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ABSTRACT 

An overview of two types of beam solutions is presented, Gaussian beams and Bessel 
beams. Gaussian beams are examples of non-localized or diffracting beam solutions, and 
Bessel beams are example of localized, non-diffracting beam solutions. Gaussian beams 
stay bounded over a certain propagation range after which they diverge. Bessel beams 
are among a class of solutions to the wave equation that are ideally diffraction-free and 
do not diverge when they propagate. They can be described by plane waves with normal 
vectors along a cone with a fixed angle from the beam propagation direction. X-waves are 
an example of pulsed beams that propagate in an undistorted fashion. For realizable 
localized beam solutions, Bessel beams must ultimately be windowed by an aperture, and 
for a Gaussian tapered window function this results in Bessel-Gauss beams. Bessel-Gauss 
beams can also be realized by a combination of Gaussian beams propagating along 
a cone with a fixed opening angle. Depending on the beam parameters, Bessel-Gauss 
beams can be used to describe a range of beams solutions with Gaussian beams and 
Bessel beams as end-members. Both Gaussian beams, as well as limited diffraction 
beams, can be used as building blocks for the modeling and synthesis of other types of 
wave fields. In seismology and geophysics, limited diffraction beams have the potential of 
providing improved controllability of the beam solutions and a large depth of focus in the 
subsurface for seismic imaging. 

 
Ke y wo r d s :  Gaussian beams, Bessel beams, Bessel-Gauss beams, wave propagation 
 

1. INTRODUCTION 

Gaussian beams are solutions to the wave equation that stay bounded for some 
propagation range after which they diverge (Siegman, 1986). In the 1980’s, Durnin (1987) 
and Durnin et al. (1987) showed that certain types of beams could propagate without 
changing shape for large distances and were called Bessel beams. These solutions were 
found earlier by Stratton (1941), Courant and Hilbert (1966) and Bateman (1915) among 
others, and recent overviews are given by McGloin and Dholakia (2005), Recami et al. 
(2008), Recami and Zamboni-Rached (2009, 2011) and Turunen and Friberg (2010). 
These solutions however are endowed with infinite energy, similar to plane waves, and 
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did not attract much interest until more recently when experimental results were obtained. 
In this overview, I will first describe Gaussian beams as examples of beams solutions that 
diffract as they propagate. These are then contrasted with Bessel beams as examples of 
wave solutions with limited diffraction properties. For pulsed beams, these result in X-
wave solutions. Gaussian beams have been extensively utilized for geophysical modeling 
and imaging as illustrated by the recent conference on localized waves in Sanya, China 
(ISGILW-Sanya2011, 2011). Although limited diffraction beams have been well studied in 
optics and acoustics, they have so far not seen any significant applications in seismology 
and geophysics. For example, at the recent Sanya conference only several presentations 
discussed limited-diffraction localized beams (e.g. Recami, 2011; Zheng et al., 2011). In 
addition to presenting an elementary overview of Gaussian beams, Bessel Beams, and 
Bessel-Gauss beams, I will also briefly discuss seismic imaging using beam solutions and 
potential applications of limited diffraction beams for this. 

2. GAUSSIAN BEAMS AS NON-LOCALIZED BEAM SOLUTIONS 

Gaussian beams are example of non-localized beam solutions that diffract as they 
propagate, and can be derived in several ways (Siegman, 1986). These include the 
complex source point approach in which an analytic continuation of a point source from a 

real source location  0 0 0
1 2 3, ,x x x  to a complex location  0 0 0

1 2 3, , +ix x x b  is performed. The 

solution for a point source ie kR R , where k is the wavenumber, is then modified to a 

Gaussian beam solution with 0
3x  replaced by 0

3 +ix b  (e.g., Deschamps, 1971; Keller and 
Streifer, 1971; Felsen, 1976; Wu, 1985), and this can be used to extrapolate analytical 
formulations of wave solutions for point sources to Gaussian beams. Other approaches to 
derive Gaussian beams include the differential equation approach based on the paraxial 
wave equation, the Huygens-Fresnel integral with an initial Gaussian amplitude profile, 
a plane wave expansion approach, and solutions to the Helmholtz equation in oblate 
spheroidal coordinate systems. 

