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Abstract

Background: Invasive species are a serious problem in ecosystems, but are difficult to eradicate once established. Predictive
methods can be key in determining which areas are of concern regarding invasion by such species to prevent establishment
[1]. We assessed the geographic potential of four Eurasian cyprinid fishes (common carp, tench, grass carp, black carp) as
invaders in North America via ecological niche modeling (ENM). These ‘‘carp’’ represent four stages of invasion of the
continent (a long-established invader with a wide distribution, a long-established invader with a limited distribution, a
spreading invader whose distribution is expanding, and a newly introduced potential invader that is not yet established),
and as such illustrate the progressive reduction of distributional disequilibrium over the history of species’ invasions.

Methodology/Principal Findings: We used ENM to estimate the potential distributional area for each species in North
America using models based on native range distribution data. Environmental data layers for native and introduced ranges
were imported from state, national, and international climate and environmental databases. Models were evaluated using
independent validation data on native and invaded areas. We calculated omission error for the independent validation data
for each species: all native range tests were highly successful (all omission values ,7%); invaded-range predictions were
predictive for common and grass carp (omission values 8.8 and 19.8%, respectively). Model omission was high for
introduced tench populations (54.7%), but the model correctly identified some areas where the species has been successful;
distributional predictions for black carp show that large portions of eastern North America are at risk.

Conclusions/Significance: ENMs predicted potential ranges of carp species accurately even in regions where the species
have not been present until recently. ENM can forecast species’ potential geographic ranges with reasonable precision and
within the short screening time required by proposed U.S. invasive species legislation.
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Introduction

Invasive species [2] pose both ecological [3,4] and economic [5]

risks to native ecosystems. Unfortunately, once established,

invasives are generally difficult or impossible to eradicate

(consider, for example, the case of northern snakeheads Channa

argus in Maryland; [6]). Robust methods for anticipating the

geographic potential of possible invaders on a continental scale

would allow decision-makers and managers to make informed

decisions and take effective actions towards excluding harmful

species before they are established. Previous investigators have

applied ecological niche modeling (ENM) to this problem in both

terrestrial [7,8,9,10,11] and aquatic [12,13,14,15] ecosystems.

More than 4500 non-native and invasive species live in natural

ecosystems across the United States [5]. Non-indigenous species

may harm native ecosystems through competition, predation,

habitat modification, and hybridization with native species [3,4,5].

Invasive species are implicated as factors in listing $160 native

species as threatened or endangered in the United States [5]. More

generally, the overall environmental and economic impact of

invasive species totals ,US$137 billion annually in the United

States, negatively affecting not just natural systems but also

agriculture, aquaculture, forestry, transportation, utilities, recrea-

tion, and human health [5,16].

The process of a species’ invasion of a new area generally occurs

in several steps: introduction, establishment, and spread [17].

Establishment often involves a ‘‘lag’’ phase, lasting even many

years, in which the species is present in relatively low numbers in a

restricted geographic area [18]. During the final phase, the species

expands rapidly until it reaches its maximum distribution potential

in the new landscape. The ‘‘rule of tens,’’ introduced by

Williamson [17], holds that of species introduced into a new area,

only ,10% become established, and of species that become

established, only ,10% spread successfully. However, a recent

PLoS ONE | www.plosone.org 1 May 2009 | Volume 4 | Issue 5 | e5451



study of species introduced from Europe to North America and vice

versa found that ,50 percent became established and ,50% of

those were able to spread [19]. Recent niche modeling

applications suggest that these ‘numbers’ rules are constrained

closely by the suitability of the landscape being invaded for the

species [20], although the absolute nature of these constraints has

been debated [21,22,23].

Common carp (Cyprinus carpio), tench (Tinca tinca), grass carp

(Ctenopharyngodon idella), and black carp (Mylopharyngodon piceus)

represent respectively a long-introduced and well-established

invasive species (common carp), a long-introduced but less-

successful non-native species (tench), a relatively recent but

successful invasive species (grass carp), and a species being used

in U.S. aquaculture that has not as yet become established in

natural ecosystems (black carp). Our objective was to develop

niche models for each species based on its native range and then

project the niche model rule sets onto North America to identify

areas at risk for establishment. This would allow us to test both

distributional predictions quantitatively with independent occur-

rence data.

