
Machine Learning 3: 139-159, 1988
@ 1988 Kluwer Academic Publishers Manufactured in The Netherlands

A Tale of Two Classifier Systems

GEORGE G. ROBERTSON t (ROBERTSON.PA@XEROX.COM)

Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142, U.S.A.

RICK L. RIOLO (RICK_RIOLO@UM.CC.UMICH.EDU)

Electrical Engineering FJ Computer Science Department, University of Michigan,
Ann Arbor, MI 48109, U.S.A.

(Received: December 1, 1987)

(Revised: May 12, 1988)

Keywords: Classifier systems, genetic algorithms, parallelism, sequence prediction

Abst rac t . This paper describes two classifier systems that learn. These are rule-
based systems that use genetic algorithms, which are based on an analogy with nat-
ural selection and genetics, as their principal learning mechanism, and an economic
model as their principal mechanism for apportioning credit. CFS-C is a domain-
independent learning system that has been widely tested on serial computers. *CFS
is a parallel implementation of CFS-C that makes full use of the inherent paral-
lelism of classifier systems and genetic algorithms, and that allows the exploration of
large-scale tasks that were formerly impractical. As with other approaches to learn-
ing, classifier systems in their current form work well for moderately-sized tasks but
break down for larger tasks. In order to shed light on this issue, we present several
empirical studies of known issues in classifier systems, including the effects of pop-
ulation size, the actual contribution of genetic algorithms, the use of rule chaining
in solving higher-order tasks, and issues of task representation and dynamic popu-
lation convergence. We conclude with a discussion of some major unresolved issues
in learning classifier systems and some possible approaches to making them more
effective on complex tasks.

1. Introduct ion

Learning classifier systems acquire rules, called classifiers, to perform some

specified task (Holland, 1986; Holland & Burks, 1987; Holland & Reitman,

1978). The task is specified by a set of examples presented to the system and

an evaluation function that determines how well the system is performing tile

task. The evaluation function provides sparse reinforcement (a scalar reward

or punishment) rather than providing correct answers. Rules are message-

oriented, taking messages as inputs and producing as outputs new messages

that perform the task and control the sequence of rule activation. Each rule

*Author's current address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304, U.S.A.

140 G.G. ROBERTSON AND R. L. RIOLO

has an associated strength that indicates its effectiveness in performing the de-
sired task. In classifier systems, apportionment of credit is done by the bucket
brigade, an algorithm for adjusting rule strengths based on an analogy with
a service economy (Holland, 1985a). New rules are created by a genetic algo-
rithm (Holland, 1975), which is based on an analogy with genetics and natural
selection. Most components of such systems, including rule and message man-
agement, strength adjustment, and the learning mechanisms, are inherently
parallel.

]'his paper focuses on experimental results obtained with two particular
learning classifier systems, CFS-C and *CFS. The first part of the paper de-
scribes the differences between these systems and the standard model of learn-
ing classifier systems. The second part illustrates the current state of classifier
systems and genetic algorithms by discussing several empirical studies of the
behavior of these two systems. These studies examine some known problems
with the classifier system paradigm. The first study examines the issue of pop-
ulation size. The second explores the actual contribution of genetic algorithms
to the system's learning behavior. The third study focuses on chains of rules,
which are necessary to solve higher-order tasks. The final study deals with
representational issues and the convergence of the population over time.

In general, like other approaches to machine learning, existing classifier sys-
tems behave well on simple and moderately-sized tasks, but they break down
on larger, more complex tasks. However, no fundamental barriers have yet
been encountered while moving toward these larger tasks. The studies and
discussion in this paper illustrate the current limits of classifier systems, but
they also suggest modifications that may make them more effective on complex
tasks.

2. T w o l e a r n i n g c l a s s i f i e r s y s t e m s

All of the experiments described in this paper were carried out on two classi-
fier systems, CFS-C and *CFS. CFS-C is implemented in the C programnfing
language and runs on a number of serial computers (Riolo, 1986a). *CFS is a
parallel implementation of CFS-C on the Connection Machine (Hillis, 1985),
a massively parallel computer with 65,536 processors, with one classifier as-
signed to each processor. The *CFS implementation, described in Robertson
(1987), demonstrates that most aspects of learning classifier systems can be
implemented in parallel. Both systems follow the standard Michigan Approach
(developed by John Holland and his associates at University of Michigan) to
classifier systems (De Jong, 1988; Holland, 1986). Although CFS-C and *CFS
differ in minor ways, they both contain the same major features, which has
made it possible to run many of the experiments reported in this paper on both
systems. These two systems co-evolved, and were validated against each other
before conducting the studies reported here (Robertson & Riolo, 1987). The
rest of this section briefly describes the major features of CFS-C and *CFS,
with emphasis on differences from the standard framework. For more details,
see Robertson and Riolo (1987).

TWO CLASSIFIER SYSTEMS 141

2.1 T h e interface to the e n v i r o n m e n t

In order to define a task domain for CFS-C and *CFS, we supply detectors
to encode the external environment, effectors to manipulate the environment,
and an evaluation function to measure how effectively the system is perform-
ing. Detectors produce messages that are placed on a message list along with
messages produced during the previous step. Effectors interpret some messages
produced by classifiers as instructions about how to manipulate the environ-
meat. The results of effector actions are judged by the evaluation function,

which returns a single payoff value as feedback for each cycle.

2.2 Classifiers and messages

Messages in CFS-C and *CFS are fixed-length binary strings. The conditions
and action of each classifier are ternary strings (over {0, 1, # }) of the same
length as messages. Although in general a classifier is a rule with one action
and an arbitrary number of conditions, both CFS-C and *CFS simplify this
to two conditions and one action. This can be done without loss of generality,
provided chains of rules can be formed and maintained.

A classifier is matched when both conditions are satisfied. If the second
condition is negated, it is satisfied if no message matches it. Matched classifiers
compete by bidding to post messages to a fixed-size message list, and those
that win the (probabilistic) competition produce new messages using the "pass
through" operator. A classifier's bid is proportional to its strength times its
specificity (more specific rules bid more).