Gaussian beams in homogeneous media can be written as (Siegman, 1986) 

    
     

22i
23 32 3 3

1
i i2 0

3
3

2 e e
rkr

R x W x
kx xW

u r x
W x




      
, (1) 

where 3x  is the direction of propagation, k  v  is the wavenumber with  the 

radial frequency and v the wave speed, and  1 22 2
1 2r x x   is the transverse distance 

to the direction of propagation.    
1 22

3 0 3 31 RW x W x X   
 

 is the beam width where 

the amplitude decays in the transverse direction to 1 e , and 0W  is the beam width at the 

beam-waist specified here at 3 0x  . Also, 2
3 0
RX W    is the Rayleigh range where 
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the amplitude decays to 1 e  at a transverse distance of 02r W , and  is the 

wavelength. The radius of curvature of the beam is    23 3 3 31 RR x x X x   
 

. The 

beam is narrowest for the beam-waist at 3 0x  , and also the phase front is planar with 

 3R x   . As 3x  , the radius of curvature also goes to infinity. The radius of 

curvature is smallest (maximum curvature) at the Rayleigh range 3
RX .  3x  is called 

the Gouy phase, and for a Gaussian beam in a homogeneous medium is equal to 

   1
3 3 3tan Rx x X  . 

Fig. 1 illustrates the characteristics of a Gaussian beam in a homogeneous medium 
with a velocity of v = 5 km/s appropriate for the Earth’s upper crust. The frequency f is 
specified as 1 Hz, and the initial beam width W0 is 7.5 km. The range over which the 

beam stays bounded in transverse distance is between 3 3 3
R RX x X   , and the far field 

angular spread of the beam is 0G W   . Fig. 2 displays the beam width with 
propagation distance of two Gaussian beams for different initial beam widths W0 of 3.25 
and 7.5 km, again with v = 5 km/s and f = 1 Hz. This shows that as the initial beam width 
W0 gets smaller, the far field angular spread of the beam G  gets larger and the bounded 
Rayleigh range gets smaller. 

 
Fig. 1. Characteristics of Gaussian beam propagation in a homogeneous medium with 
v = 5 km/s, f = 1 Hz, and an initial beam width W0 of 7.5 km. 
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The oblate speroidal coordinate system well represents the shape of a Gaussian beam 
and can be used to derive Gaussian beam solutions to the Helmholtz equation. These 
coordinates were originally used in antenna theory (e.g. Stratton, 1956; Flammer, 1957), 
and a recent overview of wave solutions in oblate spheroidal coordinates is given by 
McDonald (2002). 

All waves that go through a focus experience a phase advance called the Gouy phase 
 3x . Feng and Winful (2001) inferred that for a Gaussian beam, this results from the 

lateral beam spread as the wave emanates from the beam waist. For a Gaussian beam, this 
phase shift is progressive from 0 to    from the beam waist for 30 x    (    for 
each lateral dimension). In Huygens-Fresnel integrals of a wavefront in terms of 
secondary wavelets, a    phase shift is also required between the incident wavefront and 
the diverging secondary wavelets. For 3x    , the Gouy phase results in a phase 
shift of  for a 3D wave going through a focus (    for a 2D beam), and for Gaussian 
beams this is again progressive with distance (Nowack and Kainkaryam, 2011). 

Paraxial Gaussian beams in inhomogeneous media can be described by dynamic ray 
tracing with complex initial conditions along a real central ray, and this provides a major 
computational advantage for the calculation of high-frequency Gaussian beams in 
smoothly varying media with interfaces. Overviews of paraxial Gaussian beams using 
dynamic ray tracing are given by Červený (2001), Popov (2002) and Kravtsov and 
Berczynski (2007). Popov (1982) and Červený et al. (1982) developed summation 
methods in which Gaussian beams were used for the synthesis of other types of 
wavefields (for reviews see, Babich and Popov, 1989; Popov, 2002; Nowack, 2003 and 
Červený et al., 2007). Hill (1990, 2001) developed a method using Gaussian beams for the 
migration imaging of seismic reflection data. This was extended to anisotropic media by 
Alkhalifah (1995), to common-shot data by Nowack et al. (2003) and Gray (2005), and for 
true-amplitude migration by Gray and Bleistein (2009). For these approaches, the beams 
were launched into the subsurface at the source and receiver arrays along the surface, and 
the beam-waists were also specified at the surface. Protasov and Cheverda (2006), Popov 