We define the ‘‘ecological niche’’ of species as the set of abiotic

parameters within which a species is able to maintain populations

without immigrational subsidy [24]—this ‘‘scenopoetic niche’’ can

be distinguished from niches more closely related to interactions

among species (the ‘‘Eltonian niche;’’ [25]) principally by the

spatial scale at which it is manifested. We used landscape-scale

environmental variables based on climate and topography, and

developed tests of stability of ecological niches across the time span

of the invasion events [26]. Our ENM application takes advantage

of the fact that native populations have had more time and

opportunity to ‘‘explore’’ environmental space via dispersal and

colonization, and thus are likely to be most informative regarding

niche dimensions [27], although combinations of models based on

native and introduced distributional areas may be optimal for

prediction [28].

Because the geographic extent of a species’ potential distribu-

tional area is independent of its success to date as an invader,

depending rather on time and opportunity for access to the region

being invaded [29], we hypothesized that common carp and tench

occurrences would already have filled a substantial part of their

potential ranges, given multiple introductions for over 150 yr in

North America. Grass carp populations are expanding still [30],

however, and have probably not yet reached their full geographic

potential after almost 40 yr since introduction, whereas black carp

are only recently imported into North America, and are not as-yet

established in natural waters. We wished to determine whether

niche models could detect and demonstrate this pattern where

species expand into new environments, out to the bounds imposed

by their scenopoetic niches [29,31,32]. Finally, to the extent that

potential ranges can be reconstructed predictively and robustly we

wished to determine what geographic ‘‘behavior’’ we might expect

from the newest arrival, the black carp?

Reactive vs. proactive approaches
Invasive species remediation efforts have too-often been highly

reactive in nature [1], which means that species tend to establish

populations before their threat is recognized. ENM allows

assessment of potential geographic areas at risk for invasion before

the introduction even takes place [33,34,35]. One method of

generating niche models, the evolutionary computing algorithm

GARP, uses a variety of rule-building methods in an iterative

machine-learning process to generate rule sets [36]. Environmen-

tal data sets in the form of raster grids are entered into GARP,

along with georeferenced occurrence points from the species’

native range. By comparing environmental parameter combina-

tions of known occurrence points against those of points randomly

sampled from areas from which the species is not known to occur,

GARP ‘‘learns’’ a pattern of relationships in the form of a rule set.

Rules are iteratively combined, altered, and refined to maximize

accuracy. The final result of the algorithm is the niche model,

which describes a species’ niche as a multi-dimensional hypervo-

lume in ecological space [37,38].

Although niche models are generated using environmental data

and occurrence data from the species’ native range, the rules

contained within models are defined in environmental terms only,

and are independent of geographic area. Hence, rule sets can be

applied in any geographic area to identify areas of potential

occurrence. We selected GARP as a modeling implement because

distributional predictions derived from GARP models have proven

accurate under a variety of circumstances [39], and because

GARP is robust to small occurrence data sets [40]. Machine-

learning techniques, such as GARP, are powerful because the

modeling of non-linear functions with large numbers of variables

becomes feasible as compared to traditional statistical approaches

[41]. Although GARP was not ranked particularly highly in some

broad intermodel comparisons [42], these comparisons have been

demonstrated to be largely artifactual in more recent analyses

[43].

The fishes
Common carp, native to Eurasia, were first introduced in North

America in 1831 [44] and were intentionally released throughout

most of the United States by the U.S. Fish Commission in 1877–

1898 [45,46]. Now considered an invasive nuisance, common carp

are established in every U.S. state except Alaska [47], and seem to

have established almost completely across their potential distribu-

tional range [15]. The impact of common carp on native aquatic

species has been primarily through habitat modification, as it stirs

up substrates, uprooting plants and muddying the water [46,48].

Common carp occupy many microenvironments, are highly

fecund, and spawn in shallow, slow-flowing water [49].

The U.S. Fish Commission originally imported tench into the

United States in 1877 [45], and eventually provided tench stocks

to 36 U.S. states [50]. However, many of the introductions seem to

have been unsuccessful, possibly due to biotic interactions [47,50].

