extent to which clustering separates

ING projects from OSS projects and the occurrences of

particular failures patterns.

III. STUDY RESULTS

This section reports the results of the study we conducted

for addressing our research questions.

A. What types of failures affect builds of OSS and ING

projects?

In the following, we first report how we obtained the Build

Failure Catalog, and then discuss the catalog categories in

detail.

1) From Maven phases to the Build Failure Catalog: With

the aim of defining a complete and possibly generalizable

Build Failure Catalog, we firstly attempted to group build

failures into categories closely following the Maven lifecycle

phases, i.e., validate, process-resources, compile, test-compile,

test, package, integration-test, verify, install, and deploy. When

a build failure could not be mapped onto specific Maven

phases (e.g., those related to non-functional testing), we cre-

ated a new category.

A first result was made up of 16 categories, specifically

(i) a validation category; (ii) a pre-processing category; (iii)

three compilation categories related to compiling production

code, compiling test code, and missing dependencies; (iv)

three separate categories for unit testing, integration testing,

and non-functional testing; (v) a static analysis category; (vi)

a packaging category; (vii) an installation category; (viii) a

deployment category; (ix) a documentation category; and (x)

three crosscutting (i.e., placeable in more than one phase)

categories related to testing (where mapping to specific testing

activities was not possible), release preparation, and other

plugins.

After the first categorization, subsequent iterations produced

the following changes:

• Dependencies were initially mapped to Compilation.

Then, we realized that it is not possible to generally map

dependencies to the compilation phase (i.e., dependencies

related issues impact on several phases). Therefore, we

created a crosscutting category for Dependencies.

• Some tools, such as Grunt, Cargo, and MojoHaus, were

initially grouped as Other Plugins. Then, we decided

that, due to the nature of the tasks they perform (e.g.,

allowing the execution of external commands), it was

more appropriate to group them together with Ant as

External Tasks.

• The goal “prepare” of the maven-release-plugin was

initially put into Validation. However, we realized that

it is not bound exclusively to the “validate” phase, but

it covers all phases prior “deploy”. Therefore, we placed

this goal into the Release Preparation category.

• The “installation” phase was considered as a sort of

“local” deploy, therefore we created a category named

Deployment with two sub-categories related to Local

Deployment and Remote Deployment.

• We decided to keep Clean separate from Validation, as

Maven separates the cleaning of all resources generated

by the previous build from the default lifecycle. Instead,

as Maven provides a dedicated clean lifecycle, we created

a specific Clean category.

• For some goals (e.g., “migrate” of org.flywaydb:flyway-

maven-plugin) we decided to create a category Support,

as they have a supporting nature for the build process.

Then we grouped those goals supporting a specific phase

of the build into a subcategory of the related category.

• The Static Analysis category was renamed into Code

Analysis and split in two sub-categories, namely Static

Code Analysis and Dynamic Code Analysis.

TABLE I
BUILD FAILURE CATEGORIES.

Category Subcategory Description

CLEAN Cleaning build artifacts

VALIDATION Check on the project’s resources

PRE-PROCESSING (RESOURCES)
Generation and processing of the
project’s resources

COMPILATION

PRODUCTION Compilation of production code
TEST Compilation of test code
SUPPORT Code manipulation & processing

TESTING

UNIT TESTING Running unit tests
INTEGRATION TESTING Running integration tests
NON-FUNCTIONAL TESTING Running load Tests
CROSSCUTTING* Crosscutting test failures

PACKAGING Packaging project artifacts

CODE ANALYSIS
STATIC Code analysis (without executing it)
DYNAMIC Code analysis (by executing it)

DEPLOYMENT
LOCAL Project’s artifacts installation
REMOTE Project’s artifacts deployment to

a remote repository

EXTERNAL TASKS
Capability for calling other
environments

DOCUMENTATION
Documentation generation
and packaging

RELEASE PREPARATION* Preparation for a release in SCM

SUPPORT*
Database migration and
other activities

DEPENDENCIES*
Project’s dependencies
resolution and management

• We created a category Testing hosting test execution

involving Unit testing, Integration testing, and Non-

functional testing. Due to missing goals we were not able

to classify some failed tests into one of these three sub-

categories, thus we assigned them to the crosscutting sub-

category Crosscutting.

Once we had adapted our initial categorization as de-

scribed, we automatically classified the logs, sampled the

logs (764 ING and 377 OSS) to be manually validated,

and proceeded with the validation. The validation of ING

build failures was completed with an inter-rater agreement

of k = 0.8 (strong agreement) and of OSS build failures

with k = 0.62 (again, strong agreement). It is particularly

important to discuss the 51 cases (6.7%) for which there was

a consistent disagreement with the automatic categorization

of ING builds. This was related to failures raised by the

org.apache.maven.plugins:maven-surefire-plugin, initially as-

signed to the Unit Testing category. However, we found that

the plugin name was usually followed by a label “(default-

test)” or “(integration-testing)”, the former suggesting it was

indeed unit testing, while the latter pertaining to integration

testing. Therefore, we decided to rematch the latter. Since this

was just a matter of refining the regular expression, a new

validation of the Unit Testing and Integration Testing was not

necessary, but this information was used in the classification

of the OSS build failures (the procedure in Fig. 1 was first

applied to ING than to OSS).