 
Fig. 2. Diffraction spreading of two Gaussian beams in a homogeneous medium with v = 5 km/s, 
f = 1 Hz, and two different initial beam widths W01 = 3.25 and W02 = 7.5 km. 
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et al. (2010) and Protasov and Tcheverda (2011) developed Gaussian beam migration 
approaches with the beams launched upwards from the individual subsurface scattering 
points to the surface, and the beam-waists were specified at the subsurface scattering 
points. These approaches provide more control of the beams at the scattering points, but 
are more computationally intensive than the previous approaches and the beams still 
diffract and broaden as they propagate through the medium. 

An application of wave packets to migration imaging was given by Douma and de 
Hoop (2007) where the wavefield data was first decomposed into curvelets which were 
then sheared and translated in the imaging process. However, this approach did not 
include diffraction and curvature effects of the individual curvelets during propagation. 
A higher order development was presented by de Hoop et al. (2009) using wave packets 
which allowed for curvature effects during propagation more reminiscent of Gaussian 
beams. An alternative approach for the decompostion of wavefields into optimized 
Gaussian wave packets was developed by Žáček (2006). 

Migration imaging was implemented by Nowack (2008) with Gaussian beams 
launched from the source and receiver arrays at the surface, but with the narrow and 
planar beam-waists focused to occur in the subsurface. This was extended by Nowack 
(2011) to allow for dynamic focusing at all sub-surface points giving the effect of 
diffraction-free beam propagation in the resulting image. However, this was only an 
apparent effect resulting from the use of multiple focusing points in the subsurface. The 
advantage of using dynamic focused of beams launched from the surface versus 
approaches that launch beams from the subsurface scattering points is computational 
speed, but this approach is still slower than approaches with beams launched from the 
surface either with beam-waists specified at the surface or by using single focusing 
depths. 

In contrast to Gaussian beams, Bessel beams described next are examples of solutions 
to the wave equation that ideally do not diffract as they propagate. As a consequence they 
have the potential of providing better controllability of the beam solutions during 
propagation and a wide depth of focus for seismic imaging applications. 

3. BESSEL BEAMS AS LOCALIZED BEAM SOLUTIONS 

Bessel beams are among a class of localized beams solution which ideally do not 
spread with propagation distance. In the 1980’s there was an interest in non-diffracting 
beam solutions which included focus wave modes (Brittingham, 1983), exact wave 
solutions with complex source locations (Ziolkowski, 1985), and also solutions called 
electromagnetic missiles (Wu, 1985). Durnin (1987) and Durnin et al. (1987) showed that 
Bessel beams can propagate without change of shape to a large range in free space. These 
types of beams were described earlier, for example by Stratton (1941), Courant and 
Hilbert (1966) and Bateman (1915) among others, but because of their infinite energy 
(like plane waves), did not attract much interest at the time. To derive these solutions, 
consider the scalar wave equation, 

 
2

2
2 2

1 u u
t


 

v
. (2) 
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A trial solution can be used of the form 

      3 3ie k x tu x t f r   , (3) 

where  1 22 2
1 2r x x   is the transverse distance and the lateral shape  f r  is preserved 

with propagation distance 3x . Substituting this trial solution into the wave equation 
results in 

 
       

2
2 2 2 2

32 0
d f r df r

r r r k k f r
drdr

    , (4) 

where 2 2 2k  v . Recall Bessel’s equation (for example, Weber and Arfken, 2004) 

        2 2 2
2 0

dJ x J x
x x x J x

dxdx
 

    , (5) 

where  J x  is a cylindrical Bessel function of order . Fig. 3 shows cylindrical Bessel 

functions of several orders. For Eq.(4), one solution is    0 rf r J k r  where 
2 2 2