2.3 C r e d i t a s s i g n m e n t a l g o r i t h m s

In both CFS-C and *CFS, strength is primarily allocated by the bucket
brigade algorithm (BBA). The basis for the BBA is feedback from the envi-
ronment: all classifiers that post messages during a given step have the payoff
from the environment added to their strength. The BBA also redistributes
strength from classifiers to other classifiers, as each classifier that posts mes-
sages pays the amount it bid to the classifiers that made it possible for it to
become active. Riolo (1987a, 1987b) discusses some of the issues involved in
making tile BBA effective.

In addition to the BBA, CFS-C and *CFS also apply head, bid, and producer
taxes to adjust classifier strengths. The head tax is generally a low fixed-rate
tax applied to every classifier on every step. The head tax is necessary to
reduce the strength of classifiers that are never activated (and therefore never
affected by the BBA) so that they will eventually be replaced. The bid tax
is a low fixed-rate tax applied to every classifier that bids, and the producer
tax is a progressive tax that increases with the number of messages posted by
a classifier during a given step. The main purpose of the bid and producer
taxes is to control overgeneralization, by taking strength away from general
classifiers that tend to bid too often or produce too many messages.

142 G. G. ROBERTSON AND R. L. RIOLO

2.4 Rule discovery heuristics

CFS-C and *CFS employ three heuristic procedures to create new rules:
(1) a genetic algorithm; (2) cover detector and cover effector operators, which
force the system to be more responsive to its environment; and (3) a triggered
chaining operator, which introduces fragments of rule chains into the system.

Genetic algorithm. CFS-C and *CFS employ a standard genetic algorithm
(GA) using the crossover and mutation operators. The fitness measure is
strength: when the GA is applied (usually once every 10-20 steps), a small
fraction of the high-strength classifiers are chosen to produce offspring and an
equal number of low-strength classifiers are replaced. Crossover is applied to
some of the new offspring by treating the entire classifier as a chromosome and

carrying out either a single or a double crossover. The mutation operator is
then applied to a small flaction of the new classifiers.

Cover detector and cover effector operators. When a classifier system is un-
responsive to the environment (i.e., its classifiers fail to match any detector
messages or to activate any effectors), the BBA will have nothing to work with
and the classifier strengths will convey no useful information to the GA. To

overcome this problem, CFS-C and *CFS employ the two additional operators.
The cover detector operator (CDO) (Holland & Reitman, 1978; Wilson, 1985),
triggered when a detector message is not matched by any classifier, responds
by creating a classifier that matches the detector message and has a random
action. The cover effector operator (CEO), triggered when no effector is acti-
vated, copies a classifier that is responsive to the current situation and gives
it a new, random action.

Triggered chaining operator. A classifier C1 is said to be coupled to classifier
C2 when a message produced by C1 satisfies some condition of C2. Sequences
of coupled classifiers, sometimes called classifier chains, are necessary so that
classifiers can be used to implement arbitrary networks and to perform ar-
bitrary computations (Holland, 1986). For example, chains are necessary to
implement a short-term memory, so that classifier systems can perform actions
that are not entirely determined directly by messages from the environment
(Booker, Goldberg, &: Holland, in press).

Although the BBA has been demonstrated to properly allocate strength to
classifier chains (Riolo, 1987b), in practice such chains are very rarely created
by the GA. Therefore the triggered chaining operator (TCO), suggested by
Holland, Holyoak, Nisbett, and Thagard (1986), was added to CFS-C and
*CF$. The basic purpose of this operator is to create a pair of coupled rules
that reflect an initially accidental activation of one rule after another. Like all
classifiers, the coupled pairs produced by the TCO are evaluated and assigned
credit (or blame) by the BBA. If the coupled rules improve performance (and so
gain strength), they serve as building blocks for longer chains and other more
complicated structures. If the coupled rules do not improve performance, they
lose strength and are replaced.

In order to bias the production of coupled classifiers toward plausibly useflfl
chains, the TCO is activated only when two conditions are met: (a) a classifier

TWO CLASSIFIER SYSTEMS 143

C2 makes a profit, and (b) there was a classifier C1 active just prior to classifier
C2 that is not already coupled to C2. We define the profit, Pi (t -1) , of classifier
i at step t - 1 as tile reward it received at t - 1 less the bid it paid at t - 1,
plus the amount paid to it by other classifiers active at step t.

For example, consider the following two classifiers, A and B, active at steps

t - 2 and t - 1, respectively:

(t - 2) : A = aaaa, aaaa/xxxx
(t - 1) : B -- bbbb, bbbb/yyyy.

If PB(t - 1) > 0 and if A and B are not already coupled, then the TCO would
produce the following new classifiers:

A' = aaaa, aaaa /mmmm

B' = bbbb, m m m m / y y y y ,

where lll~ttIlt~Tt is a random string with no predefined meaning. The result is
a pair of coupled classifiers constructed so that if the conditions that caused

A to fire are again encountered, A ~ also fires and produces a message m m m m ,
which may cause classifier B' to fire on the next step, which in turn produces
a message yyyy that was associated with making a profit. If yyyy does indeed
consistently lead to profit, the BBA will allocate strength to the coupled rules
and they will survive and act as building blocks for longer chains.

3. E m p i r i c a l s t u d i e s o f c lassi f ier s y s t e m s

Genetic algorithms have been studied for the last twenty-five years, and they
have been examined in the context of classifier systems for the last ten years.
Although some substantial theory has been developed for pure GA (Goldberg,
1985; Holland, 1975), less has been developed for classifier systems (Holland,
1985a~ 1985b~ Wilson~ 1987). The empirical studies we report here explore
some areas that currently lack a strong theoretical foundation: the effects
of population size, the effectiveness of GA in systems that do not promote
speciation, the mechanisms necessary for effective rule chaining, and issues of
convergence and representation.

