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Abst rac t .  This paper describes two classifier systems that learn. These are rule- 
based systems that use genetic algorithms, which are based on an analogy with nat- 
ural selection and genetics, as their principal learning mechanism, and an economic 
model as their principal mechanism for apportioning credit. CFS-C is a domain- 
independent learning system that has been widely tested on serial computers. *CFS 
is a parallel implementation of CFS-C that makes full use of the inherent paral- 
lelism of classifier systems and genetic algorithms, and that allows the exploration of 
large-scale tasks that were formerly impractical. As with other approaches to learn- 
ing, classifier systems in their current form work well for moderately-sized tasks but 
break down for larger tasks. In order to shed light on this issue, we present several 
empirical studies of known issues in classifier systems, including the effects of pop- 
ulation size, the actual contribution of genetic algorithms, the use of rule chaining 
in solving higher-order tasks, and issues of task representation and dynamic popu- 
lation convergence. We conclude with a discussion of some major unresolved issues 
in learning classifier systems and some possible approaches to making them more 
effective on complex tasks. 

1. Introduct ion  

Learning classifier systems acquire rules, called classifiers, to perform some 

specified task (Holland, 1986; Holland & Burks, 1987; Holland & Reitman, 

1978). The task is specified by a set of examples presented to the system and 

an evaluation function that determines how well the system is performing tile 

task. The evaluation function provides sparse reinforcement (a scalar reward 

or punishment) rather than providing correct answers. Rules are message- 

oriented, taking messages as inputs and producing as outputs new messages 

that perform the task and control the sequence of rule activation. Each rule 

*Author's current address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road, 
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has an associated strength that indicates its effectiveness in performing the de- 
sired task. In classifier systems, apportionment of credit is done by the bucket 
brigade, an algorithm for adjusting rule strengths based on an analogy with 
a service economy (Holland, 1985a). New rules are created by a genetic algo- 
rithm (Holland, 1975), which is based on an analogy with genetics and natural 
selection. Most components of such systems, including rule and message man- 
agement, strength adjustment, and the learning mechanisms, are inherently 
parallel. 

]'his paper focuses on experimental results obtained with two particular 
learning classifier systems, CFS-C and *CFS. The first part of the paper de- 
scribes the differences between these systems and the standard model of learn- 
ing classifier systems. The second part illustrates the current state of classifier 
systems and genetic algorithms by discussing several empirical studies of the 
behavior of these two systems. These studies examine some known problems 
with the classifier system paradigm. The first study examines the issue of pop- 
ulation size. The second explores the actual contribution of genetic algorithms 
to the system's learning behavior. The third study focuses on chains of rules, 
which are necessary to solve higher-order tasks. The final study deals with 
representational issues and the convergence of the population over time. 

In general, like other approaches to machine learning, existing classifier sys- 
tems behave well on simple and moderately-sized tasks, but they break down 
on larger, more complex tasks. However, no fundamental barriers have yet 
been encountered while moving toward these larger tasks. The studies and 
discussion in this paper illustrate the current limits of classifier systems, but 
they also suggest modifications that may make them more effective on complex 
tasks. 

2. T w o  l e a r n i n g  c l a s s i f i e r  s y s t e m s  

All of the experiments described in this paper were carried out on two classi- 
fier systems, CFS-C and *CFS. CFS-C is implemented in the C programnfing 
language and runs on a number of serial computers (Riolo, 1986a). *CFS is a 
parallel implementation of CFS-C on the Connection Machine (Hillis, 1985), 
a massively parallel computer with 65,536 processors, with one classifier as- 
signed to each processor. The *CFS implementation, described in Robertson 
(1987), demonstrates that most aspects of learning classifier systems can be 
implemented in parallel. Both systems follow the standard Michigan Approach 
(developed by John Holland and his associates at University of Michigan) to 
classifier systems (De Jong, 1988; Holland, 1986). Although CFS-C and *CFS 
differ in minor ways, they both contain the same major features, which has 
made it possible to run many of the experiments reported in this paper on both 
systems. These two systems co-evolved, and were validated against each other 
before conducting the studies reported here (Robertson & Riolo, 1987). The 
rest of this section briefly describes the major features of CFS-C and *CFS, 
with emphasis on differences from the standard framework. For more details, 
see Robertson and Riolo (1987). 
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2.1 T h e  interface to the  e n v i r o n m e n t  

In order to define a task domain for CFS-C and *CFS, we supply detectors 
to encode the external environment, effectors to manipulate the environment, 
and an evaluation function to measure how effectively the system is perform- 
ing. Detectors produce messages that are placed on a message list along with 
messages produced during the previous step. Effectors interpret some messages 
produced by classifiers as instructions about how to manipulate the environ- 
meat. The results of effector actions are judged by the evaluation function, 

which returns a single payoff value as feedback for each cycle. 

2.2 Classifiers and messages  

Messages in CFS-C and *CFS are fixed-length binary strings. The conditions 
and action of each classifier are ternary strings (over {0, 1, # } )  of the same 
length as messages. Although in general a classifier is a rule with one action 
and an arbitrary number of conditions, both CFS-C and *CFS simplify this 
to two conditions and one action. This can be done without loss of generality, 
provided chains of rules can be formed and maintained. 

A classifier is matched when both conditions are satisfied. If the second 
condition is negated, it is satisfied if no message matches it. Matched classifiers 
compete by bidding to post messages to a fixed-size message list, and those 
that win the (probabilistic) competition produce new messages using the "pass 
through" operator. A classifier's bid is proportional to its strength times its 
specificity (more specific rules bid more). 