Tench populations are probably established in California, Color-

ado, Connecticut, Idaho, Washington, Oregon, New Mexico,

Maryland, New York (U.S.), and British Columbia (Canada), but

their current status in many of these areas is uncertain [47,51].

Tench usually spawn in weedy shallow areas, and their diet

consists chiefly of insects and mollusks [52].

Grass carp were imported into the United States from Malaysia

and Taiwan for aquaculture in 1963, and were released into

natural waters shortly thereafter in Arkansas [53]. By 1993, grass

carp were established in Arkansas, Kentucky, Illinois, Louisiana,

Missouri, Mississippi, Tennessee, and Texas [30]; evidence of

reproduction has been recorded from the Mississippi River

drainage of all of these states except Texas [47]. Grass carp have

already adversely affected U.S. ecosystems in several areas [54]. In

China, grass carp generally prefer large rivers and lakes, requiring

long rivers (50–180 km) with sufficient discharge (.400 m3/sec)

and velocity (.0.8 m/sec) for successful reproduction [55], and

eat mainly submerged vegetation [53].

Black carp have been used in U.S. fish farms as biological

control against snails, which are secondary hosts for parasites that

infect commercial fish [56,57]. Although concerns about black

carp escape, establishment, and potential impacts on North

American ecosystems have been raised [58], the aquaculture

Modeling ‘‘Carp’’ Invasions
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industry maintains that use of the species is necessary [59]. Use of

black carp has been focused in southeastern U.S. fish farms that

raise channel catfish (Ictalurus punctatus) and striped/hybrid bass

(Morone sp.) [60]. Although no black carp breeding populations are

as yet known in the U.S., ,30 black carp escaped into the Osage

River from a fish farm in Missouri in 1994 [47]. Recently, black

carp have been captured in Illinois [61] and Louisiana [51]; it is

not known whether self-sustaining populations are established. In

their native range, black carp inhabit major rivers, large

tributaries, and lakes; they are river breeders that require a swift

current for successful development, and spawning habitat has been

described as similar to that of grass carp [60].

Methods

We constructed niche models using 58 native range occurrence

points for common carp, 292 for tench, 41 for black carp, and 38

for grass carp. We compiled these data from specimen records in

museum collections via online databases [62,63], verified records

from Chinese museum collections, and species accounts in

scientific literature [64,65,66,67]. We inspected fish collections

from the Chinese museums and identified a random subsample of

approximately 10 specimens per species to assure correct species

assignments. In all cases, we excluded all points outside the known

native range from the model-building (training) data pool. We are

interested in the potential for ENM as a tool in assessing invasion

threat before introduction; therefore, points from the invaded range

were deliberately excluded from the model-building process for all

species. For each species, we used all available unique, verified

native range occurrence points; consequently, sample size varied

among species. GARP predictions have been shown to reach 90%

of maximum accuracy using only 10 training points, with smaller

incremental changes in accuracy when more data are included,

such that most of the change in accuracy occurs below 20 data

points [68]. As all our data sets exceed 20 points, we expect the

effect of variable sample size on model accuracy to be negligible.

For North American occurrences, we obtained 1303 points for

common carp, 30 for tench, and 47 for grass carp through the

above online databases and the USGS Nonindigenous Aquatic

Species database [51] from records of fish not directly stocked

(black carp are not as yet known from natural waters). For records

not already georeferenced, we assigned latitude and longitude

coordinates with the U.S. National Geospatial-Intelligence Agency

GEOnet Names Server [69], the USGS Geographic Names

Information System [70], and detailed printed map resources [71].

The native range of black carp includes the major Pacific

drainages of eastern Asia from about 22uN to 51uN latitude,

including areas in China and Russia [72]. Grass carp have a

similar native range: the Pacific slope of Asia from the Amur River

Basin to the West River, including areas in China, Russia, and

Northern Indochina [53]. The native range for tench includes

Europe and parts of western Asia [52,64]. Because native range

limits for common carp are poorly understood, as the species

occurs throughout Eurasia, having been spread and released by

humans there for centuries [47], we treated occurrences

throughout Eurasia as native range for this species (after previous

treatment of this species [15]). Any questionable occurrence points

(e.g. market-collected specimens) were removed from the native

range data pool. Duplicate occurrence points were also removed,

leaving only verified, unique occurrence points.