2) The Build Failure categories: Table I reports the final

version of the catalog we devised. It is made up of 20

categories (including sub-categories) and based on 171 key-

words2. Crosscutting categories are tagged with an asterisk,

e.g., Dependencies*. In the following, we will briefly describe

each category, in terms of included goals/keywords and cor-

responding standard Maven or new phase, with qualitative

insights about the logged errors.

Clean. This category includes builds failed while executing

the Maven lifecycle goal “org.apache.maven.plugins:maven-

2http://www.ifi.uzh.ch/seal/people/vassallo/build failures catalog.pdf

clean-plugin:clean”; it tries to remove all files generated during

the previous build.

Validation. Our validation category is mapped to

the Maven validation phase that aims to validate a

project by verifying that all necessary information to

build it is both available and correct. Indeed, the goals

included in this category check Maven classpaths (the

main purpose of “org.apache.maven.plugins:maven-enforcer-

plugin:enforce”) or environment constraints, such as Maven

and JDK versions.

Pre-Processing. This category contains all failed goals

related to the generation of additional resources typically

included in the final package (corresponding to Maven

phases process-resources and generate-resources). For

example, the goal “org.apache.maven.plugins:maven-

plugin-plugin:helpmojo” generates a “HelpMojo” class,

corresponding to an executable Maven goal used in

the subsequent steps of the build process. Other goals,

such as “com.simpligility.maven.plugins:android-maven-

plugin:generate-sources”, generate source code (in this case

R.java) based on the resource configuration parameters.

Compilation. Build failures in this category are mainly

caused by errors during the compilation of the production and

test code (respectively compile and test-compile in the Maven

lifecycle). This leads to two sub-categories: (i) failures related

to the compilation of production code, and (ii) failures related

to the compilation of test code.

Production. The compilation of production code

can fail due to typical programming errors that are

detected by the compiler while running goals such as

“org.apache.maven.plugins:maven-compiler-plugin:compile”,

but also because of language constructs unsupported by the

build environment.

Test. Test code compilation failures are similar to

production code ones, although we noticed many

failures due to wrong exception handling in test

code (e.g., “org.apache.maven.plugins:maven-compiler-

plugin:testCompile” failed because “unreported exception

must be caught or declared to be thrown”).

Support. In addition to the previous compilation sub-

categories, we added another one related to failures

occurring during activities complementary to standard

compilation. Examples of these activities are represented by

the goal “org.bsc.maven:maven-processor-plugin:process”

that processes annotations for jdk6, or the goal

“net.alchim31.maven:yuicompressor-maven-plugin:compress”

that performs a compression of static files.

Testing. This category includes the execution of unit,

integration, and non-functional system tests. Moreover, we

identified multiple failed builds for which we were not able

to classify them into one of these three sub-categories, hence

the crosscutting category Crosscutting.

Unit Testing. The Maven phase test directly corresponds

to this category. Builds fail while executing goals such as

“org.apache.maven.plugins:maven-surefire-plugin:test”. Those

failures are related to the presence of failing test cases. Also

other issues raised, e.g., the goal execution fails with an error

message that specifies the presence of unit tests which invoke

System.exit(), or a crashing virtual machine.

Integration Testing. Integration test results are typically

verified by means of the Failsafe Maven plug-in, which has a

goal “integration-test” producing the error message “There are

test failures” in case that tests fail. This category corresponds

to the Maven phases pre-integration-test and integration-test.

Moreover, we found that integration testing is often performed

using the goal “test” of the Surefire plugin, even if the latter

is mainly intended to be used to execute unit tests.

Non-Functional System Testing. While there is no corre-

sponding Maven phase, the single failing goal in this cat-

egory is “io.gatling:gatling-maven-plugin:execute”. This goal

launches Gatling, a load testing tool, that keeps track of load

testing results across builds. As Gatling accepts Scala code,

some build failures have occurred because of incompatibilities

between Gatling and specific Scala versions, e.g., Gatling 2.1

and Scala versions prior 2.11.

Crosscutting Tests. There are testing failures that we could

not assign to a specific category because builds ended without

reporting the failed goal. The reported message (“There are

test failures”) highlights the presence of test failures and is

very similar to the one that occurred for unit and integration

testing. Moreover, such test failures could occur within various

testing related phases of the build process.

Code Analysis. Similar to Non-Functional System Testing,

we could not identify a Maven phase related to the failed goals

of the Code Analysis category. Failed goals in this category

can be subdivided into Static and Dynamic.

Static. Static code analysis [28] within the build

process is conducted by running goals such as

“org.codehaus.mojo:sonar-maven-plugin:sonar”, which

launches the analysis of source code metrics via SonarQube,

and “org.codehaus.mojo:findbugs-maven-plugin:findbugs”,

which is used to inspect Java bytecode for occurrences of

bug patterns via FindBugs.

Dynamic. Dynamic code analysis is performed by ex-

ecuting goals such as “org.codehaus.mojo:cobertura-maven-

plugin:instrument”, which instruments the classes for the mea-

surement of test coverage (with Cobertura).

Many goals included in the Code Analysis category failed

because of (failed) quality checks, or in case of SonarQube,

because of connection timeouts, e.g., “server can not be

reached”.

Packaging. This category concerns all the builds failed

while bundling the compiled code into a distributable format,

such as a JAR, WAR, or EAR (Maven prepare-package

and package phases). This category includes goals such as

“org.apache.maven.plugins:maven-war-plugin:war”. There are

several errors underlying these failed goals, such as the pres-

ence of a wrong path pointing to a descriptor file or non-

existing files (e.g., “The specified web.xml file does not exist”).