2.3 C r e d i t  a s s i g n m e n t  a l g o r i t h m s  

In both CFS-C and *CFS, strength is primarily allocated by the bucket 
brigade algorithm (BBA). The basis for the BBA is feedback from the envi- 
ronment: all classifiers that  post messages during a given step have the payoff 
from the environment added to their strength. The BBA also redistributes 
strength from classifiers to other classifiers, as each classifier that posts mes- 
sages pays the amount it bid to the classifiers that  made it possible for it to 
become active. Riolo (1987a, 1987b) discusses some of the issues involved in 
making tile BBA effective. 

In addition to the BBA, CFS-C and *CFS also apply head, bid, and producer 
taxes to adjust classifier strengths. The head tax is generally a low fixed-rate 
tax applied to every classifier on every step. The head tax is necessary to 
reduce the strength of classifiers that  are never activated (and therefore never 
affected by the BBA) so that they will eventually be replaced. The bid tax 
is a low fixed-rate tax applied to every classifier that  bids, and the producer 
tax is a progressive tax that increases with the number of messages posted by 
a classifier during a given step. The main purpose of the bid and producer 
taxes is to control overgeneralization, by taking strength away from general 
classifiers that tend to bid too often or produce too many messages. 
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2.4 Rule discovery heuristics 

CFS-C and *CFS employ three heuristic procedures to create new rules: 
(1) a genetic algorithm; (2) cover detector and cover effector operators, which 
force the system to be more responsive to its environment; and (3) a triggered 
chaining operator, which introduces fragments of rule chains into the system. 

Genetic algorithm. CFS-C and *CFS employ a standard genetic algorithm 
(GA) using the crossover and mutation operators. The fitness measure is 
strength: when the GA is applied (usually once every 10-20 steps), a small 
fraction of the high-strength classifiers are chosen to produce offspring and an 
equal number of low-strength classifiers are replaced. Crossover is applied to 
some of the new offspring by treating the entire classifier as a chromosome and 

carrying out either a single or a double crossover. The mutation operator is 
then applied to a small flaction of the new classifiers. 

Cover detector and cover effector operators. When a classifier system is un- 
responsive to the environment (i.e., its classifiers fail to match any detector 
messages or to activate any effectors), the BBA will have nothing to work with 
and the classifier strengths will convey no useful information to the GA. To 

overcome this problem, CFS-C and *CFS employ the two additional operators. 
The cover detector operator (CDO) (Holland & Reitman, 1978; Wilson, 1985), 
triggered when a detector message is not matched by any classifier, responds 
by creating a classifier that matches the detector message and has a random 
action. The cover effector operator (CEO), triggered when no effector is acti- 
vated, copies a classifier that is responsive to the current situation and gives 
it a new, random action. 

Triggered chaining operator. A classifier C1 is said to be coupled to classifier 
C2 when a message produced by C1 satisfies some condition of C2. Sequences 
of coupled classifiers, sometimes called classifier chains, are necessary so that 
classifiers can be used to implement arbitrary networks and to perform ar- 
bitrary computations (Holland, 1986). For example, chains are necessary to 
implement a short-term memory, so that classifier systems can perform actions 
that  are not entirely determined directly by messages from the environment 
(Booker, Goldberg, &: Holland, in press). 

Although the BBA has been demonstrated to properly allocate strength to 
classifier chains (Riolo, 1987b), in practice such chains are very rarely created 
by the GA. Therefore the triggered chaining operator (TCO), suggested by 
Holland, Holyoak, Nisbett, and Thagard (1986), was added to CFS-C and 
*CF$. The basic purpose of this operator is to create a pair of coupled rules 
that reflect an initially accidental activation of one rule after another. Like all 
classifiers, the coupled pairs produced by the TCO are evaluated and assigned 
credit (or blame) by the BBA. If the coupled rules improve performance (and so 
gain strength), they serve as building blocks for longer chains and other more 
complicated structures. If the coupled rules do not improve performance, they 
lose strength and are replaced. 

In order to bias the production of coupled classifiers toward plausibly useflfl 
chains, the TCO is activated only when two conditions are met: (a) a classifier 
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C2 makes a profit, and (b) there was a classifier C1 active just prior to classifier 
C2 that is not already coupled to C2. We define the profit, Pi ( t -1 ) ,  of classifier 
i at step t - 1 as tile reward it received at t - 1 less the bid it paid at t - 1, 
plus the amount paid to it by other classifiers active at step t. 

For example, consider the following two classifiers, A and B, active at steps 

t - 2 and t - 1, respectively: 

(t - 2) : A = aaaa, aaaa/xxxx 
(t - 1) : B -- bbbb, bbbb/yyyy. 

If PB(t - 1) > 0 and if A and B are not already coupled, then the TCO would 
produce the following new classifiers: 

A' = aaaa, aaaa /mmmm 

B' = bbbb, m m m m / y y y y ,  

where lll~ttIlt~Tt is a random string with no predefined meaning. The result is 
a pair of coupled classifiers constructed so that if the conditions that caused 

A to fire are again encountered, A ~ also fires and produces a message m m m m ,  
which may cause classifier B' to fire on the next step, which in turn produces 
a message yyyy that was associated with making a profit. If yyyy does indeed 
consistently lead to profit, the BBA will allocate strength to the coupled rules 
and they will survive and act as building blocks for longer chains. 

3. E m p i r i c a l  s t u d i e s  o f  c lassi f ier  s y s t e m s  

Genetic algorithms have been studied for the last twenty-five years, and they 
have been examined in the context of classifier systems for the last ten years. 
Although some substantial theory has been developed for pure GA (Goldberg, 
1985; Holland, 1975), less has been developed for classifier systems (Holland, 
1985a~ 1985b~ Wilson~ 1987). The empirical studies we report here explore 
some areas that currently lack a strong theoretical foundation: the effects 
of population size, the effectiveness of GA in systems that do not promote 
speciation, the mechanisms necessary for effective rule chaining, and issues of 
convergence and representation. 