Environmental data consisted of 15 layers (‘‘coverages’’)

summarizing aspects of the ecological landscape of both the

native and introduced ranges (Table 1). We were limited to only

those environmental variables for which data is available. While

we do not consider that the available coverages represent all

possible variables affecting species distributions, we included all

coverages in model-building that might either directly affect

species occurrence, or act as proxies for unavailable data. Data

layers varied in spatial resolution (the size of individual cells or

pixels in a given grid layer), consequently, layers were resampled to

0.0160.01u prior to analysis. We resampled layers for the common

carp native range only to 0.0560.05u resolution because of the

Table 1. Environmental data layers used in the development of the models presented herein.

Description Source Resolution Excluded Coverages

Common carp Tench Grass carp Black carp

Diurnal temperature range IPCC 0.5u lat-long

Ground frost frequency IPCC 0.5u lat-long x

Maximum temperature IPCC 0.5u lat-long x

Mean temperature IPCC 0.5u lat-long x

Minimum temperature IPCC 0.5u lat-long x x

Precipitation IPCC 0.5u lat-long

Solar radiation IPCC 0.5u lat-long x

Vapor pressure IPCC 0.5u lat-long x

Wet day frequency IPCC 0.5u lat-long

Percentage tree cover UM 0.5 km

Aspect USGS 1.0 km x

Elevation USGS 1.0 km

Flow accumulation USGS 1.0 km

Slope USGS 1.0 km x

Topographic index USGS 1.0 km

IPCC: Intergovernmental Panel on Climate Change, Climate Data Archive [101]. UM: University of Maryland [102]. USGS: United States Geological Survey, HYDRO1k
Elevation Derivative Database [103].
doi:10.1371/journal.pone.0005451.t001
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vast area of analysis and associated computational restraints.

Although higher spatial resolution is desirable, range predictions

using GARP and similar ENM tools are only modestly affected by

changes in resolution [73,74].

Prior to generating niche models, we evaluated the environ-

mental coverages with a jackknife process, an analysis designed to

maximize predictive accuracy while culling coverages prone to

spurious overfitting [14,75,76]. This procedure allowed us to

optimize environmental layer inputs for each niche model in terms

of minimizing model omission error (i.e., exclusion of independent

test data points from model prediction) [77]. As such, for each

species, we built models based on all combinations of n21 data

layers, where n is the total number of layers. Occurrence data were

randomly divided into training and test sets (50% each); 20 models

for each n21 layer subset were built and tested using these training

and testing subsets. We calculated correlations between inclusion

of each and omission error in the test data set, and removed layers

showing positive correlations with omission error (r.0.1) from

subsequent analyses. We repeated the jackknife procedure with the

reduced set of data layers; when no strongly positive correlations

with omission remained, the remaining subset of data layers was

designated for use in the final model building process.

For generating final models, occurrence points were divided

randomly into training and validation subsets. For all models

(except tench; see below), 20 native-range occurrence points were

excluded from model building and reserved for independent

model-set validation. For tench models, because of the larger data

set available for tench native range, we used 20% of the data

(58 points) for independent validation. The GARP program

further divides training data into intrinsic training and extrinsic

testing subsets (80% and 20% respectively herein) prior to each

model building process [78]. All experiments were performed

using the desktop version of GARP [79].

Models were generated until 20 models with 0% extrinsic

omission were compiled (i.e., all of the extrinsic testing subset

completely predicted), and remaining models were discarded. We

calculated the median of the commission index (calculated as the

proportional area predicted present [80]) across all zero-omission

models, and selected the 10 models with the lowest deviation from

the median as the best model-set used in the distributional

prediction [78]. We used the pixel-by-pixel sum of these 10 models

(projected across both native ranges and North America), as

inclusion of more models has not increased model accuracy or

interpretability in limited experimentation.

Validation points set aside prior to model building were then

overlaid as an independent test of model-set accuracy. We

calculated percent omission (‘‘%O’’) as 1 minus the weighted

proportion of validation points predicted by 0–10 of the best

model set. For example, if 17 of 20 validation points were correctly

predicted by all 10 of the best models, 2 by 8 and 1 by 6, then

%O=12((17+1.6+.6)/20) = 4%.