Deployment. We observed two types of deployment: local

and remote.

Local. This sub-category is mainly related to the in-

stall phase of the standard Maven lifecycle, in which

the build adds artifacts to the local repository (e.g., by

“org.apache.maven.plugins:maven-install-plugin:install”). To

this end, the build process, using the information stored in

the POM file, tries to determine the location for the artifact

within the local repository. Failures concern the impossibility

to find and parse the needed configuration data.

Remote. The sub-category Remote corresponds to

the Maven phase deploy and includes goals, e.g.,

“org.apache.maven.plugins:maven-deploy-plugin:deploy”,

which try to install artifacts in the remote repository. Failures

are often due to wrong server URLs and authentication

credentials. Other cases include the unsuitability of the

specified repository for deployment of the artifact or a

not-allowed redeployment of the same artifact.

External Tasks. This category includes failures caused

by the usage of external tools scheduled to execute within

the build process. Some failures are related to the execution

of Ant tasks (e.g., “org.apache.maven.plugins:maven-antrun-

plugin:run”) or SQL statements (e.g., “org.codehaus.mojo:sql-

maven-plugin:execute”). We also added goals to this category

that have the task of manipulating application containers

and allowing the execution of external Java programs (e.g.,

“org.codehaus.mojo:exec-maven-plugin:exec”) from a POM

file. Many errors reported by these goals are related to timeout

problems (e.g., “Execution start-container:start failed: Server

did not start after 120000 milliseconds”), but there are also

failures related to erroneous environment specifications, e.g.,

wrong port numbers.

Documentation. Documentation is mapped onto the

phase site of the Maven Site lifecyle. It concerns build

failures occurring during the generation of documentation,

e.g., using the Javadoc tool, through goals such as

“org.apache.maven.plugins:maven-javadoc-plugin:jar”.

Reasons for those failures include the specification of

wrong target directories, incompatibilities between the

JDK and the Javadoc generation tool, or syntax errors in

the Javadoc comments. Moreover, failures are caused by

the inability to create an archive file from the previously

generated Javadocs (“Error while creating archive”).

Crosscutting Categories. We will now discuss failure cat-

egories that can not be associated with one specific phase, but

can rather be mapped onto several phases.

Release Preparation. This category concerns failures

occurring during the preparation for the deployment of a

packaged release. We included in this category the goal

“org.apache.maven.plugins:maven-release-plugin:prepare”,

that is used to (i) check the information regarding the current

location of the project’s Source Configuration Management

(SCM) and whether (ii) there are no uncommitted changes

in the current workspace. There are several reasons for

failures in these tasks, including failed executions of SCM-

related commands (e.g., Git commands), or the presence

of uncommitted changes. In many cases, failed builds

simply report the name of the failed goal without specifying

additional information.

Support. Builds fail while executing tasks that are not

scheduled to execute within an usual build process. This

category includes goals such as “org.flywaydb:flyway-

maven-plugin:migrate”, which is used for database schema

migration, or “com.google.code.sortpom:maven-sortpom-

plugin:sort” that helps the user sorting the underlying

POM file. As they are not used in a regular build process,

their categorization into a specific phase (e.g., Support of

Compilation) is difficult.

Dependencies. This category contains goals such as

“list” and “copy” of the “org.apache.maven.plugins:maven-

dependency-plugin” plugin. We also put there the keywords

“Could not resolve dependencies” and “Failed to resolve

classpath resource”, which are used to catch dependency-

related failures when there is no further information about the

failed goal. Typical errors occurring in this category are invalid

resource configurations in the POM file, or failed downloads

due to unavailable artifacts. As is the case for all crosscutting

categories, this category of failures can occur in each phase

of the build process. It is possible that, in order to execute

the test phase or a static analysis check, the build process

needs to use (and possibly download) the proper plugins via

dependency resolution.

Summary of RQ1: Our build failure catalog comprises 20 cate-
gories. 3 are related to Compilation, and 6 to specific Testing and
Code Analysis activities. Release preparation and Deployment
represent 2 separate categories, and the remaining are related to
other build activities (e.g., Packaging).

B. How frequent are the different types of build failures in the

observed OSS and ING projects?

Percentage of failing builds. For both the OSS and ING

analyzed projects, the overall percentage of failing builds

during the period of observation is 26%. In contrast, Kerzazi

et al. [29] and Miller [8] observed lower percentages of 17.9%

and 13% respectively; Seo et al.’s study at Google revealed a

rate of 35% failing builds.

Fig. 2 provides, for both ING (blue bar) and OSS projects

(yellow bar), a break-down of the build failures across the

(sub-)categories identified in RQ1. Note that we performed

this classification on 3, 390−779 = 2, 611 ING and 30, 792−
9, 774 = 21, 018 OSS build failure logs for which we were

able to mine sentences to support the identification of the

causes of failures (e.g., failed goal or any of the identified

regular expressions). In 779 cases for ING and in 9,774 cases

for the OSS projects, we were not able to classify the failure

based on the information contained in the log. However, the

percentages in Fig. 2 are related to the original set of failures

(including non-classified build failures).

By observing Fig. 2, we can notice that the percentage of

compilation-related failures is fairly limited, for both produc-

tion code (4.2% ING and 7.1% OSS) and test code (2.3% ING

and 1.8% OSS). This is below the 26% observed by Miller [8].