3.1 The task of letter sequence prediction

The primary task domain we have used for tuning and analyzing both CFS-
C and *CFS is letter sequence prediction (Riolo, 1986b). A sequence of letters
of any length is chosen and presented repetitively to the system. The sequence
is viewed by the system through a fixed-sized window, which is four letters
for most of the studies reported here. That is, as the system moves through
the sequence of letters, it views the current letter and the three previous let-
ters, from which it must guess tile next letter in the sequence. This task is
represented with nine-bit messages, which use five bits to represent a letter
and four bits to indicate the type of the message (i.e., one of four detectors, a
prediction, or a rule chain message).

Although this task domain may at first appear to be trivial, note that the
system has no a priori knowledge of letters, their relationships, or the notion

144 G. G. ROBERTSON AND R. L. RIOLO

loo~

80

40 I

g I
2 20[

Z,o I
O r

0 500 I000 1500

Number of Steps

Figure 1. Learning the letter sequence "abed" over 2000 steps. Population sizes are
50 (lowest curve), 500 (middle), and 8000 (upper).

of sequence. To illustrate the difficulty of this task, consider the size of the

solution space (i.e., the number of possible classifiers) that must be searched.
Since each locus can contain one of three alleles and the second condition may
be negated, the number of possible classifiers for l loci is N = 31 x 2. For these
problems, l = 27, hence N is approximately 1.5 x 1053. Of course, many of these

classifiers are phenotypically alike (i.e., they respond to the same situation in
the same way), but the search space is still quite large.

3.2 Experimental procedures

Both CFS-C and *CFS are stochastic and use pseudo-random number gen-
erators in numerous places, which results in significant variance from one in-
dividual run to another. De .long (1975) reports similar observations, and
suggests averaging the results of a minimum of five runs for each experiment.
We average ten runs in the results reported here. The figures shown in the
following sections are comparisons of smoothed learning curves. Each point
represents the average percentage of correct answers over the last fifty cycles,

averaged over ten trials for each curve.

3.3 T h e e f fec t o f p o p u l a t i o n size

For serial implementations of classifier systems, population size directly af-
fects the speed of the system; computational cost is proportional to the prod-
uct of the average message-list size and the population size. However, classifier
systems are inherently parallel, and *CFS demonstrates that the speed of the
system can be independent of population size in a parallel implementation.
Until recently, researchers believed that the larger the population, the better.
However, Goldberg (1985) has theorized that there is an optimal population
size for pure GA. If the population is too small, the system converges too
quickly and does not process enough schemata. If the population is too large,

TWO CLASSIFIER SYSTEMS 145

l O O v , , " ' I I !

50

4 o

c aop Z/~ . ~ -

{~" , J J J I , , , , I , , , i

0 2 5 0 0 5 0 0 0 7 5 0 0

Number of Steps

Figure 2. Learning the alphabet over 10000 steps. Population sizes are 50 (lowest
curve), 500 (middle), and 8000 (upper).

the waiting times for effective crossovers are too long and there is insufficient
juxtaposition of building blocks prior to convergence. Goldberg's theory is
based on counting unique expected schemata derived from strings of a given
length and populations of a given size. It is not clear that Goldberg's theory
can be directly applied to classifier systems, because such systems work on
several problems at once and because their discovery algorithms include more
than GA. To the extent that we can apply Goldberg's theory, the empirical
results that we see tend to contradict the theory.

The task of letter sequence prediction uses nine-bit messages; with two con-
ditions and an action, the chromosome used in the GA contains 27 bits. Ac-
cording to Goldberg's theory, the optimal population size for a string length
of 27 is 77. However, the theory does not account for subproblems that must
be solved. In this task domain, there are as many subproblems as there are
letters in the sequence being predicted. If we assume independence of the
classifiers working on each subproblem, then the optimal population size for
"abed" should be 308 classifiers, for "mississippi" it should be 847, and for the
alphabet it should be 2002. If they are not independent (which is very likely
the case), the optimal size should be smaller.

Figure 1 shows the results for "abed," which indicate that performance con-
tinues to increase as population size increases well past the theoretical optimum
size of 308. Larger populations lead to faster learning and ultimately to better
performance. The same results were seen for "mississippi," a problem with
some ambiguity. Figure 2 shows the same results for the alphabet, a longer
problem.

These results are based on using CA, as well as the cover detector and cover
effeetor operators (CDO/CEO). However, Figure 3 shows the learning behavior
of GA alone on the alphabet. As with the other results, performance increases
as population size increases, well past the theoretical optimum of 2002. This
appears ta directly contradict Coldberg's theory of optimal population size.

146 G. G. ROBERTSON AND R. L. RIOLO

lOO

90

70

8 6o
50

(I)

c~ 4o
m
, 30

0 20

o
0

0

I I I

2500 5000 7500
Number of Steps

Figure 3. Learning the alphabet over 10000 steps, only using GA. Population sizes
are 500 (lowest curve), 2000 (middle), and 8000 (upper).

In reviewing these results, Goldberg has suggested modifying his theory
to allow multiple nonoverlapping populations each handling some different
"concept" and to require k copies of some good schema (not the one copy
he assumed in his original work). With these modifications, our results tend
to support his basic contention that there is a flmdamental tradeoff between
having a copy of a schema of a particular length and having to generate that
schema some time later.

To summarize, the theory of population size developed for pure GA does not
apply directly to classifier systems. It must be modified to take into account
the multiple subproblems being worked on and their interactions. It must also
be modified to deal with the effects of other discovery heuristics (particularly
CDO and CEO) on the GA. Our empirical results indicate that increasing
population size increases performance, although with diminishing marginal
returns after some point.

3.4 The cont r ibu t ion of genetic a lgor i thms

As can be seen by comparing Figures 2 and 3, the genetic algorithm alone
does not contribute as much to the system's learning behavior as one might
expect. In particular, using a population of 8000 classifiers on the alphabet
task, the system achieves a performance of over 90% when the cover detector,
cover effector, and GA are all used, but it reaches only about 30% performance
when the GA is used in isolation.