We evaluated model-set sensitivity and specificity using the Area

Under the Curve [AUC] in a Receiver Operating Characteristic

[ROC] analysis [81,82,83]. In ROC, each pixel in the landscape

receives scores from the diagnostic test being evaluated, in this case

based on the predictions for the independent testing data. These

data are then graphed on a sensitivity vs. 1-specificity plot

(sensitivity and specificity determined using a standard 262

confusion matrix, with absence information based on all sites

from which the species has not been detected previously), and the

area under the curve is calculated. This AUC is compared to a

‘‘line of no information’’ with a slope of 1 (AUC=0.5). No

difference between the two AUCs indicates that the best model set

is predicting presence no better than at random [82]. The AUC

can be interpreted as the probability of a model set correctly

predicting presence in a randomly selected grid cell. Because we

used a conservative estimate of commission error, even a perfectly

accurate model cannot achieve a perfect AUC of 1.0, and AUC

scores will be lower for equally accurate model sets as the percent

of the total study area predicted by the model set increases [84].

We are aware of the problems inherent in AUCs and their

interpretation [43,85], and interpret our results cautiously as a

result.

We calculated the AUC for each model set and tested it against

AUC=0.5 using a z-test to determine significance [81]. We also

calculated the maximum AUC (AUCmax) possible for each

validation data set, given the distribution of validation datapoints

available. We take the difference between AUC and AUCmax as a

more informative measure of model set accuracy than the AUC

alone [84]. To account for differences in AUC scores, we also

calculated percent of the total study area predicted by all 10 best-

subsets models.

After analysis on the native range, the best models for each

taxon were projected onto central North America (,25–54uN).

We overlaid data points documenting non-native populations on

these model predictions. We analyzed predictions with ROC

analysis, as above, with the non-native occurrences as independent

validation data. We also created maps of weighted proportion of

area predicted present within hydrologic units for the lower 48

states by intersecting niche model grids with USGS 6-digit HUC

polygons [86].

Results

The best suite of coverages, as determined by the jackknife

procedure, for each species is shown in Table 1. All AUCs for all

taxa in both native and invasive model tests were significantly

better than random (P=0.01). Given this validation, we visualized

both the native and non-native potential distributional areas for

each taxon (Figure 1, Table 2), with details as follows. The

common carp model predicted native presence across most of

Eurasia; all 20 validation data points were predicted correctly by

all of the best-subsets models (%O=0, AUC=0.80). For the non-

native range, all 10 best models predicted a broad potential

distribution covering much of the surface of the continental United

States. Of 1303 occurrences available for common carp in North

America, 991 were predicted present by all best-subsets models,

with another 118 predicted present by 9 of the 10 best models; at

the other end of the spectrum, 28 points were not predicted by any

of the 10 models (%O=8.8, AUC=0.62). The native-range tench

model performed well, with 10 models correctly predicting 57 of

58 validation points (%O=0, AUC=0.80); projection of this

model to North America predicted presence across most of the

upper Midwest and the eastern United States, and in parts of the

northwest. Ten of the 30 North American tench validation points

were predicted by all 10 models; 16 were predicted by 1–9 models;

and five remained unpredicted (%O=54.7, AUC=0.62).

The grass carp model encompassed its known native range in

eastern Asia. All 20 validation occurrence points were predicted

present by all of the best models (%O=0, AUC=0.86). The

projection to North America was more limited than for common

carp (Table 2), but covered extensive portions of the eastern,

central, and northwestern United States (Figure 1d). Of 47 grass

carp testing points available from North America, 36 were

predicted present by all models, and 2 were not predicted by

any models (%O=19.8, AUC=0.71).

The area predicted for black carp is smaller, both on its

native range and in North America (Table 2). Seventeen of the 20
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native-range validation points were predicted by all models, and

all points were predicted by $2 models (%O=6.5, AUC=0.87).

Most of the eastern United States is predicted as suitable for black

carp by these models (Figure 1f). Because black carp are not

known to be established in North America, and the few records of

this species [51,61] are recent escapees, no independent validation

points were available for black carp in North America.