3.1 The task of letter sequence prediction 

The primary task domain we have used for tuning and analyzing both CFS- 
C and *CFS is letter sequence prediction (Riolo, 1986b). A sequence of letters 
of any length is chosen and presented repetitively to the system. The sequence 
is viewed by the system through a fixed-sized window, which is four letters 
for most of the studies reported here. That  is, as the system moves through 
the sequence of letters, it views the current letter and the three previous let- 
ters, from which it must guess tile next letter in the sequence. This task is 
represented with nine-bit messages, which use five bits to represent a letter 
and four bits to indicate the type of the message (i.e., one of four detectors, a 
prediction, or a rule chain message). 

Although this task domain may at first appear to be trivial, note that the 
system has no a priori knowledge of letters, their relationships, or the notion 
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Figure 1. Learning the letter sequence "abed" over 2000 steps. Population sizes are 
50 (lowest curve), 500 (middle), and 8000 (upper). 

of sequence. To illustrate the difficulty of this task, consider the size of the 

solution space (i.e., the number of possible classifiers) that  must be searched. 
Since each locus can contain one of three alleles and the second condition may 
be negated, the number of possible classifiers for l loci is N = 31 x 2. For these 
problems, l = 27, hence N is approximately 1.5 x 1053. Of course, many of these 

classifiers are phenotypically alike (i.e., they respond to the same situation in 
the same way), but  the search space is still quite large. 

3.2 Experimental procedures 

Both CFS-C and *CFS are stochastic and use pseudo-random number gen- 
erators in numerous places, which results in significant variance from one in- 
dividual run to another. De .long (1975) reports similar observations, and 
suggests averaging the results of a minimum of five runs for each experiment. 
We average ten runs in the results reported here. The figures shown in the 
following sections are comparisons of smoothed learning curves. Each point 
represents the average percentage of correct answers over the last fifty cycles, 

averaged over ten trials for each curve. 

3.3 T h e  e f fec t  o f  p o p u l a t i o n  size 

For serial implementations of classifier systems, population size directly af- 
fects the speed of the system; computational cost is proportional to the prod- 
uct of the average message-list size and the population size. However, classifier 
systems are inherently parallel, and *CFS demonstrates that the speed of the 
system can be independent of population size in a parallel implementation. 
Until recently, researchers believed that the larger the population, the better. 
However, Goldberg (1985) has theorized that  there is an optimal population 
size for pure GA. If the population is too small, the system converges too 
quickly and does not process enough schemata. If the population is too large, 
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Figure 2. Learning the alphabet over 10000 steps. Population sizes are 50 (lowest 
curve), 500 (middle), and 8000 (upper). 

the waiting times for effective crossovers are too long and there is insufficient 
juxtaposition of building blocks prior to convergence. Goldberg's theory is 
based on counting unique expected schemata derived from strings of a given 
length and populations of a given size. It is not clear that Goldberg's theory 
can be directly applied to classifier systems, because such systems work on 
several problems at once and because their discovery algorithms include more 
than GA. To the extent that we can apply Goldberg's theory, the empirical 
results that we see tend to contradict the theory. 

The task of letter sequence prediction uses nine-bit messages; with two con- 
ditions and an action, the chromosome used in the GA contains 27 bits. Ac- 
cording to Goldberg's theory, the optimal population size for a string length 
of 27 is 77. However, the theory does not account for subproblems that must 
be solved. In this task domain, there are as many subproblems as there are 
letters in the sequence being predicted. If we assume independence of the 
classifiers working on each subproblem, then the optimal population size for 
"abed" should be 308 classifiers, for "mississippi" it should be 847, and for the 
alphabet it should be 2002. If they are not independent (which is very likely 
the case), the optimal size should be smaller. 

Figure 1 shows the results for "abed," which indicate that performance con- 
tinues to increase as population size increases well past the theoretical optimum 
size of 308. Larger populations lead to faster learning and ultimately to better 
performance. The same results were seen for "mississippi," a problem with 
some ambiguity. Figure 2 shows the same results for the alphabet, a longer 
problem. 

These results are based on using CA, as well as the cover detector and cover 
effeetor operators (CDO/CEO). However, Figure 3 shows the learning behavior 
of GA alone on the alphabet. As with the other results, performance increases 
as population size increases, well past the theoretical optimum of 2002. This 
appears ta directly contradict Coldberg's theory of optimal population size. 
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Figure 3. Learning the alphabet over 10000 steps, only using GA. Population sizes 
are 500 (lowest curve), 2000 (middle), and 8000 (upper). 

In reviewing these results, Goldberg has suggested modifying his theory 
to allow multiple nonoverlapping populations each handling some different 
"concept" and to require k copies of some good schema (not the one copy 
he assumed in his original work). With these modifications, our results tend 
to support his basic contention that there is a flmdamental tradeoff between 
having a copy of a schema of a particular length and having to generate that 
schema some time later. 

To summarize, the theory of population size developed for pure GA does not 
apply directly to classifier systems. It must be modified to take into account 
the multiple subproblems being worked on and their interactions. It must also 
be modified to deal with the effects of other discovery heuristics (particularly 
CDO and CEO) on the GA. Our empirical results indicate that increasing 
population size increases performance, although with diminishing marginal 
returns after some point. 

3.4 The  cont r ibu t ion  of  genetic a lgor i thms 

As can be seen by comparing Figures 2 and 3, the genetic algorithm alone 
does not contribute as much to the system's learning behavior as one might 
expect. In particular, using a population of 8000 classifiers on the alphabet 
task, the system achieves a performance of over 90% when the cover detector, 
cover effector, and GA are all used, but it reaches only about 30% performance 
when the GA is used in isolation. 