3rk k k  . Therefore, a solution to the wave equation in free space that doesn’t change 
lateral shape with distance is 

      3 3i
0 e k x t

ru x t J k r   , (6) 

where 2 2 2 2 2 2 2 2
1 2 3 3rk k k k k k     v . With sinrk k   and 3 cosk k  , then 

 
Fig. 3. Cylindrical Bessel functions of different orders. The horizontal axis is with respect to the 
argument of the Bessel functions. 
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      3i cos
0 sin e k x tu x t J k r     , (7) 

for a given angle . For  = 0, the solution reduces to a plane wave propagating in the 3x  
direction. The first zero of the central lobe of the zeroth-order Bessel function is at 

 2.4 sinr k  . Thus, a more narrow central lobe will result by either increasing the 
radial frequency  which increases k, or by increasing . 

To show that this solution can be described in terms of plane waves, the Bessel 
function can be written as 

  
2

i cos
0

0

1 e
2

rJ r d 



  . (8) 

Let      , then  cos cos cos cos sin sin            . Also, let 

1 cosx r   and 2 sinx r  , then 

    1 2
2

i cos sin
0

0

1 e
2

x xJ r d  



  . (9) 

Now considering 

      3i cos
0 sin e k x tu x t J k r     , (10) 

then 

    1 2 3
2

i sin cos sin sin cos

0
e k x k x k x tu x t d      


     . (11) 

This then equals 

  
2

i

0
e k x tu x t d 


   
 

, (12) 

where the integrand is now in the form of plane waves with 

  sin cos sin sin cos Tk        


v . Eq.(12) defines a cone of plane waves with 
normals with respect to the 3x  axis (Fig. 4). This cone of plane wave normals or a conical 
wave creates a Bessel beam which has a lateral cross-section which is invariant with 
propagation distance, and results in an ideal diffraction-free beam solution of the wave 
equation in free space. 

The transverse cross-section is a Bessel function and for intensity this is shown in 
Fig. 5. Like a plane wave, ideal Bessel beams have infinite energy and propagate in 
a diffraction free manner. A Bessel beam can be formed in several ways. Durnin et al. 
(1987) used an annular aperture followed by a lens to construct Bessel beams. Bessel 
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beams can also be formed by a so-called axicon lens (McGloin and Dholakia, 2005) (see 
also Mcleod, 1954, 1960; Burckhardt et al., 1973; Sheppard, 1978 and Sheppard and 
Wilson, 1978). In each of these cases, the diffraction free range 3

maxx  is limited 

practically by the size of the lens R, where 3 tanmaxx R   and   is the opening angle of 
the beam. Bouchal (2003) showed various kaleidoscope patterns for non-diffracting 
beams formed from discrete sets of plane waves at a fixed opening angle from the 
propagation direction. 

Bessel beams are free-wave mode solutions in a cylindrical coordinate system, and 
therefore can be used to decompose other cylindrically symmetric wavefields. For 
example, a spherical wave can be decomposed into plane waves as 

  1 1 2 2 3 3
i i

1 2
3

e i 1 e
2

R k x k x k xdk dk
R k

 
 




 

v
, (13) 

where  1 22 2 2 2
3 1 2k k k  v  with  3Im 0k   and  3Re 0k  , which is called the 

Weyl integral (Aki and Richards, 1980; Chew, 1990). A spherical wave can also be 
written as 

   3 3
i

i
0

30

e i e
R

k xr
r r

kdk J k r
R k

 
 

v
, (14) 

 
Fig. 4. Plane wave normal vectors along a cone making up a non-diffracting Bessel beam. All the 
plane waves of the Bessel beam have the same inclination angle 0 with respect to the propagation 
axis X3, where X1 is the transverse coordinate and both are in arbitrary distance units. 
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which is called the Sommerfeld integral (Aki and Richards, 1980; Chew, 1990) and is 
a decomposition of a spherical wave into cylindrical or conical waves. This can also be 
written in terms of Hankel functions of the first and second kind where 

        1 2
0 0 0

1
2

J x H x H  , as can Bessel beams (Chavez-Cerda, 1999). Eqs.(13) and 

(14) are both very commonly used in seismology and geophysics in reflectivity methods 
which decompose spherical waves into either plane waves or conical waves and then 
either transmit, reflect and reverberate these waves in a layered medium (Aki and 
Richards, 1980). 