Discussion

The ecological niche models performed well in predicting

independent testing data across native-range landscapes, including

areas outside the actual native range. For example, black carp are

predicted to find parts of northern Indochina and Japan suitable

(Fig. 1): in the literature, we see that black carp have already

become established in the Tone River system in Japan [72,87] and

probably in parts of Vietnam [88]. Although grass carp and black

carp have similar native range limits, the distribution of

occurrences within the range is dissimilar: as a consequence, grass

carp predictions covered broader areas on both native and non-

native landscapes.

Niche models predicted the known dimensions of the intro-

duced range for common carp and grass carp successfully, in the

former case in close agreement with the results of a previous study

[15]. This result is significant, given that no information about the

biology of these fishes or their non-native occurrences was

included in the modeling effort. The models did fail to anticipate

some of the introduced occurrence points and omission error was

higher for the introduced-range tests, although only 2% of U.S.

common carp points were not anticipated by the model

predictions. Failures of ENM to fully predict an invaded range

could occur when the invasive species is limited in its native range

Figure 1. Niche models in native ranges and in the United States. Ecological niche models for common carp (A, B), tench (C, D), grass carp (E,
F), and black carp (G, H) on native and U.S. landscapes. Shading indicates the predicted suitability predicted (brick red = 7–10 models, canary red = 4–6
models, pink = 1–3 models). Occurrence points for each species are shown as training data (yellow circles) in the species’ native range (A, C, E, G) or
independent validation data (green triangles) in the native or introduced ranges (B, D, F, H).
doi:10.1371/journal.pone.0005451.g001
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by biotic interactions and is released from those pressures in the

invaded range, or when an island species has environmental

tolerances that exceed the limits it encounters in its small native

range [18,34,89]. Given the large native ranges of the carp species

investigated here, and the common carp in particular, we do not

consider either hypothesis a likely explanation in this case. Most of

the unpredicted points for common carp occur in the southwestern

U.S. in three major drainages (Colorado, Rio Grande, and Great

Basin). All three of these systems have highly altered hydrology,

which have been indicated as a primary reason for fish invasions

[90], and as such aquatic environmental conditions there may not

be representative, and may be dependent on smaller-scale

interactions that cannot easily be captured by coarse-resolution

environmental data used in this study.

The non-native grass carp model, although it performed

statistically significantly better than random expectations, none-

theless had a 19.8% omission rate, owing to several points falling

within small areas predicted by few or none of the best-subsets

models. Upon closer examination, many grass carp testing points

were outside (but close to) predicted areas by ,1 km (Figure 1f),

which is equal to or less than the native spatial resolution of the

environmental data. Imprecision of coordinates for both native

and non-native occurrence points may also have played some part

in creating this elevated omission error.

The high omission of the introduced range projections of tench

merits further discussion. One omitted point in Washington was

slightly outside areas of high prediction, as were 3 points in

California, so again data precision may come into the picture.

Perhaps more importantly, though, tench have not established

successfully in many areas predicted by the model where they have

been introduced intensively. Baughman [50] found that states in

the Great Lakes Region received 13,849 tench from the U.S. Fish

Commission in 1886–1896 for introduction into various waters.

The models predict potential distributional areas for tench across

much of the Great Lakes region, but (other than a limited

established population in the Great Chazy River in upstate New

York) tench have failed to become established there [47,51]. Kolar

and Lodge [91] also predicted that tench would be successful in

the Great Lakes region based on multivariate analysis of life-

history characteristics, habitat needs, and invasion history. The

reasons for the broad failure of tench introductions are currently

not known, although some observational evidence suggests that

biotic interactions with sunfishes (Centrarchidae), which are not

native to Europe, may be responsible [50]. Another possibility is

that environmental factors acting at resolutions finer than the data

considered herein may be interacting negatively with the biology

of the species. The disparity between our predictions and tench

occurrences demonstrates the caution needed when interpreting

these predictive models.

That several testing occurrence points fell slightly outside areas

predicted at high levels for common carp, tench, and grass carp

might suggest that models could be improved with higher-

resolution environmental data and occurrence data. However,

this improvement would not come easily, as the two data sets

must be improved in tandem—the best resolution possible will be

limited by the coarser of the two resolutions. In the meantime, it

may be more appropriate to quantify risk at coarser resolutions.