In order to separate the effects of GA fi'om those of the cover operators
(CDO/CEO), we ran a series of experiments with one or the other mechanism
disabled. Figure 4 shows the results for a population of 8000 on the sequence
"abed." Similar curves were seen for the "mississippi" task, and Figure 5 shows
the results for the alphabet task.

T W O C L A S S I F I E R S Y S T E M S 1 4 7

1001 : I '~

0 ~ J , a I ,J , , , I i , , ~ I , i , ,

0 5 0 0 1 0 0 0 1 5 0 0

Number of Steps

Figure 4. Learning the letter sequence "abcd." The lowest curve is for GA only, the
middle is for cover operators only, and the upper is for both mechanisms.

For each task the system does best when both the CDO/CEO and CA are
used together. Also, the combination CDO/CEO does better than the GA on
each task, even though the former involves a random walk through a portion
of the solution space. For the easiest ("abed") task, CDO/CEO does almost
as well as using both CDO/CEO and GA, whereas for the harder alphabet
problem, CDO/CEO does noticeably worse than when both mechanisms are
used. On the other hand, GA in isolation leads to about the same or slightly
better performance on the harder tasks than it does on the easy task. What
(:an account for these results? Our hypothesis consists of three parts:

1. Using GA alone, the system rapidly reaches a plateau at a relatively low
performance level because it prematurely converges (Booker, 1982; De
Jong, 1975) to a population with many copies of just a few kinds of clas-
sifters. Once converged, the crossover operator is no longer effective~ so
learning stops.

2. The cover operators act to enrich the gene pool for the GA, so that the
crossover operator again can carry out an efficient search. Thus when

CDO/CEO and GA are used together, the system performs best.

3. The system can improve its performance using just CDO/CEO because
the tasks are relatively easy. For the "abcd" task, CDO/CEO alone can
do quite well, but for the two harder tasks, CDO/CEO does much worse
than the CDO/CEO and GA together, and it does only somewhat better
than GA alone.

To test this hypothesis, we ran a series of experiments to test the effects of
convergence on performance. An initial population was constructed by gener-
ating one random classifier and then making 7999 copies of it. This artificial
situation represents the ultimate converged population. If our hypothesis were
true, we would expect the following:

148 G. G. ROBERTSON AND R. L. RIOLO

1 0 0 ~ " , , ' ' I I I : ' , , _

' o ° I F + - ' r , , , , , , , , , , , , , , ,

,?_

0 2500 5000 7500
Number of Steps

Figure 5. Learning the alphabet. The lowest curve is for GA only, the middle is for
cover operators only, and the upper is for both mechanisms.

1. The system should perform poorly when only GA is used, since there is
no variance in the population for the crossover operator to exploit.

2. Using just CDO/CEO, the system should perform about the same when
started with the fully converged population as it does when started witil
a random initial population, since CDO/CEO does not make use of the
variance in a population.

3. Using both CDO/CEO and GA, the system should be able to learn start-
ing from a converged population, though perhaps not as well as it does
when started with a random initial population. The GA can begin to
contribute to the learning only after CDO/CEO injects variance into the
gene pool.

In fact our results were somewhat mixed. The first two predictions were con-
firmed for all three tasks ("abed," "mississippi," and the alphabet). The third
prediction was only partially confirmed. This suggests that the convergence
hypothesis depends in some way on the complexity of the task and does not
hold for all cases.

In addition to premature convergence, another factor that may influence the
amount of learning contributed by GA is task representation, and one impor-
tant aspect of representation involves the choice of an evaluation function. One
evaluation function we tried for the letter sequence prediction domain payed
a fixed reward (positive payoff) for a correct prediction and a fixed punish-
ment (negative payoff) for any other answer. With this evaluation function
the search space is mostly flat and negative, with just a few positive spikes
or mesas for correct rules. This type of search space is not easily searched by
the GA (or any algorithm), since most instances provide no information about
how close the rule is to a solution.

In the experiments described in this paper, a partial payoff scheme was used
in which the payoff increased for each bit of the prediction that was correct and

T W O CLASSIFIER SYSTEMS 149

there was no punishment (the payoff is zero) for getting all bits wrong. This

evaluation function produces a space that has many hills and valleys, so that
partial solutions can act as building blocks which the GA can combine to find
complete solutions. Thus, selecting a good representation is the crucial first
step toward making GA an effective learning mechanism for classifier systems.

A third factor that can influence GA techniques is the evolution of species.
Booker (1982) has shown that GA can perform better in classifier systems
that must solve multiple subproblems when a restricted matin 9 rneehanisnl is
used to promote and exploit the formation of "species" of classifiers. 1 The
hypothesized reason for this behavior is that restricted mating improves the
effectiveness of the crossover operator, since the offspring of a crossover between
parents from two species is less likely to be a useful classifier.

In the experiments described so far, nothing was clone to explicitly encour-
age or discourage speciation, but there are several possible ways to promote
it. One approach is to arbitrarily divide the population into several fixed-sized
subpopulations, thus allowing the subpopulations to evolve in relative isola-
tion. Although these subpopulations may find different niches and evolve into
different species, there are no guarantees. Also, there is no a priori way of
knowing how many species are required to solve a problem, hence there is no

way of knowing how to initially subdivide the population.

A second approach involves applying a sharing fimction to the fitness mea-
sure. This technique identifies the local density of a species and adjusts fitness
according to the number and closeness of its neighbors. This approach was sug-
gested by Holland (1981) and Booker (1982), applied suceessflflly by Wilson
(1985), and extended by Goldberg and Richardson (1987). A third approach,
suggested by Booker (1982), biases parent selection toward classifiers that bid
in response to the same messages. This approach seems to capture at least
some of what happens in natural speciation. In the next section we describe
some preliminary experiments that use this form of restricted mating to pro-
mote speeiation in the context of tasks that require rule chains.