In the case of ING, one possible reason is that — as also

confirmed by a survey conducted within ING [17] — private

builds (i.e., builds executed on the developer’s machine) are

Clean

Validation

Preprocessing

Compilation (production)

Compilation (test)

Compilation (support)

Testing (unit)

Testing (integration)

Testing (non functional)

Testing (crosscutting)

Packaging

Static Analysis

Dynamic Analysis

Deployment (Local)

Deployment (Remote)

Documentation

Release Preparation

Support

External Tasks

Dependencies

% of build failures

0% 5% 10% 15% 20% 25%

7.1%

1.4%

0.9%

0.0%

0.9%

0.5%

0.0%

0.2%

4.2%

0.8%

8.3%

0.0%

5.0%

28.0%

0.2%

1.8%

7.1%

1.3%

0.5%

0.0%

6.3%

8.8%

0.0%

21.1%

0.3%

10.0%

0.4%

0.0%

16.4%

2.1%

18.3%

2.7%

13.3%

5.2%

0.0%

2.3%

4.2%

0.0%

0.0%

0.0%

ING OSS

Fig. 2. Percentage of build failures for each category.

used to limit the number of build failures due to compilation

errors.

Interesting considerations can be drawn for build failure

categories pertaining to testing. The unit testing category is

the one for which we can notice, on the one hand, the highest

percentage of build failures for OSS (28%, perfectly in line

with the percentage observed by Miller [8] at Microsoft),

and, at the other hand, a large difference with respect to the

relatively low percentage (5.2%) observed for ING projects.

Conversely, we observe a relatively high percentage of inte-

gration testing failures in ING (13.3%) and only 5.0% for

OSS. When we compare this insight with the one reported

above about unit testing, we can a confirm the findings of

Orellana et al. [30] indicating that in OSS projects unit testing

failures dominate integration testing failures. We can also see

how ING projects are affected more by integration testing than

unit testing failures. Previous research [17] indicates that unit

tests are often executed within private builds in ING, therefore

the number of remaining failures discovered on the CI server

turns out to be fairly limited. We found no evidence of non-

functional testing failures in OSS projects, while there is a

relatively low percentage of them (2.7%) in ING. This low

percentage of failures was surprising, as the CD pipeline used

in ING explicitly perform non-functional testing (including

load testing) at a dedicated stage (i.e., not during the build, as

reported in a survey conducted in ING [17]). We deducted that

in ING a preliminary load testing is performed at the build

stage (by means of Gatling [31]), with the aim of an early

and incremental discovery of bottlenecks. Finally, we found

a relatively high number of crosscutting test failures (18.3%

for ING and 8.3% for OSS) not attributable to specific testing

activities.

Static analysis tools are also responsible for a relatively

high percentage (16.4%) of build failures in ING; Miller [8]

observed a substantially higher percentage of 40%, without

discussing specific reasons. In contrast, for our OSS projects,

the percentage is 4.2%, similar to the observation of Zampetti

et al. [12] who found percentages almost always below 6%.

One may wonder whether the higher percentage of static

analysis related failures in ING are caused by stricter quality

checks. We have no evidence of this, as we had no access to the

SonarQube entries related to the build failures. Instead, OSS

projects used static analysis tools on the CI server (without

running them on a dedicate server as in ING) and the results

are usually visible in the build logs. For this reason, a manual

scrutiny of some build failure logs confirmed that, in such

cases, build failures were indeed due to specific warnings

raised by static analysis tools.

For ING projects we perceive a high percentage of release

preparation problems (21.1% of the total). This can be at-

tributed to the way ING handles the deployment of a new

application: it relies on the standard Maven process instead

of using a combination of different goals, as it is common

in OSS projects. Also, for deployment, the percentage of

build failures that occurred in ING (10.0%, higher than the

6% that Miller reported [8]) is much higher than for OSS

(0.5%). As discussed in Section III-A2, such failures are

mostly due to mis-configurations for accessing servers (i.e.,

wrong server’s IP address) hosting the application artifacts.

These mis-configurations could potentially be very costly.

Indeed, earlier research in the area of storage systems [32]

has shown that 16.1%–47.3% of mis-configurations lead to

systems becoming either fully unavailable or suffering from

severe performance degradations. The packaging category

exhibits a relatively low percentage of build failures, but still

much more frequent in ING (2.1%) than for OSS (0.8%).

In summary, release preparation, packaging and deployment

have quite different trends in ING and OSS. In ING, the CD

machinery is massively used to produce project releases and

deploy them on servers, and in particular on servers where

further quality assurance activities (i.e., load and security

testing) occur before the release goes in production. Instead,

we assume that in most of the studied OSS projects this rarely

happens (but it is not excluded), as the main goal of CI is to

make a new release available for download on GitHub.

External tasks are responsible for respectively 8.8% (ING)

and 1.4% (OSS) of the build failures. The use of external

tasks (e.g., the execution of Ant tasks in a Maven build) might

make the build process more complex and possibly difficult to

maintain, e.g., when one has to maintain both Maven and Ant

scripts. While there is no evidence that build maintenance is

related to the increase of build failures, it is a phenomenon to

keep into account, e.g., by planning, whenever possible, build

restructuring activities.