In order to separate the effects of GA fi'om those of the cover operators 
(CDO/CEO), we ran a series of experiments with one or the other mechanism 
disabled. Figure 4 shows the results for a population of 8000 on the sequence 
"abed." Similar curves were seen for the "mississippi" task, and Figure 5 shows 
the results for the alphabet task. 
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Figure 4. Learning the letter sequence "abcd." The lowest curve is for GA only, the 
middle is for cover operators only, and the upper is for both mechanisms. 

For each task the system does best when both the CDO/CEO and CA are 
used together. Also, the combination CDO/CEO does better than the GA on 
each task, even though the former involves a random walk through a portion 
of the solution space. For the easiest ("abed") task, CDO/CEO does almost 
as well as using both CDO/CEO and GA, whereas for the harder alphabet 
problem, CDO/CEO does noticeably worse than when both mechanisms are 
used. On the other hand, GA in isolation leads to about the same or slightly 
better  performance on the harder tasks than it does on the easy task. What 
(:an account for these results? Our hypothesis consists of three parts: 

1. Using GA alone, the system rapidly reaches a plateau at a relatively low 
performance level because it prematurely converges (Booker, 1982; De 
Jong, 1975) to a population with many copies of just a few kinds of clas- 
sifters. Once converged, the crossover operator is no longer effective~ so 
learning stops. 

2. The cover operators act to enrich the gene pool for the GA, so that the 
crossover operator again can carry out an efficient search. Thus when 

CDO/CEO and GA are used together, the system performs best. 

3. The system can improve its performance using just CDO/CEO because 
the tasks are relatively easy. For the "abcd" task, CDO/CEO alone can 
do quite well, but for the two harder tasks, CDO/CEO does much worse 
than the CDO/CEO and GA together, and it does only somewhat better 
than GA alone. 

To test this hypothesis, we ran a series of experiments to test the effects of 
convergence on performance. An initial population was constructed by gener- 
ating one random classifier and then making 7999 copies of it. This artificial 
situation represents the ultimate converged population. If our hypothesis were 
true, we would expect the following: 
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Figure 5. Learning the alphabet. The lowest curve is for GA only, the middle is for 
cover operators only, and the upper is for both mechanisms. 

1. The system should perform poorly when only GA is used, since there is 
no variance in the population for the crossover operator to exploit. 

2. Using just CDO/CEO, the system should perform about the same when 
started with the fully converged population as it does when started witil 
a random initial population, since CDO/CEO does not make use of the 
variance in a population. 

3. Using both CDO/CEO and GA, the system should be able to learn start- 
ing from a converged population, though perhaps not as well as it does 
when started with a random initial population. The GA can begin to 
contribute to the learning only after CDO/CEO injects variance into the 
gene pool. 

In fact our results were somewhat mixed. The first two predictions were con- 
firmed for all three tasks ("abed," "mississippi," and the alphabet). The third 
prediction was only partially confirmed. This suggests that the convergence 
hypothesis depends in some way on the complexity of the task and does not 
hold for all cases. 

In addition to premature convergence, another factor that may influence the 
amount of learning contributed by GA is task representation, and one impor- 
tant aspect of representation involves the choice of an evaluation function. One 
evaluation function we tried for the letter sequence prediction domain payed 
a fixed reward (positive payoff) for a correct prediction and a fixed punish- 
ment (negative payoff) for any other answer. With this evaluation function 
the search space is mostly flat and negative, with just a few positive spikes 
or mesas for correct rules. This type of search space is not easily searched by 
the GA (or any algorithm), since most instances provide no information about 
how close the rule is to a solution. 

In the experiments described in this paper, a partial payoff scheme was used 
in which the payoff increased for each bit of the prediction that  was correct and 
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there was no punishment (the payoff is zero) for getting all bits wrong. This 

evaluation function produces a space that has many hills and valleys, so that 
partial solutions can act as building blocks which the GA can combine to find 
complete solutions. Thus, selecting a good representation is the crucial first 
step toward making GA an effective learning mechanism for classifier systems. 

A third factor that can influence GA techniques is the evolution of species. 
Booker (1982) has shown that GA can perform better in classifier systems 
that must solve multiple subproblems when a restricted matin 9 rneehanisnl is 
used to promote and exploit the formation of "species" of classifiers. 1 The 
hypothesized reason for this behavior is that restricted mating improves the 
effectiveness of the crossover operator, since the offspring of a crossover between 
parents from two species is less likely to be a useful classifier. 

In the experiments described so far, nothing was clone to explicitly encour- 
age or discourage speciation, but there are several possible ways to promote 
it. One approach is to arbitrarily divide the population into several fixed-sized 
subpopulations, thus allowing the subpopulations to evolve in relative isola- 
tion. Although these subpopulations may find different niches and evolve into 
different species, there are no guarantees. Also, there is no a priori way of 
knowing how many species are required to solve a problem, hence there is no 

way of knowing how to initially subdivide the population. 

A second approach involves applying a sharing fimction to the fitness mea- 
sure. This technique identifies the local density of a species and adjusts fitness 
according to the number and closeness of its neighbors. This approach was sug- 
gested by Holland (1981) and Booker (1982), applied suceessflflly by Wilson 
(1985), and extended by Goldberg and Richardson (1987). A third approach, 
suggested by Booker (1982), biases parent selection toward classifiers that bid 
in response to the same messages. This approach seems to capture at least 
some of what happens in natural speciation. In the next section we describe 
some preliminary experiments that use this form of restricted mating to pro- 
mote speeiation in the context of tasks that require rule chains. 

In summary, our results indicate there is an interesting (but not fully un- 
derstood) synergy between GA and the cover operators that make them quite 
powerflfl when used together. Since these results may depend on the particn- 
lar task domain or representation, we believe similar empirical studies should 
be carried out in other domains, and that a theoretical foundation for the 
interaction of these mechanisms should be developed. 