In summary, our results indicate there is an interesting (but not fully un-
derstood) synergy between GA and the cover operators that make them quite
powerflfl when used together. Since these results may depend on the particn-
lar task domain or representation, we believe similar empirical studies should
be carried out in other domains, and that a theoretical foundation for the
interaction of these mechanisms should be developed.

3.5 Sequences of coupled classifiers

As described in Section 2.4, sequences of coupled classifiers, or classifier

chains, are necessary to let classifier systems implement arbitrary networks
and perform a variety of computations. In the context of letter sequence pre-
diction, classifier chains provide a way to implement a short-term memory,
which enables the system to make predictions not determined directly by de-
tector messages.

1A "species" in a classifier system may be thought of a~s a set of classifiers that all solve

the same subproblem.

150 G. G. ROBERTSON AND R. L. RIOLO

For example, consider the sequence "yhwh" when the system's window has
a size of one. When the letter seen is an "h," the system cannot use just the
detector message to predict the next letter, since sometimes the next letter
is "y" and sometimes "w." To solve this problem, the system must include
classifiers that implement a short-term memory. For instance, the following
classifiers (in interpreted form) predict part of the "yhwh" sequence perfectly:

[i] If Detect (y) then Predict (h).

[2] If Detect (y) then Remember (y).

[3] If Detect (h) and Remember (y) then Predict (w).

When the current letter is "y," classifiers 1 and 2 both post messages: the
message produced by classifier 1 activates the effeetor and the system predicts
an "h," whereas that produced by classifier 2 is an "internal memory" message.
On the next step, the message list contains a detector message that indicates
the current letter ("h") and it contains the messages produced during the
previous step. Classifier 3 is then activated by matching the detector message
and the message posted by classifier 2. Thus, classifier 2 is coupled to classifier
3, and this coupling lets the system correctly predict a "w" two steps after a
"y." A sinfilar set of classifiers could be added to predict a "y" two steps after

a "w."

3.5.1 Problems with the bucket brigade algorithm

In learning classifier systems, it is important that credit (strength) be allo-
cated to classifiers that lead to good performance by the system as a whole.
In the context of sequences of coupled classifiers, this means that a classifier
like tile second one in the above example, which "sets the stage" for a classifier
that actually makes a prediction, must be given credit for enabling the system
to make that prediction correctly. The bucket brigade algorithm (BBA) serves
this function.

One problem with tile BBA occurs when a sequence of coupled classifiers
contains classifiers which have conditions that match messages produced by
sources other than their predecessors in the sequence. In general, the strengths
of the stage-setting classifiers will be much lower than those of effector-activat-
ing classifiers (Riolo, 1987a). For example, in the set of classifiers described
above, classifier 3 has one condition that matches a detector message and a
second that matches the message produced by its predecessor, classifier 2.
Using the standard BBA, the strength of classifier 2 will be one-half that

1 for tile detector of classifier 3 (since 3 would pay ½ of its bid to 2 and

message). Because the GA tends to replace low-strength classifiers, an uneven
distribution of strength between classifiers in sequences means that the stage-
setting classifiers will tend to be eliminated.

To avoid this problem, the BBA in CFS-C was altered so that when a classi-
fier matches detector messages and messages produced by classifiers, the entire
bid is paid to the classifiers and nothing is paid for the detector messages. How-
ever, if a classifier uses only messages from detectors, that classifier's entire bid
is paid for those messages.

TWO CLASSIFIER SYSTEMS 151

A second problem with tile traditional BBA is the misallocation of credit
to stage-setting classifiers that are active when a payoff is received from the

environment. Using the s tandard BBA, all classifiers that are active when

a reward is received from the environment have that reward added to their
strength. For exanlple, when classifier 1 correctly predicts tile occurrence of
all "h," both it and classifier 2 (which is active on the same step) would receive
the reward for a correct prediction. Thus classifier 2 would receive credit for
a prediction it did not make directly or indirectly.

To avoid this problem, the BBA was modified so that only those classifiers
that produce effector-activating messages receiw~ payoffs fl'om tile environment.

Classifiers like nmnber 2 will only receive strength from their successors in a

chain.

A third problem results from tile application of taxes. Since taxes are applied

to every classifier, tile strengths of classifiers ill a chain fall off exponentially
as they are fllrther removed from tile payoffs earned by executing that chain.
For example, at a tax rate of 0.025, the fixed-point strength of a stage-setting

classifier is only 80% that of tile classifier it activates. For tile experiments
described in this section, taxes were kept low (HeadTax = 0.001, BidTax =

0.02, and ProdTax = 0.0125 for one message).

3.5.2 Experiments with coupled classifiers: Maintaining chains

For a classifier system to establish and maintain a stable solution to a task

like that of predicting the sequence "yhwh" using a window of size one, the

system must not only be able to discover (create) a set of classifiers to solve the

problem, it must also be able to maintaiu such a set once it has been discovered.
The rest of this section describes experinlents carried out to show that the CFS-

C system can, with some modifications, both discover aim maintain solutions
to tasks that require coupled classifiers.

A series of experiments was carried out to deternfine if tile system could
maintain stable performance when it is started with classifiers that solve the

"yhwh" task. For each run, tile system was started with four copies of each of
the classifiers described earlier, along with 76 randomly generated classifiers.

1 the strength of the classifiers The initial strength of the random classifiers was

in the solution set. The GA and cover operators were applied to generate new

classifiers and replace others, while the BBA (modified as described earlier)
was used to allocate strength. The message list size was four. and the system
performance was tracked for 7000 steps.

After trying a number of tax rates, discovery operator application rates, and
so on, tile only way we found to consistently maintain a stable solution set was
to modify the system in three ways.