Dependency-related failures exhibit similar percentages for

ING and OSS (6.3% and 7.1% respectively). Finally, we found

a very small failure percentage (< 1.5%) for other categories,

such as clean, validation, pre-processing, compilation support,

documentation, and support (crosscutting) both in the case of

#
 p

ro
je

c
ts

0

45

90

135

180

Cluster

A B C D E F

ING OSS

25%

75% 100% 59%

41% 85%
31%

69%

94%
6%

15%

Fig. 3. Composition of projects clusters.

TABLE II
% OF BUILD FAILURES (CLUSTER MEAN POINT).

Class A B C D E F

CLEAN 0% 0% 0% 0.02% 0.01% 0%

VALIDATION 1.46% 0% 0.78% 0% 0.23% 0.38%

PRE-PROCESSING 0.73% 0% 8.62% 0% 0.49% 0.22%

COMPILATION 6.06% 2.79% 9.57% 1.42% 12.07% 74%

UNIT TESTING 4.05% 3.02% 7.16% 0.67% 72.81% 15.12%

INTEGRATION TESTING 7.52% 0.54% 2.03% 0.06% 0.70% 0.28%

NON FUNCTIONAL TESTING 0% 0% 9% 0% 0% 0%

CROSSCUTTING TESTING 2.75% 0.19% 2.5% 93.54% 0.42% 1.53%

PACKAGING 1.16% 2.93% 5.88% 1.10% 1.71% 0.87%

CODE ANALYSIS 32.12% 0.24% 4.59% 0.64% 1.64% 1.03%

DEPLOYMENT 22.2% 5.01% 1.93% 0.79% 1.96% 0.83%

EXTERNAL TASKS 14.29% 3.77% 0.88% 0.33% 1.02% 0.14%

DOCUMENTATION 1.75% 0% 1.23% 0% 0.98% 1.21%

RELEASE PREPARATION 3.66% 80.11% 3.15% 1.18% 0.26% 0.23%

SUPPORT 0.57% 0.17% 3.80% 0% 0.63% 0.08%

DEPENDENCIES 1.67% 1.23% 38.85% 0.22% 5.07% 4.09%

ING and OSS projects.

Clustering based on build failure percentages. As

explained in Section II, to better investigate the differences in

the distribution of build failures in ING and OSS projects, we

clustered the whole set of projects (both OSS and ING) using

the K-means algorithm [33]. While the first analysis of Fig. 2

provides a broad overview of build failure distribution in the

entire context (ING or OSS), the clusters help to understand

the extent to which there are projects (within ING, within

OSS, or in both environments) exhibiting certain distributions

of build failures and, in general, to investigate the build failure

distribution on a single project level.

We modelled the projects as vectors where each dimension

is a category of our taxonomy (Table I). Note that only for

Testing we considered the sub-categories as dimensions, be-

cause they lead to a significantly different distribution of build

failures. Then we computed for each project the percentage

of its build failures belonging to each category, and assigned

values to the related vector dimension. Finally, we applied the

K-means algorithm several times in order to find the optimal

value of Silhouette statistics.

Fig. 3 depicts the clusters’ composition for k = 6 (where k

is the number of clusters), which corresponds to the optimal

value of Silhouette. The clusters can be interpreted by looking

at Table II, showing for each cluster the percentage of build

failures of its mean point (as computed by the k-means

algorithm).

Three main clusters can be observed: A, B and E (containing

27%, 19% and 20% of the projects respectively). All projects

in Cluster B come from ING, while Cluster E includes almost

exclusively OSS projects. Cluster A contains again a high

percentage of ING projects (75%).

Cluster A includes projects that fail mostly because of Code

Analysis (32%), Deployment (22%) and External Tasks (14%),

while B exhibits mainly build failures belonging to Release

Preparation (80%). The last result is not surprising since, as

shown in Fig. 2, only ING builds are affected by this type of

failures.

Cluster E contains projects that typically fail because of

Unit Testing (on average the 73% of the build failures belongs

to this category) and this justifies that within the cluster we

mainly found OSS projects.

Cluster C is balanced (59% OSS projects vs. 41% ING

projects) and contains projects mainly exhibiting dependency

failures, while the projects in Cluster D are mainly ING and

exhibits mostly Crosscutting Testing build failures for which

we cannot specify the type of testing involved.

Cluster F is relatively small (64 projects) and catches only

projects that usually fail for compilation errors (74%).

In summary, the clustering analysis highlights groups of

projects exhibiting similar characteristics in terms of build

failure distributions. Specifically, some clusters are mainly

constituted by ING (only) or OSS projects, as certain failures

dominate in one case or the other, while there are also some

clusters that are almost equally distributed. Also, we noticed

how some clusters group together projects mainly exhibiting

one specific kind of build failure.

Summary of RQ2: The OSS and ING projects exhibit a different
distribution of build failure types. Overall, in OSS projects build
failures happen mainly due to unit testing failures, while ING
projects fail, above all, because of release preparation failures.
Finally, the clustering analysis of the projects (based on the
distribution of build failure types) points out how projects from
the two different contexts in some cases spread out into different
clusters.

IV. DISCUSSION

In this section we discuss the main findings and their impli-

cations for future research. Specifically, given the differences

and commonalities that we observed in RQ2, some CI practices

deserve additional investigation.

Compilation errors are typically fixed in private builds.