For pulsed Bessel beams, researchers have found so-called “X-waves” which travel in 
the shape of an “X” in the 3x  direction. In acoustics, these were first experimentally 
observed by Lu and Greenleaf (1992a,b) based on work performed at the Mayo Clinic 
(see also, Lu and Greenleaf, 1994; Lu, 2008). Saari and Reivelt (1997) experimentally 
observed Bessel X-wave propagation for light propagation. Localized X-shaped solutions 
to Maxwell’s equations for electromagnetism were described by Recami (1998), and more 
general X-shaped waves were subsequently constructed with finite total energies and 
arbitrary frequencies (e.g. Zamboni-Rached et al., 2002). Similarities and differences 

 
Fig. 5. The transverse intensity pattern of a zeroth-order Bessel beam. The axes are with respect 
to the argument of the Bessel function. 
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between Cherenkov-Vavilov radiation and X-shaped localized waves were discussed by 
Walker and Kuperman (2007) and Zamboni-Rached et al. (2010). 

Recami et al. (2008) gave the frequency-wavenumber spectrum of an ideal harmonic 
Bessel beam as 

    0

sinr

r
r

k
S k

k

 
   

  
   v , (15) 

where this describes a cone in wave-number space with 2 2 2
1 2rk k k   at a single 

frequency 0 . For an X-shaped pulsed beam, this can be written as 

    
sinr

r
r

k
S k F

k

 
 

  
   v , (16) 

where  F   describes the frequency spectrum of the pulsed signal. 
“Superluminal” behavior for non-diffracting beam solutions (or faster than light speed 

or medium speed in acoustics) has been described by many authors (for example see 
Mugnai et al., 2000). Since a zeroth-order Bessel beam can be written as 

      3i cos
0 sin e k x tu x t J k r     , (17) 

the apparent phase velocity of the Bessel beam bbv  in the 3x  direction can be obtained 
from 

 3
3 3 3 3cos cos bb

x
k x k x x

   
v v

, (18) 

as cosbb v v  where v is the medium velocity. Therefore, for 0  , then bb v v . 
For a single oblique plane wave making up a simple Bessel beam, phase velocities 

faster than the medium velocity are familiar to seismologists and geophysicists from 
seismic waves that are obliquely incident at a seismic array. Another example is that of 
ocean waves obliquely incident on a beach with the apparent phase speed along the beach 
greater than the wave speed. However, from Eq.(18) for Bessel beams, 

  3
3 3

bb bb bb
g k

k k
 

   
 

v v v v  

implying superluminal group velocities as well. This has been addressed by a number of 
authors (see for example, McDonald, 2000; Sauter and Paschke, 2001; Lunardi, 2001). 
For example, Sauter and Paschke (2001) defined a different energy velocity as 

cosbb
e v v  for the package of oblique plane waves making up the Bessel beam, and for 

nonzero  this is less than the medium velocity v. McDonald (2000) discussed this in 
terms of interference phenomena making up the Bessel beam and noted that 
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“superluminal behavior does not violate special relativity, but is rather an example of the 
‘scissors paradox’ that the point in contact of a pair of scissors can move faster than the 
speed of light while the tips of the blades are moving together at sub-light speed.” As 
a result of these controversies, different definitions of signal velocities have been re-
assessed (e.g. Milonni, 2005), and there has been a renewed interest in classic work on 
wave speeds, such as that of Brillouin (1960). 