3.5 Sequences of  coupled classifiers 

As described in Section 2.4, sequences of coupled classifiers, or classifier 

chains, are necessary to let classifier systems implement arbitrary networks 
and perform a variety of computations. In the context of letter sequence pre- 
diction, classifier chains provide a way to implement a short-term memory, 
which enables the system to make predictions not determined directly by de- 
tector messages. 

1A "species" in a classifier system may be thought  of a~s a set of classifiers that  all solve 

the same subproblem. 
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For example, consider the sequence "yhwh" when the system's window has 
a size of one. When the letter seen is an "h," the system cannot use just the 
detector message to predict the next letter, since sometimes the next letter 
is "y" and sometimes "w." To solve this problem, the system must include 
classifiers that implement a short-term memory. For instance, the following 
classifiers (in interpreted form) predict part of the "yhwh" sequence perfectly: 

[i] If Detect ( y ) then Predict ( h ). 

[2] If Detect ( y ) then Remember ( y ). 

[3] If Detect ( h ) and Remember ( y ) then Predict ( w ). 

When the current letter is "y," classifiers 1 and 2 both post messages: the 
message produced by classifier 1 activates the effeetor and the system predicts 
an "h," whereas that produced by classifier 2 is an "internal memory" message. 
On the next step, the message list contains a detector message that indicates 
the current letter ("h") and it contains the messages produced during the 
previous step. Classifier 3 is then activated by matching the detector message 
and the message posted by classifier 2. Thus, classifier 2 is coupled to classifier 
3, and this coupling lets the system correctly predict a "w" two steps after a 
"y." A sinfilar set of classifiers could be added to predict a "y" two steps after 

a "w." 

3.5.1 Problems with the bucket brigade algorithm 

In learning classifier systems, it is important that  credit (strength) be allo- 
cated to classifiers that lead to good performance by the system as a whole. 
In the context of sequences of coupled classifiers, this means that a classifier 
like tile second one in the above example, which "sets the stage" for a classifier 
that actually makes a prediction, must be given credit for enabling the system 
to make that prediction correctly. The bucket brigade algorithm (BBA) serves 
this function. 

One problem with tile BBA occurs when a sequence of coupled classifiers 
contains classifiers which have conditions that match messages produced by 
sources other than their predecessors in the sequence. In general, the strengths 
of the stage-setting classifiers will be much lower than those of effector-activat- 
ing classifiers (Riolo, 1987a). For example, in the set of classifiers described 
above, classifier 3 has one condition that matches a detector message and a 
second that matches the message produced by its predecessor, classifier 2. 
Using the standard BBA, the strength of classifier 2 will be one-half that 

1 for tile detector of classifier 3 (since 3 would pay ½ of its bid to 2 and 

message). Because the GA tends to replace low-strength classifiers, an uneven 
distribution of strength between classifiers in sequences means that  the stage- 
setting classifiers will tend to be eliminated. 

To avoid this problem, the BBA in CFS-C was altered so that when a classi- 
fier matches detector messages and messages produced by classifiers, the entire 
bid is paid to the classifiers and nothing is paid for the detector messages. How- 
ever, if a classifier uses only messages from detectors, that classifier's entire bid 
is paid for those messages. 
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A second problem with tile traditional BBA is the misallocation of credit 
to stage-setting classifiers that  are active when a payoff is received from the 

environment. Using the s tandard BBA, all classifiers that  are active when 

a reward is received from the environment have that reward added to their 
strength. For exanlple, when classifier 1 correctly predicts tile occurrence of 
all "h," both it and classifier 2 (which is active on the same step) would receive 
the reward for a correct prediction. Thus classifier 2 would receive credit for 
a prediction it did not make directly or indirectly. 

To avoid this problem, the BBA was modified so that  only those classifiers 
that  produce effector-activating messages receiw~ payoffs fl'om tile environment. 

Classifiers like nmnber 2 will only receive strength from their successors in a 

chain. 

A third problem results from tile application of taxes. Since taxes are applied 

to every classifier, tile strengths of classifiers ill a chain fall off exponentially 
as they are fllrther removed from tile payoffs earned by executing that  chain. 
For example, at a tax rate of 0.025, the fixed-point strength of a stage-setting 

classifier is only 80% that  of tile classifier it activates. For tile experiments 
described in this section, taxes were kept low (HeadTax = 0.001, BidTax = 

0.02, and ProdTax = 0.0125 for one message). 

3.5.2 Experiments with coupled classifiers: Maintaining chains 

For a classifier system to establish and maintain a stable solution to a task 

like that  of predicting the sequence "yhwh" using a window of size one, the 

system must not only be able to discover (create) a set of classifiers to solve the 

problem, it must also be able to maintaiu such a set once it has been discovered. 
The rest of this section describes experinlents carried out to show that  the CFS- 

C system can, with some modifications, both discover aim maintain solutions 
to tasks that  require coupled classifiers. 

A series of experiments was carried out to deternfine if tile system could 
maintain stable performance when it is started with classifiers that  solve the 

"yhwh" task. For each run, tile system was started with four copies of each of 
the classifiers described earlier, along with 76 randomly generated classifiers. 

1 the strength of the classifiers The initial strength of the random classifiers was 

in the solution set. The GA and cover operators were applied to generate new 

classifiers and replace others, while the BBA (modified as described earlier) 
was used to allocate strength. The message list size was four. and the system 
performance was tracked for 7000 steps. 

After trying a number of tax rates, discovery operator application rates, and 
so on, tile only way we found to consistently maintain a stable solution set was 
to modify the system in three ways. 