Compilation failures are considered to be particularly relevant

during the build process, such that the study of Seo et al. [10]

conducted at Google focused entirely on that. Our study

reports a small (6.5% in ING and 9% in OSS), yet non-

negligible percentage of compilation-related build failures. On

the one hand, our study confirms that compilation success

is a key prerequisite for code promotion (as stated in [17]),

and therefore mostly achieved in private builds. On the other

hand, even such low percentage highlight how CI can still

be beneficial to spot compilation errors due to the adoption

of anti-patterns – e.g., when a change is pushed without

compiling it – or due to the usage of different development

environments, e.g., incompatibility between the JDK versions

installed on the CI server and the local machine.

OSS projects run every test on CI servers, ING mostly

integration testing. Integration testing failures are more fre-

quent in ING than in OSS. Instead, and consistently with a

previous study by Orellana Cordero et al. [14], OSS projects

exhibit more unit testing related failures. This indicates a

different distribution of testing activities across the devel-

opment process in the open source and industrial context.

In OSS projects, developers often rely directly on the CI

server to perform testing (as the very high number of unit

testing failures may suggest). In ING, a conservative strategy

is preferred, revealing unit testing failures before pushing

changes on the server (by running unit tests on local machine),

and referring to the build server mostly to verify the correct

integration of the changes made by different developers. This

is also confirmed by results of a previous survey with ING

DevOps [17].

Early discovery of non-functional failures in ING. For

large and business-critical projects like the one used by ING

for their online banking, appropriate non-functional system

testing is crucial. As explained in Section II, this is mostly

done offline, on a separate node of the CD pipeline. Nev-

ertheless, as our study shows, developers in ING rely on

the build process to spot, whenever possible, non-functional

issues, and specifically load test failures. While this happens

in a relatively small percentage of the observed build failures

(2.1%), it suggests that the early discovery of some problems

during the CD process (i.e., as soon as a change is pushed)

could save time to solve some performance bottlenecks that

would otherwise be discovered at a later stage only. We have

no evidence of this activity in the OSS builds.

Release preparation and deployment failures are very

common in industry, less so in OSS. We noticed how release

preparation errors are very frequent in ING (21.2% of our

build failures are associated to this category). At the same

time, we did not find such evidence in OSS projects. In ING,

the CI process is built using fewer steps (i.e., Maven goals).

Developers prefer to use (when possible) predefined bundled

steps (as in “prepare” goal, that “covers” several default Maven

lifecycle stages), instead of adopting a combination of different

goals (each covering a single stage) at least for the most critical

stages of the build process (i.e., all stages before the deploy of

a new release). Deployment errors are also conspicuous (10%),

and mostly due to mis-configurations. For OSS projects, in

most of the cases, there is no real deployment of a new release,

it is just a matter of making the new release available on

GitHub, and using CI for assessing and improving its quality.

Static Analysis (SA) tools: on CI server in OSS, remotely

in ING. Our results indicate an intensive percentage of failures

related to static analysis tools in ING (16.4%) compared to

OSS (4.2%). Looking at the failed goals in the build process

of projects in both contexts, we noticed how OSS developers

prefer to run SA tools on the build server while in ING SA

tools are run on a different server (via SonarQube). This choice

did not necessarily lead to less build failures (we noticed more

static analysis related failures in ING), but it is an indication

about the willingness of ING to have i) well collected data,

easy to query and monitor, and ii) a separate analysis of code

smells without overloading the CI server.

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-

tween theory and observation. The most important threat of

this type in our study is due to our limited observability of

the ING build failures (i.e., we had to rely on build failure

logs only). For example, we could not perform a fine-grained

classification of some testing or static analysis failures whose

nature was only visible from separate reports.

Another threat is due to possible mis-classification of build

failures, given that the classification is only based on failed

build goals and, in some cases, on keyword matching. As

explained in Section II, we mitigated this threat by performing

a manual validation on a statistically significant sample of

ING build failures, mainly aimed at verifying that such a

matching was correctly performed, and reported results of

such a validation. We checked whether the agreement of such

a validation was due to chance by using the Cohen k inter-

rater agreement. As for OSS failures, we repeated the process,

however on only 377 build failures in total, as it was not a

complete new validation of the taxonomy, but rather a check

of its validity when applied to OSS projects.

Threats to internal validity concern internal factors of our

study that could influence our results. The most important

threat of this class is related to the subjectiveness likely intro-

duced when devising the build failure catalog. We limited such

a subjectiveness in different ways, i.e., by performing multiple

iterations conducted by different authors independently, and by

using the Maven standard lifecycle as a roadmap for creating

such a catalog. For ING projects, we could not observe and

control the projects’ programming languages (although an

ING team leader reported us that are mostly written in Java).

Another threat is related to the choice of the number of clusters

in RQ2. We mitigated this threat by using the silhouette

statistic [27] to support our choice. Furthermore, while the

number of OSS and closed-source projects is comparable, the

number of build failures for closed-source is one order of

magnitude greater than for OSS, and this sample imbalance

could have affected our results.

Threats to external validity concern the generalization of our

findings. On the one hand, results related to our closed-source

sample are necessarily specific to ING. It is possible that

these results partially generalize to other organizations in the

financial domain, but this has not been specifically validated in

our work. In Section IV, we discussed in how many cases our

findings are consistent with those of previous studies, and also

in which cases we obtained different results. OSS results, on

the other hand, are representatives of OSS Java-based projects

using Maven and relying on the Travis-CI infrastructure. In

some cases (e.g., for testing), we found confirmations of

results from previous studies. Our study does not necessarily

generalize to applications built using other languages, build

scripts, and different CI infrastructures. Finally, it is possible

that the different domain of closed-source projects and open

source projects could have impacted our results.