As an example, Fig. 6 shows a central pulse formed from the crossing of two plane 
waves in 2D (from Sauter and Paschke, 2001). The overall shape of the central pulse 
moves in the vertical x3 direction without change of shape. In an actual X-wave, this 
would result in a pulsed solution from the superposition of plane waves over the complete 
cone with a fixed angle from the propagation direction. The central pulse of the “X” 
moves in the vertical x3 direction at a speed of cos v v . However, this speed is only 
apparent since different parts of the planar wavefronts making up the center of the “X” 
pulse come from different points along the intersecting plane waves at different times and 
don’t constitute the actual propagation of the same signal along the center of the “X” 
pulse. However, this effect can also result in interesting “self-healing” properties of the 
pulse to local perturbations of the medium, since the waves are coming from oblique 
directions and the center of the “X” can adjust to small medium perturbations and reform. 

 
Fig. 6. A simplified X-shaped pulse formed by the crossing of two oblique plane waves at two 
different times moving in the vertical direction. The center of the “X” at different times comes from 
different parts of the two plane waves (adapted from Sauter and Paschke, 2001). The propagation 
axis is X3, where X1 is the transverse coordinate and both are in arbitrary distance units. 
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In addition to Bessel beams in free space, a number of “paradoxes” have been found in 
“exotic media” where faster than light propagation have been inferred in recent years. For 
example, Wang et al. (2000) found superluminal light propagation in gain-assisted media. 
In examples like these, more elaborate explanations are required for large apparent 
velocities along the beam axis. Also, there have been inferences of ultra-slow light 
propagation in special media, for example by Vertergaard et al. (1999). A number of 
examples of fast and slow light have been summarized by Milonni (2005). How these 
results will ultimately be interpreted and if they have potential applications in seismology 
and geophysics is yet to be determined. However, as discussed by Zamboni-Rached et al. 
(2010), the central intensity peaks of a simple X-wave at different locations are not 
causally related instead being fed by waves coming from different parts of the incident 
aperture plane traveling with at most luminal speeds. As a result, Zamboni-Rached et al. 
(2010) note that the primary interest in superluminal X-waves has been with regard to 
their localization as well as self-reconstruction properties, and not in transmitting actual 
information superluminally. 

In addition to superluminal localized wave solutions, localized waves have been 
described with central peak velocities ranging from 0 to infinity (Recami and Zamboni-
Rached, 2009, 2011). Subluminal localized waves of the wave equation were described by 
Zamboni-Rached and Recami (2008) which in the simplest cases have ball-like shapes, in 
contrast to the X-wave shapes of superluminal localized waves. In addition, Zamboni-
Rached et al. (2004) described so-called frozen waves to model a wide range of 
longitudinal (on-axis) and transverse intensity profiles by a summation of Bessel beams 
with different longitudinal wavenumbers (see also, Zamboni-Rached et al., 2008). 

4. BESSEL-GAUSS BEAMS  
AS LIMITED DIFFRACTION LOCALIZED WAVES 

Realizable Bessel beams must ultimately be truncated by an aperture which will result 
in a limited distance over which diffraction-free propagation will occur. For a Gaussian 
tapered Bessel beam profile, Gori et al. (1987) (see also earlier work by Sheppard and 
Wilson, 1978) derived an analytic solution for a Bessel-Gauss beam. The initial amplitude 
profile at 3 0x   is 

      20
0,0 e r Wu r AJ r  , (19) 

and a solution at a distance x3 is then 
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where 3
RX  is the Rayleigh range, and  3W x ,  3x  and  3R x  are the beam-width, 

the phase-shift and the radius of curvature for an ordinary Gaussian beam, respectively 
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(Gori et al., 1987). For the underlying Bessel beam, sink  , and when  = 0 it will 
reduce to a Gaussian beam. For 0W   , it reduces to an ideal diffraction-free Bessel 
beam. 

Palma (1997) described Bessel-Gauss beams as a superposition of ordinary Gaussian 
beams with central rays along a fixed cone angle from the propagation direction of the 
Bessel-Gauss beam. Bessel-Gauss beams can therefore either be described as a Gaussian 
tapered Bessel beam or as a summation of tilted Gaussian beams along a fixed cone of 
directions. For heterogeneous media, paraxial ray theory (or dynamic ray tracing as 
utilized in seismology) can be used to track Bessel-Gauss beams in a similar fashion as 
Gaussian beams (Turunen and Friberg, 2010). 