Limit the mazimum number of copies of each type of classifier Stage-setting
rules tend to have lower strengths than effector-activating classifiers because (a)
tax rates were greater than zero and (b) stage-setters sometimes are not paid
for producing messages (e.g., when tile classifiers they are coupled to do not will
the bidding competi t ion on the next step). With repeated applications of the
GA, offspring of higher strength effector-activating classifiers tend to spread

152 G. G. ROBERTSON AND R. L. RIOLO

through the population, replacing the lower strength stage-setting classifiers.
Multiple copies of classifiers all producing the same effector message make it
difficult for the lower strength stage-setters to win the bidding competition,
which in turn causes their strength to fall further. When the last copy of a
stage-setting classifier is lost, the coupled sequence is disrupted. To alleviate
this problem, the classifier replacement algorithm was changed so that when a
new classifier is generated, if the classifier list already contains a fixed number
of copies (e.g., two) of that classifier, the new classifier just replaces the copy
that has the lowest strength.

Reserve a portion of the message list for "internal memory" messages. Since
different classifiers can match the same messages and produce the same mes-
sages, after repeated applications of the GA the populations were found to
contain many copies of effector-activating classifiers that were not identical
but that behaved identically. This again kept the stage-setting classifiers from
winning the competition to post messages. To overcome this problem, the mes-
sage list size was increased so that a total of eight messages could be posted by
classifiers, but one-hMf of the message list was reserved for messages produced
by stage-setting classifiers.

Restrict application of the cwssover operator to co-bidding parents. The stan-
dard way to apply the GA in *CFS or CFS-C is to use strength as the measure
of a classifier's "fitness." Since any classifier might be mated with any other,
many offspring tend to be useless; e.g., when one parent responds to one sit-
uation and the other responds to a different situation, the offspring may not
match any situation. When a population contains stage-setting classifiers, the
offspring of crossovers between classifiers active at different steps often dis-
rupt the proper execution of coupled classifiers. Although the BBA generally
eliminates these problem classifiers after a few trials, the allocation of trials
to incorrect coupled classifiers also leads to a lowering of strength in the cor-
rectly coupled classifiers (e.g., when a stage-setter is not paid for a message
it produced because an incorrect classifier wins the competition.) To reduce
the production of problem-causing offspring, the GA was modified so that
classifier bids were used to pick parents. In effect this is a restricted mating

scheme (Booker, 1982) in which only classifiers that bid during the same step
are allowed to produce offspring modified by crossover.

After the CFS-C system was changed to include these modifications, stable
solutions to the "yhwh" task were maintained in the test runs. For a fairly
broad range of parameter settings (different taxes, GA rates, etc.), performance
remained above 90%.

3.5.3 Experiments with coupled classifiers: Discovering chains

Next, experiments were run to determine whether or not CFS-C could dis-
cover a solution to the "yhwh" task when started with a random set of 100
classifiers, with a window size of one. Figure 6 shows the average performance
for two sets of runs. In one set, only the cover operators and the GA were used
to generate new classifiers. In the other set, the triggered chaining operator

TWO CLASSIFIER SYSTEMS 153

I 0 0 ~ I I J

I o 2o~-

0 J , , i I i J i A I i i i , I i i , J

0 1 7 5 0 8 5 0 0 5 2 5 0

Number of Steps

Figure 6. Learning the letter sequence "yhwh" over 7000 steps. The upper curve is

with the triggered chaining operator and tile lower curve is without this
operator.

(or TCO) was also applied once every ten steps. All other parameters were

the same.

The TCO significantly improves learning in this task domain. The aver-

age performance in the last 1750 steps without the TCO was 62.4 (standard
deviation 14), whereas with the TCO it was 88.5 (standard deviation 9). With-

out the TCO, seven runs reached a performance of about 75% whereas three

reached about 50%. With the TCO, all runs had a performance greater than

7370; six were greater than 9270 and two greater than 8370. Examination con-
firmed that coupled classifiers were created in the eight runs with the TCO
that obtained prediction rates greater than 80%.

The ten runs using the TCO were repeated without reserving a portion of

the message list for internal memory messages. For these runs, the average
performance was 67.1%; in only three runs did chains evolve and become es-

tablished. Thus, reserving a portion of the message list for internal memory
messages dramatically improves the ability of CFS-C to evolve and maintain

solutions that require coupled classifiers.

Table 1 shows the results of limiting the number of duplicate classifiers to
different maximum copies. Although the high variance across runs makes it

impossible to reach a definite conclusion, these results suggest that limiting
the number of duplicate classifiers to two or four may be best for promoting
the discovery and maintenance of coupled classifiers.

As a further test of the modified CFS-C system, it was run on a subset of the
"mississippi" sequence, "mississi," which requires the use of coupled classifiers
to solve the problem even when the window has length four. Figure 7 shows
the learning curves that result when only the CA and CDO/CEO are used, as
well as when these were combined with the TCO. Each run was continued for
16,000 steps, s tar t ing with 200 random classifiers, and each curve is an average
of five runs.

154 G. G. ROBERTSON AND R. L. RIOLO

Table 1. Effects of limiting duplicate classifiers.

MAXIMUM PERFORMANCE NUMBER OF RUNS

COPIES (% CORRECT) WITH CHAINS

62.1

88.5
83.2
80.2

The TCO leads to slightly improved learning and performance for the "mis-
sissi" task. The average performance without the TCO was 61.5% (standard
deviation 7), whereas the average with the TCO was 71.8 (standard deviation
5). Although examination of the classifiers did show the existence of coupled
classifiers in the TCO runs, those classifiers did not solve the difficult part of
the task, namely what to predict when the most recent letters are "issi." From
tile experiments carried out so far, it is not clear why the system was not able
to solve this problem. Perhaps longer runs or runs with more classifiers are
required. It also seems likely that the existence of both repeating letters and
overlapping ambiguous sequences makes this an especially difficult problem.