Limit the mazimum number of copies of each type of classifier Stage-setting 
rules tend to have lower strengths than effector-activating classifiers because (a) 
tax rates were greater than zero and (b) stage-setters sometimes are not paid 
for producing messages (e.g., when tile classifiers they are coupled to do not will 
the bidding competi t ion on the next step). With repeated applications of the 
GA, offspring of higher strength effector-activating classifiers tend to spread 
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through the population, replacing the lower strength stage-setting classifiers. 
Multiple copies of classifiers all producing the same effector message make it 
difficult for the lower strength stage-setters to win the bidding competition, 
which in turn causes their strength to fall further. When the last copy of a 
stage-setting classifier is lost, the coupled sequence is disrupted. To alleviate 
this problem, the classifier replacement algorithm was changed so that when a 
new classifier is generated, if the classifier list already contains a fixed number 
of copies (e.g., two) of that classifier, the new classifier just replaces the copy 
that has the lowest strength. 

Reserve a portion of the message list for "internal memory" messages. Since 
different classifiers can match the same messages and produce the same mes- 
sages, after repeated applications of the GA the populations were found to 
contain many copies of effector-activating classifiers that were not identical 
but that behaved identically. This again kept the stage-setting classifiers from 
winning the competition to post messages. To overcome this problem, the mes- 
sage list size was increased so that  a total of eight messages could be posted by 
classifiers, but one-hMf of the message list was reserved for messages produced 
by stage-setting classifiers. 

Restrict application of the cwssover operator to co-bidding parents. The stan- 
dard way to apply the GA in *CFS or CFS-C is to use strength as the measure 
of a classifier's "fitness." Since any classifier might be mated with any other, 
many offspring tend to be useless; e.g., when one parent responds to one sit- 
uation and the other responds to a different situation, the offspring may not 
match any situation. When a population contains stage-setting classifiers, the 
offspring of crossovers between classifiers active at different steps often dis- 
rupt the proper execution of coupled classifiers. Although the BBA generally 
eliminates these problem classifiers after a few trials, the allocation of trials 
to incorrect coupled classifiers also leads to a lowering of strength in the cor- 
rectly coupled classifiers (e.g., when a stage-setter is not paid for a message 
it produced because an incorrect classifier wins the competition.) To reduce 
the production of problem-causing offspring, the GA was modified so that 
classifier bids were used to pick parents. In effect this is a restricted mating 

scheme (Booker, 1982) in which only classifiers that bid during the same step 
are allowed to produce offspring modified by crossover. 

After the CFS-C system was changed to include these modifications, stable 
solutions to the "yhwh" task were maintained in the test runs. For a fairly 
broad range of parameter settings (different taxes, GA rates, etc.), performance 
remained above 90%. 

3.5.3 Experiments with coupled classifiers: Discovering chains 

Next, experiments were run to determine whether or not CFS-C could dis- 
cover a solution to the "yhwh" task when started with a random set of 100 
classifiers, with a window size of one. Figure 6 shows the average performance 
for two sets of runs. In one set, only the cover operators and the GA were used 
to generate new classifiers. In the other set, the triggered chaining operator 
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Figure 6. Learning the letter sequence "yhwh" over 7000 steps. The upper curve is 

with the triggered chaining operator and tile lower curve is without this 
operator. 

(or TCO)  was also applied once every ten steps. All other parameters  were 

the same. 

The TCO significantly improves learning in this task domain. The aver- 

age performance in the last 1750 steps without the TCO was 62.4 (standard 
deviation 14), whereas with the TCO it was 88.5 (standard deviation 9). With- 

out the TCO, seven runs reached a performance of about  75% whereas three 

reached about 50%. With the TCO, all runs had a performance greater than 

7370; six were greater than 9270 and two greater than 8370. Examination con- 
firmed that  coupled classifiers were created in the eight runs with the TCO 
that  obtained prediction rates greater than 80%. 

The ten runs using the TCO were repeated without reserving a portion of 

the message list for internal memory messages. For these runs, the average 
performance was 67.1%; in only three runs did chains evolve and become es- 

tablished. Thus, reserving a portion of the message list for internal memory 
messages dramatically improves the ability of CFS-C to evolve and maintain 

solutions that  require coupled classifiers. 

Table 1 shows the results of limiting the number of duplicate classifiers to 
different maximum copies. Although the high variance across runs makes it 

impossible to reach a definite conclusion, these results suggest that limiting 
the number of duplicate classifiers to two or four may be best for promoting 
the discovery and maintenance of coupled classifiers. 

As a further test of the modified CFS-C system, it was run on a subset of the 
"mississippi" sequence, "mississi," which requires the use of coupled classifiers 
to solve the problem even when the window has length four. Figure 7 shows 
the learning curves that  result when only the CA and CDO/CEO are used, as 
well as when these were combined with the TCO. Each run was continued for 
16,000 steps, s tar t ing with 200 random classifiers, and each curve is an average 
of five runs. 
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Table 1. Effects of limiting duplicate classifiers. 

MAXIMUM PERFORMANCE NUMBER OF RUNS 

COPIES (% CORRECT) WITH CHAINS 

62.1 

88.5 
83.2 
80.2 

The TCO leads to slightly improved learning and performance for the "mis- 
sissi" task. The average performance without the TCO was 61.5% (standard 
deviation 7), whereas the average with the TCO was 71.8 (standard deviation 
5). Although examination of the classifiers did show the existence of coupled 
classifiers in the TCO runs, those classifiers did not solve the difficult part of 
the task, namely what to predict when the most recent letters are "issi." From 
tile experiments carried out so far, it is not clear why the system was not able 
to solve this problem. Perhaps longer runs or runs with more classifiers are 
required. It also seems likely that the existence of both repeating letters and 
overlapping ambiguous sequences makes this an especially difficult problem. 

Ill summary, the experiments show that classifier systems Call learn to per- 
form simple tasks that require formation of sequences of coupled classifiers, and 
that this can be accomplished using the TCO in addition to the GA and other 
discovery algorithms. However, even when using the TCO, coupled classifiers 
were not always created, and in more difficult tasks this method did not lead 
to the classifiers necessary to solve the task. More research will be necessary 
to determine how to form coupled classifiers more consistently. 