To this end, we evaluated mean model prediction across

hydrologic units (USGS 6-digit HUC units) and compared them

qualitatively to the non-native occurrence data (Figure 2).

Evaluating predictions at the ‘‘pixel’’ scale may give a false

picture of fine-scale accuracy. The grass carp niche model had

19.8% omission when evaluated at the pixel scale, but

coincidence with HUCs in which there was high model

agreement in prediction of presence was better (Figure 2C):

evaluated at this resolution, the tench model identified the areas

where tench managed to establish populations (Figure 2B).

Moreover, the HUC-level maps avoid problems with spatial

autocorrelation and the independence of testing points, and

summarize the data at a more appropriate scale and provide a

more interpretable map of risks for managers.

Although landscape-scale parameters are important in limiting

fish distributions [92], exclusive use of this type of data can

complicate potential distribution predictions for aquatic species, as

we end up using putative proxies for instream parameters that are

probably the truly causal variables. For example, while a

comprehensive water temperature coverage is not presently

available, air temperature interacts with factors, including dams,

tree cover, volume, and groundwater input, to determine stream

temperatures [93]. Given the limited data available, we included

all layers that might provide useful surrogates, such as percent tree

cover and solar radiation coverages as possible surrogates or

partial surrogates for water temperature. Hence, ENMs could be

improved by integration of datasets for aquatic parameters; in

addition, several smaller-scale environmental and biological

factors that influence occurrences of fish [94] could also be

included. In the case of tench, biotic interactions may be limiting

their establishment success: in cases like this one, ENMs can be

Table 2. Statistics describing the results of ecological niche model validations.

Niche model AUC SE AUCmax SE % O # trn. pts. # vld. pts.

Common carp Native 0.8509* 0.0540 0.8509 0.0540 0.0 38 20

Common carp Intro. 0.6215* 0.0083 0.7315 0.0080 8.8 - 1303

Grass carp Native 0.8616* 0.0539 0.8616 0.0539 0.0 18 20

Grass carp Intro. 0.7078* 0.0427 0.8042 0.0386 19.8 - 47

Black carp Native 0.8745* 0.0506 0.9082 0.0445 6.5 21 20

Black carp Intro. - - - - - - -

Tench Native 0.7955* 0.035 0.8006 0.035 0.0 234 58

Tench Intro. 0.6242* 0.0548 0.9498 0.0278 54.7 - 30

*p,0.001.
AUC: Area under the curve derived from ROC analysis. SE: Standard error of AUC. AUCmax: Maximum AUC, calculated with each independent validation data point
receiving the maximum score. %O: Percent omission, a measure of model omission error across the 10 best model set. # train. pts: Number of training points for each
niche model. # valid. pts.: Number of validation points for each niche model.
doi:10.1371/journal.pone.0005451.t002
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viewed as the top layer of a multi-scale filtering framework, under

which finer-scale models could improve predictions [95,96].

Common carp have spread so broadly that their current range

limits in North America reach (and in some areas exceed) their

modeled potential distributional area [15]. In contrast, tench have

been unsuccessful in establishing in many areas predicted as

suitable by the ENMs; similar constraints could affect black carp,

but anticipating their behavior in novel situations is not simple.

More practically, resource managers may not be willing to take the

risk that unforeseen biotic or environmental interactions may limit

black carp establishment in areas predicted as suitable, given the

possible negative impacts.

The negative ecological and economic impacts caused by

establishment of non-native species in the United States are well

known, but can be difficult to anticipate [1]. Black carp are

molluscivores, and their presence may put native mollusks at risk,

particularly in the southeastern U.S., which is home to 90% of the

nation’s threatened and endangered mollusk species [97]. Black

carp can live for .15 years [88], and are capable of consuming

large quantities of mollusks (four-year-old black carp consumed

1.4–1.8 kg of bivalves per day [98]!). Black carp ENMs predicted

presence across much of the southeastern U.S., where many of the

aquaculture facilities that use black carp are located [60]. Black

carp have already escaped captivity in the United States–though

not included in the present analyses, this species has been captured

recently in Illinois [61] and Louisiana [51], both in hydrological

units predicted as high risk (Figure 2D). The niche models predict

presence in several watersheds containing major rivers, including

almost the entire course of the Mississippi River, which appear to

meet the hydrological requirements of black carp reproduction

(Fig. 2d).