Ill summary, the experiments show that classifier systems Call learn to per-
form simple tasks that require formation of sequences of coupled classifiers, and
that this can be accomplished using the TCO in addition to the GA and other
discovery algorithms. However, even when using the TCO, coupled classifiers
were not always created, and in more difficult tasks this method did not lead
to the classifiers necessary to solve the task. More research will be necessary
to determine how to form coupled classifiers more consistently.

In our tests, we made a number of changes to CFS-C in order to facilitate
maintenance of classifiers chains. Although some of these changes were rather
heavy-handed ways to limit the dominance of the classifier and message lists
by higher strength effector-activating classifiers, it may be possible to use more
dynamic methods to achieve the same ends. For example, "reward sharing"
(Booker, 1982; Wilson, 1985) and "crowding" schemes (Booker, 1982; De Jong,
1975) may accomplish tile same effects.

3.6 Convergence and representation

Classifier systems converge on a useful set of classifiers after some number
of task examples. In other words, after the classifiers are evolved to handle
portions of the task, they begin to replicate in the population. As this process
takes place, alleles are lost, some loci become fixed on one allele, and crossover
becomes less effective because its search space is reduced. With a population
that has totally converged on a single classifier type, crossover has no effect at
all. The rate of convergence is not well understood, even though premature
convergence has long been known to be a major problem with GA (De Jong,
1975). In addition to inhibiting crossover, premature convergence leads to
ineffective use of the limited message list; multiple copies of the same classifier

T W O C L A S S I F I E R S Y S T E M S 155

~oo~

90 l 70
60

cq so i1)

~) 4o
.1. .*

c a o
d)
o 20

a) 10 a_

0
0

J i i ~ I i i t i I i ~ i i I i i J i

4 0 0 0 8 0 0 0 1 2 0 0 0

Number of Steps

Fig~1re 7. Learning the letter sequence "mississi" over 16000 steps. The upper curve

is with the triggered chaining operator and tile lower curve is without this

operator.

fill the message list and prevent other classifiers from expressing ttmmselves.

Premature convergence is analogous to getting t rapped in a local maximum in
hill clilnbing. Both mutat ion and tile cover effector operator help avoid local
maxima, and thus decrease the chance of premature convergence.

In order to understand the effects of convergence rate, we have developed an

approximate hyperplane convergence measure for classifier systems. There are
two major problems associated with developing this measure. First, wildcards

in classifiers make it impossible to do a static analysis of hyperplane conver-

gence. In order to correctly account for each wihtcard allele, a convergence

measure must know what messages were available to match that allele at that

instant in time. This kind of dynamic analysis is too computationally expen-
sive to allow continuous monitoring of convergence. To avoid this problem, our

measure is static and ignores wildcards; thus it only approximates tile actual
hyperplane convergence of the population.

The second problem involves tile lack of explicitly identified species in tile

population. A correct measure of hyI)erplane convergence would be relative to
a species, but lacking information about species, our hyperplane convergence
measure holds across tile entire population. Tile formula is

@ I x 0 , - :vl, I
C =

m"/2_.i=1 (N0, + N1,)'

where m is the number of loci in the whole classifier. N0, is tile number of
0 alleles at locus i, and N1, is the number of 1 alleles at locus i. (7, ranges
between zero for total divergence and one for total convergence.

Figure 8 shows tile behavior of this aI)proximate measure of hyperplane
convergence. Tile lowest curve is for a random population with only cow, r
operators; it s tarts with nearly total divergence and remains that way. The

156 G, G. ROBERTSON AND R. L. RIOLO

1.0

0.9

0.8

(D 0.7

~_ 0.6

8 0.5

0,4

:i

: ' ' ' ' I ' ' ' ' I '

I I 1

I 500 1000 1500

N u m b e r o f Steps

Figure 8. Examples of convergence. The lowest curve is for a random population
with only cover operators, the middle curve is for a random population
with both discovery mechanisms, the upper curve is for an identical initial
population with both mechanisms.

middle curve is for a random population with both GA and CDO/CEO; it
starts diverged and converges to about 0.68 after 1000 cycles. The highest
curve is for a population of identical classifiers with both mechanisms; it starts
essentially converged (not totally, because we are ignoring wildcards) and di-
verges to approximately the same C level as the middle curve,

Wily is an effective convergence measure so important? First, looking at
the empirical behavior of a convergence measure over time may aid in the
development of a theory of convergence. The second reason relates to im-
proving the efficacy of task representations. For example, one can learn the
"abed" sequence using only two bits for the letter representation instead of
five. Figure 9 illustrates the gain if one uses the simpler representation on this
particular problem. The upper curve shows the learning behavior using two
bits to represent letters, whereas the lower curve shows the behavior using five
bits. Learning is about twice as fast when the more appropriate representa-
tion is used. However, there is no a priori way of knowing which particular
problems from the task domain will be encountered.

Shaefer's (1987) ARGOT suggests one approach to solving this problem. The
system adapts its representation during learning in order to seek the most
effective encoding. ARGOT uses a convergence measure to control the shrinkage
and growth of its representation. However, this approach has so far only
been applied to pure genetic algorithms. In order to introduce an ARGOT-like
mechanism into classifier systems, we must promote speciation and find an
effective convergence measure. The resulting system could then take advantage
of convergence and could improve its problem representation in the process of
learning.

T W O C L A S S I F I E R S Y S T E M S 157

100

goi

8oi

50

40

30 ~

£ 2o I

O_ 10

0
0

' , ' " , ' " , - - - - j , , . . , , • , j , , , ,

250 500 750

Number of Steps

Figure 9. Learning the letter sequence "abcd" over 1000 steps. The lower curve is
for a nine-bit message representation and the upper curve is for a six-bit
representation.

4. Summary

Classifier systems are a promising approach to developing machines that can
learn. Two general-purpose classifier systems, CFS-C and *CFS, have been im-
plemented and validated against each other using a letter sequence prediction
task. The inherent parallelism of classifier systems and genetic algorithms has
been realized and demonstrated on a massively parallel computer with *CFS.
The speed of this system is independent of the classifier population size, al-
lowing exploration of larger task domains than have previously been practical.