In our tests, we made a number of changes to CFS-C in order to facilitate 
maintenance of classifiers chains. Although some of these changes were rather 
heavy-handed ways to limit the dominance of the classifier and message lists 
by higher strength effector-activating classifiers, it may be possible to use more 
dynamic methods to achieve the same ends. For example, "reward sharing" 
(Booker, 1982; Wilson, 1985) and "crowding" schemes (Booker, 1982; De Jong, 
1975) may accomplish tile same effects. 

3.6 Convergence and representation 

Classifier systems converge on a useful set of classifiers after some number 
of task examples. In other words, after the classifiers are evolved to handle 
portions of the task, they begin to replicate in the population. As this process 
takes place, alleles are lost, some loci become fixed on one allele, and crossover 
becomes less effective because its search space is reduced. With a population 
that has totally converged on a single classifier type, crossover has no effect at 
all. The rate of convergence is not well understood, even though premature 
convergence has long been known to be a major problem with GA (De Jong, 
1975). In addition to inhibiting crossover, premature convergence leads to 
ineffective use of the limited message list; multiple copies of the same classifier 
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Fig~1re 7. Learning the letter sequence "mississi" over 16000 steps. The upper curve 

is with the triggered chaining operator and tile lower curve is without this 

operator. 

fill the message list and prevent other classifiers from expressing ttmmselves. 

Premature  convergence is analogous to getting t rapped in a local maximum in 
hill clilnbing. Both mutat ion and tile cover effector operator help avoid local 
maxima, and thus decrease the chance of premature  convergence. 

In order to understand the effects of convergence rate, we have developed an 

approximate hyperplane convergence measure for classifier systems. There are 
two major  problems associated with developing this measure. First, wildcards 

in classifiers make it impossible to do a static analysis of hyperplane conver- 

gence. In order to correctly account for each wihtcard allele, a convergence 

measure must know what messages were available to match that allele at that  

instant in time. This kind of dynamic analysis is too computationally expen- 
sive to allow continuous monitoring of convergence. To avoid this problem, our 

measure is static and ignores wildcards; thus it only approximates tile actual 
hyperplane convergence of the population. 

The second problem involves tile lack of explicitly identified species in tile 

population. A correct measure of hyI)erplane convergence would be relative to 
a species, but lacking information about  species, our hyperplane convergence 
measure holds across tile entire population. Tile formula is 

@ I x 0 , -  :vl, I 
C =  

m"/2_.i=1 (N0, + N1, )' 

where m is the number of loci in the whole classifier. N0, is tile number of 
0 alleles at locus i, and N1, is the number of 1 alleles at locus i. (7, ranges 
between zero for total divergence and one for total convergence. 

Figure 8 shows tile behavior of this aI)proximate measure of hyperplane 
convergence. Tile lowest curve is for a random population with only cow, r 
operators; it s tarts  with nearly total divergence and remains that  way. The 
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Figure 8. Examples of convergence. The lowest curve is for a random population 
with only cover operators, the middle curve is for a random population 
with both discovery mechanisms, the upper curve is for an identical initial 
population with both mechanisms. 

middle curve is for a random population with both GA and CDO/CEO; it 
starts diverged and converges to about 0.68 after 1000 cycles. The highest 
curve is for a population of identical classifiers with both mechanisms; it starts 
essentially converged (not totally, because we are ignoring wildcards) and di- 
verges to approximately the same C level as the middle curve, 

Wily is an effective convergence measure so important? First, looking at 
the empirical behavior of a convergence measure over time may aid in the 
development of a theory of convergence. The second reason relates to im- 
proving the efficacy of task representations. For example, one can learn the 
"abed" sequence using only two bits for the letter representation instead of 
five. Figure 9 illustrates the gain if one uses the simpler representation on this 
particular problem. The upper curve shows the learning behavior using two 
bits to represent letters, whereas the lower curve shows the behavior using five 
bits. Learning is about twice as fast when the more appropriate representa- 
tion is used. However, there is no a priori way of knowing which particular 
problems from the task domain will be encountered. 

Shaefer's (1987) ARGOT suggests one approach to solving this problem. The 
system adapts its representation during learning in order to seek the most 
effective encoding. ARGOT uses a convergence measure to control the shrinkage 
and growth of its representation. However, this approach has so far only 
been applied to pure genetic algorithms. In order to introduce an ARGOT-like 
mechanism into classifier systems, we must promote speciation and find an 
effective convergence measure. The resulting system could then take advantage 
of convergence and could improve its problem representation in the process of 
learning. 
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Figure 9. Learning the letter sequence "abcd" over 1000 steps. The lower curve is 
for a nine-bit message representation and the upper curve is for a six-bit 
representation. 

4. Summary 

Classifier systems are a promising approach to developing machines that can 
learn. Two general-purpose classifier systems, CFS-C and *CFS, have been im- 
plemented and validated against each other using a letter sequence prediction 
task. The inherent parallelism of classifier systems and genetic algorithms has 
been realized and demonstrated on a massively parallel computer with *CFS. 
The speed of this system is independent of the classifier population size, al- 
lowing exploration of larger task domains than have previously been practical. 

We have examined several known problems with classifier systems. On the 
issue of population size, we found evidence that increasing population size 
increases learning, contrary to existing theory. On the issue of GA impact on 
classifier systems, we found evidence that a random walk through part of the 
solution space dominates GA for simple problems but that, in general, both 
mechanisms together work far better than either in isolation. On the issue 
of sequences of rules, there has been a long-standing concern because rule 
chains almost never evolve naturally in classifier systems. We found evidence 
that a triggered chaining operator introduces such chains and that the bucket 
brigade algorithm preserves them. We have also demonstrated an approximate 
hyperplane convergence measure, but a more precise measure is needed. With a 
good convergence measure, we could introduce ARGOT-like mechanisms, which 
appear to offer significant advantages. 