The far-zone angular spread of an individual Gaussian beam is 0G W   , and the 

ratio of G and the cone angle of the Bessel beam will be    1
0 sinG W k    

0 2W . When 1G    is small, then W0 will be comparable or smaller than the 
central lobe of the Bessel beam with a radius of 2.4bbW  , and as a result the outer 
rings of the Bessel function will be truncated and the wave will approximate a Gaussian 
beam. When 1G    then W0 will be larger and the cone of Gaussian beams will 
overlap out to a distance Dbb over which the field will behave more like a Bessel beam. 
Gori et al. (1987) gave this distance to be approximately 0bbD W  . 

As an example using appropriate seismological parameters, Fig. 7 shows the 
transverse amplitude profiles of a Bessel-Gauss beam at several propagation distances. 
The medium speed is specified to be 5 km/s and the frequency is 1 Hz. For this example, 
the radius of the central lobe of the Bessel-Gauss beams bbW  is 4.5 km comparable to the 
wavelength, and the Gaussian beam width W0 is 30 km, or about 6.6 times larger than 

bbW . For this case, the Bessel beam retains it shape out to a distance of about 69 km, or 
about 15 times the radius of the central lobe of the underlying Bessel beam. 

5. DISCUSSION AND CONCLUSIONS 

In this overview, the basic properties of Gaussian beams and Bessel beams have been 
described. Gaussian beams are examples of non-localized beam solutions that can be used 
to concentrate and focus wave energy at the beam-waist, but still diffract for other 
distance ranges. In contrast, Bessel beams are localized beam solutions that have 
a transverse pattern which is stationary with propagation distance and are therefore non-
diffracting. For Bessel beams, however, the energy is distributed among the different 
concentric rings making up the beam, and is not all concentrated on the central lobe. 
Fig. 8 shows a qualitative comparison of a Gaussian beam with a Bessel beam truncated 
by an aperture (from Salo and Friberg, 2008). For this case, the central lobe of the 
diffraction-free beam has about the same width as the focused beam-waist of the Gaussian 
beam. However, the Gaussian beam diffracts for other distance ranges and the Bessel 
beam is ultimately limited by the aperture. Nonetheless, the central lobe of a Bessel beam 
can be made very compact, and Bessel beams have been used in optics for directional 
pointing toward small objects, such as individual atoms, or used as atomic tweezers. 
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Bessel beams also have the ability to reform from small medium perturbations along the 
central beam (Turunen and Friberg, 2010). 
  

 
Fig. 7. An example of a Bessel-Gauss beam resulting from a Gaussian tapered Bessel beam. The 
medium speed is 5 km/s and the frequency is 1 Hz. For this case, the wavelength is 5 km, the radius 
of the central Bessel beam lobe bbW  is 4.5 km and the Gaussian beam width W0 is 30 km. The 
Bessel beam retains it shape out to a distance bbD  of 69 km. 

 
Fig. 8. A comparison between a Gaussian beam and a finite-aperture limited-diffraction Bessel 
beam. For this example, the maximum of the central lobe of the Bessel beam has about the same 
width as the beam waist of the Gaussian beam (adapted from Salo and Friberg, 2008). 
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In medical acoustics, Lu and Greenleaf (1994) contrasted ultrasonic beam forming 
using both focused Gaussian beams and limited diffraction beams (see also Lu, 2008). 
However, a disadvantage in the use of limited diffraction beams is the large side-lobes 
compared to Gaussian beams, but there have been efforts in medical acoustics to address 
this (Lu and Greenleaf, 1995). Lu and Liu (2000) described an X-wave transform in which 
wavefields can be decomposed into limited diffraction X-waves. Lu (1997) also described 
a pulse-echo imaging method utilizing limited diffraction beams in medical ultrasound. In 
seismology and geophysics, the decomposition of reflection wavefields into localized 
Gaussian beams have been used successfully for the migration imaging of seismic 
reflection data. Because of the similarities between acoustics and seismics, there could 
also be potentially important applications of limited diffraction beams in seismic imaging 
because of their advantages in terms of controllability and wide depth of focus. However, 
uses of limited diffraction beam solutions in seismology and geophysics are just beginning 
to be explored. 
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