VI. RELATED WORK

Ståhl et al. report that CI is becoming increasingly popular

in software development [6]. With this continued uptake in

industry, researchers have also focused more on build systems,

and more specifically on build failures.

Build Failures. Miller’s seminal work [8] on build failures

in Microsoft projects describes how 66 build failures were

categorized into compilation, unit testing, static analysis, and

server failures. Our observation is larger (18 months vs 100

days, 13k builds vs 515, and 3,390 build failures vs 66), and

describes a more detailed categorization of build failures, but

covers a different domain. Rausch et al. [11] studied build

failures in 14 popular open source Java projects, finding that

most of the failures (> 80%) are related to failed test cases,

and that there is a non-negligible portion of errors due to Git

interaction errors. Seo et al. [10] conducted a study focusing

on the compiler errors that occur in the build process. They

devised a taxonomy of compilation errors that lead to build

failures in Java and C++ environments. Kerzazi et al. [29]

analyzed 3, 214 builds in a large software company over a

period of 6 months to investigate the impact of build failures.

They observed a high percentage of build failures (17.9%) that

brings a potential cost of about 2, 035 man-hours considering

that each failure needs one hour of work to succeed.

Beller et al. [5] focused on testing with an in-depth analysis

of 1,359 projects using both Java and Ruby programming

languages. Testing is the main activity responsible for failing

builds (59% of build failures during test phase for Java

projects). While our results confirm their finding, we also

highlight the importance of failures due to other tasks. Orellana

Cordero et al. [14] studied test-related build failures in OSS

projects. They identified that unit test failures dominate inte-

gration test failures. Our results for OSS projects are similar,

yet our findings for ING projects are the opposite. This may be

due to more intensive usage of private builds to deal with unit

tests in an industrial environment, which is not the case for the

OSS projects studied by Orellana Cordero et al. [14]. Zampetti

et al. [12] looked at build failures (mostly related to adherence

to coding guidelines) produced by static analysis tools in Java-

based OSS projects. Our work found a high percentage of build

failures due to static analysis (for ING projects), although in

most cases due to infrastructure (Jenkins and SonarQube) mis-

configuration.

Build Activities. McIntosh et al. [34] studied the relation-

ship between changes to production code, test code, and the

build system. They noticed that a strong relation between

changes made at all three levels. McIntosh et al. [35] studied

version histories of 10 systems to measure the overhead that

build system maintenance imposes on developers. Finally,

Desarmeaux et al. [22] investigated how build maintenance

effort is distributed across the build lifecycle phases of systems

built through Maven. They observed that the compile phase

requires most maintenance activity.

Continuous Integration (CI) and Continuous Delivery

(CD). Hilton et al. [9] investigated why developers use or do

not use CI, concluding that this concept has become increas-

ingly popular in OSS projects and [36] present a qualitative

study of the barriers and needs developers face when using

CI. Ståhl et al. [13] noticed that there is no homogeneous

CI practice in industry. They identified that there are many

variation points in the usage of the CI term. Not only CI

practices vary between different industries, we also identified

noticeable differences between OSS and industry projects.

Vassallo [17] investigated CD practices in ING focusing

attention on how they impact the development process and the

management of technical debt. Conversely, Savor et al. [37]

reported on an empirical study conducted in two high-profile

Internet companies. They noticed that the adoption of CD

does not limit the scalability in terms of productivity of one

organization even if the system grows in size and complexity.

Finally, Schermann et al. [38] derived a model based on

the trade-off between release confidence and the velocity of

releases. Schermann et al. [39] investigated the principles and

practices that govern CD adoption in industry and concluded,

amongst others, that architectural issues are one of the main

barriers for CD adoption.

VII. CONCLUSION

This paper investigates the nature and distribution of Con-

tinuous Integration (CI) build failures occurring in 418 Java-

based projects from ING (an organization in the financial

domain), and in 349 Java-based OSS projects hosted on

GitHub and using Travis CI as CI infrastructure. The results

of our study highlight how OSS and ING projects exhibit

substantially different distributions of build failure types,

confirming but also contradicting some of the findings of

previous research which are based on OSS projects’ data or

only data from a single industrial organization. Our findings

are important for both researchers and practitioners since they

shed some more light on the differences and commonalities

of CI processes adopted in the analyzed OSS projects and the

observed industrial organization highlighting interesting build

failure patterns.

Work-in-progress aims at replicating the study in other

industrial environments and further open source projects, and

at performing a deeper analysis on the build failures observed,

e.g., studying the difficulty in fixing different kinds of prob-

lems. Additionally, we plan to use our results to aid developers

to properly maintain build process pipelines to make it more

efficient, e.g., by deciding what to do in private builds on the

developer’s local machine and what to delegate to CI servers,

or how to mitigate problems by conceiving approaches able

to automate their resolution.

ACKNOWLEDGMENT

The authors would like to thank developers from ING that

provided precious inputs during this study.

REFERENCES

[1] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases Through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 1st ed., 2010.

[2] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE

Software, vol. 32, no. 2, pp. 50–54, 2015.
[3] M. Fowler and M. Foemmel, Continuous Integration. 2016.
[4] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:

Improving Software Quality and Reducing Risk. Addison-Wesley, 2007.
[5] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the

build: An explorative analysis of travis ci with github,” in Proceedings

of the International Conference on Mining Software Repositories (MSR),
pp. 356–367, ACM, 2017.