ENM provides the opportunity to assess invasion potential

proactively by using occurrence data from museum collections and

the scientific literature. Under Section 1105 of the pending

National Aquatic Invasive Species Act of 2007 (NAISA) [99], U.S.

federal agencies would have to complete a screening process for

planned importations of live aquatic organisms, and make a

determination to allow or restrict importation within 180 days of

receiving a request for permission to import aquatic organisms

[100]. If federal agencies adopted predictive ecological niche

models, detailed maps of hydrologic units at risk, combined with

brief synopses of the biology of the ‘‘new’’ species, could be

distributed quickly to regional or state managers. Scientists with

expert knowledge of local ecosystems could then evaluate risk of

establishment and invasion by interpreting niche models and the

natural history of the species.

Although not all species have similar (broad) invasion potential,

our common carp analyses demonstrate that some species will

eventually expand their ranges to approximately match the extents

that we predicted. We also demonstrated potential range

expansion in the more recently introduced grass carp. Tench

occurrences, however, did not fill much of the geographic range

predicted by the niche model, illustrating the difficulty in

predicting the result of introductions given the multitude of

factors that can determine the outcome. We believe, like Nico et

al. [60], that black carp present a serious invasion threat: for this

situation, we have identified regions at highest risk. While it is not

possible to anticipate whether introduced species, like black carp,

will exhibit the invasive potential of common carp versus the

relative invasive ineptness of tench. However, regulatory agencies

should give careful consideration to ecological niche models as an

integral tool in achieving an effective strategy to limit potential

negative impacts by invasive species.
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invasive potential of European plants with climate change. PLoS ONE.

12. Wiley EO, McNyset KM, Peterson AT, Robins CR, Stewart AM (2003) Niche

modeling and geographic range predictions in the marine environment using a

machine-learning algorithm. Oceanography 16: 120–127.

13. Iguchi K, Matsuura K, McNyset K, Peterson AT, Scachetti-Pereira R, et al.

(2004) Predicting invasions of North American basses in Japan using native

range data and a genetic algorithm. Transactions of the American Fisheries

Society 133: 845–854.

14. McNyset KM (2005) Use of ecological niche modelling to predict distributions

of freshwater fish species in Kansas. Ecology of Freshwater Fish 14: 243–255.

15. Zambrano L, Martı́nez-Meyer E, Mendes N, Peterson AT (2006) Invasive

potential of exotic aquaculture fish in American freshwater systems. Canadian

Journal of Fisheries & Aquatic Sciences 63: 1903–1910.

16. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and

economic costs of nonindigenous species in the United States. BioScience 50:

53–65.

Figure 2. Invasive range predictions by USGS hydrologic unit. Mean ecological niche model predictions at the level of hydrologic unit (USGS
6-digit HUC) in the United States, for common carp (A), tench (B), grass carp (C), and black carp (D). Shade indicates mean suitability from the niche
model outputs across all pixels within each HUC polygon (see legend). Known (testing) occurrence points are indicated by dotted circles. Recently
captured black carp [23,33] are shown with stars (D).
doi:10.1371/journal.pone.0005451.g002

Modeling ‘‘Carp’’ Invasions

PLoS ONE | www.plosone.org 8 May 2009 | Volume 4 | Issue 5 | e5451



17. Williamson M (1996) Biological invasions. London: Chapman & Hall.

18. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, et al. (2000) Biotic
invasions: Causes, epidemiology, global consequences, and control. Ecological
Applications 10: 689–710.

19. Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and
North America. Proceedings of the National Academy of Sciences 102:
7198–7202.

20. Peterson AT (2003) Predicting the geography of species’ invasions via
ecological niche modeling. Quarterly Review of Biology 78: 419–433.

21. Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography
of prediction error: Why does the introduced range of the fire ant over-predict
its native range? Global Ecology and Biogeography 16: 24–33.

22. Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, et
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