We have examined several known problems with classifier systems. On the
issue of population size, we found evidence that increasing population size
increases learning, contrary to existing theory. On the issue of GA impact on
classifier systems, we found evidence that a random walk through part of the
solution space dominates GA for simple problems but that, in general, both
mechanisms together work far better than either in isolation. On the issue
of sequences of rules, there has been a long-standing concern because rule
chains almost never evolve naturally in classifier systems. We found evidence
that a triggered chaining operator introduces such chains and that the bucket
brigade algorithm preserves them. We have also demonstrated an approximate
hyperplane convergence measure, but a more precise measure is needed. With a
good convergence measure, we could introduce ARGOT-like mechanisms, which
appear to offer significant advantages.

In addition, we need simpler mechanisms for controlling overgeneralization.
The tax system helps control overgeneralization, but it is complex and causes
other problems. For example, the head tax has a deleterious effect over the
long term if the environment is changing. An alternative way to eliminate non-
participatory classifiers would be to change the replacement selection algorithm
from selection based on fitness to a 'least recently used' algorithm.

158 G. G. ROBERTSON AND R. L. RIOLO

Much work remains in both the theory and practice of classifier systems
before we can fully realize their potential. The encouraging sign is that no
fundamental problems have been found and proposed solutions are being in-
vestigated for each of the problems we have described.

Acknowledgements

This work was supported in part by Grant IRI 86-10225 from the National
Science Foundation. We would like to thank John Holland and Arthur Burks
for support of this work in general and in particular for travel funds that they
provided, Stewart Wilson for his suggestions of alternative mechanisms, and
Craig Shaefer and Steve Smith for their insights on hyperplane convergence
measures and the application of ARGOT to classifier systems. We would also
like to thank Bob Axelrod, Michael Cohen, Dave Davis, Danny Hillis, Jill
Mesirov, Carl Simon, Michael Savageau, Dave Waltz, and the editors, David
Goldberg, John Holland, and Pat Langley, for their helpful comments and
suggestions.

References

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment.

Doctoral dissertation, Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor.

Booker, L. B., Goldberg, D. E., & Holland, J. H. (in press). Classifier systems and
genetic algorithms. Artificial Intelligence.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive

systems. Doctoral dissertation, Department of Computer and Communication
Sciences, University of Michigan, Ann Arbor.

De Jong, K. A. (1988). Learning with genetic algorithms: An overview. Machine

Learning, 3, 121-138.

Goldberg, D. E. (1985). Optimal initial population size for binary-coded genetic

algorithms (TCGA Report No. 85001). ~lscaloosa: University of Alabama,
The Clearinghouse for Genetic Algorithms.

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for
multimodal function optimization. Genetic Algorithms and Their Applications:

Proceedings of the Second International Conference on Genetic Algorithms (pp.
41 -49). Cambridge, MA: Lawrence Erlbamn.

Hillis, W. D. (1985). The connection machine. Cambridge, MA: MIT Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI:
University of Michigan Press.

Holland, J. H. (1981). Genetic algorithms and adaptation (Technical Report No. 34).
Ann Arbor: University of Michigan, Department of Computer and Communi-
cation Sciences.

Holland, J. H. (1985a). Properties of the bucket brigade algorithm. Proceeding~ of the

First International Conference on Genetic Algorithms and Their Applications

(pp. 1 7). Pittsburgh. PA: Lawrence Erlbaum

TWO CLASSIFIER SYSTEMS 159

Holland, J. H. (1985b). A mathematical framework for studying learning in classifier

systems (Research Memo RIS No. 25). Cambridge, MA: Rowland Institute for

Science.

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In R. S. Michal-
ski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial

intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Holland, J. H., & Burks, A. W. (1987). Adaptive computing system capable of learning

and discovery. United States patent application.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction:

Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.

Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algo-
rithms. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern-directed inference

systems. New York: Academic Press.

Riolo, R. L. (1986a). CFS-C: A package of domain independent subroutines for im-

plementing classifier systems in arbitrary, user-defined enviwnments (Technical
Report). Ann Arbor: University of Michigan, Division of Computer Science and

Engineering, Logic of Computers Group.

Riolo, R. L. (1986b). LETSEQ: An implementation of the CFS-C classifier system

in a task domain that involves learning to predict letter sequences (Technical
Report). Ann Arbor: University of Michigan, Division of Computer Science
and Engineering, Logic of Computers Group.

Riolo, R. L. (1987a). Bucket brigade performance: I. Long sequences of classifiers.
Genetic Algorithms and Their Applications: Proceedings of the Second Inter-

national Conference on Genetic Algorithms (pp. 184 195). Cambridge, MA:
Lawrence Erlbaum.

Riolo, R. L. (1987b). Bucket brigade performance: II. Default hierarchies. Genetic

Algorithms and Their Applications: Proceedings of the Second International

Conference on Genetic Algorithms (pp. 196-201). Cambridge, MA: Lawrence
Erlbaum.

Robertson, G. G. (1987). Parallel implementation of genetic algorithms in a classifier
system. In L. Davis (Ed.), Genetic algorithms and simulated annealing. London:
Pitman Press.

Robertson, G. G., & Riolo, R. L. (1987). A tale of two classifier systems (Technical
Report RL87-6). Cambridge, MA: Thinking Machines Corporation.

Shaefer, C. G. (1987). The ARGOT strategy: Adaptive representation genetic op-
timizer technique. Genetic Algorithms and Their Applications: Proceedings of

the Second International Conference on Genetic Algorithms (pp. 50 58). Cam-
bridge, MA: Lawrence Erlbaum.

Wilson, S. W. (1985). Knowledge growth in an artificial animal. Proceedings of the

First International Conference on Genetic Algorithms and Their Applications

(pp. 16 23). Pittsburgh, PA: Lawrence Erlbaum.

Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning,
2, 199 228.