In addition, we need simpler mechanisms for controlling overgeneralization. 
The tax system helps control overgeneralization, but it is complex and causes 
other problems. For example, the head tax has a deleterious effect over the 
long term if the environment is changing. An alternative way to eliminate non- 
participatory classifiers would be to change the replacement selection algorithm 
from selection based on fitness to a 'least recently used' algorithm. 
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Much work remains in both the theory and practice of classifier systems 
before we can fully realize their potential. The encouraging sign is that no 
fundamental problems have been found and proposed solutions are being in- 
vestigated for each of the problems we have described. 

Acknowledgements 

This work was supported in part by Grant IRI 86-10225 from the National 
Science Foundation. We would like to thank John Holland and Arthur Burks 
for support of this work in general and in particular for travel funds that they 
provided, Stewart Wilson for his suggestions of alternative mechanisms, and 
Craig Shaefer and Steve Smith for their insights on hyperplane convergence 
measures and the application of ARGOT to classifier systems. We would also 
like to thank Bob Axelrod, Michael Cohen, Dave Davis, Danny Hillis, Jill 
Mesirov, Carl Simon, Michael Savageau, Dave Waltz, and the editors, David 
Goldberg, John Holland, and Pat Langley, for their helpful comments and 
suggestions. 

References 

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. 

Doctoral dissertation, Department of Computer and Communication Sciences, 
University of Michigan, Ann Arbor. 

Booker, L. B., Goldberg, D. E., & Holland, J. H. (in press). Classifier systems and 
genetic algorithms. Artificial Intelligence. 

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive 

systems. Doctoral dissertation, Department of Computer and Communication 
Sciences, University of Michigan, Ann Arbor. 

De Jong, K. A. (1988). Learning with genetic algorithms: An overview. Machine 

Learning, 3, 121-138. 

Goldberg, D. E. (1985). Optimal initial population size for binary-coded genetic 

algorithms (TCGA Report No. 85001). ~lscaloosa: University of Alabama, 
The Clearinghouse for Genetic Algorithms. 

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for 
multimodal function optimization. Genetic Algorithms and Their Applications: 

Proceedings of the Second International Conference on Genetic Algorithms (pp. 
41 -49). Cambridge, MA: Lawrence Erlbamn. 

Hillis, W. D. (1985). The connection machine. Cambridge, MA: MIT Press. 

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: 
University of Michigan Press. 

Holland, J. H. (1981). Genetic algorithms and adaptation (Technical Report No. 34). 
Ann Arbor: University of Michigan, Department of Computer and Communi- 
cation Sciences. 

Holland, J. H. (1985a). Properties of the bucket brigade algorithm. Proceeding~ of the 

First International Conference on Genetic Algorithms and Their Applications 

(pp. 1 7). Pittsburgh. PA: Lawrence Erlbaum 



TWO CLASSIFIER SYSTEMS 159 

Holland, J. H. (1985b). A mathematical framework for studying learning in classifier 

systems (Research Memo RIS No. 25). Cambridge, MA: Rowland Institute for 

Science. 

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose 
learning algorithms applied to parallel rule-based systems. In R. S. Michal- 
ski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial 

intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann. 

Holland, J. H., & Burks, A. W. (1987). Adaptive computing system capable of learning 

and discovery. United States patent application. 

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: 

Processes of inference, learning, and discovery. Cambridge, MA: MIT Press. 

Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algo- 
rithms. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern-directed inference 

systems. New York: Academic Press. 

Riolo, R. L. (1986a). CFS-C: A package of domain independent subroutines for im- 

plementing classifier systems in arbitrary, user-defined enviwnments (Technical 
Report). Ann Arbor: University of Michigan, Division of Computer Science and 

Engineering, Logic of Computers Group. 

Riolo, R. L. (1986b). LETSEQ: An implementation of the CFS-C classifier system 

in a task domain that involves learning to predict letter sequences (Technical 
Report). Ann Arbor: University of Michigan, Division of Computer Science 
and Engineering, Logic of Computers Group. 

Riolo, R. L. (1987a). Bucket brigade performance: I. Long sequences of classifiers. 
Genetic Algorithms and Their Applications: Proceedings of the Second Inter- 

national Conference on Genetic Algorithms (pp. 184 195). Cambridge, MA: 
Lawrence Erlbaum. 

Riolo, R. L. (1987b). Bucket brigade performance: II. Default hierarchies. Genetic 

Algorithms and Their Applications: Proceedings of the Second International 

Conference on Genetic Algorithms (pp. 196-201). Cambridge, MA: Lawrence 
Erlbaum. 

Robertson, G. G. (1987). Parallel implementation of genetic algorithms in a classifier 
system. In L. Davis (Ed.), Genetic algorithms and simulated annealing. London: 
Pitman Press. 

Robertson, G. G., & Riolo, R. L. (1987). A tale of two classifier systems (Technical 
Report RL87-6). Cambridge, MA: Thinking Machines Corporation. 

Shaefer, C. G. (1987). The ARGOT strategy: Adaptive representation genetic op- 
timizer technique. Genetic Algorithms and Their Applications: Proceedings of 

the Second International Conference on Genetic Algorithms (pp. 50 58). Cam- 
bridge, MA: Lawrence Erlbaum. 

Wilson, S. W. (1985). Knowledge growth in an artificial animal. Proceedings of the 

First International Conference on Genetic Algorithms and Their Applications 

(pp. 16 23). Pittsburgh, PA: Lawrence Erlbaum. 

Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning, 
2, 199 228. 