[6] D. Ståhl and J. Bosch, “Modeling continuous integration practice differ-
ences in industry software development,” J. Syst. Softw., vol. 87, pp. 48–
59, Jan. 2014.

[7] J. Downs, B. Plimmer, and J. G. Hosking, “Ambient awareness of build
status in collocated software teams,” in Proceedings of the International

Conference on Software Engineering (ICSE), pp. 507–517, 2012.
[8] A. Miller, “A hundred days of continuous integration,” in Proceedings

of the Agile 2008, AGILE ’08, pp. 289–293, 2008.
[9] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,

costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), pp. 426–437, 2016.
[10] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W. Bowdidge,

“Programmers’ build errors: a case study (at Google),” in Proc. Int’l

Conf on Software Engineering (ICSE), pp. 724–734, 2014.
[11] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical

analysis of build failures in the continuous integration workflows of java-
based open-source software,” in Proceedings of the 14th International

Conference on Mining Software Repositories, MSR 2017, Buenos Aires,

Argentina, May 20-28, 2017, pp. 345–355, 2017.
[12] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. D. Penta,

“How open source projects use static code analysis tools in contin-
uous integration pipelines,” in Proceedings of the 14th International

Conference on Mining Software Repositories, MSR 2017, Buenos Aires,

Argentina, May 20-28, 2017, pp. 334–344, 2017.
[13] D. Ståhl and J. Bosch, “Automated software integration flows in industry:

A multiple-case study,” in Companion Proc. Int’l Conf. on Software

Engineering (ICSE Companion), pp. 54–63, 2014.
[14] G. Orellana, G. Laghari, A. Murgia, and S. Demeyer, “On the differences

between unit and integration testing in the travistorrent dataset,” in
Proceedings of the 14th International Conference on Mining Software

Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017,
pp. 451–454, 2017.

[15] “Jenkins. https://jenkins.io (last access 05.04.2017).”
[16] “Travis-CI. https://travis-ci.org (last access 05.04.2017).”
[17] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M. Di

Penta, and A. Zaidman, “Continuous delivery practices in a large finan-
cial organization,” in 32nd IEEE International Conference on Software

Maintenance and Evolution (ICSME), pp. 41–50, 2016.
[18] “SonarQube. http://www.sonarqube.org (last access 05.04.2017).”
[19] “PMD. https://pmd.github.io/ (last access 05.04.2017).”
[20] “Checkstyle. http://checkstyle.sourceforge.net (last access 05.04.2017).”
[21] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing

Travis CI and GitHub for full-stack research on continuous integration,”

in Proceedings of the working conference on mining software reposito-

ries (MSR), pp. 447–450, 2017.
[22] C. Désarmeaux, A. Pecatikov, and S. McIntosh, “The dispersion of

build maintenance activity across maven lifecycle phases,” in Proc. Int’l

Conference on Mining Software Repositories (MSR), pp. 492–495, 2016.
[23] “Maven. http://maven.apache.org/plugins/index.html (last access

05.04.2017).”
[24] J. Cohen, “A coefficient of agreement for nominal scales,” Educ Psychol

Meas., vol. 20, pp. 37–46, 1960.
[25] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,”

Applied Statistics, vol. 28, p. 100108, 1979.
[26] R Core Team, R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2012.
ISBN 3-900051-07-0.

[27] J. Kogan, Introduction to Clustering Large and High-Dimensional Data.
New York, NY, USA: Cambridge University Press, 2007.

[28] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering (SANER), pp. 470–481, 2016.
[29] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break?

an empirical study,” in 30th IEEE International Conference on Software

Maintenance and Evolution (ICSME), pp. 41–50, IEEE, 2014.
[30] A. M. Manuel Gerardo Orellana Cordero, Gulsher Laghari and S. De-

meyer, “On the differences between unit and integration testing in the
travistorrent dataset,” in Proceedings of the 14th working conference on

mining software repositories, 2017.
[31] “Gatling. http://gatling.io/#/ (last access 05.04.2017).”
[32] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and

S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the 23rd ACM Symposium

on Operating Systems Principles (SOSP), pp. 159–172, 2011.
[33] J. Macqueen, “Some methods for classification and analysis of multi-

variate observations,” in In 5-th Berkeley Symposium on Mathematical

Statistics and Probability, pp. 281–297, 1967.
[34] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining co-

change information to understand when build changes are necessary,”
in Proc. Int’l Conf on Software Maintenance and Evolution (ICSME),
pp. 241–250, IEEE, 2014.

[35] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proceedings of the

Int’l Conference on Software Engineering (ICSE), pp. 141–150, 2011.
[36] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-

offs in continuous integration: Assurance, security, and flexibility,” in
Proceedings of the 25th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, FSE 2017, p. To Appear, 2017.
[37] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,

“Continuous deployment at facebook and OANDA,” in Companion pro-

ceedings of the 38th International Conference on Software Engineering

(ICSE Companion), pp. 21–30, 2016.
[38] G. Schermann, J. Cito, P. Leitner, and H. C. Gall, “Towards quality

gates in continuous delivery and deployment,” in 2016 IEEE 24th

International Conference on Program Comprehension (ICPC), pp. 1–
4, May 2016.

[39] G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. Gall,
“An empirical study on principles and practices of continuous
delivery and deployment.” PeerJ Preprints 4:e1889v1
https://doi.org/10.7287/peerj.preprints.1889v1, 2016.

